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Abstract

We consider unitary analogs of d−dimensional Anderson models on l2(Zd) defined by the
product Uω = DωS where S is a deterministic unitary and Dω is a diagonal matrix of i.i.d.
random phases. The operator S is an absolutely continuous band matrix which depends
on parameters controlling the size of its off-diagonal elements. We adapt the method of
Aizenman-Molchanov to get exponential estimates on fractional moments of the matrix
elements of Uω(Uω − z)−1, provided the distribution of phases is absolutely continuous
and the parameters correspond to small off-diagonal elements of S. Such estimates imply
almost sure localization for Uω.

1 Introduction

Unitary operators displaying a band structure with respect to a distinguished basis appear
in the description of the long time properties of certain quantum dynamical systems. For
example, such operators on l2(N) are used to model the dynamics of an electron in a ring
threaded by a time dependent magnetic flux. In some regime of the physical parameters,
certain phases of the matrix elements can be considered as random variables. These models
are useful for numerical investigations. See [BB], [BHJ] and references therein for details
on the model and more on quantum dynamical systems.

Unitary operators with a similar band structure appear naturally in the study of or-
thogonal polynomials on the unit circle S1 with respect to a measure dµ on the torus T,
see [S1]. Indeed, it is shown in [CMV] that multiplication by eiα ∈ S1 on L2(T, dµ(α))
expressed in a certain basis of orthonormal polynomials is represented by such a band ma-
trix in l2(N). This construction is simpler than the earlier Hessenberg form of the matrix
representation of this unitary operator provided in [GT]. The spectral analysis of the uni-
tary operator therefore yields informations on the polynomials. Considering some phases
as random amounts to considering certain types of random polynomials.

The spectral analysis of a certain set of deterministic and random unitary operators
with a band structure is undertaken in [BHJ] and [J]. This set contains the examples
mentionned above as particular cases. In the random cases studied in these two papers,
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the operators considered consist in matrices on l2(Z) (which are unitarily equivalent to
matrices) of the following form: Uω = DωS where S is a deterministic unitary and Dω is a
diagonal matrix of random phases, see [J]. The operator S is an absolutely continuous band
matrix which depends on a parameter t ∈]0, 1[ which controls the size of its off-diagonal
elements, see Section 2. When the phases are i.i.d random variables, typical results obtained
for discrete one-dimensional random Schrödinger operators are shown in [BHJ] and [J] to
hold in the unitary setting as well. For instance, the availability of a transfer matrix
formalism to express generalized eigenvectors allows to introduce a Lyapunov exponent, to
prove a unitary version of Ishii-Pastur Theorem, and get absence of absolutely continuous
spectrum [BHJ]. A density of states can be introduced and a Thouless formula is proven
in [J]. Related analyses in the framework of orthogonal polynomials on the unit circle are
provided in [GT], [T], [S1].

In the present paper, we introduce a natural generalization of such unitary operators
to higher dimensions, i.e. to l2(Zd), d ≥ 1, in analogy with the self-adjoint Anderson
model. The construction is motivated by the structure of Uω given as a product of a
diagonal random operator Dω times a deterministic unitary S. This structure is a natural
transposition to the unitary setting of that of the Anderson model consisting in the sum
of a diagonal random potential and the deterministic discrete Laplacian. The extension is
straightforward and consists in matrices Uω of the form DωS, acting on l2(Zd), where the
infinite matrices Dω and S have similar properties with respect to the canonical basis of
l2(Zd), see Section 2. In particular, we assume the phases in the diagonal of Dω are i.i.d.
with an absolutely continuous distribution, and the operator S depends now on a set of d
parameters (t1, t2, · · · , td) which control the size of its off-diagonal elements.

Once defined, these random operators call for an analysis of their spectral properties.
In the self-adjoint case, the localization properties of the d-dimensional Anderson model
can be conveniently proven for large disorder by means of the fractional moment method
of Aizenman and Molchanov [AM] and the Simon-Wolff criterion [SW]. Our main result,
Theorem 2.1 below, is an exponential estimate on the fractional moments of the matrix ele-
ments of Uω(Uω−z)−1, uniform in z, obtained by an adaptation to the unitary setting of the
Aizenman-Molchanov method. Our estimate holds for a range of parameters (t1, t2, . . . , td)
such that the off-diagonal elements of S are small enough. This last condition is the equiv-
alent in our setting of the large disorder assumption made in the self-adjoint case. Then
we apply the unitary version of the Simon-Wolff criterion proven by Combescure in [C] to
derive localization for Uω in Corollary 2.1, for the same range of parameters.

2 The Model and Main Result

We denote by |k〉 = |k1, k2, · · · , kd〉 the unit vector at site k ∈ Zd, so that {|k〉}k∈Zd form
an orthonormal basis of L2(Zd). We introduce a probability space (Ω,F ,P), where Ω is

identified with {TZd
}, T being the torus, and P = ⊗k∈ZdPk, where Pk = P0 for any k ∈ Zd

is a probability distributions on T, and F the σ-algebra generated by the cylinders. We
introduce a set of random vectors on (Ω,F ,P) by

θk : Ω→ T, s.t. θk(ω) = ωk, k ∈ Zd. (2.1)

These random vectors {θk}k∈Zd are thus i.i.d on T.
In the one dimensional case, d = 1, we consider unitary operators of the form

Uω = DωS0, with Dω = diag {e−iθk(ω)} (2.2)
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and

S0 =
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r2 −rt
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, (2.3)

where the translation along the diagonal is fixed by 〈ϕ2k−2|S0ϕ2k〉 = −t2, k ∈ Z. The
parameters t and r are linked by r2 + t2 = 1 to ensure unitarity. We shall sometimes write
S0(t) to emphasize this dependence. The spectrum of S0(t) is purely absolutely continuous
and consists in the set

σ(S0(t)) = Σ0(t) = {e
±i arccos(1−t2(1+cos(y))), y ∈ T}. (2.4)

For this and other properties of S0, relations between Uω with the physical model alluded
to in Section 1 or links with orthogonal polynomials, see [J]. Note that the band structure
(2.3) is the simplest one a unitary operator can take without being trivial from the point
of view of its spectrum, [BHJ].

To deal with d-dimensional operators, we introduce the following natural generalization
of (2.2) to l2(Zd). We consider the unitary

Uω = DωS on l2(Zd), (2.5)

where Dω is diagonal again

Dω|k〉 = e−iθk(ω)|k〉 (2.6)

whereas the deterministic part is defined by

S = S1 ⊗ · · · ⊗ Sd. (2.7)

That is, we view l2(Zd) as ⊗d
j=1l

2(Z) so that |k〉 ' |k1〉⊗· · ·⊗|kd〉 and Sj acts on |kj〉 as S0 in
(2.3). We shall identify Sj with I⊗. . . I⊗Sj⊗I · · ·⊗I. A natural symmetric choice consists in
taking the same parameter t for each unitary Sj(t) appearing in the definition of S = S(t).
But we can naturally consider non-symmetric cases characterized by a set of parameters
t = (t1, t2, · · · , td) ∈]0, 1[

d to construct the unitary operator S(t) = S1(t1)S2(t2) · · ·Sd(td).
Note that one gets rightaway that S(t) is purely absolutely continuous and

σ(S(t)) = Σ0(t1)× Σ0(t2)× · · · × Σ0(td). (2.8)

Moreover, with the norm |x| = maxj=1,···,d |xj |, x ∈ Rd, we have the band structure

〈k|Sj〉 = 0 if |j − k| > 2. (2.9)

Remarks:
i) In this definition, S plays the role of the free d-dimensional Laplacian in the self-adjoint
case. Therefore, in the same way the Laplacian can be written as a sum of commuting
one-dimensional Laplacians, S is defined as a product of commuting unitary operators.
ii) Our construction of S gives a band structure to Uω. However, our results do not require
such a structure, see below.
iii) Note that as |t| → 0, S(t) tends to the identity operator.

Our main result is an estimate on the fractional moments of, essentially, the matrix
elements of the resolvent of Uω.
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Theorem 2.1 Let Uω be defined by (2.5, 2.6, 2.7). Assume that {θk(ω)}k∈Zd are i.i.d.
and distributed according to the probability measure dν(θ) = τ(θ)dθ, where τ ∈ L∞(T). Let
s ∈]0, 1[. There exists t0(s) > 0 small enough and 0 < K(s) < ∞ such that if |t| < t0(s),
there exists γ(s, t) > 0 so that for any j, k ∈ Zd and for any z ∈ C,

E(|〈j|Uω(Uω − z)−1k〉|s) ≤ K(s)e−γ(s,t)|j−k|. (2.10)

Remarks:
i) The Theorem is true for more general deterministic unitary operators S than (2.7). The
only requirement is that for some γ(s) > 0,

sup
k

∑

j 6=k

|〈Sk|j〉|seγ|k−j| < C(1)
ν (s) inf

k
|〈Sk|k〉|s, (2.11)

where C
(1)
ν (s) is defined in (4.9) and depends on s and on ν only. This condition corresponds

to the large disorder assumption in the self-adjoint case.
ii) The random variables θk(ω) need not be independent, and their distribution can be
more general, see [AM]. However, we stick to the present hypotheses for simplicity.

Corollary 2.1 Consider Uω = DωS(t) under the hypotheses of Theorem 2.1. Then, if
|t| < t0(s),

σ(Uω) is pure point almost surely.

Note:
As this paper was being completed, the preprint [S2] appeared. It announces that estimates
of the type (2.10) are proven by Stoiciu in the realm of orthogonal polynomials on the unit
circle and proves that dynamical localization is a consequence of these estimates in this set
up.

The rest of the paper is organized as follows. The next Section describes the effect of
changing a phase at one site in terms of rank one perturbations in order to derive formulas
for later use. Then we prove Theorem 2.1 along the lines of [AM], [AG] in Section 4. The
Corollary on localization is proven in Section 5. An Appendix containing some technical
material closes the paper.

3 Rank One Perturbations

By construction, the variation of a random phase at one site is described by a rank one
perturbation. As randomness plays no particular role here, we drop the ω’s in the notation.

Let j ∈ Zd be fixed. We define D̂ by taking θj = 0 in the definition of D:

D̂ = eiθj |j〉〈j|D = D + |j〉〈j|(1− e−iθj ) ≡ D + |j〉〈j|ηj , with ηj = 1− e−iθj , (3.1)

so that, with the obvious notations,

Û = D̂S = eiθj |j〉〈j|U = U + |j〉〈j|Sηj . (3.2)

Let z 6∈ S1. By the first resolvent identity, we have

(Û − z)−1 − (U − z)−1 = −(Û − z)−1|j〉〈j|ηjS(U − z)−1

= −(U − z)−1|j〉〈j|ηjS(Û − z)−1. (3.3)
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Therefore, F (z) = S(U − z)−1 and F̂ (z) = S(Û − z)−1 satisfy

F̂ (z)− F (z) = −ηjF̂ (z)|j〉〈j|F (z) = −ηjF (z)|j〉〈j|F̂ (z). (3.4)

It is readily checked that this implies

F (z) = F̂ (z) +
ηj

1− ηj〈j|F̂ (z)j〉
F̂ (z)|j〉〈j|F̂ (z). (3.5)

Hence, with the notation F (j, k; z) = 〈j|F (z)k〉 and similarly with F̂ (z), for any j ∈ Zd,

F (j, k; z) =
F̂ (j, k; z)

1− ηjF̂ (j, j; z)
. (3.6)

We emphasize that in the relation above, the operator F̂ (z) depends on j fixed. Note
also that F (j, k; z) = eiθj 〈j|U(U − z)−1k〉, so that it is equivalent to deal with F (z) or
U(U − z)−1 as far as the modulus of matrix elements is concerned. We choose to deal with
F (z) because of the simple relation (3.4).

4 Estimates on Fractional Moments

The Aizenman-Molchanov approach of localization for self-adjoint operators consists in
deriving exponential estimates on the expectation of fractional powers of the matrix el-
ements of the resolvent that are uniform in the spectral parameter [AM]. We conduct a
similar analysis on the matrix elements of F (z) to prove Theorem 2.1, following the original
strategy and [AG].

We restore the dependence in the disorder ω in the notation at this point and we derive
the equation satisfied by the matrix elements Fω(k, j; z), z 6∈ S1. We have

I = (Uω − z)(Uω − z)−1 = (Uω − z)S∗Fω(z) = (Dω − zS∗)Fω(z). (4.1)

Taking matrix elements, this yields

δjk = 〈k|(Dω − zS∗)Fω(z)j〉 = e−iθk(ω)〈k|Fω(z)j〉 − z〈Sk|Fω(z)j〉

= e−iθk(ω)Fω(k, j; z)− z
∑

l∈Zd

〈Sk|l〉Fω(l, j; z). (4.2)

The diagonal elements of S = S(t) are constant and given by

〈Sk|k〉 = (1− t21)(1− t22) · · · (1− t2d) = r2
1r

2
2 · · · r

2
d ≡ ρd(t). (4.3)

Separating the index l = k from the other l’s we get for all j 6= k and 0 6= z 6∈ S1

Fω(k, j; z)
(

e−iθk(ω)z−1 − ρd(t)
)

=
∑

l 6=k

〈Sk|l〉Fω(l, j; z). (4.4)

Note that the off-diagonal elements k 6= l satisfy

〈Sk|l〉 = Πd
j=1〈Sj(tj)kj |lj〉 = O(|t|), with |t| = max(t1, · · · , td), (4.5)

since for one j at least, kj 6= lj , so that there is at least a factor tj in the product, whereas

〈Sk|k〉 = 1 +O(|t|2) < 1. (4.6)
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At this point, we mimick [AM] and [AG]. We take s ∈]0, 1[ and try to get estimates on
the expectation of |Fω(k, j; z)|

s. Using |
∑

j aj |
s ≤

∑

j |aj |
s, we infer from (4.4)

|Fω(k, j; z)|
s
∣

∣

∣
e−iθk(ω)z−1 − ρd(t)

∣

∣

∣

s
≤
∑

l 6=k

|〈Sk|l〉|s|Fω(l, j; z)|
s, j 6= k. (4.7)

Taking expectation and making use of the identity (3.6) (with k in place of j), this yield

E





∑

l 6=k

|〈Sk|l〉|s|Fω(l, j; z)|
s



 ≥ E

(

|F̂ω(k, j; z)|
s
∣

∣e−iθk(ω)z−1 − ρd(t)
∣

∣

s

|1− ηkF̂ω(k, k; z)|s

)

. (4.8)

In order to get estimates uniform in z, we need to get rid of the factor
∣

∣e−iθk(ω)z−1 − ρd(t)
∣

∣

s
.

This is done by means of a decoupling lemma similar to the one proven in [AM] for the
self-adjoint setting. Recall that dν(θ) defined on T is the common distribution of the i.i.d.
phases {θk(ω)}k∈Zd . As F̂ω is independent of θk(ω), we shall first average over θk(ω) and
make use of a unitary version of the decoupling Lemma.

Lemma 4.1 (Decoupling Lemma) Assume dν(θ) = τ(θ)dθ, where τ ∈ L∞(T) is such

that
∫

T dν(θ) = 1. Then, for any 0 < s < 1, there exists a constant 0 < C
(1)
ν (s) <∞ such

that for all α, β ∈ C
∫

T
dν(θ)

∣

∣

∣

∣

e±iθ − α

e±iθ − β

∣

∣

∣

∣

s

≥ C(1)
ν (s)

∫

T
dν(θ)

1

|e±iθ − β|
s . (4.9)

Moreover, there exists 0 < C
(2)
ν (s) <∞ such that for all β ∈ C

∫

T
dν(θ)

1

|e±iθ − β|
s ≤ C(2)

ν (s). (4.10)

Remarks:
i) A proof is provided in Appendix. We only note here that once the estimates hold for eiθ

in the integrand, they hold for e−iθ by conjugation.
ii) A variant of the above result holds for more general distributions dν(θ) of phases, in the
spirit of [AM], and [AG].
iii) As a first application we get the uniform bound

E(|Fω(k, k; z)|
s) = E

(∣

∣

∣

∣

∣

F̂ω(k, k; z)

1− F̂ω(k, k; z) + e−iθk(ω)F̂ω(k, k; z)

∣

∣

∣

∣

∣

s)

(4.11)

= E





1
∣

∣

∣
(1− F̂ω(k, k; z))F̂ω(k, k; z)−1 + e−iθk(ω)

∣

∣

∣

s



 ≤ C(2)
ν (s).

We apply now the decoupling Lemma to the RHS of (4.8) as follows. We can write

|F̂ω(k, j; z)|
s
∣

∣e−iθk(ω)z−1 − ρd(t)
∣

∣

s

|1− F̂ω(k, k; z) + e−iθk(ω)F̂ω(k, k; z)|s
= (4.12)

ρsd(t)|F̂ω(k, j; z)|
s
∣

∣ρd(t)
−1z−1 − eiθk(ω)

∣

∣

s

|1− F̂ω(k, k; z)|s
∣

∣

∣
eiθk(ω) + F̂ω(k, k; z)(1− F̂ω(k, k; z))−1

∣

∣

∣

s .
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Therefore, the average over θk(ω) of the above yields the bound

∫

T
dν(θ)

|F̂ω(k, j; z)|
s
∣

∣e−iθk(ω)z−1 − ρd(t)
∣

∣

s

|1− F̂ω(k, k; z) + e−iθk(ω)F̂ω(k, k; z)|s
≥ (4.13)

C(1)
ν (s)ρsd(t)

∫

T
dν(θ)

|F̂ω(k, j; z)|
s

|1− F̂ω(k, k; z) + e−iθk(ω)F̂ω(k, k; z)|s
,

where the last integrand coincides with |F (k, j; z)|s. Therefore, inserting this in (4.8), we
finally get for j 6= k and any s ∈]0, 1[,

∑

l 6=k

|〈Sk|l〉|sE(|Fω(l, j; z)|
s) ≥ C(1)

ν (s)ρsd(t)E(|Fω(k, j; z)|
s). (4.14)

This last formula is the key to the desired bound, due to the following Lemma, see
[AM],[AG]. The proof of [AG] is repeated in Appendix, for completeness.

Lemma 4.2 Let f ∈ l∞(Zd) be non-negative and σ : l∞(Zd)→ l∞(Zd) be a linear operator
with kernel σ(k, l) ≥ 0 such that σ(k, k) = 0 and

sup
k

∑

l 6=k

σ(k, l) = N <∞. (4.15)

Fix a j ∈ Zd and assume there exists some finite C > 0 such that f satisfies for any k 6= j

(σf)(k) =
∑

l 6=k

σ(k, l)f(l) ≥ Cf(k). (4.16)

Then, if N < C, and if there exists γ > 0 such that

sup
k

∑

l 6=k

σ(k, l)eγ|k−l| < C, (4.17)

we have for any k,

f(k) ≤ f(j)e−γ|j−k|. (4.18)

This proposition applies to f(k) = E(|Fω(k, j; z)|
s) and σ(j, k) = |〈Sj|k〉|s with the con-

stants

C = C(1)
ν (s)ρsd(t), and N = sup

k

∑

j 6=k

|〈Sk|j〉|s, (4.19)

for small enough values of |t|. Indeed, for z 6∈ S1, we have the a priori bound

|Fω(k, j; z)| = |〈j|S(Uω − z)−1k〉| ≤ 1/ dist(z, S1), (4.20)

showing that f is in l∞. Moreover, if |t| is small enough, we get from (4.3) and (4.5) that

N = sup
k

∑

j 6=k

|〈Sk|j〉|s = O(|t|s) < C(1)
ν (s)ρsd(t) = C(1)

ν (s) +O(|t|2) = C. (4.21)

Finally, as the sum defining N in (4.19) carries over a finite number of indices only, for
such values of |t|, there exists a γ = γ(s, t) > 0 so that (4.17) holds true. With the uniform
bound on E(|Fω(j, j; z)|

s) derived in (4.11), and by the fact that Dω is diagonal, this ends
the proof of Theorem 2.1.
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5 Localization

We spell out here a spectral consequence of the estimates derived in Theorem 2.1 by proving
Corollary 2.1. We do this by applying the unitary version of the Simon-Wolff criterion [SW]
for localization presented by Combescure in [C], see also [T].

We need some preliminary estimates. Let us introduce for z 6∈ S1,

Hω(z) = Uω(Uω − z)−1. (5.1)

We choose j = 0 in the definition (3.2). By the Spectral Theorem ,

Hω(z) =

∫

T

dEω(α)e
iα

eiα − z
, (5.2)

where Eω(α) is the spectral family associated with Uω. Therefore, the spectral measure
associated with |0〉

dµω(α) = d〈0|Eω(α)0〉 = d‖Eω(α)0〉‖
2 (5.3)

is such that

〈0|Hω(z)0〉 =

∫

T

dµω(α)e
iα

eiα − z
. (5.4)

Thus, for z < 1,

‖Hω(z)0〉‖
2 = 〈0|H∗

ω(z̄)Hω(z)0〉 =

∫

T

dµω(α)

|eiα − z|2
. (5.5)

Introducing the Poisson integral of a measure dµ

P [dµ](z) =

∫

T

dµ(α)(1− |z|2)

|eiα − z|2
≥ 0, |z| < 1, (5.6)

the identity above for z = reiθ, r < 1 can be cast under the form

‖Hω(re
iθ)0〉‖2 = P [dµω](re

iθ) +

∫

T

dµω(α)r
2

1 + r2 − 2r cos(α− θ)
(5.7)

≡ P [dµω](re
iθ) +Bω(r, θ). (5.8)

We know that the following limit exists and is finite for a.e. θ ∈ T with respect to dθ/2π

lim
r→1−

P [dµω](re
iθ) =

dµω(θ)

dθ
. (5.9)

Since

r 7→
r2

1 + r2 − 2r cos(α− θ)
is positive, monotone increasing, (5.10)

then

lim
r→1−

Bω(r, θ) =

∫

T

dµω(α)

4 sin2((α− θ)/2)
≡ Bω(θ) exists for all (ω, θ) ∈ Ω× T. (5.11)
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Moreover, for (ω, θ) fixed, Bω(r, θ) is monotone non-decreasing in r as well. Now, Theorem
2.1 says for 0 < s < 1,

E(|〈j|Hω(z)0〉|
s) ≤ K(s)e−γ(s)|j|, uniformly in z. (5.12)

Together with





∑

j

|〈j|Hω(z)0〉|
2





s̃

≤
∑

j

|〈j|Hω(z)0〉|
s, for s̃ = s/2 < 1, (5.13)

this implies

E
(

(

‖Hω(z)0〉‖
2
)s̃
)

≤
∑

j

K(s)e−γ(s)|j| = K̃(s) <∞. (5.14)

Thus, we can apply the Monotone Convergence Theorem again to (5.11) for the measure
dθ × dP(ω) to get from (5.8) that,

∫

T
dθ E((Bω(θ))

s̃) = lim
r→1−

∫

T
dθ E((Bω(r, θ))

s̃) (5.15)

≤ lim
r→1−

∫

T
dθ E

(

(

Bω(r, θ) + P [dµω](re
iθ)
)s̃
)

= lim
r→1−

∫

T
dθ E

(

(

‖Hω(re
iθ)0〉‖2

)s̃
)

≤ 2πK̃(s). (5.16)

Therefore, Bω(θ) is finite for almost all (θ, ω) ∈ T× Ω, w.r.t. dθ × dP(ω). By Fubini, this
implies

Proposition 5.1 Under the hypotheses of Theorem 2.1, there exists Ω̃0 ⊂ Ω of probability
one and Jω ∈ T of full measure such that

Bω(θ) <∞ if ω ∈ Ω̃0 and θ ∈ Jω. (5.17)

We are now in a position to apply the unitary version of [C] of the Simon-Wolff criterion
for localization. Consider

Ĥω(z) = Ûω(Ûω − z)−1 corresponding to (3.2) (5.18)

and dµ̂ω the corresponding spectral measure associated with the vector |0〉. The relation
(3.6) for j = k = 0 is equivalent to

〈0|Hω(z)0〉 =
〈0|Ĥω(z)0〉

〈0|Ĥω(z)0〉(1− eiθ0(ω)) + eiθ0(ω)
. (5.19)

The properties of the perturbed spectral measure dµω, i.e. with θ0(ω) arbitrary, can be
read from those of the unperturbed spectral measure dµ̂ω, i.e. with θ0(ω) = 0, by means of
the unitary analog of the Aronszajn-Donoghue characterization of supports of the Lebesgue
decomposition of the spectral measure dµω. We recall this characterization for complete-
ness, changing slightly notations with respect to [C]: Combescure uses the resolvent rather
than Hω(z) = 1 + z(Uω − z)−1. Let B̂ω(θ) be defined by (5.11) for d̂µω in place of dµω.
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Proposition 5.2 With the notations above,
a support of the singular continuous part of dµω is

Sω =

{

θ ∈ T | lim
r→1−

Ĥω(re
iθ) =

eiθ0

eiθ0 − 1
and B̂ω(θ) =∞

}

, (5.20)

the set of atoms of dµω is

Pω =

{

θ ∈ T | lim
r→1−

Ĥω(re
iθ) =

eiθ0

eiθ0 − 1
and B̂ω(θ) <∞

}

, (5.21)

whereas a support of the absolutely continuous part of dµω is

Aω =

{

θ ∈ T | lim
r→1−

P [dµω](re
iθ) =

dµω(θ)

dθ
∈ (0,∞)

}

. (5.22)

These sets are mutually disjoint.

The key proposition from [C] regarding the properties of dµω in our setting is the following
unitary version of the Simon-Wolff criterion:

Proposition 5.3 Let dµ̂ω and dµω be related by (5.19).

B̂ω(θ) <∞ for a.e θ ∈ T ⇐⇒ dµω is purely atomic for a.e. θ0 ∈ T. (5.23)

Indeed, considering Ûω := eiθ0(ω)Uω instead of Uω, we deduce from Proposition 5.1 and
the criterion above that for any ω ∈ Ω̃0, the spectral measure for |0〉 of

Ũω = e−iβ|0〉〈0|Uω = diag(e−iθ
β
j (ω))S, where θβj (ω) = θj(ω) + βδj,0, (5.24)

is purely atomic for almost all β ∈ T. But, as the distribution of phases is absolutely
continuous, this means that the spectral measure dµω(·) = 〈0|dE(·)0〉 of Uω is purely
atomic for ω ∈ Ω0, a set of probability one. Repeating the argument for the spectral
measures 〈j|E(·)j〉, j ∈ Zd, this yields the same result for ω ∈ Ωj , where Ωj is a set of
probability one. Therefore, Uω is pure point for ω ∈ ∩j∈ZdΩj , a set of probability one.

6 Appendix

6.1 Proof of the Decoupling Lemma

Let us start with the second part of the Lemma. For any λ > 0,
∫

T

dν(θ)

|eiθ − β|s
≤ λ

∫

{|eiθ−β|−s≤λ}
dν(θ) +

∫

{|eiθ−β|−s≥λ}

dν(θ)

|eiθ − β|s

≤ λ+

∫ ∞

λ
ν{|eiθ − β|−s ≥ λ′}dλ′, (6.1)

where

ν{|eiθ − β|−s ≥ λ} ≤ ‖τ‖∞

∫

{|eiθ−β|≤1/λ1/s}
dθ. (6.2)

In the last integral, we can assume without loss that β ≥ 0 and it yields the arclength of
the intersection of the unit circle with a circle of radius 1/λ1/s, centered at β. We first note
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that if λ−1/s ≥ 1, i.e. λ ≤ 1, the integral takes its maximal value 2π, obtained with β = 0.

If λ > 1, the integral is maximized by the choice β = β(λ) =
√

1− λ−2/s to give
∫

{|eiθ−β|≤1/λ1/s}
dθ = 2arcsin(1/λ1/s), if 1/λ1/s < 1. (6.3)

As λ→∞, this integral behaves as 1/λ1/s, which is integrable for 0 < s < 1. At this point
we optimize our upper bound (6.1) on λ by choosing λ such that

1− ‖τ‖∞2 arcsin(1/λ1/s) = 0. (6.4)

Since ‖τ‖∞ ≥ 2π to ensure normalization, the minimizer is

λ = [sin(1/(2‖τ‖∞)))]−s > 1. (6.5)

Therefore we have proven the existence of a constant C
(2)
ν (s) depending on s and ν only

such that (4.10) holds.
The first part of the Lemma is proven along the lines of [AG]. It is shown in the

appendix C of this paper that for 0 < s < 1 and for any u, v, α, β ∈ C,

1

|v − β|s
+

1

|u− β|s
≤

|v − α|s

|v − β|s

(

1

|u− α|s
+

1

|u− β|s

)

+
|u− α|s

|u− β|s

(

1

|v − α|s
+

1

|v − β|s

)

. (6.6)

Then, replacing v and u by eiθ and eiθ
′

respectively, and integrating over dν(θ)dν(θ′), we
get

∫

T

∫

T
dν(θ)dν(θ′)

(

1

|eiθ − β|s
+

1

|eiθ′ − β|s

)

= 2

∫

T
dν(θ)

1

|eiθ − β|s

≤

∫

T
dν(θ)

|eiθ − α|s

|eiθ − β|s

∫

T
dν(θ′)

(

1

|eiθ′ − α|s
+

1

|eiθ′ − β|s

)

+ (θ′ ↔ θ) (6.7)

where (θ′ ↔ θ) means the same expression with θ and θ′ exchanged. We finally get (4.9)

with C
(1)
ν (s) = 1/(2C

(2)
ν (s)) by applying the bound (4.10).

6.2 Proof of Lemma 4.2

We first observe that if ϕ = {ϕ(k)}k∈Zd ∈ L∞(Zd) is real valued, such that ϕ(j) ≤ 0 and
satisfies

Cϕ(k) ≤ (σϕ)(k), ∀k 6= j, (6.8)

then ϕ(k) ≤ 0, for any k. Indeed, if it were not the case, M ≡ supk ϕ(k) would be strictly
positive. But that would imply

Cϕ(k) ≤
∑

l 6=k

σ(k, l)ϕ(l) ≤ NM ⇒ CM ≤ NM, (6.9)

which contradicts N < C. Then one applies the above to

ϕ(k) = f(k)− f(j)e−γ|k−j|, s. t. ϕ(j) = 0. (6.10)
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Since

(σe−γ|·−j|)(k) =
∑

l 6=k

σ(k, l)e−γ(|l−j|−|k−j|)e−γ|k−j| ≤
∑

l 6=k

σ(k, l)eγ|l−k|e−γ|k−j|

≤ Ce−γ|k−j|, (6.11)

by hypothesis, we get, using f(j) ≤ 0,

(σϕ)(k) = (σf)(k)− f(j)(σe−γ|·−j|)(k) ≥ C(f(k)− f(j)e−γ|k−j|) = Cϕ(k), (6.12)

hence f(k) ≤ f(j)e−γ|k−j|.
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