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Abstract

We prove an abstract Birkhoff normal form theorem for Hamiltonian
Partial Differential Equations. The theorem applies to semilinear equa-
tions with nonlinearity satisfying a property that we call of Tame Modulus.
Such a property is related to the classical tame inequality by Moser. In the
nonresonant case we deduce that any small amplitude solution remains
very close to a torus for very long times. We also develop a general scheme
to apply the abstract theory to PDEs in one space dimensions and we use
it to study some concrete equations (NLW,NLS) with different boundary
conditions. An application to a nonlinear Schrödinger equation on the
d-dimensional torus is also given. In all cases we deduce bounds on the
growth of high Sobolev norms. In particular we get lower bounds on the
existence time of solutions.
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1 Introduction

During the last fifteen years remarkable results have been obtained in perturba-
tion theory of integrable partial differential equation. In particular the existence
of quasiperiodic solutions has been proved through suitable extensions of KAM
theory (see [Kuk87, Kuk93, Kuk00, Way90, Cra00, KP03, CW93, Bou03]). How-
ever very little is known on the behavior of the solutions lying outside KAM
tori. In the finite dimensional case a description of such solutions is provided
by Nekhoroshev’s theorem whose extension to PDEs is at present a completely
open problem. In the particular case of a neighbourhood of an elliptic equilib-
rium point, Birkhoff normal form theorem provides a quite precise description
of the dynamics. In the present paper we give an extension of Birkhoff normal
form theorem to the infinite dimensional case and we apply it to some semilinear
PDEs in one or more space dimensions.

To start with consider a finite dimensional Hamiltonian system H = H0 +P
with quadratic part

H0 =
n∑
j=1

ωj
p2
j + q2j

2
, ωj ∈ R

and P a smooth function having a zero of order at least three at the origin. The
classical Birkhoff normal form theorem states that, for each r ≥ 1, there exits a
real analytic symplectic transformation Tr such that

H ◦ Tr = H0 + Z +Rr, (1.1)

where the remainder Rr has a zero of order r + 3 and Z is a polynomial of
degree r + 2. Provided the frequencies are nonresonant, Z depends on the
actions Ij = (p2

j + q2j )/2 only, and one says that the Hamiltonian (1.1) is in
integrable Birkhoff normal form up to order r+2. As a dynamical consequence,
solutions with initial data of size ε � 1 remain at distance 2ε from the origin
for times of order ε−r, and the actions remain almost constant during the same
lapse of time. Moreover any solution remains εr1 close to a torus of maximal
dimension up to times of order ε−r2 , with r1 + r2 = r + 1.

The proof of such a standard theorem is obtained by applying a sequence of
canonical transformations that eliminate order by order the non normalized part
of the nonlinearity. Remark that, since the space of homogeneous polynomials
of any finite order is finite dimensional, only a finite number of monomials have
to be removed. Of course this is no more true in the infinite dimensional case.

To generalize Birkhoff normal form theory to infinite dimensional systems,
the main difficulty consists in finding a nonresonance property that is satisfied in
quite general situations and that allows to remove from the nonlinearity all the
relevant non-normalized monomials. This problem has been solved by the first
author in a particular case, namely the nonlinear wave equation (see [Bam03b]),
by remarking that most of the monomials are “not relevant”, since their vector
field is already small. Moreover all the remaining monomials can be eliminated
using a suitable nonresonance condition.
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In the present paper we generalize the procedure of [Bam03b] to obtain an
abstract result that can be applied to a wide class of PDEs. The idea is again
that a large part of the nonlinearity is ‘not relevant’, but we show here that this
is due to the so called tame inequality, namely

‖uv‖Hs ≤ Cs (‖u‖Hs ‖v‖H1 + ‖v‖Hs ‖u‖H1) , (1.2)

on which we base our construction. The point is that, if u =
∑

|j|≥N uje
ijx,

then, by (1.2) one has ∥∥u2
∥∥
Hs ≤

‖u‖2Hs

Ns−1

which is small provided N and/or s are large. This remark allows to forget a
large part of the nonlinearity. However in order to exploit (1.2) one has to show
that the tame property is not lost along the iterative normalization procedure.
We prove that this is the case for a class of nonlinearities that we call of tame
modulus (see definition 2.6).

In our abstract theorem we show that, if the nonlinearity has tame modulus,
then it is always possible to put H in the form (1.1), where the remainder term
Rr is of “order” r + 5/2 and Z is a polynomial of degree r + 2 containing only
monomials which are “almost resonant” (see definition 2.12). If the frequencies
fulfill a nonresonance condition similar to the second Melnikov condition, then
H can be put in integrable Birkhoff normal form, i.e. Z depends on the actions
only. We will also show how to deduce some informations on the dynamics when
some resonances or almost resonances are present (see sections 3.2.2, 3.5 below).

When applying this abstract Birkhoff normal form result to PDEs, one meets
two difficulties: (1) to verify the tame modulus condition; (2) to study the
structure of Z in order to extract dynamical informations (e.g. by showing that
it depends on the actions only).

Concerning (1), in the context of PDEs with Dirichlet or periodic boundary
conditions, we obtain a simple condition ensuring tame modulus. Thus we
obtain that typically all local functions and also convolution type nonlinearities
have the tame modulus property.

The structure of Z depends on the resonance relations among the frequen-
cies. Their study is quite difficult since, at variance with respect to the case of
KAM theory for PDEs, infinitely many frequencies are actually involved. Here
we prove that in the case of NLW and NLS in one space dimensions with Dirich-
let boundary conditions Z is typically integrable. Thus all the small initial data
give rise to solutions that remain small and close to a torus for times of order
ε−r, where ε measures the size of the initial datum and r is an arbitrary integer
(see corollary 2.16 for precise statements).

In the case of periodic boundary conditions the nonresonance condition is
typically violated. This is due to the fact that the periodic eigenvalues of a
Sturm Liouville operator are asymptotically double. Nevertheless we prove
that, roughly speaking, the energy transfers are allowed only between pairs of
modes corresponding to almost double eigenvalues (see theorem 3.16 for a pre-
cise statement in the case of periodic NLW equation). In particular we deduce
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an estimate of higher Sobolev norms as in the Dirichlet case. We also study a
system of coupled NLS’s with indefinite energy, getting the same result as in the
case of the wave equation with periodic boundary conditions. In particular we
thus obtain long time existence of solutions somehow in the spirit of the almost
global existence of [Kla83].

Finally we apply our result to NLS in higher dimension. However, in order to
be able to control the frequencies, we have to assume that the linear part is very
simple from a spectral point of view. Namely the linear operator we consider
reads −∆u+V ∗u, involving a convolution operator instead of the more natural
product operator. In this context we again obtain long time existence and
bounds on the energy exchanges among the modes (see theorem 3.25).

Previous results related to the present one were obtained by Bourgain [Bou00]
who showed that, in perturbations of the integrable NLS, one has that most
small amplitude solutions remain close to tori for long times. Such a result is
proved by exploiting the idea that most monomials in the nonlinearity are al-
ready small (as in the present paper and in [Bam03b]). However the technique
of [Bou00] seems to be quite strongly related to the particular problem dealt
with in that paper.

Other Birkhoff normal form results were presented in [Bam03a, Bam03c].
Those results apply to much more general equations (quasilinear equations in
higher space dimensions) but the kind of normal form obtained in those papers
only allows to describe the dynamics up times of order ε−1. This is due to
the fact that in the normal form of [Bam03a, Bam03c] the remainder Rr has a
vector field which is unbounded and greatly reduces regularity. On the contrary
in the present paper the result obtained allows to control the dynamics for much
longer times.

We point out that the study of the structure of the resonances is based on
an accurate study of the eigenvalues of Sturm–Liouville operators. A typical
difficulty met here is related to the fact that the eigenvalues of Sturm–Liouville
operators have very rigid asymptotic properties. In order to prove our non-
resonance type conditions we use ideas from degenerate KAM theory (as in
[Bam03a]) and ideas from the paper [Bou96].

Acknowledgements DB was supported by the MIUR project ‘Sistemi dinamici
di dimensione infinita con applicazioni ai fondamenti dinamici della meccanica
statistica e alla dinamica dell’interazione radiazione materia’. We would like to
thank Thomas Kappeler and Livio Pizzocchero for some useful discussions.
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2 Statement of the abstract result

We will study a Hamiltonian system of the form

H(p, q) := H0(p, q) + P (p, q) , (2.1)

H0 :=
∑
l≥1

ωl
(p2
l + q2l )

2
, (2.2)

where the real numbers ωl play the role of frequencies and P has a zero of order
at least three at the origin. The formal Hamiltonian vector field of the system is
XH := (− ∂H

∂qk
, ∂H∂pk

). Define the Hilbert space `2s(R) of the sequences x ≡ {xl}l≥1

with xl ∈ R such that
‖x‖2s :=

∑
l≥1

l2s|xl|2 <∞ (2.3)

and the scale of phase spaces Ps(R) := `2s(R)⊕ `2s(R) 3 (p, q). We assume that
P is of class C∞ from Ps(R) into R for any s large enough. We will denote by
z ≡ (zl)l∈Z̄, Z̄ := Z− {0} the set of all the variables, where

z−l := pl , zl := ql l ≥ 1 .

and by BR,s(R) the open ball centered at the origin and of radius R in Ps(R).
Often we will simply write

Ps ≡ Ps(R) , Bs(R) ≡ BR,s(R) .

Remark 2.1. In section 3, depending on the concrete example we will consider,
the index l will run in N, Z or even Zd. In this abstract section we will consider
indexes in N. Clearly one can always reduce to this case relabelling the indexes.

2.1 Tame maps

Let f : Ps → R be a homogeneous polynomial of degree r; we recall that f is
continuous and also analytic if and only if it is bounded, namely if there exists
C such that

|f(z)| ≤ C ‖z‖rs , ∀z ∈ Ps .

To the polynomial f it is naturally associated a symmetric r-linear form f̃ such
that

f̃(z, ..., z) = f(z) . (2.4)

More explicitly, write

f(z) =
∑
|j|=r

fjz
j , j = (..., j−l, ..., j−1, j1, ..., jl, ...) , (2.5)

zj := ...z
j−l

−l ...z
j−1
−1 z

j1
1 ...z

jl
l ... , |j| :=

∑
l

|jl| , (2.6)
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then
f̃(z(1), ..., z(r)) =

∑
|j|=r

fj1,...,jrz
(1)
j1
...z

(r)
jr

(2.7)

The multilinear form f̃ is bounded i.e.

|f̃(z(1), ..., z(r))| ≤ C
∥∥∥z(1)

∥∥∥
s
...
∥∥∥z(r)

∥∥∥
s

(and analytic) if and only if f is bounded.
Given a polynomial vector field X : Ps → Ps homogeneous of degree r we

write it as
X(z) =

∑
l∈Z̄

Xl(z)el

where el ∈ Ps is the vector with all components equal to zero but the l−th one
which is equal to 1. Thus Xl(z) is a real valued homogeneous polynomial of
degree r. Consider the r-linear symmetric form X̃l and define X̃ :=

∑
l X̃lel, so

that
X̃(z, ..., z) = X(z) . (2.8)

Again X : Ps → Ps is analytic if and only if it is bounded. Then the same is
true for X̃.

Definition 2.2. Let X : Ps → Ps be a homogeneous polynomial of degree r;
let s ≥ 1, then we say that X is an s–tame map if there exists a constant Cs
such that∥∥∥X̃(z(1), ..., z(r))

∥∥∥
s

≤ Cs

r∑
l=1

∥∥∥z(1)
∥∥∥

1
....
∥∥∥z(l−1)

∥∥∥
1

∥∥∥z(l)
∥∥∥
s

∥∥∥z(l+1)
∥∥∥

1
...
∥∥∥z(r)

∥∥∥
1

∀z(1), ..., z(r) ∈ Ps (2.9)

If a map is s–tame for any s ≥ 1 then it will be said to be tame.

Example 2.3. Given a sequence z ≡ (zl)l∈Z consider the map

(zl) 7→ (wk) , wk :=
∑
l

zk−lzl (2.10)

this is a tame s map for any s ≥ 1. To see this define the map1

Ps 3 {zl} 7→ u(x) :=
∑
l

zle
ilx ∈ Hs(T) (2.11)

where the Sobolev space Hs(T) is the space of periodic functions of period 2π
having s weak derivatives of class L2. Then the map (2.10) is transformed into
the map

u 7→ u2

1In fact, for z ∈ Ps the index l runs in Z − {0}, but one can reorder the indexes so that
they run in Z.
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The corresponding bilinear form is (u, v) 7→ uv and, by Moser inequality, one
has

‖uv‖Hs ≤ Cs (‖u‖Hs ‖v‖H1 + ‖v‖Hs ‖u‖H1) (2.12)

Example 2.4. According to definition 2.2, any bounded linear map A : Ps → Ps
is s-tame.

2.2 The modulus of a map

Definition 2.5. Let f be a homogeneous polynomial of degree r. Following
Nikolenko [Nik86] we define its modulus bfe by

bfe (z) :=
∑
|j|=r

|fj |zj (2.13)

where fj is defined by (2.5). We remark that in general the modulus of a
bounded analytic polynomial can be an unbounded densely defined polynomial.

Analogously the modulus of a vector field X is defined by

bXe (z) :=
∑
l∈Z̄

bXle (z)el . (2.14)

with Xl the l-th component of X.

Definition 2.6. A polynomial vector field X is said to have s–tame modulus if
its modulus bXe is an s–tame map. The set of polynomial functions f whose
Hamiltonian vector field has s–tame modulus will be denoted by T sM , and we
will write f ∈ T sM . If f ∈ T sM for any s > 1 we will write f ∈ TM and say that
it has tame modulus.

Remark 2.7. The property of having tame modulus depends on the coordinate
system.

Remark 2.8. Consider a Hamiltonian function f then it is easy to see that its
vector field Xf has tame modulus if and only if the Hamiltonian vector field of
bfe is tame.

Example 2.9. Consider again the map of example 2.3: In this case the map
Xk(z) is simply given by (2.10) and can be written in the form

Xk(z) =
∑
j1,j2

δj2,k−j1zj1zj2

so that in this case bXe = X, and therefore this map has tame modulus.

Example 2.10. Let (Wk)k∈Z̄ be a given bounded sequence, and consider the
map z 7→ X(z) := (Wkzk)k∈Z̄. Its modulus is bXe (z) := {|Wk|zk}k∈Z̄, which is
linear and bounded as a map from Ps to Ps. Therefore, according to example
2.4 it has tame modulus.

8



2.3 The theorem

We come now to normal forms. To define what we mean by normal form we
introduce the complex variables

ξl :=
1√
2
(pl + iql) ; ηl :=

1√
2
(pl − iql) l ≥ 1 , (2.15)

in which the symplectic form takes the form
∑
l i dξl ∧ dηl.

Remark 2.11. In these complex variables the actions are given by

Ij = ξjηj .

Consider a polynomial function Z and write it in the form

Z(ξ, η) =
∑
k,l∈NN

Zklηkξl . (2.16)

Definition 2.12. Fix two positive parameters γ and α, and a positive integer
N . A function Z of the form (2.16) will be said to be in (γ, α,N)–normal form
with respect to ω if Zkl 6= 0 implies

|ω · (k − l)| < γ

Nα
and

∑
j≥N+1

kj + lj ≤ 2 . (2.17)

Consider the formal Taylor expansion of P = P (p, q), namely

P = P3 + P4 + ...

with Pj homogeneous of degree j. We assume

(H) For any s ≥ 1 the vector field XP is of class C∞ from a neighbourhood of
the origin in Ps(R) to Ps(R). Moreover, for any j ≥ 3 one has Pj ∈ TM ,
namely its Hamiltonian vector field has tame modulus.

Given three numbers R > 0, r ≥ 1 and α ∈ R define the functions

N∗(r, α,R) :=
[
R−(1/2rα)

]
, s∗(r, α) := 2αr2 + 2 . (2.18)

Theorem 2.13. Let H be the Hamiltonian given by (2.1), (2.2), with P satis-
fying (H). Fix positive γ, and α. Then for any r ≥ 1, and any s ≥ s∗ = s∗(r, α)
there exists a positive number Rs with the following properties: for any R < Rs
there exists an analytic canonical transformation TR : Bs(R/3) → Bs(R) which
puts the Hamiltonian in the form

(H0 + P ) ◦ TR = H0 + Z +R (2.19)
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where Z ∈ TM is a polynomial of degree at most r + 2 which is in (γ, α,N∗)–
normal form with respect to ω, and R ∈ C∞(BR,s(R/3)) is small, precisely it
fulfills the estimate

sup
‖(p,q)‖s≤R

‖XR(p, q)‖s ≤ CsR
r+ 3

2 . (2.20)

Finally the canonical transformation fulfills the estimate

sup
‖z‖s≤R

‖z − TR(z)‖s ≤ CsR
2 . (2.21)

Exactly the same estimate is fulfilled by the inverse canonical transformation.
The constant Cs does not depend on R.

The proof of this abstract theorem is postponed to section 4.
Assuming that the frequencies are nonresonant one can easily get dynamical

informations. Precisely, let r be a positive integer, assume

(r-NR) There exist γ > 0, and α ∈ R such that for any N large enough one has∣∣∣∣∣∣
∑
j≥1

ωjkj

∣∣∣∣∣∣ ≥ γ

Nα
, (2.22)

for any k ∈ Z∞, fulfilling 0 6= |k| :=
∑
j |kj | ≤ r + 2,

∑
j>N |kj | ≤ 2.

Remark 2.14. If the frequency vector satisfies assumption (r-NR) then any poly-
nomial of degree r+2 which is in (γ,N, α)-normal form with respect to ω depends
only on the actions ξjηj = 1

2 (p2
j + q2j ), j ≥ 1.

We thus have the following

Corollary 2.15. Fix r, assume (H,r-NR), and consider the system H0 + P ,
then the normal form Z depends on the actions only.

In this case one has

Corollary 2.16. Fix r, assume (H,r-NR), and consider the system H0 + P .
For any s large enough there exists εs and c such that if the initial datum belongs
to Ps and fulfills

ε := ‖z(0)‖s < εs (2.23)

one has

(i) ‖z(t)‖s ≤ 2ε , for |t| ≤ c

εr+1/2

(ii) |Ij(t)− Ij(0)| ≤ ε3

j2s
, for |t| ≤ c

εr+1/2
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iii) There exists a torus T0 with the following properties: For any s1 < s−1/2
there exists Cs1 such that

ds1(z(t),T0) ≤ Cs1ε
r1
2 +1 , for |t| ≤ 1

εr−r1+
1
2

(2.24)

where r1 ≤ r and ds1(., .) is the distance in Ps1 .

Proof. Define R := 8ε and use theorem 2.13 to construct the normalizing
canonical transformation z = TR(z′). Denote by I ′j the actions expressed in the
variables z′. Define the function N (z′) := ‖z′‖2s ≡

∑
j j

2sI ′j . By (2.21) one has
N (z′(0)) ≤ R2/62 (provided R, i.e. ε is small enough). One has

dN
dt

(z′) = {R;N} (z′)

and therefore, as far as N (z′(t)) < R2/9, one has∣∣∣∣dNdt (z′)
∣∣∣∣ ≤ CRr+5/2 = C ′εr+5/2 . (2.25)

Denote by Tf the escape time of z′ from Bs(R/3). Remark that for all times
smaller than Tf , (2.25) holds. So one has

R2

9
= N (z′(Tf )) ≤ N (z′(0)) + C ′εr+5/2Tf

which (provided the constants are chosen suitably) shows that Tf > Cε−(r+1/2).
Going back to the original variables one gets the estimate (i). To come to the
estimate (ii) just remark that

|Ij(t)− Ij(0)| ≤ |Ij(t)− I ′j(t)|+ |I ′j(t)− I ′j(0)|+ |I ′j(0)− Ij(0)|

and that j2sIj is a smooth function on Ps and therefore, using (2.21) together
with (i), it is easy to estimate the first and the last terms at r.h.s. The middle
term is estimated by computing the time derivative of j2sI ′j with the Hamilto-
nian and remarking that its time derivative is of order εr+5/2.

Denote by Īj := Ij(0) the initial actions, in the normalized coordinates. Up
to the considered times ∣∣Ij(t)− Īj

∣∣ ≤ Cε2r1

j2s
. (2.26)

Define the torus
T0 :=

{
z ∈ Ps : Ij(z) = Īj , j ≥ 1

}
One has

ds1(z(t),T0) ≤

∑
j

j2s1
∣∣∣∣√Ij(t)−√Īj∣∣∣∣2

1/2

(2.27)
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Notice that for a, b ≥ 0 one has,∣∣∣√a−√
b
∣∣∣ ≤√|a− b| .

Thus, using (2.26), one has that

[ds1(z(t),T0)]
2 ≤

∑
j

j2s|Ij(t)− Īj |
j2(s−s1)

≤ sup j2s|Ij(t)− Īj |
∑ 1

j2(s−s1)

which is convergent provided s1 < s− 1/2 and gives iii).

Remark 2.17. It can be shown that, if the vector field of the nonlinearity has
tame modulus when considered as a map from Ps to Ps+τ with some positive
τ (as in the case of the nonlinear wave equation), then one can show that both
the vector field of Z and of R are regularizing, in the sense that they map Ps
into Ps+τ . Moreover the estimates (2.20), (2.21), are substituted by

sup
‖(p,q)‖s≤R

‖XR(p, q)‖s+τ ≤ CsR
r+ 3

2 . (2.28)

sup
‖z‖s≤R

‖z − TR(z)‖s+τ ≤ CsR
2 , (2.29)

and the estimate (2.24) holds with s1 < s+ (τ − 1)/2.

3 Applications

3.1 An abstract model of Hamiltonian PDE

In this section we present a general class of Hamiltonian PDEs to which theorem
2.13 applies. We focus only on the one dimensional case but the discussion of
the tame modulus property can be easily generalized to higher dimension.

Denote by T the torus, T := R/2πZ and consider the space L2(T) × L2(T)
endowed by the symplectic form

Ω ((p1, q1), (p2, q2)) := 〈J(p1, q1); (p2, q2)〉L2×L2

where
J (p, q) = (−q, p)

With this symplectic structure the Hamilton equations associated to a Hamil-
tonian function, H : L2 × L2 ⊃ D(H) → R, read{

ṗ = −∇qH
q̇ = ∇pH

with ∇q and ∇p denoting the L2 gradient with respect to the q and the p
variables respectively.
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Let A be a self-adjoint operator on L2(T) with pure point spectrum (ωj)j∈Z.
Denote by ϕj , j ∈ Z, the associated eigenfunctions, i.e.

Aϕj = ωjϕj .

The sequence (ϕj)j∈Z defines a Hilbert basis of L2(T).
We use this operator to define the quadratic part of the Hamiltonian. Pre-

cisely we put

H0 :=
1
2

(〈Ap, p〉L2 + 〈Aq, q〉L2) (3.1)

=
∑
j∈Z

ωj
p2
j + q2j

2
(3.2)

where qj is the component of q on ϕj and similarly for pj . Remark that here
the indexes run in Z, so that the set Z̄ has to be substituted by the disjoint
union of two copies of Z.

Concerning the normal modes ϕj of the quadratic part, we assume they are
well localized with respect to the exponentials: Consider the Fourier expansion
of ϕj ,

ϕj(x) =
∑
k∈Z

ϕkj e
ikx ,

we assume

(S1) For any n > 0 there exists a constant Cn such that for all j ∈ Z and k ∈ Z∣∣ϕkj ∣∣ ≤ max
±

Cn
(1 + |k ± j|)n

. (3.3)

Example 3.1. If A = −∂xx, then ϕj(x) = sin jx for j > 0 and ϕj(x) = cos(−jx)
for j ≤ 0, is well localized with respect to the exponentials.

Example 3.2. Let A = −∂xx+V , where V is a C∞, 2π periodic potential. Then
ϕj(x) are the eigenfunctions of a Sturm Liouville operator. By the theory of
Sturm Liouville operators (cf [Mar86, PT87]) it is well localized with respect to
the exponentials (cf [CW93, KM01]). Moreover, if V is even then one can order
the eigenfunctions in such a way that ϕj is odd for strictly positive j and even
for negative j.

Remark 3.3. Under assumption (S1) the space Hs(T) coincides with the space
of the functions q =

∑
j qjϕj with (qj) ∈ `2s.

On the symplectic space Bs := Hs(T) × Hs(T) consider the Hamiltonian
system, H = H0 + P with H0 defined by (3.1) and P a C∞ function which has
a zero of order at least three at the origin.

While it is quite hard to verify the tame modulus property when the basis
ϕj is general, it turns out that it is quite easy to verify it using the basis of the
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complex exponentials. So it is useful to reduce the general case to that of the
Fourier basis. Let Φ be the isomorphism between Ps and Bs given by

Ps 3 (pk, qk) 7→ Φ(pk, qk) := (
∑
k

pke
ikx,

∑
k

qke
ikx) (3.4)

Then any polynomial vector field on Bs induces a polynomial vector field on Ps.

Definition 3.4. A polynomial vector field X : Bs → Bs will be said to have
tame modulus with respect to the exponentials if the polynomial vector field
Φ−1XΦ has tame modulus.

Example 3.5. By examples 2.9, 2.10 and the result of lemma B.1 ensuring that
the composition of maps having tame modulus has tame modulus, one has that
given a C∞ periodic function g, the Hamiltonian functions

H1(p, q) =
∫

T
g(x)p(x)n1q(x)n2dx , (3.5)

H2(p, q) =
∫

T×T
p(x)n1q(x)n2g(x− y)p(y)n3q(y)n4dxdy (3.6)

have a vector field with tame modulus with respect to the exponentials.

The main result we will use to verify the tame modulus property is

Theorem 3.6. Let X : Bs → Bs be a polynomial vector field having tame mod-
ulus with respect to the exponentials; assume (S1), then X has tame modulus.

The proof is detailed in appendix B.

Example 3.7. By example 3.5 given a C∞ periodic function g and a C∞ function
f form R2 or R4 into R, the Hamiltonian functions

P1(p, q) =
∫

T
g(x)f(p(x), q(x))dx , (3.7)

P2(p, q) =
∫

T×T
g(x− y)f(p(x), p(y), q(x), q(y))dxdy (3.8)

satisfy hypothesis (H).

Remark 3.8. All the above theory extends in a simple way to the case where
the space Hs(T) is substituted by Hs(T) × Hs(T)... × Hs(T), or by Hs(Td),
cases needed to deal with equations in higher space dimensions and systems of
coupled partial differential equations.

To deal with Dirichlet boundary conditions, we will consider the space

Hs := Span ((ϕj)j≥1) . (3.9)

Example 3.9. Consider again examples 3.1, and 3.2 with V an even function.
In these cases the function space Hs is the space of the functions that extend

14



to Hs skew–symmetric periodic functions of period 2π. Equivalently Hs is the
space of the functions q ∈ Hs([0, π]) fulfilling the compatibility conditions

q(2j)(0) = q(2j)(π) = 0 , 0 ≤ j ≤ s− 1
2

, (3.10)

i.e. a generalized Dirichlet condition. Actually, recall that for V even, the
Dirichlet eigenvalues of A = −∂xx + V are periodic eigenvalues. Thus, due
to our choice of the labeling, the sequence of eigenvalues (ωj)j≥1 corresponds
to the Dirichlet spectrum of A and (ϕj)j≥1 are the corresponding Dirichlet
eigenfunctions.

Concerning the tame modulus property, one has in this case

Corollary 3.10. Assume that the subspace Hs ×Hs ⊂ Bs is mapped smoothly
into itself by the nonlinearity XP , then if H0 + P fulfills assumption (H) in Bs
then the restriction of H0 + P to Hs ×Hs fulfills assumption (H).

3.2 Nonlinear wave equation

As a first concrete application we consider a nonlinear wave equation

utt − uxx + V (x)u = g(x, u) , x ∈ T , t ∈ R , (3.11)

where V is a C∞, 2π periodic potential and g ∈ C∞(T × U), U being a neigh-
bourhood of the origin in R.

Define the operator A := (−∂xx + V )1/2, and introduce the variables (p, q)
by

q := A1/2u , p := A−1/2ut ,

then the Hamiltonian takes the form H0 + P , with H0 of the form (3.1) and P
given by

P (q) =
∫

T
G(x,A−1/2q)dx ∼

∑
j≥3

∫
T
Gj(x)(A−1/2q)jdx (3.12)

where G(x, u) ∼
∑
j≥3Gj(x)u

j is such that ∂uG = −g and ∼ denotes the fact
that the r.h.s. is the asymptotic expansion of the l.h.s.

The frequencies are the square roots of the eigenvalues of the Sturm–Liouville
operator

−∂xx + V (3.13)

and the normal modes ϕj are again the eigenfunctions of (3.13). In particular,
due to example 3.2 they fulfill (S1).

Proposition 3.11. The nonlinearity P has tame modulus.

Proof. Denote by Pj the j-th Taylor coefficient of P , then

XPj
=
(
−A−1/2Gj(x)(A−1/2q)j , 0

)
15



is the composition of three maps, namely

q
17→A−1/2q

27→Gj(x)(A−1/2q)j 37→−A−1/2Gj(x)(A−1/2q)j

The first and the third ones are smoothing linear maps, which therefore have
tame modulus, and the second one has tame modulus with respect to the expo-
nentials. By lemma B.1 the thesis follows.

Thus the system can be put in (γ, α,N∗)–normal form. To deduce dynamical
informations we need to know something on the frequencies.

3.2.1 Dirichlet boundary conditions

First remark that if both V and G(x, u) are even, then the eigenfunctions and
the eigenvalues can be ordered according to example 3.9, and moreover the
space Hs × Hs is invariant under XP , so that assumption (H) holds also for
the system with Dirichlet boundary conditions. The nonresonance condition
(r-NR) is satisfied for almost all the potentials in the following sense: Write
V = V0 + m, with V0 having zero average. Let λj be the sequence of the
eigenvalues of −∂xx + V0, then the frequencies are

ωj :=
√
λj +m (3.14)

Let m0 := minj λj , then the following theorem holds

Theorem 3.12. Consider the sequence {ωj}j>0 given by (3.14), for any ∆ >
m0 there exists a set I ⊂ (m0,∆) of measure ∆−m0 such that, if m ∈ I then
for any r ≥ 1 assumption (r-NR) holds.

Theorem 3.12 was proved in ref. [Bam03b]; in section 5 we will reproduce
the main steps of the proof.

So, in the case of Dirichlet boundary, conditions it is immediate to conclude
that for m in the set I corollary 2.16 applies to the equation (3.11). Moreover
it is easy to verify that we are in the situation of remark 2.17 with τ = 1 and
therefore (2.24) holds for s1 < s.
Remark 3.13. Such a result was already obtained in [Bam03b].

3.2.2 Periodic boundary conditions

In the case of periodic boundary conditions the frequencies are again of the form
(3.14) with λj being the periodic eigenvalues of the operator −∂xx + V0. We
label them in such a way that, for j > 0, λj are the Dirichlet eigenvalues and,
for j ≤ 0, λj are the Neumann eigenvalues.

The situation is more complicated than in the Dirichlet case since asymptot-
ically ωj ∼ ω−j and we cannot hope condition (r-NR) to be satisfied. Actually,
for analytical V one has

|ωj − ω−j | ≤ Ce−σ|j|
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and thus |ωj − ω−j | cannot be bounded from below by 1/Nα as soon as |j| ≥
C lnN . The forthcoming theorem essentially states that for typical small V this
is the only case where condition (r-NR) is not satisfied.

Consider a potential V of the form

V (x) = m+
∑
k≥1

vk cos kx (3.15)

we will use the values (vk)k≥1 and the value of the mass m as random variables.
More precisely, having fixed a positive ∆ and a positive σ, for any R > 0 we
consider the probability space

VR :=
{

(m, (vk)k≥1) : m′ := ∆−1m ∈ [0, 1] , v′k := R−1eσkvk ∈ [−1
2
,
1
2
]
}

(3.16)
endowed by the product probability measure on (m′, v′k). We will identify V
with the coefficients (m, vk).

Theorem 3.14. For any positive r there exist a positive R and a set Sr ⊂ VR
such that

i) for any V ∈ Sr there exists a positive γ, a positive α and a positive b such
that for any N ≥ 1

|
∑
j∈Z

ωjkj | ≥
γ

Nα
, (3.17)

for any k ∈ ZZ, fulfilling 0 6= |k| ≤ r + 2,
∑

|j|>N |kj | ≤ 2 except if

(kj = 0 for |j| ≤ b lnN) and (kj + k−j = 0 for |j| > b lnN) .

ii) |VR − Sr| = 0, where |.| denotes the measure of its argument.

The proof is postponed to section 5.2.
As the assumption (r-NR) is no more satisfied, corollary 2.15 does not apply.

However one has

Lemma 3.15. Assume V ∈ Sr. Let ξkηl be a monomial in (γ, α,N)–normal
form for the system with periodic boundary conditions, then one has{

ξjηj ; ξkηl
}

= 0 , for |j| ≤ b lnN (3.18){
ξjηj + ξ−jη−j ; ξkηl

}
= 0 , for |j| > b lnN (3.19)

Proof. Denote J := b lnN and γj := ωj − ω−j . Assume that b is so large
that |γj | < γ/2Nα ∀j > J . Let ξkηl be in (γ, α,N)–normal form; denote
K := (k − l) ∈ ZZ. By definition of normal form one has

γ

Nα
>

∣∣∣∣∣∣
∑
j∈Z

ωjKj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
|j|≤J

ωjKj +
∑
j>J

ωj(Kj +K−j)−
∑
j>J

γjKj

∣∣∣∣∣∣
17



from which ∣∣∣∣∣∣
∑
|j|≤J

ωjKj +
∑
j>J

ωj(Kj +K−j)

∣∣∣∣∣∣ < γ

2Nα

then, by theorem 3.14 one has Kj = 0 for |j| ≤ J and Kj +K−j = 0 for j > J .
As a consequence the normal form commutes with Ij for all |j| ≤ J . Write

ξkηl =
∏
j∈Z

ξ
kj

j η
lj
j =

 ∏
|j|≤J

ξ
kj

j η
lj
j

∏
j>J

ξ
kj

j η
lj
j ξ

k−j

−j η
l−j

−j

Compute now {
ξjηj + ξ−jη−j ; ξkηl

}
=

 ∏
|j|≤J

ξ
kj

j η
lj
j

 ∏
n>J,n6=j

ξkn
n ηlnn ξ

k−n

−n η
l−n

−n


{
ξjηj + ξ−jη−j ; ξ

kj

j η
lj
j ξ

k−j

−j η
l−j

−j

}
=

 ∏
|j|≤J

ξ
kj

j η
lj
j

 ∏
n>J,n6=j

ξkn
n ηlnn ξ

k−n

−n η
l−n

−n


(−i) [(lj − kj) + (l−j − k−j)] ξ

kj

j η
lj
j ξ

k−j

−j η
l−j

−j

= −i(Kj +K−j)ξkηl = 0 .

This allows to get dynamical consequences. Define Jj := Ij + I−j then one
has

Theorem 3.16. Consider the wave equation (3.11) with periodic boundary con-
ditions, fix r, assume V ∈ Sr. For any s large enough, there exists εs > 0 and
Cs > 0 such that if the initial datum (u0, u̇0) belongs to Hs(T)×Hs−1(T) and
fulfills ε := ‖u0‖s + ‖u̇0‖s−1 < εs then

‖u(t)‖s + ‖u̇(t)‖s−1 ≤ 2ε for all |t| ≤ Csε
−r .

Further there exists C ′
s such that for all |t| ≤ Csε

−r one has

|Ij(t)− Ij(0)| ≤ 1
|j|2s

ε3 for |j| ≤ −C ′
s ln ε

|Jj(t)− Jj(0)| ≤ 1
|j|2s

ε3 for j > −C ′
s ln ε .

Roughly speaking, the last property means that energy transfers are allowed
only between modes of index j and −j with j large.
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3.3 NLS in 1 dimension

We will consider here only the case of Dirichlet boundary conditions. However,
to fit the scheme of section 3.1 we start with the periodic system.

Consider the nonlinear Schrödinger equation

−iψ̇ = −ψxx + V ψ +
∂g(x, ψ, ψ∗)

∂ψ∗
, x ∈ T, t ∈ R (3.20)

where V is a C∞, 2π periodic potential. We assume that g(x, z1, z2) is C∞(T×
U), U being a neighbourhood of the origin in C×C. We also assume that g has
a zero of order three at (z1, z2) = (0, 0) and that g(x, z, z∗) ∈ R.

The Hamiltonian function of the system is

H =
∫ π

−π

1
2
(
|ψx|2 + V |ψ|2

)
+ g(x, ψ(x), ψ∗(x))dx (3.21)

Define p and q as the real and imaginary parts of ψ, namely write ψ = p+iq.
Then the operator A is the Sturm–Liouville operator −∂xx + V with periodic
boundary conditions, the frequencies ωj are the corresponding eigenvalues and
the normal modes ϕj are the corresponding eigenfunctions.

Then property (S1) is a consequence of Sturm Liouville theory (see example
3.2) and it is easy to verify that property (H) holds for the periodic system. To
deal with Dirichlet boundary conditions we have to ensure the invariance of the
space Hs under the vector field of the equation (cf. corollary 3.10). To this end
we assume

V (x) = V (−x) , g(−x,−z,−z∗) = g(x, z, z∗) . (3.22)

Then (H) holds true in the Dirichlet context and thus theorem 2.13 applies and
the Hamiltonian 3.21 can be put in (γ, α,N)- normal form in Hs ×Hs. We are
going to prove that for typical small V such a normal form is integrable.

Fix σ > 0 and, for any positive R define the space of the potentials, by

VR :=

V (x) =
∑
k≥1

vk cos kx | v′k := R−1eσk ∈
[
−1

2
,
1
2

]
for k ≥ 1

 (3.23)

that we endow with the product probability measure. We remark that any
potential in VR has size of order R, is analytic and has zero average. We also
point out that the choice of zero average was done for simplicity since the average
does not affect the resonance relations among the frequencies.

Theorem 3.17. For any r there exists a positive R and a set S ⊂ VR such that
property (r-NR) holds for any potential V ∈ S and |VR − S| = 0.

The proof of this theorem is postponed to section 5.
Thus corollary 2.16 holds and every small amplitude solution remains small

for long times and approximatively lies on a finite dimensional torus.
Remark 3.18. We remark that the theory applies also to Hartree type equations
of the form

−iψt = −ψxx + V ψ + (W ∗ |ψ|2)ψ . (3.24)
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3.4 Coupled NLS in 1 dimension

As an example of a system of coupled partial differential equations we consider
a pair of NLS equations. From the mathematical point of view the interest of
this example is that, since it does not have a positive definite energy, nothing
is a priori known about global existence of its solutions in any phase space. So,
consider the Hamiltonian

H =
∫

T
|ψx|2 − |φx|2 + V1 |ψ|2 − V2 |φ|2 − g(x, ψ, ψ∗, φ, φ∗) (3.25)

The corresponding equations of motion have the form

−iψ̇ = −ψxx + V1ψ − ∂ψ∗g (3.26)

iφ̇ = −φxx + V2φ+ ∂φ∗g (3.27)

Assume as in the previous sections that the potentials and the function g are
of class C∞, then condition (H) holds for the system with periodic boundary
conditions. Assuming also that the potentials V1, V2 and g are even in each of
the variables, one has that the space of odd functions is invariant and therefore
the system with Dirichlet boundary conditions fulfills also condition (H).

We concentrate now on the case of Dirichlet boundary conditions.
The frequencies are given by

ωj := λ1
j , ω−j := −λ2

j , j ≥ 1

where λ1
j , and λ2

j , are the Dirichlet eigenvalues of −∂xx + V1 and −∂xx + V2

respectively.
Assume that the potentials vary in the probability space obtained by taking

two copies of the space (3.23). As in the case of periodic NLW (cf. subsection
3.2.2), ωj ∼ ω−j and we cannot hope condition (r-NR) to be satisfied. Actually
one has |ωj − ω−j | ≤ C/|j|2 and, by adapting the proof of theorem 3.17 in the
spirit of theorem 3.14, one gets (the proof is postponed to subsection 5.4)

Theorem 3.19. For any positive r there exist a positive R and a set Sψ,φ ⊂
VR × VR such that

i) for any (V1, V2) ∈ Sψ,φ there exists a positive γ, a positive α and a positive
C such that for any N ≥ 1

|
∑
j∈Z̄

ωjkj | ≥
γ

Nα
, (3.28)

for any k ∈ ZZ, fulfilling 0 6= |k| ≤ r + 2,
∑

|j|>N |kj | ≤ 2 except if

(kj = 0 for |j| ≤ CN
√

2α) and (kj + k−j = 0 for |j| > CN
√

2α) .

ii) |VR × VR − Sψ,φ| = 0.
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For the proof see section 5.4.
In particular one deduces long time existence of solutions and long time

stability of the zero equilibrium point:

Theorem 3.20. Consider the system (3.26,3.27) and fix r ≥ 1. Provided V1 ×
V2 ∈ Sψ,φ, for any s large enough there exists a positive εs such that if the initial
datum (ψ0, φ0) ∈ Hs(T)×Hs(T) fulfills

ε := ‖ψ0‖Hs + ‖φ0‖Hs ≤ εs

then the corresponding solution exists until the time ε−r and fulfills

‖ψ(t)‖Hs + ‖φ(t)‖Hs ≤ 2ε

3.5 NLS in arbitrary dimension

Consider the following non linear Schrödinger equation in dimension d ≥ 1

−iψt = −∆ψ + V ∗ ψ +
∂g(x, ψ, ψ∗)

∂ψ∗
, x ∈ [−π, π]d, t ∈ R (3.29)

with periodic boundary conditions.
As in the previous sections we assume that g(x, z1, z2) is C∞(Td × U), U

being a neighbourhood of the origin in C×C. We also assume that g has a zero
of order three at (z1, z2) = (0, 0) and that g(x, z, z∗) ∈ R.

Fix m > d/2 and R > 0, then the potential V is chosen in the space V given
by

V = {V (x) =
∑
k∈Zd

vke
ik·x | v′k := vk(1 + |k|)m/R ∈ [−1/2, 1/2] for any k ∈ Zd}

(3.30)
that we endow with the product probability measure. In contrast with the
previous cases, here R is arbitrary (it does not need to be small).

In this section we denote Hs ≡ Hs(Td; C) the Sobolev space of order s on
the d-dimensional torus Td, ‖ · ‖s the usual norm on Hs. Notice also that in
this section all the indexes run in Zd.

The NLS equation (3.29) is Hamiltonian with Hamiltonian function given
by

H(ψ,ψ∗) =
∫

Td

(
|∇ψ|2 + (V ∗ ψ)ψ∗ + g(x, ψ, ψ∗)

)
dx.

It is convenient to introduce directly the variables ξ, η by

ψ(x) =
(

1
2π

)d/2 ∑
k∈Zd

ξke
ik·x , ψ∗(x) =

(
1
2π

)d/2 ∑
k∈Zd

ηke
−ik·x,

so the Hamiltonian reads

H(ξ, η) =
∑
k∈Zd

ωkξkηk +
∫

Td

g(x, ψ, ψ∗)
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where the linear frequencies are given by ωk = |k|2 + v(k).
It is immediate to realize that the nonlinearity has tame modulus so that

theorem 2.13 applies with an adapted definition of (γ, α,N)–normal form.
Remark that, if |l| = |j| → ∞ then ωj − ωl → 0 as |l| → ∞. Thus property

(r-NR) is violated. The following theorem ensures this is the only case where it
happens.

Theorem 3.21. There exists a set S ⊂ V of measure 1 such that, for any
V ∈ S the following property holds. For any positive r there exist positive
constants γ, α, such that for any N ≥ 1

|
∑
j∈Zd

ωjkj | ≥
γ

Nα
, (3.31)

for any k ∈ ZZd

, fulfilling 0 6= |k| ≤ r + 2,
∑

|j|>N |kj | ≤ 2 except if

(kj = 0 for |j| ≤ N
√
α/m) and (

∑
|j|=K

kj = 0 for all K > N
√
α/m) .

For the proof see section 5.
As a consequence theorem 2.13 does not allow to eliminate monomial of the

form Ik1 . . . Ikr
ξjηl with large |j| and |l|. Nevertheless, defining forM > N

√
α/m

JM =
∑

|k|2=M Ik, we have

Theorem 3.22. Consider the equation (3.29), and assume V ∈ S. Fix r ≥ 1,
then for any s large enough, there exist εs > 0 and Cs > 0 such that if the initial
datum ψ(·, 0) belongs to Hs(Td) and fulfills ε := ‖ψ(·, 0)‖s < εs then

‖ψ(·, t)‖s ≤ 2ε for all |t| ≤ Csε
−r .

Furthermore there exists an integer N ∼ ε−
1

2rα (where α is defined in theorem
3.21) such that

|Ij(t)− Ij(0)| ≤ Cs
|j|2s

ε3 for |j| ≤ N
√
α/m

|JM (t)− JM (0)| ≤ Cs
M2s

ε3 for M > N
√
α/m .

Roughly speaking, the last property means that energy transfers are allowed
only among modes having indexes with equal large modulus.

If the nonlinearity does not depend on x something more can be concluded.
To come to this point consider the following

Definition 3.23. Given a monomial ξj1 ....ξjr1 ηl1 ...ηlr2 , its momentum is defined
by j1 + ...+ jr1 − (l1 + ...+ lr2).

It is easy to see that if the function g does not depend on x then the nonlin-
earity contains only monomials with zero momentum. Moreover this property
is conserved by our iteration procedure defined in section 4.2. Therefore the
normal form has zero momentum and the following corollary holds:
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Corollary 3.24. If the function g does not depend on x then the normal form
Z of the system depends on the actions only.

Proof. By theorem 3.21 the only non integrable term that the normal form may
contain are of the form

Ik1 ...Ikl
ξjηi

with |i| = |j|, but the momentum j− i of such a term must vanish and therefore
one must have i = j.

Thus the following theorem holds

Theorem 3.25. Consider the d-dimensional NLS equation (3.29) with periodic
boundary conditions and g independent of x. Assume V ∈ S. Fix r, then, for
s large enough, there exist εs > 0 and cs > 0 such that the following properties
hold :

If ψ(t) is the solution of the Cauchy problem (3.29) with initial datum ψ0 ∈
Hs satisfying ε := ‖ψ0‖s ≤ εs then for all

|t| ≤ cs
εr

the solution ψ satisfies

‖ψ(t)‖s ≤ 2ε , |Ik(t)− Ik(0)| ≤ 1
|k|2s

ε3 .

One also has that corollary 2.16 applies and therefore any initial datum
which is smooth and small enough give rise to a solution which is εr1 close to a
torus up to times ε−r2 .

The results of this section were announced in [BG03].

4 Proof of the Normal Form Theorem

First of all we fix a number r∗ (corresponding to the one denoted by r in the
statement of theorem 2.13) determining the order of normalization we want to
reach. In the following we will use the notation

a ≤· b

to mean: There exists a positive constant C independent of R and of N (and of
all the other relevant parameters, but dependent on r∗, s, γ and α), such that

a ≤ Cb .

The proof is based on the iterative elimination of nonresonant monomials.
In order to improve by one the order of the normalized part of the Hamiltonian
we will use a canonical transformation generated by Lie transform, namely the
time 1 flow of a suitable auxiliary Hamiltonian function. So, first of all we recall
some facts about Lie transform, and we introduce some related tools.
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Consider an auxiliary Hamiltonian function χ and the corresponding Hamil-
ton equations ż = Xχ(z). Denote by T t the corresponding flow and by T :=
T 1 ≡ T t

∣∣
t=1

the time 1 flow.

Definition 4.1. The canonical transformation T will be called the Lie trans-
form generated by χ.

Given an analytic function g, consider the transformed function g◦T . Using
the relation

d

dt
[g ◦ T t] = {χ; g} ◦ T t ,

it is easy to see that, at least formally, one has

g ◦ T =
∞∑
l=0

gl , (4.1)

with gl defined by

g0 = g , gl =
1
l
{χ; gl−1} , l ≥ 1 . (4.2)

Then, provided one is able to show the convergence of the series, (4.1) gets a
rigorous meaning.

We will use (4.1) to show that, if g and χ have s–tame modulus then the
same is true also for g ◦T . To this end, since infinite sums are involved we have
to introduce a suitable notion of convergence.

4.1 Properties of the functions with tame modulus

In this section we will use only the complex variables ξ, η defined by (2.15).
When dealing with such variables, we will continue to denote by z a phase point
(i.e. z = (. . . , ξl, . . . , ξ1, η1, . . . , ηl, . . .)) but we will use complex spaces, so in
this context Ps will denote the complexification of the phase space and Bs(R)
the complex ball of radius R centered at the origin.

Definition 4.2. Let X be an s–tame vector field homogeneous as a polynomial
in z; the infimum of the constants Cs such that the inequality∥∥∥X̃(z(1), ..., z(r))

∥∥∥ ≤ Cs
1
r

r∑
l=1

∥∥∥z(1)
∥∥∥

1
....
∥∥∥z(l−1)

∥∥∥
1

∥∥∥z(l)
∥∥∥
s

∥∥∥z(l+1)
∥∥∥

1
...
∥∥∥z(r)

∥∥∥
1

∀z(1), ..., z(r) ∈ Ps (4.3)

holds will be called tame norm s of X (or tame s norm). Such a norm will be
denoted by |X|Ts .

Definition 4.3. Let f ∈ T sM be a homogeneous polynomial. The tame norm s
of Xbfe will be denoted by |f |s.
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It is useful to introduce a simple notation for the r.h.s. of (4.3), so we will
write∥∥∥(z(1), ..., z(r))

∥∥∥
s,1

:=
1
r

r∑
l=1

∥∥∥z(1)
∥∥∥

1
....
∥∥∥z(l−1)

∥∥∥
1

∥∥∥z(l)
∥∥∥
s

∥∥∥z(l+1)
∥∥∥

1
...
∥∥∥z(r)

∥∥∥
1

(4.4)
Moreover, we will often denote by w ≡ (z(1), ..., z(r)) a multivector. Thus the
quantity (4.4) will be simply denoted by ‖w‖s,1.
Remark 4.4. The tame s norm of a polynomial Hamiltonian f of degree r + 1
is given by

|f |s := sup

∥∥∥X̃bfe(w)
∥∥∥
s

‖w‖s,1
(4.5)

where the sup is taken over all the multivectors

w = (z(1), ..., z(r))

such that z(l) 6= 0 for any l, and ‖w‖s,1 is defined by (4.4).

Remark 4.5. Since all the components of the multilinear form b̃Xfe are positive
the above supremum can be taken only on the positive ‘octant’ on which all the
components of each of the vectors z(l) are positive.
Remark 4.6. If f ∈ T sM is a homogeneous polynomial of degree r + 1 then one
has

‖Xf (z)‖s ≤
∥∥Xbfe(z)

∥∥
s
≤ |f |s ‖z‖r−1

1 ‖z‖s (4.6)

Definition 4.7. Let f ∈ T sM be a non homogeneous polynomial. Consider its
Taylor expansion

f =
∑

fr

where fr is homogeneous of degree r. For R > 0 we will denote

〈|f |〉s,R :=
∑
r≥2

|fr|sRr−1 . (4.7)

Such a definition extends naturally to the set of analytic functions such that
(4.7) is finite. The set of the functions of class T sM with a finite 〈|f |〉s,R norm
will be denoted by Ts,R.

Definition 4.8. Let f be an analytic function whose vector field is analytic as
a map from Bs(R) to Ps. We denote

‖Xf‖s,R := sup
‖z‖s≤R

‖Xf (z)‖s
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Remark 4.9. With the above definitions, for any f ∈ Ts,R, one has

‖Xf‖s,R ≤
∥∥Xbfe

∥∥
s,R

≤ 〈|f |〉s,R (4.8)

Remark 4.10. The norm 〈|f |〉s,R makes the space Ts,R a Banach space.
A key property for the proof of theorem 2.13 is related to the behaviour

of functions of class T sM with respect to the decomposition of the phase vari-
ables into “variables with small index” and “variables with large index”. To
be precise we fix some notations. Corresponding to a given N we will de-
note z̄ ≡ (ξ̄j , η̄j)j≤N = (ξj , ηj)j≤N for the first N canonical variables and
ẑ ≡ (ξ̂j , η̂j)j>N = (ξj , ηj)j>N for the remaining ones.

We have the the following important

Lemma 4.11. Fix N and consider the decomposition z = z̄ + ẑ, as above. Let
f ∈ T sM be a polynomial of degree less or equal than r∗ + 2. Assume that f has
a zero of order three in the variables ẑ, then one has

‖Xf‖s,R ≤·
〈|f |〉s,R
Ns−1

. (4.9)

The proof of this lemma is based on two facts: (i) if a sequence z ∈ Ps
has only components with large index (i.e. larger than N), then its P1 norm is
bounded by its Ps norm divided by Ns−1; (ii) according to the tame property,
in the estimate of ‖Xf‖s,R the quantity ‖ẑ‖1 appears at least once. The actual
prove is slightly complicated due to the different behaviour of the different
components of the Hamiltonian vector field with respect to the variables with
small and large index. For this reason it is deferred to the appendix A.

Lemma 4.12. Let f, g ∈ T sM be homogeneous polynomials of degrees n+ 1 and
m+ 1 respectively, then one has {f ; g} ∈ T sM with

|{f ; g}|s ≤ (n+m)|f |s|g|s (4.10)

The proof is based on the following three facts: (i) the vector field of the
Poisson brackets of two functions is the commutator of the vector fields of the
original functions; (ii) in case of polynomials the commutator can be computed
in terms of the composition of the multilinear functions associated to the original
functions; (iii) the composition of two tame multilinear functions is still a tame
multilinear function. However the proof requires some attention due to the
moduli and the symmetrization required in the definition of the class T sM . For
this reason it is deferred to the appendix A.

Lemma 4.13. Let h, g ∈ Ts,R, then for any positive d < R one has {f ; g} ∈
Ts,R−d and

〈|{h; g}|〉s,R−d ≤
1
d
〈|h|〉s,R 〈|g|〉s,R . (4.11)
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Proof. Write h =
∑
j hj and g =

∑
k gk with hj homogeneous of degree j and

similarly for g, we have
{h; g} =

∑
j,k

{hj ; gk} .

Now each term of the series is estimated by

〈|{hj ; gk}|〉s,R−d = |{hj ; gk}|s (R− d)j+k−3

≤ |hj |s |gk|s(j + k − 2)(R− d)j+k−3

≤ |hj |s |gk|s
1
d
Rj+k−2 =

1
d
〈|hj |〉s,R 〈|gk|〉s,R ,

where we used the inequality

k(R− d)k−1 <
Rk

d
, (4.12)

which holds for any positive R and 0 < d < R. Then the thesis follows.
We estimate now the terms of the series (4.1,4.2) defining the Lie transform.

Lemma 4.14. Let g ∈ Ts,R and χ ∈ Ts,R be two analytic functions; denote by
gn the functions defined recursively by (4.2); then, for any positive d < R, one
has gn ∈ Ts,R−d, and the following estimate holds

〈|gn|〉s,R−d ≤ 〈|g|〉s,R
( e
d
〈|χ|〉s,R

)n
. (4.13)

Proof. Fix n, and denote δ := d/n, we look for a sequence C(n)
l such that

〈|gl|〉s,R−δl ≤ C
(n)
l , ∀l ≤ n .

By (4.11) this sequence can be defined by

C
(n)
0 = 〈|g|〉s,R , C

(n)
l =

1
lδ
C

(n)
l−1 〈|χ|〉s,R =

n

ld
C

(n)
l−1 〈|χ|〉s,R .

So one has

C(n)
n =

1
n!

(
n 〈|χ|〉s,R

d

)n
〈|g|〉s,R .

Using the inequality nn < n!en, which is easily verified by writing the iterative
definition of nn/n!, one has the thesis.
Remark 4.15. Let χ be an analytic function with Hamiltonian vector field which
is analytic as a map from Bs(R) to Ps, fix d < R. Assume ‖Xχ‖s,R < d and
consider the time t flow T t of Xχ. Then, for |t| ≤ 1, one has

sup
‖z‖s≤R−d

∥∥T t(z)− z
∥∥
s
≤ ‖Xχ‖s,R . (4.14)
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Lemma 4.16. Consider χ as above and let g : Bs (R) → C be an analytic
function with vector field analytic in Bs (R), fix 0 < d < R assume ‖Xχ‖s,R ≤
d/3, then, for |t| ≤ 1, one has

‖Xg◦T t‖s,R−d ≤
(

1 +
3
d
‖Xχ‖s,R

)
‖Xg‖s,R

For the proof see [Bam99] proof of lemma 8.2.

Lemma 4.17. Let f be a polynomial in T sM which is at most quadratic in the
variables ẑ.

There exists χ,Z ∈ Ts,R with Z in (γ, α,N)–normal form such that

{H0;χ}+ Z = f . (4.15)

Moreover Z and χ fulfill the estimates

〈|χ|〉s,R ≤
Nα

γ
〈|f |〉s,R , 〈|Z|〉s,R ≤ 〈|f |〉s,R (4.16)

Proof. Expanding f , in Taylor series, namely

f(ξ, η) =
∑
j,l

fjlξ
jηl

and similarly for χ and Z, the equation (4.15) becomes an equation for the
coefficients of f , χ and Z, namely

iω · (j − l)χjl + Zjl = fjl

We define

Zjl := fjl , j, l such that |ω · (j − l)| < γ

Nα
(4.17)

χjl :=
fjl

iω · (j − l)
, j, l such that |ω · (j − l)| ≥ γ

Nα
, (4.18)

and Zjl = χjl = 0 otherwise. By construction, Z and χ are in T sM . Further,
since f is at most quadratic in the variables ẑ one has

∑
k>N (jk + lk) ≤ 2 and

thus Z is in (γ, α,N)–normal form. The estimates (4.16) immediately follow
from the definition of the norm.

Lemma 4.18. Let χ ∈ Ts,R be the solution of the homological equation (4.15)
with f ∈ T sM . Denote by H0,n the functions defined recursively as in (4.2); for
any positive d < R, one has H0,n ∈ Ts,R−d, and the following estimate holds

〈|H0,n|〉s,R−d ≤ 2 〈|f |〉s,R
( e
d
〈|χ|〉s,R

)n
. (4.19)

Proof. The idea of the proof is that, using the homological equation one gets
H0,1 = Z − f ∈ T sM . Then proceeding as in the proof of lemma 4.14 one gets
the result.
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4.2 The main lemma and conclusion of the proof

The main step of the proof is a proposition allowing to increase by one the order
of the perturbation. As a preliminary step expand P in Taylor series up to order
r∗ + 2:

P = P (1) +R∗ , P (1) :=
r∗∑
l=1

Pl (4.20)

where Pl is homogeneous of degree l+ 2 and R∗ is the remainder of the Taylor
expansion.
Remark 4.19. From assumption (H) it follows that there exist R] and A (de-
pending on r∗ ans s) such that one has〈∣∣∣P (1)

∣∣∣〉
s,R

≤ AR2 , ∀R ≤ R] (4.21)

‖XR∗‖s,R ≤ ARr∗+2 , ∀R ≤ R] (4.22)

Consider now the analytic Hamiltonian

HT = H0 + P (1) (4.23)

and introduce the complex variables (ξ, η) defined by (2.15). Clearly the con-
stants A,R] can be chosen in such a way that (4.21) holds also in the complex
variables.

From now on we consider R] as fixed. In the statement of the forthcoming
iterative lemma we will use the following notations: For any positive R, define
δ := R/2r∗ and Rr := R− rδ.

Proposition 4.20. Iterative Lemma. Consider the Hamiltonian (4.23) and
let N be a fixed integer. Define R∗ by

R∗ :=
γ

24er∗NαA
(4.24)

and assume
R ≤ R] ,

R

R∗
≤ 1

2
(4.25)

then, for any r ≤ r∗ there exists a canonical transformation T (r) which puts
(4.23) in the form

H(r) := HT ◦ T (r) = H0 + Z(r) + f (r) +R(r)
N +R(r)

T , (4.26)

where

1) the transformation T (r) satisfies

sup
z∈Bs(Rr)

∥∥∥z − T (r)(z)
∥∥∥ ≤· NαR2 (4.27)
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2) Z(r) is a polynomial of degree at most r + 2 having a zero of order 3 at
the origin and is in (γ, α,N)–normal form; f (r) is a polynomial of degree
less than r∗ + 1 having a zero of order r + 3 at the origin. Moreover the
following estimates hold〈∣∣∣Z(r)

∣∣∣〉
s,Rr

≤

{
0 r = 0

AR2
∑r−1
l=0

(
R
R∗

)l
r ≥ 1

(4.28)

〈∣∣∣f (r)
∣∣∣〉
s,Rr

≤ AR2

(
R

R∗

)r
(4.29)

3) the remainder terms, R(r)
N and R(r)

T satisfy for any s ≥ 1∥∥∥XR(r)
T

∥∥∥
s,Rr

≤· R2

(
R

R∗

)r∗
(4.30)∥∥∥XR(r)

N

∥∥∥
s,Rr

≤· R2

Ns−1
. (4.31)

Proof. We proceed by induction. First remark that the theorem is trivially true
when r = 0 with T (0) = I, Z(0) = 0, f (0) = P (1), R(0)

N = 0 and R(r)
T = 0. Then

we split f (r) (P (1) in the case r = 0) into an effective part and a remainder.
Consider the Taylor expansion of f (r), in the variables ẑ only. Write

f (r) = f
(r)
0 + f

(r)
N

where f (r)
0 is the truncation of such a series at second order (it contains at most

terms quadratic in ẑ) and f
(r)
N is the remainder of the expansion. Since both

f
(r)
N and f (r)

0 are truncations of f (r), one has〈∣∣∣f (r)
N

∣∣∣〉
s,Rr

≤
〈∣∣∣f (r)

∣∣∣〉
s,Rr

,
〈∣∣∣f (r)

0

∣∣∣〉
s,Rr

≤
〈∣∣∣f (r)

∣∣∣〉
s,Rr

.

Consider the truncated Hamiltonian

H0 + Z(r) + f
(r)
0 . (4.32)

We look for a Lie transform, Tr, eliminating the non normalized part of order
r + 2 in the truncated Hamiltonian. Let χr be the Hamiltonian generating Tr.
Using the formulae (4.1,4.2) one writes(

H0 + Z(r) + f
(r)
0

)
◦ Tr = H0 + Z(r) (4.33)

+ {χr;H0}+ f
(r)
0 (4.34)

+
lz∑
l=1

Z(r)
l +

lf∑
l=1

f
(r)
0,l +

lf +1∑
l=2

H0,l (4.35)

+
∑
l>lz

Z(r)
l +

∑
l>lf

f
(r)
0,l +

∑
l>lf +1

H0,l (4.36)
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where

lz :=
[
r∗ − 1
r

]
, lf :=

[r∗
r
− 1
]
. (4.37)

Then it easy to see that (4.33) is the already normalized part of the transformed
Hamiltonian, (4.34) contains the part of degree r + 2, from which all the non
normalized terms have to be eliminated by a suitable choice of χr, (4.35) contains
all the terms of degree between r + 3 and r∗ + 2 and finally (4.36) contains
only terms of order higher than r∗ + 2, which therefore can be considered as
an irrelevant remainder for the rest of the procedure (actually they will be
incorporated in RT ).

We first use lemma 4.17 to determine χr as the solution of the equation

{χr;H0}+ f
(r)
0 = Zr (4.38)

with Zr in normal form. Then, by (4.16) and by (4.29) one has the estimates

〈|χr|〉s,Rr
≤ Nα

γ
AR2

(
R

R∗

)r
, 〈|Zr|〉s,Rr

≤ AR2

(
R

R∗

)r
. (4.39)

In particular, in view of (4.14), estimate (4.27) is proved at rank r + 1.
Define now Z(r+1) := Z(r) +Zr, f (r+1) :=(4.35) and R(r,T ) := (4.36). From

(4.39) the estimate (4.28) holds at rank r + 1. By lemma 4.14, denoting

ε :=
e

δ
〈|χr|〉s,Rr

,

one has using (4.25), (4.28), (4.29) and lemma 4.18〈∣∣∣f (r+1)
∣∣∣〉
s,Rr−δ

≤
∑
l≥1

2AR2εl +
∑
l≥1

AR2εl
(
R

R∗

)r
+
∑
l≥2

2AR2εl−1

(
R

R∗

)r
≤ ε

1− ε
2AR2

[
1 +

(
R

R∗

)r
+ 2

(
R

R∗

)r]
< 12εAR2 .

Due to the definition of R∗ and to the following estimate of ε,

ε ≤ e

δ
AR2

(
R

R∗

)r
Nα

γ
,

we deduce that 〈∣∣∣f (r+1)
∣∣∣〉
s,Rr−δ

≤ AR2

(
R

R∗

)r+1

which is the needed estimate of f (r+1).
In a similar way one easily checks that

〈∣∣XRr,T

∣∣〉
s,Rr−δ

≤· AR2

(
R

R∗

)r∗+2

. (4.40)
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Define now
R(r+1)
T := R(r)

T ◦ Tr +Rr,T . (4.41)

Remark that (4.30) means that there exists a constant CTr such that∥∥∥R(r)
T

∥∥∥
s,Rr

≤ CTr AR
2

(
R

R∗

)r∗
.

By lemma 4.16 the first term of (4.41) is estimated by 2CTr . By adding the
estimate (4.40) one gets the existence of the constant such that (4.30) holds
also for R(r+1)

T .
Concerning the terms at least cubic in ẑ, define

R(r+1)
N :=

(
R(r)
N + f

(r)
N

)
◦ Tr . (4.42)

Using lemma 4.11 one estimates
∥∥∥Xf

(r)
N

∥∥∥
s,Rr

. Adding the iterative estimate of

XR(r)
N

and estimating the effects of Tr by lemma 4.16 one gets (4.31) at rank
r + 1.

Corollary 4.21. For any r∗ ≥ 1 and s ≥ 1 there exists a constant C such that
for any R satisfying

R ≤ C

Nα

the following holds true: There exists a canonical transformation Tr : Bs(R/3) →
Bs(R) fulfilling

‖z − Tr(z)‖s ≤· (NαR)2R

such that the transformed Hamiltonian has the form

H(r∗) = H0 + Z(r∗) +RN +RT +R∗ ◦ Tr (4.43)

where Z(r∗) is in (γ, α,N)–normal form, and the remainders fulfill the following
estimate

‖R∗ ◦ Tr‖s,R/2 , ‖RT ‖s,R/2 ≤· R
2(RNα)r∗ (4.44)

‖RN‖s,R/2 ≤·
R2

Ns−1
(4.45)

End of the proof of theorem 2.13. To conclude the proof we choose N and s in
order to obtain that both RT and RN are small. First take N = R−a with a
still undetermined a. Then in order to obtain that RT is of order larger than
Rr∗+1 one has to choose a so that a < (1/r∗α). We choose a := (1/2r∗α).
Inserting in the estimate of RN one has that this is surely smaller than Rr∗+1

if s > 2αr2∗ + 1. With this choice the theorem is proved.
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5 Verification of the Nonresonance Properties

5.1 Dirichlet frequencies of the wave equation

The proof follows very closely the proof of theorem 6.5 of [Bam03b]. We repeat
the main steps for completeness and because we will use a variant of it in the
next subsection. We use the notations introduced in section 3.2.1. We fix V0

and r once for all and denote by C any constant depending only on V0 and r.

Lemma 5.1. For any K ≤ N , consider K indexes j1 < ... < jK ≤ N ; consider
the determinant

D :=

∣∣∣∣∣∣∣∣∣∣∣

ωj1 ωj2 . . . ωjK
dωj1
dm

dωj2
dm . . .

dωjK

dm
. . . . . .
. . . . . .

dK−1ωj1
dmK−1

dK−1ωj2
dmK−1 . . .

dK−1ωjK

dmK−1

∣∣∣∣∣∣∣∣∣∣∣
(5.1)

One has

D = ±

K−1∏
j=1

(2j − 3)!
2j−2(j − 2)!2j

(∏
l

ω−2K+1
il

) ∏
1≤l<k≤K

(λjl − λjk)

(5.2)

≥ C

N2K2 . (5.3)

Proof. First remark that, by explicit computation one has

djωi
dmj

=
(2j − 3)!

2j−2(j − 2)!2j
(−)j+1

(λi +m)j−
1
2
. (5.4)

Substituting (5.4) in the l.h.s. of (5.1) we get the determinant to be computed.
Factorize from the l− th column the term (λjl +m)1/2, and from the j− th row
the term (2j−3)!

2j−2(j−2)!2j . The determinant becomes, up to the sign,

[
K∏
l=1

ωjl

]K−1∏
j=1

(2j − 3)!
2j−2(j − 2)!2j



×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
xj1 xj2 xj3 . . . xjK
x2
j1

x2
j2

x2
j3

. . . x2
jK

. . . . . . .

. . . . . . .

. . . . . . .

xK−1
j1

xK−1
j2

xK−1
j3

. . . xK−1
jK

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.5)
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where we denoted by xj := (λj + m)−1 ≡ ω−2
j . The last determinant is a

Vandermond determinant whose value is given by

∏
1≤l<k≤K

(xjl − xjk) =
∏

1≤l<k≤K

λjk − λjl
ω2
jl
ω2
jk

=

 ∏
1≤l<k≤K

(λjl − λjk)

 K∏
l=1

ω−2K
jl

.

(5.6)
Using the asymptotic of the frequencies and the fact that all the eigenvalues are
different one gets the thesis also the second of (5.3).

From [BGG85] appendix B we learn

Lemma 5.2. Let u(1), ..., u(K) be K independent vectors with
∥∥u(i)

∥∥
`1
≤ 1. Let

w ∈ RK be an arbitrary vector, then there exist i ∈ [1, ...,K], such that

|u(i) · w| ≥
‖w‖`1 det(u(1), . . . , u(K))

K3/2
.

Combining Lemmas 5.1 and 5.2 we deduce

Corollary 5.3. Let w ∈ R∞ be a vector with K components different from
zero, namely those with index i1, ..., iK ; assume K ≤ N , and i1 < ... < iK ≤ N .
Then, for any m ∈ [m0,∆] there exists an index i ∈ [0, ...,K − 1] such that∣∣∣∣w · diωdmi

(m)
∣∣∣∣ ≥ C

‖w‖`1
N2K2+2

(5.7)

where ω is the frequency vector.

Now we need the following lemma from [XYQ97].

Lemma 5.4. (Lemma 2.1 of [XYQ97]) Suppose that g(τ) is m times differen-
tiable on an interval J ⊂ R. Let Jh := {τ ∈ J : |g(τ)| < h}, h > 0. If on J ,∣∣g(m)(τ)

∣∣ ≥ d > 0, then |Jh| ≤Mh1/m, where

M := 2(2 + 3 + ...+m+ d−1) .

For any k ∈ ZN with |k| ≤ r and for any n ∈ Z, define

Rkn(γ, α) :=

m ∈ [m0,∆] :

∣∣∣∣∣∣
N∑
j=1

kjωj + n

∣∣∣∣∣∣ < γ

Nα

 (5.8)

Applying lemma 5.4 to the function
∑N
j=1 kjωj + n and using corollary 5.3

we get

Corollary 5.5. Assume |k|+ |n| 6= 0, then

|Rkn(γ, α)| ≤ C(∆−m0)
γ1/r

N ς
(5.9)

with ς = α
r − 2r2 − 2.
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Lemma 5.6. Fix α > 2r3 + r2 + 5r. For any positive γ small enough there
exists a set Iγ ⊂ [m0,∆] such that ∀m ∈ Iγ one has that for any N ≥ 1∣∣∣∣∣∣

N∑
j=1

kjωj + n

∣∣∣∣∣∣ ≥ γ

Nα
(5.10)

for all k ∈ ZN with 0 6= |k| ≤ r and for all n ∈ Z. Moreover,

|[m0,∆]− Iγ | ≤ Cγ1/r . (5.11)

Proof. Define Iγ :=
⋃
nkRnk(γ, α). Remark that, from the asymptotic of the

frequencies, the argument of the modulus in (5.10) can be small only if |n| ≤
CrN , By (5.9) one has∣∣∣∣∣⋃

k

Rnk(γ, α)

∣∣∣∣∣ ≤∑
k

|Rk(γ, α)| < C
Nr(∆−m0)γ1/r

N ς
,

summing over n one gets an extra factor rN . Provided α is chosen according
to the statement, one has that the union over N is also bounded and therefore
the thesis holds.

Denote ω(N) := (ω1, ..., ωN ), then the statement of Theorem 3.12 is equiva-
lent to

Lemma 5.7. For any γ positive and small enough, there exist a set Jγ satis-
fying, |[m0,∆]− Jγ | → 0 when γ → 0, and a real number α′ such that for any
m ∈ Jγ one has for N ≥ 1∣∣∣ω(N) · k + ε1ωj + ε2ωl

∣∣∣ ≥ γ

Nα′
(5.12)

for any k ∈ ZN , εi = 0,±1, j ≥ l > N , and |k|+ |ε1|+ |ε2| 6= 0.

Proof. The case ε1 = ε2 = 0 reduces to the previous lemma with n = 0. Consider
the case ε1 = ±1 and ε2 = 0. In view of the asymptotic of the frequencies, the
argument of the modulus can be small only if j < 2rN . Thus to obtain the
result one can simply apply lemma 5.6 with N ′ := 2rN in place of N and
r′ := r + 2 in place of r. This just amounts to a redefinition of the constant C
in (5.11). The argument is identical in the case ε1ε2 = 1.

Consider now the case ε1ε2 = −1. Here the main remark is that

ωj − ωl = j − l + ajk with |ajl| ≤
C

l
(5.13)

So the quantity to be estimated reduces to

ω(N) · k ± n± ajl , n := j − l

If l > 2CNα/γ then the ajl term represent an irrelevant correction and therefore
the lemma follows from lemma 5.6. In the case l ≤ 2CNα/γ one reapplies the
same lemma with N ′ := 2CNα/γ in place of N and r′ := r+2 in place of r. As
a consequence one has that the nonresonance condition (5.12) holds provided
α′ = α2 ∼ r6 and assuming that m is in a set whose complement has its measure
estimated by a constant times γ

α+1
r .
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5.2 Periodic frequencies of the wave equation

We use the notations of section 3.2.2. We fix r and σ once for all and denote
by C any constant depending only on r and σ. We introduce τ0 = ω0 and for
j ≥ 1,

γj := ωj − ω−j , τj =
ωj + ω−j

2
.

We recall that from the Sturm Liouville theory (cf. [KM01]) there exists an
absolute constant Cσ such that, for V ∈ VR,

|λj − λ−j | ≤ CσRe
−2σj . (5.14)

We are going to prove the following result:

Theorem 5.8. Fix a positive r ≥ 2, define α := 200r3. There exists a positive
R and a positive b with the following property: for any γ > 0 small enough there
exists a set Sγ ⊂ VR and a constant β such that

i) For all V ∈ Sγ one has that for all N ≥ 1 the following inequality, with
J := b ln N

γβ , holds∣∣∣∣∣∣
N∑
j=1

τjkj +
J∑
j=1

γjnj +
N∑

j=J+1

γj lj

∣∣∣∣∣∣ > γ

Nα
(5.15)

for any k ∈ ZN+1, l ∈ ZN−J , n ∈ ZJ fulfilling |k| + |n| 6= 0, |k| + |l| +
|n| ≤ r.

ii) |VR − Sγ | ≤ Cγ(1/4r).

Using arguments similar to those in the proof of lemma 5.7, one easily con-
cludes that theorem 5.8 implies theorem 3.14.

The strategy of the proof of theorem 5.8 is as follow: when n = 0 (and
then k 6= 0) we only move the mass m in order to move the τj in such a way
that the l.h.s. of (5.15) is not too small. We also use that, for V ∈ VR, γj is
exponentially small with respect to j and thus the third term in the l.h.s. of
(5.15) is not relevant. In a second step we consider the case where n 6= 0 and
we use the Fourier coefficients vi to move the γj for small indexes j.

Fix k ∈ ZN , l ∈ ZN−J , n ∈ ZJ . For any α ∈ R and γ > 0 define

Sknl(γ, α) :=

(m, vk) ∈ VR :

∣∣∣∣∣∣
N∑
j=1

τjkj +
J∑
j=1

γjnj +
N∑

j=J+1

γj lj

∣∣∣∣∣∣ ≤ γ

Nα


(5.16)

Lemma 5.9. For 0 6= |k| ≤ r

|Sk00(γ1, α1)| < C
γ

1/r
1

N ς

with ς = α1
r − 2r2 − 2.
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Proof. In this case the l.h.s. of (5.15) reduces to
∑N
j=1 τjkj and we use m to

move it away from zero. To this end we follow closely the argument of subsection
5.1. So, consider the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

τj1 . . . τjK
dτj1
dm . . .

dτjK

dm
. . . . .
. . . . .
. . . . .

dK−1τj1
dmK−1 . . .

dK−1τjK

dmK−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.17)

Using the definition of τ one immediately has that such a determinant is the
sum of some determinant of the form (5.1). The key point is that all these
determinants have the same sign and therefore the modulus of the determinant
(5.17) is estimated from below by a negative power of N (as the determinant
(5.1)). To see that all the determinants composing (5.17) have the same sign
remark that the sign of (5.1) is determined by∏

1≤l<k≤K

(λjl − λjk) (5.18)

Choose now arbitrarily two of the determinants composing (5.17). The corre-
sponding products (5.18) differ only because they involve indexes with the same
modulus, but different sign. Provided the potential (i.e. R) is small enough one
has that the sign of λ±j − λ±k does not depend on the choice of the ±’s. Thus
the result on (5.17) follows.

Then the thesis of lemma follows from the procedure of the previous section
in the same way that lemma 5.1 leads to corollary 5.5 .

Corollary 5.10. For each γ1 > 0, α1 > 0, R > 0, r, N define

J :=
α1

2σ
ln

[(
rRCσ
γ1

)1/α1

N

]
(5.19)

then for any 0 6= |k| ≤ r and any l ∈ ZN−J

|Sk0l(γ1/2, α1)| < C
γ

1/r
1

N ς

with ς = α1
r − 2r2 − 2.

Proof. From (5.14) one has

|γj | ≤
1
2j
CσRe

−2σj (5.20)

which, using the definition of J leads to∣∣∣∣∣∣
N∑

j=J+1

γj lj

∣∣∣∣∣∣ ≤ CVR

2J
e−2σJr <

γ

2Nα1
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Then for (m, vk) ∈ Sk00(γ1, α1),∣∣∣∣∣∣
N∑
j=1

τjkj +
N∑

j=J+1

γj lj

∣∣∣∣∣∣ > γ1

Nα1
− γ1

2Nα1
=

γ1

2Nα1
.

In the case where n 6= 0, we need some informations on the periodic spectrum
of a Sturm Liouville operator. As remarked in section 3.2.2, in the case of even
potentials the periodic spectrum is the union of the Dirichlet and the Neumann
spectrum. Thus the forthcoming lemma 5.13 has the following

Corollary 5.11. For V ∈ VR one has

∂γj
∂v2i

= −1
4

τj√
ωjω−j

δji +Rji ,
∂τj
∂v2i

= −1
8

γj√
ωjω−j

δji +R′
ji (5.21)

with

|Rji| , |R′
ji| ≤ C

Re−σ|j−i|

j
. (5.22)

Lemma 5.12. With the definition of J given by (5.19), there exists a positive
R (independent of J, γ, α) such that for any V ∈ VR, if n 6= 0, |k|+ |n|+ |l| ≤ r
then

|Sknl(γ2, α2)| < C
γ2

γ1

1
Nα2−32α1

Proof. Let 1 ≤ i ≤ J such that ni 6= 0 and consider

∂

∂v2i

 N∑
j=1

τjkj +
N∑

j=J+1

γj lj +
J∑
j=1

njγj

 . (5.23)

By corollary 5.11 this quantity is given by

N∑
j=1

R′
jikj +

N∑
j=J+1

Rjilj +
J∑
j=1

njRji −
ni
4

τi√
ωiω−i

− ki
8

γi√
ωiω−i

. (5.24)

From (5.22) one has (noticing that e−σ|i−j|

j ≤ C
i for all i, j ≥ 1)∣∣R′

ji

∣∣ , |Rji| <
CR

i
.

Combining this estimate with (5.20) one gets that the modulus (5.24) is esti-
mated from below by

1
i
(
ni
8
− CRr) >

1
16J

taking R = 1/16Cr. It follows that excising from the domain of v2i a segment
of length γ216J/Nα2 , whose normalized measure is estimated by

γ216J
Nα2

e2Jσ

R
≤ 16γ2

Nα2R
e4Jσ = C

γ2

γ2
1

1
Nα2−2α1
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one fulfills the nonresonance condition.

Proof of theorem 5.8 Fix α as in the statement and a positive γ. Define α1 :=
α/4, α2 := α, γ1 := γ1/4, γ2 := γ. Take J as in (5.19). Define

Sγ,N :=
⋃
knl

Sknl(γ, α) (5.25)

=

⋃
n 6=0

Sknl(γ, α)

⋃⋃
k 6=0

Sk0l(γ, α)

 (5.26)

⊂

⋃
n 6=0

Sknl(γ2, α2)

⋃⋃
k 6=0

Sk0l(γ1, α1)

 (5.27)

thus one can use corollary 5.10 and lemma 5.12 to get the estimate

|Sγ,N | ≤ CNr

(
γ

1/r
1

N ς
+
γ2

γ2
1

1
Nα2−2α1

)
(5.28)

Inserting the definitions of the various parameters one has that both α2 − 2α1

and ς are bigger than r + 2 and thus one can define

Sγ :=
⋃
N

Sγ,N

and estimate its measure by the sum over N of the r.h.s. of (5.28) getting a
convergent series and the result.

5.3 Frequencies of the 1-d NLS

Denote by λj the Dirichlet eigenvalues of −∂xx + V .

Lemma 5.13. For any j and k and any V ∈ VR, with R small enough, one
has

∂λj
∂vk

(V ) = −δj,2k
1
2

+Rjk (5.29)

with
|Rjk| ≤ CRe−σ||j|−2k| .

For the Neumann eigenvalues the formula (5.29) without the minus sign holds.
Moreover, for any j > k, l

∂2λj
∂vk∂vl

∣∣∣∣
V=0

= −δkl
1
2

1
(2j)2 − k2

= −δkl
1
8

∑
s≥1

(k2)s−1

2s−1j2s
. (5.30)

Proof. Denote L0 := −∂xx + V with Dirichlet boundary conditions (all what
follows holds also for the case of Neumann boundary conditions). Fix j and let
λ = λ(V ) be the j–th eigenvalue of L0. As the Dirichlet spectrum is simple, the
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function V 7→ λ(V ) is smooth and admit a Taylor expansion at any order. In
particular we are interested in computing such a Taylor expansion up to second
order, i.e. in computing dλ and d2λ. The idea is to fix a potential h and to
construct iteratively, by Lyapunof–Schmidt method, the expansion of λ(V +εh).
Thus one will get

λ(V + εh) = λ(V ) + εdλ(V )h+
ε2

2
〈d2λ(V );h, h〉+ ...

which obviously allows to compute dλ, but also d2λ which is the bilinear form
associated to the quadratic form 〈d2λ(V );h, h〉.

So consider the eigenvalue equation

(L0 + εh)ϕ = λϕ (5.31)

and formally expand ϕ and λ in power series:

ϕ =
∑
l≥0

εlϕl , λ =
∑
l≥0

εlλl ,

inserting in (5.31) and equating terms of equal order one gets

L0ϕ0 = λ0ϕ0 (5.32)
(L0 − λ0)ϕl = ψl + λlϕ0 (5.33)

where

ψl := −hϕl−1 +
l∑

l0=1

λl0ϕl−l0 .

Decompose L2 =spanϕ0⊕(spanϕ0)⊥=Ker(L0 − λ0)⊕Range (L0 − λ0), and let
P be the projector on the orthogonal to spanϕ0. Taking ϕ0 normalized in L2,
eq. (5.33) turns out to be equivalent to

λl := −〈ψl;ϕ0〉L2 = 〈ϕl−1;ϕ0〉L2 (5.34)
ϕl := (L0 − λ0)−1Pψl . (5.35)

By taking V ∈ VR, h = cos(kx) and using (S1) one gets (5.29). By taking
V = 0 and h = µ1 cos(kx) + µ2 cos(lx) (and developing the computations) one
gets (5.30)

From [Mar86] (theorem 1.5.1 p. 71) we learn that for each ρ > 0, the
Dirichlet spectrum of −∂xx + V admits an asymptotic expansion of the form

ωj = j2 + c0(V ) + c1(V )j−2 + . . .+ cρ(V )j−2ρ + Cρ(V )j−2ρ−2 (5.36)

where c0(V ) =
∫ 2π

0
V (x)dx and the cs(V ) are certain multilinear expressions in

V which depend smoothly on each of its Fourier coefficients (this is the only
property we need). Moreover one has |Cρ(V )| < C(ρ)R for all potentials in VR
(here C(ρ) denote a constant depending on ρ).
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Corollary 5.14.
∂2cs
∂vk∂vl

∣∣∣∣
V=0

= δkl
1
4
k2(s−1)

2s
. (5.37)

Proof. Just take the second derivative of equation (5.36) and compare with
(5.30).

It follows that the ‘constants’ cs have an expansion at the origin of the form

cs(v1, v2, ...) =
∑
k≥1

Askv
2
k + ws(v1, v2, ...) (5.38)

where the matrix Ask is given by the r.h.s of (5.37) (without the Kronecker
symbol) and the functions ws have a zero of third order at the origin. In
particular there exists for each k ≥ 1 a constant C(k) such that

|wk(v1, v2, ....)| ≤ C(k)R3 . (5.39)

Remark 5.15. For any ρ, the matrix

A := (Ask)
s=1,...,ρ
k=1,...,ρ ,

is invertible and there exists a constant C that depends only on ρ such that∥∥A−1
∥∥ ≤ C . (5.40)

(Indeed remark that the determinant of A is a non vanishing Vandermonde
determinant.)

In the remainder part of this section we fix once for all r ≥ 1. We begin
with the following simple lemma:

Lemma 5.16. Fix ρ ≥ l ≥ 1 two integers. For any J ≥ 2 and any positive µ
consider an arbitrary collection of l indexes

J ≤ j1 < j2 < ... < jl ≤ Jµ , (5.41)

and define the matrix

B = (Bis)
s=1,...,ρ
i=1,...,l , Bis :=

1
j2si

. (5.42)

There exists an l × l submatrix Bl which is invertible and fulfills∥∥B−1
l

∥∥ ≤ CJβ(µ,l) (5.43)

with β(µ, l) := 3
2µl(l − 1) and C ≡ C(l) is independent of J and of the choice

of the indexes.
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Proof. Define the submatrix Bl = (Bis)
s=1,...,l
i=1,...,l , notice that all the coefficients

of the comatrix of B are smaller than l2 and therefore∥∥B−1
l

∥∥
∞ ≤ l2(det Bl)−1 .

On the other hand, the determinant of Bl is a Vandermonde determinant whose
value is given by ∏

1≤i<k≤l

(
1
j2i
− 1
j2k

) ∏
1≤k≤l

1
j2k

.

By the limitation (5.41) each term of the first product is estimated from below
by J−3µ. Since the number of pairs is l(l − 2)/4 one has the result.

Lemma 5.17. Given J ≥ 2 and µ > 1 consider an arbitrary collection of
indexes

J ≤ j1 < j2 < ... < jl ≤ Jµ , l ≤ r (5.44)

Let (aji)i=1,...,l be a vector with components in Z fulfilling

a 6= 0 ,
∑
i

|aji | ≤ r ,
∑
i

j2i aji = 0 . (5.45)

For any positive Γ and α > 2β(µ, l) define

R :=

{
V ∈ VR :

∣∣∣∣∣∑
i

λjiaji

∣∣∣∣∣ ≤ Γ
Jα

}
. (5.46)

For R small enough, there exists two constants C1(r, α) and C2(r, α) such that,
provided

J >
C1

Γ1/2
(5.47)

one has

|R| ≤ C2
Γ1/2

J
α
2−β

where β ≡ β(µ, l) is defined in the preceding lemma.

Proof. In order to fix ideas take l = r the other case being similar. Consider

∑
i

λjiaji =
r∑
i=1

aji

ρ∑
s=1

cs
j2si

+
r∑
i=1

aji
Cρ(V )
j2ρ+2
i

The second term at r.h.s. is bounded by RrC(ρ)
J2ρ+2 , thus if R ≤ 1, ρ = α/2 and

(5.47) is satisfied, it can be neglected and it remains to estimate the measure of
the set of potentials such that∣∣∣∣∣

r∑
i=1

aji

ρ∑
s=1

cs
j2si

∣∣∣∣∣ < Γ
2Jα

. (5.48)
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We will show that there exists k̄ ≤ ρ such that the second derivative of (5.48)
with respect to vk̄ is bounded away from zero, and we will apply lemma 5.4.
One has

r∑
i=1

aji

ρ∑
s=1

cs
j2si

=
r∑
i=1

aji

ρ∑
s=1

ρ∑
k=1

Askv
2
k

j2si

+
r∑
i=1

aji

ρ∑
s=1

ws
j2si

+ b (5.49)

where

b :=
r∑
i=1

aji

ρ∑
s=1

∑
k>ρ

Askv
2
k

j2si

is independent of vk, k = 1, ..., ρ. Define w̃k by

ws =
ρ∑
k=1

Aksw̃k ,

so that
|w̃k| ≤ CR3

with a constant depending only on ρ (cf. (5.39) and (5.40)). So, (5.49) can be
written as

ρ∑
k=1

(v2
k + w̃k)

ρ∑
s=1

Aks

r∑
i=1

Bijaji + b =
ρ∑
k=1

(v2
k + w̃k)fk + b (5.50)

where B is given by (5.42) and fk is defined as the coefficient of the bracket at
l.h.s. Clearly one has f = ABa. Now, the image of Rr under AB is an r dimen-
sional space (due to remark 5.15 and lemma 5.16) and AB is an isomorphism
between such r dimensional spaces. By remark 5.15 and lemma 5.16 its inverse
(AB)−1 is bounded by ∥∥(AB)−1

∥∥ ≤ CJβ ,

(with C independent of J), and therefore one has

‖f‖ ≥ 1
CJβ

‖a‖

It follows that there exists k̄ with |fk̄| ≥ 1
CJβ .

Consider now the second derivative of (5.50) with respect to vk̄, it is given
by

fk̄

(
1 +

∂2w̃k
∂v2

k̄

)
. (5.51)

Provided ∣∣∣∣∣∂2w̃k
∂v2

k̄

∣∣∣∣∣ < 1
2
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which is a smallness assumption on R (independent of J), (5.51) is larger than
1

CJβ . Applying lemma 5.4 one gets the thesis.
In the next lemme, we relax the hypothesis (5.44) of the previous lemma.

Lemma 5.18. There exists R and a positive constant C with the following
property: for any positive Γ there exists a set S1 ⊂ VR such that

i) denote α := 4r(r!)2, and let J be an integer fulfilling

J >
C

Γ1/2
(5.52)

then for any V ∈ S1 one has for N ≥ J∣∣∣∣∣
r∑
i=1

λjiaji

∣∣∣∣∣ ≥ Γ
Nα

(5.53)

for any choice of integers J ≤ j1, . . . , jr ≤ N and of relative integers
{aji}ri=1 fulfilling

0 6=
∑
i

|aji | ≤ r .

ii) S1 has large measure, namely

|VR − S1| ≤ CΓ1/2 (5.54)

Proof. We prove the lemma by induction on r. More precisely we prove that
for any l ≤ r there exists a set Nl and two constants γl, α(l) such that∣∣∣∣∣

l∑
i=1

λjiaji

∣∣∣∣∣ ≥ γl
Jα(l)

(5.55)

for any V ∈ Nl and moreover the measure estimate holds. The statement is
true for l = 1. Suppose it is true for l− 1, we prove it for l. Assume that all the
integers aj1 , ..., ajl are different from zero, otherwise the result follows by the
inductive assumption. Order the indexes in increasing order. First remark that
if
∑l
i=1 j

2
i aji 6= 0 then

∣∣∣∑l
i=1 j

2
i aji

∣∣∣ ≥ 1. Hence, since the potential is small (for
R small enough) the l.h.s. of (5.55) is larger than 1/2 and the result holds in
this particular case. Thus we consider only the case where

∑l
i=1 j

2
i aji = 0.

Now, since ∣∣λji − j2i
∣∣ ≤ C

j2i
,

if we assume that j2l >
2rCJα(l−1)

γl−1
, then we deduce from the inductive assumption

that ∣∣∣∣∣
l∑
i=1

λjiaji

∣∣∣∣∣ ≥
∣∣∣∣∣
l−1∑
i=1

λjiaji

∣∣∣∣∣− rC

j2l
≥ γl−1

2Jα(l−1)
.
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and thus, provided γl ≤ γl−1
2 and αl ≥ αl−1, the lemma holds. So, assuming

J >
C(r)

γ
1/2
l−1

, (5.56)

we have only to consider the case jl < Jµl where µl = [α(l − 1) + 2]/2.
We now apply lemma 5.17. The number of possible choices for the integers

aj1 , . . . , ajl is smaller than J lµl .Therefore, the measure of the set of potentials
that we have to exclude at the l-th step can be estimated by

Cγ
1/2
l J lµl

J
α(l)
2 −β(µl,l)

Thus in order to obtain the result it suffices to choose αl in such way that

α(l) > α(l − 1)(3l2 + l)

which amounts to the requirement of a sufficiently fast growth of α(l). The
choice α(l) = 4l(l!)2 fulfills this requirement. On the other hand, choosing
γr = Γ, γl = γl−1/2 for l = 2, . . . , r and assuming (5.52) with a suitable constant
C, (5.56) is satisfied for each l = 2, . . . , r. This gives the statement of the lemma
with a suitable constant in (5.54) and with J in place of N in (5.53). As J ≤ N ,
the lemma is proved.

We now take into account the small indexes (j < J):

Lemma 5.19. There exists R > 0 with the following properties: for any γ > 0
and J > 0 fulfilling

γe2σJ

R
< 1 (5.57)

there exists a set SJ ⊂ VR∗ such that

i) ∀V ∈ SJ one has∣∣∣∣∣∣
J∑
j=1

λjkj +
N∑

j=J+1

λjaj

∣∣∣∣∣∣ ≥ γ

Nr+2
, ∀N ≥ J (5.58)

and for all k ∈ ZJ , a ∈ ZN−J fulfilling |k|+ |a| ≤ r, k 6= 0.

ii) |VR∗ − SJ | ≤
γe2σJ

R
.

Proof. To start with fix k and a. We estimate the measure of the set such
that (5.58) is violated. Let i ≤ J such that ki 6= 0. Take the derivative of
the argument of the modulus in (5.58) with respect to v2i. By (5.29) this is
given by −1

2 ki + R with |R| < CR < 1/4 provided R is small enough. It has
to be remarked that, here, C does not depend on J, a, γ but only on r. Thus
the measure of the set such that (5.58) is violated for the given choice of (k, a)
is estimated by γ

4Nr+2
e2σJ

R . Summing over all the possible choices of k and a
(namely Nr) and summing over N , one gets the thesis.

Combining the last two lemmas one gets
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Theorem 5.20. Fix r ≥ 1 and α = 4r(r!)2. There exists R with the following
property: ∀γ > 0 there exists a set S ⊂ VR such that

i) for any V ∈ S one has for N ≥ 1∣∣∣∣∣∣
N∑
j=1

λjkj

∣∣∣∣∣∣ ≥ γ

Nα
, (5.59)

for all k ∈ ZN with 0 6= |k| ≤ r.

ii) |VR − S| ≤
[
C ln

(
R2

γ

)]−1/2

.

Proof. With a slight change of notation write (5.59) in the form∣∣∣∣∣∣
J∑
j=1

λjkj +
N∑

j=J+1

λjaj

∣∣∣∣∣∣ ≥ γ

Nα
(5.60)

with a still undetermined J . To begin with consider the case k = 0 and apply
lemma 5.18 with a still undetermined Γ. In order to fulfill (5.52) we choose now
J := 2C

Γ1/2 . It follows that (5.60) holds for any γ ≤ Γ provided V belongs to a
set S1 whose measure is estimated by CΓ1/2. If k 6= 0 then assuming

γe2σJ

R
=
γe

2σC

Γ1/2

R
< 1

with R ≡ R(r) chosen as in lemma 5.19, one can apply lemma 5.19 and (5.60)
is still satisfied.

Now we choose Γ in such a way that

γe
2σC

Γ1/2

R
= γ1/2

namely

Γ1/2 =
4σC

ln(R2

γ )
. (5.61)

It follows that γ < Γ and therefore (5.60) is true in SJ ∩S1, whose complement
is estimated by twice the r.h.s. of (5.54) with Γ given by (5.61).

Finally, to deduce theorem 3.17 from theorem 5.20 just adapt the proof of
lemma 5.7. To this end, instead of (5.13) use that, due to the asymptotic of the
frequencies, ωj − ωl > l/2.

5.4 Frequencies of coupled NLS

Denote ω(N) := (ω−N , ..., ωN ), then, by repeating the procedure of the previous
subsection, one gets the following
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Theorem 5.21. Fix r ≥ 1 and α1 = 4r(r!)2. There exists R with the following
property: ∀γ1 > 0 there exists a set S ⊂ VR × VR such that

i) for any (V1, V2) ∈ S one has for N ≥ 1∣∣∣ω(N) · k
∣∣∣ ≥ γ1

Nα1
, (5.62)

for all k ∈ Z2N with 0 6= |k| ≤ r.

ii) |VR − S| ≤
[
C ln

(
R2

γ1

)]−1/2

.

Proof of theorem 3.19. As in the proof of lemma 5.7 we study the inequality∣∣∣ω(N) · k + ε1ωj + ε2ωl

∣∣∣ ≥ γ

Nα
(5.63)

with k ∈ Z2N , εi = 0,±1, |j| ≥ |l| > N . The cases ε1 = ε2 = 0 and ε1ε2 = 1 can
be treated exactly as in the proof of lemma 5.7; the same is true when ε1ε2 = −1
and j and l have the same sign. In such cases one gets that (5.63) holds with
α = 2α1 in a set whose complement is estimated by item ii of the theorem with
a different constant C. Consider now the case ε1ε2 = −1, j > 0, l < 0. If j 6= −l
then the same argument as before applies. Take now l = −j and, to fix ideas,
take ε1 = 1 and ε2 = −1, and write ω±j = ±j2 + ν±j with |ν±j | ≤ Cj−2. Thus
the argument of the modulus at l.h.s. of eq.(5.63) reduces to

ω(N) · k + νj − ν−j .

If j2 ≥ 2CNα1/γ1 then the ν terms can be neglected, and, provided k 6= 0 the
estimate (5.63) follows. We have now to consider the case j2 < 2CNα1/γ1. To
get the estimate (5.63) simply apply (the procedure leading to) theorem 5.21
with N substituted by 2CNα1/γ1. This leads to (5.63) with α = α2

1/2 and
γ = Cγ

α1/2+1
1 .

5.5 Frequencies of NLS in higher dimension

Denote ω(N) := (ωj)|j|≤N .

Lemma 5.22. Fix r ≥ 1 and γ > 0 small enough. There exist positive constants
C ≡ Cr, β ≡ β(r, γ) and a set Sγ ⊂ V with |V −Sγ | → 0 when γ → 0 such that,
if V ∈ Sγ then for any N ≥ 1 and any n ∈ Z

|ω(N) · k + n| ≥ γ

Nβ
, (5.64)

for any k ∈ ZZd

with 0 < |k| ≤ r.
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Proof. First of all recall that for V ∈ V, V (x) =
∑
k∈Zd vk e

ik·x, the frequencies
are given by

ωk = |k|2 + vk .

Then notice that, given (a1, . . . , ar) 6= 0 in Zr, M > 0 and c ∈ R the Lebesgue
measure of

{x ∈ [−M,M ]r | |
r∑
i=1

aixi + c| < δ}

is smaller than (2M)r−1δ. Hence given k ∈ ZZd

of length less than r and n ∈ Z
the Lebesgue measure of

Xk :=

x ∈ [−1/2, 1/2]Z
d

:

∣∣∣∣∣∣
∑
|j|≤N

kj(|j|2 + xj) + n

∣∣∣∣∣∣ < γ

Nβ


is smaller than γ/Nβ . Therefore its probability measure is estimated by (1 +
N)m(r−1)γ/RNβ . To conclude the proof we have to sum over all the k’s and the
b’s. To count the cardinality of the set of the k’s and the n’s to be considered
remark that if |ω(N) ·k−n| ≥ δ with δ < 1 then |b| ≤ 1+|ω(N) ·k| ≤ 1+(1+N2)r.
So that to ensure (5.64) for all possible choices of k, n and N , one has to remove
from V a set of measure∑

N≥1

γ
1
Nβ

(1 +N)m(r−1)(2N)dr(1 + (1 +N2)r) .

Choosing β := r(d+m)+5, the last series converges and the lemma is proved.

To deduce theorem 3.17 from lemma 5.22 one has just to adapt the proof of
lemma 5.7.

A Technical Lemmas

A.1 Proof of lemma 4.11.

Introduce the projector Π̄ on the modes with index smaller than N and the
projector Π̂ on the modes with larger index. Expand f in Taylor series (in all
the variables), namely write

f =
∑

j≤r∗+2

fj

with fj homogeneous of degree j. Consider the vector field of fj and decompose
it into the component on z̄ and the component on ẑ. One has:

Π̄Xfj = Jz̄∇z̄fj , (A.1)

Π̂Xfj = Jẑ∇ẑfj , (A.2)
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where we denoted by Jz̄ and Jẑ the two components of the Poisson tensor.
From(A.1,A.2) one immediately realises that Π̄Xfj

has a zero of order three as
a function of ẑ and Π̂Xfj

has a zero of order two as a function of ẑ. Consider
Π̂Xfj , write z = z̄ + ẑ, one has

Π̂Xfj
(z̄ + ẑ) = Π̂X̃fj

(z̄ + ẑ, ..., z̄ + ẑ︸ ︷︷ ︸
(j−1)–times

) (A.3)

=
j−1∑
l=2

(
j − 1
l

)
Π̂X̃fj (ẑ, ..., ẑ︸ ︷︷ ︸

l–times

, z̄, ..., z̄︸ ︷︷ ︸
(j−l−1)–times

)

where the sum starts from 2 since Π̂Xfj
has a zero of order two as a function

of ẑ. We estimate now a single term of the sum. By the tame property we have∥∥∥∥∥∥∥Π̂X̃fj
(ẑ, ..., ẑ︸ ︷︷ ︸
l–times

, z̄, ..., z̄︸ ︷︷ ︸
(j−l−1)–times

)

∥∥∥∥∥∥∥
s

(A.4)

≤ |Xfj |Ts
1

j − 1

[
l∑
i=1

‖ẑ‖l−1
1 ‖ẑ‖s ‖z̄‖

j−1−l
1 +

j−1∑
i=l+1

‖ẑ‖l1 ‖z̄‖s ‖z̄‖
j−2−l
1

]

Using the inequalities

‖ẑ‖1 ≤
‖ẑ‖s
Ns−1

,

‖ẑ‖s ≤ ‖z‖s , ‖z̄‖s ≤ ‖z‖s
‖z‖1 ≤ ‖z‖s

which immediately follow from the definition of the norms one can estimate the
quantity (A.4) by

1
N (s−1)(l−1)

‖z‖j−1
s

Inserting into (A.3) one gets for z ∈ Bs(R)∥∥∥Π̂Xfj
(z)
∥∥∥
s
≤ 2j−1 R

j−1

Ns−1
|Xfj

|Ts .

A similar estimate with N2(s−1) instead of Ns−1 holds for Π̄Xfj
(z). Therefore

∥∥Xfj (z)
∥∥
s
≤ 2j

Rj−1

Ns−1
|Xfj |Ts

and summing over j one gets the thesis.
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A.2 Proof of lemma 4.12

One has
X{f,g} = [Xf , Xg] = dXfXg − dXgXf

Denote X := Xf , Y := Xg. Write

X(z) =
∑

k,l1,...ln

X l1,...,ln
k ekzl1 ...zln

and similarly for Y , then one has

b[X,Y ]e (z)

=
∑

k,l1,...ln
j1,...jm

∣∣∣nX l1,...,ln
k Y j1,...,jmln

−mX
l1,...,ln−1,jm
ln

Y
j1,...,jm−1,ln
k

∣∣∣ ekzl1 ...zln−1zj1 ...zjm

After symmetrization with respect to the indexes l1, ..., ln−1, j1, ..., jm, the quan-
tities in the above modulus are the components of a multilinear symmetric form

˜b[X,Y ]e. Consider also the multilinear form with components obtained by sym-
metrizing the quantities∑

ln

(∣∣∣nX l1,...,ln
k Y j1,...,jmln

∣∣∣+ ∣∣∣mX l1,...,ln−1,jm
ln

Y
j1,...,jm−1,ln
k

∣∣∣) (A.5)

namely the form ˜d bXe bY e + ˜d bY e bXe. Let w = (z(1), ..., z(n+m−1)) be a
multivector with all the vectors z(j) chosen in the positive octant (see remark

4.5). Then the value of ˜b[X,Y ]e on w is bounded by the value of ˜d bXe bY e +
˜d bY e bXe on the same multivector and finally it suffices to estimate ˜d bXe bY e.
The value of ˜d bXe bY e on the multivector w is given by

n
∑
σ

1
(n+m− 1)!

b̃Xe
(
z(σ(1)), ..., z(σ(n−1)), b̃Y e(z(σ(n)), ..., z(σ(n+m−1)))

)
(A.6)

where σ are here all the permutations of the first n+m− 1 integers.
Consider one of the terms in the last sum, say the one corresponding to the

identical permutation. One has∥∥∥b̃Xe(z(1), ..., z(n−1), b̃Y e(z(n), ..., z(n+m−1))
)∥∥∥

s
≤ | bXe |Ts | bY e |Ts

n+m−1∑
l=1

clyl ,

(A.7)
where

yl :=
∥∥∥z(1)

∥∥∥
1
...
∥∥∥z(l−1)

∥∥∥
1

∥∥∥z(l)
∥∥∥
s

∥∥∥z(l+1)
∥∥∥

1
...
∥∥∥z(n+m−1)

∥∥∥
1

and

cl :=
1
n
, if l = 1, ..., n− 1

cl :=
1
mn

, if l = n, ..., n+m− 1 .
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Now the important property is that
∑
l cl = 1. Consider now the norm of the

sum in (A.6), it is clear that it is again estimated by an expression of the form
of the r.h.s. of (A.7) with suitable constants c′l. To compute the constants c′l
remark that, due to the symmetry of the expression all the coefficients must be
equals. Moreover, the symmetrization does not change the property that the
sum of the coefficients is 1, and therefore one has c′l = 1/(n+m− 1) for all l’s.
So, in conclusion one has∥∥∥ ˜d bXe bY e(w)

∥∥∥
s
≤ n| bXe |Ts | bY e |Ts ‖w‖s,1 ,

from which one gets the thesis.

B On the verification of the tame modulus prop-
erty

It is clear that the linear combination of polynomials with tame modulus still
has tame modulus. The tame modulus property is also stable by composition:

Lemma B.1. Let X : Ps → Ps and Y : Ps → Ps be two polynomial vector fields
with s-tame modulus, then also their composition X ◦ Y has s-tame modulus.

Proof. Just remark that for any multivector w with all components in the pos-
itive octant one has ∥∥∥ ˜bX ◦ Y e(w)

∥∥∥
s
≤
∥∥∥ ˜bXe ◦ bY e(w)

∥∥∥
s

and that the composition of tame maps is still a tame map, so that∥∥∥ ˜bX ◦ Y e(w)
∥∥∥
s
≤ Cs ‖w‖1,s

with a suitable Cs.
Now the idea is that if one is able to show that some elementary maps have

tame modulus(think of examples 2.9, 2.10), then the same is true for the maps
obtained by composing them.

We have already seen (cf example 2.4) that bounded linear maps are tame.
Proposition B.2 below gives a simple condition to ensure that a linear map has
tame modulus for all s ≥ 1. Such a condition will be very useful in studying
the behaviour of the TM property under change of basis in Ps. In the following
proposition, given a linear operator A, we will consider its matrix defined by
Az =

∑
klAklzlek. We will simply write A = (Akl).

Proposition B.2. Let a be an injective and surjective map from Z̄ to Z̄ with
the property that there exists C > 0 such that

|l|
C
≤ |a(l)| ≤ C|l| (B.1)
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and let A = (Akl) be a linear operator. If for any n there exists a constant Cn
such that

|Akl| ≤
Cn

(1 + |k − a(l)|)n
(B.2)

then A has tame modulus.

Proof. First we get rid of the map a by reordering the basis in the space Ps
constituting the domain of A. Namely we take as l-th element of the basis ea(l).
This has the consequence of changing the norm in the domain; due to (B.1) the
new norm is equivalent to the old one. So we consider only the case where a is
the identity.

To prove that A has tame modulus it suffices to prove that |Akl| are the
matrix elements of an operator which is bounded as an operator from Ps into
itself. This is clearly equivalent to the fact that Dkl := |Akl||k|s|l|−s is bounded
from P0 into itself. Remark that, since

|k|
(1 + |k − l|)|l|

≤ 1 ,

in view of (B.2), for any n there still exists a constant C ′
n such that

Dkl ≤
C ′
n

(1 + |k − l|)n
. (B.3)

Thus, using Schwartz inequality, one has

‖Dz‖20 =
∑
k

(∑
l

Dklzl

)2

≤
∑
k

[(∑
l

Dkl

)(∑
l

Dklz
2
l

)]

= Kn

∑
l

|zl|2
(∑

k

Dkl

)
= K2

n ‖z‖
2
0

where we used the inequality (B.3) and we defined

Kn :=
∑
k

C ′
n

(1 + |k − l|)n
.

In the particular case of linear canonical maps one has

Proposition B.3. Let A(1)..., A(m) be linear operators fulfilling

|A(j)
kl | ≤

Cn
(1 + |k − aj(l)|)n

(B.4)

where the maps aj have the property (B.1). Let A := A(1) + ... + A(m) be a
canonical map (which by the proposition B.2 has tame modulus) then also A−1

has tame modulus.
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Proof. Denote by J the Poisson tensor, namely the operator z ≡ (pk, qk) 7→
J(pk, qk) := (−qk, pk), which clearly has tame modulus. Then, by canonicity
one has

A−1 = −JATJ = (−JA(1)TJ − ...− JA(m)TJ) .

But A(j)T still fulfills (B.4) with the roles of k and l exchanged, therefore it has
tame modulus. It follows that the above expression has tame modulus.

Finally concerning changes of coordinates one has the following

Corollary B.4. Let z = Aw be a linear canonical transformation with the same
structure as in proposition B.3. If f ∈ T sM is a polynomial function with s-tame
modulus, then also the transformed function f ◦A has s-tame modulus.

Proof. Just remark that Xf◦A = A−1Xf ◦ A which is the composition of maps
with s-tame modulus.

Proof of theorem 3.6. First use the isomorphism (3.4) to identify Bs with
Ps. By hypothesis P has tame modulus in this basis. Then one has to pass to
the basis of the normal modes, namely to introduce the coordinates relative to
the basis ϕj . The matrix realizing the change of coordinates is canonical and
has the form (

B 0
0 B

)
where the matrix elements of A are given by Bk,l = ϕkl . Therefore if (S1) is
satisfied,

|Bk,l| ≤
Cn

(1 + |k − l|)n
+

Cn
(1 + |k + l|)n

.

Thus, as a consequence of corollary B.2, one gets the thesis.
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