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Necessary and sufficient condition of the completeness and minimality for one 
system of exponents with degeneration. 

 
The following system of exponents with “degenerated” coefficients ±ω  is 

considered:  
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{ } { } Rii ⊂−⊂ ±± βππτ );,(  are the sets of real numbers. Earlier we obtained the 

completeness and minimality of the system (1) in the space 

+∞<<−≡ pLL pp 1),,( ππ  for definite conditions on the functions )(tA±  and the 

coefficients )(t±ω . In offered paper we obtain the necessary and sufficient condition 

of the completeness and minimality for this system in pL  for concrete conditions on 

the functions ±± ω;A . We require the fulfilling of the following conditions:  

1) )(t±α  are piecewise-Helder functions on the segment ],[ ππ− , { }ris 1   is the set of 

discontinuity points of the function )()()( ttt +− −≡ ααθ  on ],[ ππ− , and 

moreover  
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Denote by { }rih 1  the jumps of the function )(tθ  at the points is , i.e. 

rissh iii ,1),0()0( =−−+= θθ .  

Integer numbers rini ,1, =  we define from the following correlations: 
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Let 111
=+

qp
. The following theorem takes place.  

Theorem. Let the functions )(tA±  satisfy the conditions 1), 2); the coefficients 

)(t±ω  have the presentations (2), moreover, the inequalities  
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are fulfiled. Then the system (1) is complete in pL  if and only if ;2
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Before proving this theorem we give some earlier known facts, which will be 

used further.  

Statement 1 [2]. Let the system { } 10 Bxi ⊂∞  is minimal in 1B  and system 

{ } 12 BBx ni ⊂⊂∞
−  is complete and minimal in 2B  for some ,Nn∈  where 2,1, =iBi  

are Banach spaces, moreover, from the convergence in 2B  it follows the convergence 

in 1B . Then if { }[ ] { }0*
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 Statement 2. Let all conditions of theorem are fulfiled. If the inequalities  
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take place, then the system (1) forms the basis in +∞<< pLp 1, .  

Proof of theorem. Not restricting generality, we can consider that the jumps 

rihi ,1, =  satisfy the conditions  
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Really, otherwise we introduce the following function:  
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For simplicity we consider that π<<<<< rsss K210 .  We multiply each 

member of system (1) on this function and consider the new system:            
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where )()()(~ tAtgtA ±± ⋅≡ . It is not difficult to verify that for this system all 

conditions of theorem are fulfiled, and all corresponding values ;,1, rini =  are equal 

to zero.  

We follow the scheme of the work [2].  

So, first of all we suppose that 
pq
π

ω
π 22

≤<− . Denote by { } mksik ,1, =  the 

points from the set { }ris 1 , at which for the corresponding jumps { }rih 1 , in the 

conditions (3) the sign of equality is reached; i.e. 
p

hik
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= . Then it is not difficult to 

note that for sufficiently small 0>ε  the inequalities  

                                    
;,1;,1,22

,11,22

±

±

==
−

<<−

<<
−

−
−

<<−

lkri
pq

qpp
h

q ki

ε
π

ω
π

β
εε

ππ

ε

εε  

where 111
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εε pq
 and ,1>− εp  take place. In this case according to statement 2 

system (1) forms basis in ε−pL  and, consequently, it is minimal in pL .  

Further we introduce the following functions:  
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where     
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Obviously, the jumps of the functions )()()( 000 ttt +− −≡ ααθ  and )(tθ  at the 

points { }ris 1  are connected by correlations: ;,1,20 mkhh
kk ii =−= π  and ii hh =0  for 

{ }mkii 1∉ , where { }0
ih  are the jumps of )(0 tθ  at the points .,1, risi =  

We introduce into consideration the new system:  
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If we denote by 0ω  the value, corresponding to this system, defined from (3), 

then it will be equal to: )0()0( 000 −−+−= πθπθω  for 
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Then for sufficiently small 0>ε  we have:  
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Further, consider the weight Hardi class ±
vpH , , introduced in [ ]⋅ . Following the 

work [ ]⋅ , we consider conjugation problem in classes ±
±vp

H
,

:  
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usual Lebesque class with the weight µ . Denote by: 
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We present the function )(0 tθ  in the form: )()()( 1
0
00 ttt θθθ += , where )(0

0 tθ  

is continuous part, )(1 tθ  is the function of jumps, which is defined by the formula:  
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(not restricting generality, we consider that the function )(0 tθ   is continuous from the 

left side).  
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Then the boundary values of the function 3,1),( =izZi  have the following 

presentations:  
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Applying these presentations, taking into account the inequality 
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for sufficiently small 0>ε , and doing analogously the work [1] we obtain, that the 

system (4) forms the basis in ε+pL , and in this case biorthogonal system has the form:  
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are definite coefficients. Applying the boundary value )(),( theZ n
it +±  can be 

presented in the form: 
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where the function 0)( >≥ δth  in sufficiently small neighbourhoods of the points 

{ }miks 1 . From here it follows that the linear cover { }[ ]m
nnhL 0=

+  doesn’t  belong to the 

space qL . Then according to the statement 1 the system (1) is complete and minimal 

in pL . And now, let 
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previous arguments it follows that in this case the system  
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is complete and minimal, and, as a result, the system (1) is complete, but is not 

minimal in pL . The other cases are proved analogously.  

Theorem is proved. 
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