Veliyev S.G.

Necessary and sufficient condition of the completeness and minimality for one system of exponents with degeneration.

The following system of exponents with "degenerated" coefficients $\omega^{ \pm}$is considered:

$$
\begin{equation*}
\left\{A^{+}(t) \cdot \omega^{+}(t) e^{i n t} ; A^{-}(t) \cdot \omega^{-}(t) e^{-i(n+1) t}\right\}_{n \geq 0} \tag{1}
\end{equation*}
$$

where $A^{ \pm}(t) \equiv\left|A^{ \pm}(t)\right| e^{i \alpha^{ \pm}(t)}$-are complex-valued functions on the segment $[-\pi, \pi]$; $\omega^{ \pm}(t)$ have the presentations

$$
\begin{equation*}
\omega^{ \pm}(t) \equiv \prod_{i=1}^{l^{ \pm}}\left\{\sin \left|\frac{t-\tau_{i}^{ \pm}}{2}\right|\right\}^{\beta_{i}^{ \pm}} \tag{2}
\end{equation*}
$$

$\left\{\tau_{i}^{ \pm}\right\} \subset(-\pi, \pi) ;\left\{\beta_{i}^{ \pm}\right\} \subset R$ are the sets of real numbers. Earlier we obtained the completeness and minimality of the system (1) in the space $L_{p} \equiv L_{p}(-\pi, \pi), 1<p<+\infty$ for definite conditions on the functions $A^{ \pm}(t)$ and the coefficients $\omega^{ \pm}(t)$. In offered paper we obtain the necessary and sufficient condition of the completeness and minimality for this system in L_{p} for concrete conditions on the functions $A^{ \pm} ; \omega^{ \pm}$. We require the fulfilling of the following conditions:

1) $\alpha^{ \pm}(t)$ are piecewise-Helder functions on the segment $[-\pi, \pi],\left\{s_{i}\right\}_{1}^{r}$ is the set of discontinuity points of the function $\theta(t) \equiv \alpha^{-}(t)-\alpha^{+}(t)$ on $[-\pi, \pi]$, and moreover

$$
\left\{\tau_{i}^{+}, \tau_{i}^{-}\right\} \cap\left\{s_{i}\right\}_{1}^{r}=\{\varnothing\} ;
$$

2) $\left|A^{ \pm}(t)\right|$ are measurable functions on $[-\pi, \pi]$, and satisfy the condition

$$
\sup _{(-\pi, \pi)} \operatorname{vrai}\left\{\left.A^{+}(t)\right|^{ \pm 1} ;\left|A^{-}(t)\right|^{ \pm 1}\right\} \leq M<+\infty
$$

Denote by $\left\{h_{i}\right\}_{1}^{r}$ the jumps of the function $\theta(t)$ at the points s_{i}, i.e. $h_{i}=\theta\left(s_{i}+0\right)-\theta\left(s_{i}-0\right), i=\overline{1, r}$.

Integer numbers $n_{i}, i=\overline{1, r}$ we define from the following correlations:

$$
\begin{gather*}
-\frac{1}{q}<\frac{h_{i}}{2 \pi}+n_{i-1}-n_{i} \leq \frac{1}{p}, i=\overline{1, r} ; n_{0}=0 \tag{3}\\
\omega=\theta(-\pi)-\theta(\pi)+2 \pi \cdot n_{r}
\end{gather*}
$$

Let $\frac{1}{p}+\frac{1}{q}=1$. The following theorem takes place.
Theorem. Let the functions $A^{ \pm}(t)$ satisfy the conditions 1$), 2$); the coefficients $\omega^{ \pm}(t)$ have the presentations (2), moreover, the inequalities

$$
-\frac{1}{p}<\beta_{i}^{ \pm}<\frac{1}{q}, i=\overline{1, l^{ \pm}}
$$

are fulfiled. Then the system (1) is complete in L_{p} if and only if $\omega \leq \frac{2 \pi}{p}$; is minimal in L_{p} if and only if $\omega>-\frac{2 \pi}{q}$; where the value ω is defined from (3).

Before proving this theorem we give some earlier known facts, which will be used further.

Statement 1 [2]. Let the system $\left\{x_{i}\right\}_{0}^{\infty} \subset B_{1}$ is minimal in B_{1} and system $\left\{x_{i}\right\}_{-n}^{\infty} \subset B_{2} \subset B_{1}$ is complete and minimal in B_{2} for some $n \in N$, where $B_{i}, i=1,2$ are Banach spaces, moreover, from the convergence in B_{2} it follows the convergence in B_{1}. Then if $L\left\{\left\{y_{i}\right\}_{i=-n}^{-1}\right] \cap B_{1}^{*}=\{0\}$ then $\left\{x_{i}\right\}_{0}^{\infty}$ is complete in B_{1} where $\left\{y_{i}\right\}_{-n}^{\infty} \subset B_{2}^{*}$ is biorthoqonal to $\left\{x_{i}\right\}_{-n}^{\infty}$ system in $B_{2}, B_{i}^{*}, i=\overline{1,2}$ are conjugate spaces.

Statement 2. Let all conditions of theorem are fulfiled. If the inequalities

$$
-\frac{2 \pi}{q}<h_{k}<\frac{2 \pi}{p}, k=\overline{1, r}
$$

take place, then the system (1) forms the basis in $L_{p}, 1<p<+\infty$.
Proof of theorem. Not restricting generality, we can consider that the jumps $h_{i}, i=\overline{1, r}$ satisfy the conditions

$$
-\frac{2 \pi}{q}<h_{i} \leq \frac{2 \pi}{p}, i=\overline{1, r}
$$

Really, otherwise we introduce the following function:

$$
g(t) \equiv\left\{\begin{array}{l}
1,-\pi \leq t<s_{1}, \\
e^{i n_{1} \pi}, s_{1} \leq t<s_{2}, \\
e^{i n_{r}, \pi}, s_{r} \leq t \leq \pi
\end{array}\right.
$$

For simplicity we consider that $0<s_{1}<s_{2}<\ldots<s_{r}<\pi$. We multiply each member of system (1) on this function and consider the new system:

$$
\left\{\tilde{A}^{+}(t) \cdot \omega^{+}(t) \cdot e^{i n t} ; \tilde{A}^{-}(t) \cdot \omega^{-}(t) \cdot e^{-i k t}\right\}_{n \geq 0, k \geq 1},
$$

where $\widetilde{A}^{ \pm}(t) \equiv g(t) \cdot A^{ \pm}(t)$. It is not difficult to verify that for this system all conditions of theorem are fulfiled, and all corresponding values $n_{i}, i=\overline{1, r}$; are equal to zero.

We follow the scheme of the work [2].
So, first of all we suppose that $-\frac{2 \pi}{q}<\omega \leq \frac{2 \pi}{p}$. Denote by $\left\{s_{i k}\right\}, k=\overline{1, m}$ the points from the set $\left\{s_{i}\right\}_{1}^{r}$, at which for the corresponding jumps $\left\{h_{i}\right\}_{1}^{r}$, in the conditions (3) the sign of equality is reached; i.e. $h_{i k}=\frac{2 \pi}{p}$. Then it is not difficult to note that for sufficiently small $\varepsilon>0$ the inequalities

$$
\begin{aligned}
& -\frac{2 \pi}{q_{\varepsilon}}<h_{i}<\frac{2 \pi}{p-\varepsilon},-\frac{1}{p-\varepsilon}<\beta_{k}^{ \pm}<\frac{1}{q_{\varepsilon}}, \\
& -\frac{2 \pi}{q_{\varepsilon}}<\omega<\frac{2 \pi}{p-\varepsilon}, \quad i=\overline{1, r} ; \quad k=\overline{1, l^{ \pm}} ;
\end{aligned}
$$

where $\frac{1}{q_{\varepsilon}}+\frac{1}{p-\varepsilon}=1$ and $p-\varepsilon>1$, take place. In this case according to statement 2 system (1) forms basis in $L_{p-\varepsilon}$ and, consequently, it is minimal in L_{p}.

Further we introduce the following functions:

$$
\begin{gathered}
\alpha(t) \equiv\left\{\begin{array}{l}
-2 \pi k, t \in\left[s_{i k}, s_{i k+1}\right), k=\overline{1, m}, \\
0, t \notin\left[s_{i}, \pi\right], s_{i m+1}=\pi ;
\end{array}\right. \\
A_{0}^{-}(t) \equiv e^{i \alpha(t)} \cdot A^{-}(t), \alpha_{0}^{-}(t) \equiv \arg A_{0}^{-}(t)=\alpha^{-}(t)+\alpha(t),
\end{gathered}
$$

$$
A_{0}^{+}(t) \equiv A^{+}(t) \cdot\left\{\begin{array}{l}
e^{-i m t}, \text { if } \omega \neq \frac{2 \pi}{p} \\
e^{-i(m+1) t}, \text { if } \omega=\frac{2 \pi}{p}
\end{array}\right.
$$

where

$$
\alpha_{0}^{+}(t) \equiv \arg A_{0}^{+}(t) \equiv\left\{\begin{array}{l}
\alpha^{+}(t)-m \cdot t, \text { if } \omega \neq \frac{2 \pi}{p}, \\
\alpha^{+}(t)-(m+1) t, \text { if } \omega=\frac{2 \pi}{p}
\end{array}\right.
$$

Obviously, the jumps of the functions $\theta_{0}(t) \equiv \alpha_{0}^{-}(t)-\alpha_{0}^{+}(t)$ and $\theta(t)$ at the points $\left\{s_{i}\right\}_{1}^{r}$ are connected by correlations: $h_{i_{k}}^{0}=h_{i_{k}}-2 \pi, k=\overline{1, m}$; and $h_{i}^{0}=h_{i}$ for $i \notin\left\{i_{k}\right\}_{1}^{m}$, where $\left\{h_{i}^{0}\right\}$ are the jumps of $\theta_{0}(t)$ at the points $s_{i}, i=\overline{1, r}$.

We introduce into consideration the new system:

$$
\begin{equation*}
\left\{A_{0}^{+}(t) \omega^{+}(t) e^{i n t} ; A_{0}^{-}(t) \omega^{-}(t) e^{-i k t}\right\}_{n \geq 0, k \geq 1} \tag{4}
\end{equation*}
$$

If we denote by ω_{0} the value, corresponding to this system, defined from (3), then it will be equal to: $\omega_{0}=\theta_{0}(-\pi+0)-\theta_{0}(\pi-0)$ for $\omega \neq \frac{2 \pi}{p}$ and $\omega_{0}=\omega-2 \pi$ for $\omega=\frac{2 \pi}{p}$. Consequently, $\frac{h_{i k}^{0}}{2 \pi}=-\frac{1}{q}, k=\overline{1, m}$ and

$$
\frac{\omega_{0}}{2 \pi}=\left\{\begin{array}{c}
\frac{1}{2 \pi}\left[\theta_{0}(-\pi+0)-\theta_{0}(\pi-0)\right], \text { if } \omega \neq \frac{2 \pi}{p} \\
-\frac{1}{q}, \\
\text { if } \omega=\frac{2 \pi}{p}
\end{array}\right.
$$

Then for sufficiently small $\varepsilon>0$ we have:

$$
-\frac{2 \pi}{q_{\varepsilon}}<h_{i}^{0}<\frac{2 \pi}{p+\varepsilon},-\frac{2 \pi}{q_{\varepsilon}}<\omega_{0}<\frac{2 \pi}{p+\varepsilon},
$$

where $\frac{1}{q_{\varepsilon}}+\frac{1}{p+\varepsilon}=1$.

Further, consider the weight Hardi class $H_{p, v}^{ \pm}$, introduced in [.]. Following the work [.], we consider conjugation problem in classes $H_{p, v^{ \pm}}^{ \pm}$:

$$
\left\{\begin{array}{l}
F^{+}(\tau)+G(\tau) \cdot F^{-}(\tau)=q(\arg \tau),|\tau|=1 \\
F^{-}(\infty)=0
\end{array}\right.
$$

where $v^{ \pm} \equiv\left[\omega^{ \pm}\right]^{p}, G\left(e^{i t}\right) \equiv \frac{\omega^{-}(t) \cdot A_{0}^{-}(t)}{\omega^{+}(t) \cdot A_{0}^{+}(t)}, g \in L_{p, v^{+}}$is arbitrary function, $L_{p, \mu}$ is usual Lebesque class with the weight μ. Denote by:

$$
\begin{aligned}
& X_{1}^{ \pm}(z)=\exp \left\{ \pm \frac{1}{4 \pi} \int_{-\pi}^{\pi} \ln \frac{\omega^{-}(t)}{\omega^{+}(t)} \cdot \frac{e^{i t}+z}{e^{i t}-z} d t\right\}, \\
& X_{2}^{ \pm}(z)=\exp \left\{ \pm \frac{1}{4 \pi} \int_{-\pi}^{\pi} \ln \frac{A_{0}^{-}(t)}{A_{0}^{+}(t)} \cdot \frac{e^{i t}+z}{e^{i t}-z} d t\right\}, \\
& X_{3}^{ \pm}(z)=\exp \left\{ \pm \frac{i}{4 \pi} \int_{-\pi}^{\pi} \theta_{0}(t) \frac{e^{i t}+z}{e^{i t}-z} d t\right\} .
\end{aligned}
$$

Let

$$
Z_{i}(z) \equiv\left\{\begin{array}{l}
X_{i}^{+}(z), \quad|z|<1, \\
{\left[X_{i}^{-}(z)\right]^{-1},|z|>1, i=\overline{1,3}}
\end{array}\right.
$$

and

$$
Z(z) \equiv \prod_{i} Z_{i}(z)
$$

We present the function $\theta_{0}(t)$ in the form: $\theta_{0}(t)=\theta_{0}^{0}(t)+\theta_{1}(t)$, where $\theta_{0}^{0}(t)$ is continuous part, $\theta_{1}(t)$ is the function of jumps, which is defined by the formula:

$$
\theta_{1}(-\pi)=0, \theta_{1}(t)=\sum_{-\pi<s_{k}<t} h_{k},-\pi<t \leq \pi ;
$$

(not restricting generality, we consider that the function $\theta_{0}(t)$ is continuous from the left side).

Let $h_{0}=h_{0}^{(1)}-h_{0}^{(0)}$, where $h_{0}^{(1)}=\theta_{1}(-\pi)-\theta_{1}(\pi), \quad h_{0}^{(0)}=\theta_{0}^{0}(\pi)-\theta_{0}^{0}(-\pi)$
Denote by

$$
\begin{gathered}
U(t) \equiv \prod_{k}\left\{\sin \left|\frac{t-s_{k}}{2}\right|\right\}^{-\frac{h_{k}}{2 \pi}}, \\
U_{0}(t) \equiv\left\{\sin \left|\frac{t-\pi}{2}\right|\right\}^{-\frac{h_{0}}{2 \pi}} \cdot \exp \left\{-\frac{1}{4 \pi} \int_{-\pi}^{\pi} \theta_{0}^{0}(s) \operatorname{ctg} \frac{t-s}{2} d s\right\}
\end{gathered}
$$

Then the boundary values of the function $Z_{i}(z), i=\overline{1,3}$ have the following presentations:

$$
\begin{aligned}
& \left|Z_{1}^{-}\left(e^{i t}\right)\right|=\left[\frac{\omega^{+}(t)}{\omega^{-}(t)}\right]^{1 / 2},\left\|Z_{2}^{-}\left(e^{i t}\right)\right\|_{\infty}^{ \pm 1}<+\infty, \\
& \left|Z_{3}\left(e^{i t}\right)\right|=U_{0}(t) \cdot U(t) \cdot\left\{\sin \left|\frac{t-\pi}{2}\right|\right\}^{-\frac{h_{0}}{2 \pi}}
\end{aligned}
$$

Applying these presentations, taking into account the inequality $\left(\frac{1}{p+\varepsilon}+\frac{1}{q_{\varepsilon}}=1\right):$

$$
-\frac{1}{p+\varepsilon}<1-\frac{1}{p}=-\frac{h\left(\tau_{i k}\right)}{2 \pi}+\beta_{i k}^{ \pm}=\frac{1}{q}<\frac{1}{q_{\varepsilon}}
$$

for sufficiently small $\varepsilon>0$, and doing analogously the work [1] we obtain, that the system (4) forms the basis in $L_{p+\varepsilon}$, and in this case biorthogonal system has the form:

$$
\bar{h}_{n}^{+}(t)=\frac{\varphi_{n}^{+}(t)}{Z^{+}\left(e^{i t}\right)}, n \geq 0 ; \bar{h}_{n}^{-}(t)=\frac{\varphi_{n}^{-}(t)}{Z^{+}\left(e^{i t}\right)}, n \geq 1
$$

where

$$
\varphi_{n}^{ \pm}(t)=\frac{\sum_{k=1}^{n} b_{n}^{ \pm} \cdot e^{\mp i t}}{2 \pi A_{0}^{+}(t)},\left\{b_{n}^{ \pm}\right\}
$$

are definite coefficients. Applying the boundary value $Z^{ \pm}\left(e^{i t}\right),\left|h_{n}^{+}(t)\right|$ can be presented in the form:

$$
\left|h_{n}^{+}(t)\right|=\frac{h(t) \cdot\left|\sum_{k=0}^{n} b_{n}^{+} \cdot e^{-i k t}\right|}{\prod_{k=1}^{m}\left|e^{i t}-e^{i s_{i k}}\right|^{\frac{1}{q}}}
$$

where the function $h(t) \geq \delta>0$ in sufficiently small neighbourhoods of the points $\left\{s_{i k}\right\}_{1}^{m}$. From here it follows that the linear cover $L\left[\left\{h_{n}^{+}\right\}_{n=0}^{m}\right\rfloor$ doesn't belong to the space L_{q}. Then according to the statement 1 the system (1) is complete and minimal in L_{p}. And now, let $\omega \leq-\frac{2 \pi}{q}$, for example, $-\frac{2 \pi}{q}-2 \pi<\omega \leq-\frac{2 \pi}{q}$. Then from the previous arguments it follows that in this case the system

$$
\left\{A^{+}(t) \omega^{+}(t) e^{i n t} ; A^{-}(t) \omega^{-}(t) e^{-\mathrm{int}}\right\}_{n \geq 1}
$$

is complete and minimal, and, as a result, the system (1) is complete, but is not minimal in L_{p}. The other cases are proved analogously.

Theorem is proved.
Author is very qreatful to prof. S.S.Mirzoyev for the attention to the work.

References:

1. Veliyev S.G.// The News of Baku University, 2003, №4, p.70-78.
2. Bilalov B.T.// Siberia mathem. Jurnal, 2004, v.45, №2, p.264-273.
