
Spectral Shift Function for Schrödinger Operators
in Constant Magnetic Fields

Georgi Raikov
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1 Introduction

In this survey article based on the papers [7], [10], and [8], we consider the 3D Schrödinger operator
with constant magnetic field of scalar intensity b > 0, perturbed by an electric potential V which decays
fast enough at infinity, and discuss various asymptotic properties of the corresponding spectral shift
function.
More precisely, let H0 = H0(b) := (i∇ + A)2 − b be the unperturbed operator, essentially self-adjoint
on C∞0 (R3). Here A =

(
− bx2

2 , bx1
2 , 0

)
is the magnetic potential which generates the constant magnetic

field B = curl A = (0, 0, b), b > 0. It is well-known that σ(H0) = σac(H0) = [0,∞) (see [1]), where
σ(H0) stands for the spectrum of H0, and σac(H0) for its absolutely continuous spectrum. Moreover,
the so-called Landau levels 2bq, q ∈ Z+ := {0, 1, . . .}, play the role of thresholds in σ(H0).
For x = (x1, x2, x3) ∈ R3 we denote by X⊥ = (x1, x2) the variables on the plane perpendicular to the
magnetic field. Throughout the paper assume that V satisfies

V 6≡ 0, V ∈ C(R3), |V (x)| ≤ C0〈X⊥〉−m⊥〈x3〉−m3 , x = (X⊥, x3) ∈ R3, (1.1)

with C0 > 0, m⊥ > 2, m3 > 1, and 〈x〉 := (1 + |x|2)1/2, x ∈ Rd, d ≥ 1. Some of our results hold under
a more restrictive assumption than (1.1), namely

V 6≡ 0, V ∈ C(R3), |V (x)| ≤ C0〈x〉−m0 , m0 > 3, x ∈ R3. (1.2)

Note that (1.2) implies (1.1) with any m3 ∈ (0,m0) and m⊥ = m0 −m3. In particular, we can choose
m3 ∈ (1,m0 − 2) so that m⊥ > 2.
On the domain of H0 define the operator H = H(b) := H0 + V . Obviously, inf σ(H) ≤ inf σ(H0) = 0.
Moreover, if (1.1) holds, then for every E < inf σ(H) we have (H −E)−1 − (H0 −E)−1 ∈ S1 where S1

denotes the trace class. Hence, there exists a unique function ξ = ξ(·;H,H0) ∈ L1(R; (1 + E2)−1dE)
which vanishes identically on (−∞, inf σ(H)) such that the Lifshits-Krein trace formula

Tr (f(H)− f(H0)) =
∫

R
ξ(E;H,H0)f ′(E)dE
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holds for each f ∈ C∞0 (R) (see the original works [22], [20], the survey article [5], or Chapter 8 of the
monograph [45]). The function ξ(·;H,H0) is called the spectral shift function (SSF) for the operator
pair (H,H0). If E < 0 = inf σ(H0), then the spectrum of H below E could be at most discrete, and
for almost every E < 0 we have

ξ(E;H,H0) = −N(E;H) (1.3)

where N(E;H) denotes the number of eigenvalues of H lying in the interval (−∞, E), and counted with
their multiplicities. On the other hand, for almost every E ∈ [0,∞), the SSF ξ(E;H,H0) is related to
the scattering determinant det S(E;H,H0) for the pair (H,H0) by the Birman-Krein formula

det S(E;H,H0) = e−2πiξ(E;H,H0)

(see [4] or [45, Section 8.4]). A survey of various asymptotic results concerning the SSF for numerous
quantum Hamiltonians is contained in [40].
A priori, the SSF ξ(E;H,H0) is defined for almost every E ∈ R. In this article we will identify this
SSF with a representative of its equivalence class which is well-defined on R \ 2bZ+, bounded on every
compact subset of R \ 2bZ+, and continuous on R \ (2bZ+ ∪ σpp(H)) where σpp(H) denotes the set of
the eigenvalues of H. In the case of perturbations V of definite sign this representative is described
explicitly in Subsection 3.1 below; in the case of general non-sign-definite perturbations its description
can be found in [7, Section 3].
In the present article we investigate the behaviour of the SSF in several asymptotic regimes:

• First, we analyse the singularities of the SSF at the Landau levels. In other words, we fix q ∈ Z+,
and investigate the behaviour of ξ(2bq + λ;H,H0) as λ→ 0.

• Further, we study the strong-magnetic-field asymptotics of the SSF, i.e. the behaviour of the
SSF as b→∞. Here we distinguish between the asymptotics far from the Landau levels, and the
asymptotics near a given Landau level.

• Finally, we obtain a Weyl type formula describing the high-energy asymptotics of the SSF.

The paper is organised as follows. In Section 2 we formulate our main results, and discuss briefly
on them. More precisely, in Subsection 2.1 we introduce some basic notations used throughout the
paper, Subsection 2.2 contains the results on the singularities of the SSF at the Landau levels, Sub-
section 2.3 is devoted to the strong-magnetic-field asymptotics of the SSF, and Subsection 2.4 to its
high-energy behaviour. Section 3 contains some auxiliary results. In Subsection 3.1 we describe the
representation of the SSF in the case of perturbations of fixed sign, due to A. Pushnitski (see [29]),
while in Subsection 3.2 we establish estimates of some auxiliary operators of Birman-Schwinger type
which are used systematically in the proofs of the main results. Some of these proofs could be found
in Section 4: in Subsection 4.1 we prove the results of Subsection 2.2, and in Subsection 4.2 some of
the results of Subsection 2.3. Since the detailed proofs have already been published in [10] and [7], the
proofs presented here are somewhat sketchy, preference being given to the main ideas rather than to
the technical details.

2 Main Results

2.1 Notations and preliminaries

In this subsection we introduce our basic notations used throughout the paper.
We denote by S∞ the class of linear compact operators acting in a given Hilbert space.
Let T = T ∗ ∈ S∞. Denote by PI(T ) the spectral projection of T associated with the interval I ⊂ R.
For s > 0 set

n±(s;T ) := rank P(s,∞)(±T ).
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For an arbitrary (not necessarily self-adjoint) operator T ∈ S∞ put

n∗(s;T ) := n+(s2;T ∗T ), s > 0. (2.1)

If T = T ∗, then evidently
n∗(s;T ) = n+(s, T ) + n−(s;T ), s > 0. (2.2)

Moreover, if Tj = T ∗j ∈ S∞, j = 1, 2, then the Weyl inequalities

n±(s1 + s2, T1 + T2) ≤ n±(s1, T1) + n±(s2, T2) (2.3)

hold for each s1, s2 > 0.
Further, we denote by Sp, p ∈ (0,∞), the Schatten-von Neumann class of compact operators for which
the functional ‖T‖p : =

(
p

∫∞
0
sp−1n∗(s;T ) ds

)1/p
is finite. If T ∈ Sp, p ∈ (0,∞), then the following

elementary inequality of Chebyshev type

n∗(s;T ) ≤ s−p‖T‖p
p (2.4)

holds for every s > 0. If T = T ∗ ∈ Sp, p ∈ (0,∞), then (2.2) and (2.4) imply

n±(s;T ) ≤ s−p‖T‖p
p, s > 0. (2.5)

2.2 Singularities of the SSF at the Landau levels

Introduce the Landau Hamiltonian

h(b) :=
(
i
∂

∂x1
− bx2

2

)2

+
(
i
∂

∂x2
+
bx1

2

)2

− b, (2.6)

i.e. the 2D Schrödinger operator with constant scalar magnetic field b > 0, essentially self-adjoint
on C∞0 (R2). It is well-known that σ(h(b)) = ∪∞q=0 {2bq}, and each eigenvalue 2bq, q ∈ Z+, has infi-
nite multiplicity (see e.g. [1]). Denote by pq = pq(b) the orthogonal projection onto the eigenspace
Ker (h(b)− 2bq), q ∈ Z+.
The estimates of the SSF for energies near the Landau level 2bq, q ∈ Z+, will be given in the terms
of traces of certain functions of Toeplitz-type operators pqUpq where U : R2 → R decays in a certain
sense at infinity.

Lemma 2.1. [31, Lemma 5.1], [10, Lemma 2.1] Let U ∈ Lr(R2), r ≥ 1, and q ∈ Z+. Then pqUpq ∈ Sr.

Assume that (1.1) holds. Set

W (X⊥) :=
∫

R
|V (X⊥, x3)|dx3, X⊥ ∈ R2.

Since V satisfies (1.1), we have W ∈ L1(R2), and Lemma 2.1 with U = W implies pqWpq ∈ S1, q ∈ Z+.
Evidently, pqWpq ≥ 0, and it follows from V 6≡ 0 and V ∈ C(R2), that rank pqWpq = ∞ for all q ∈ Z+

(see below Lemma 2.4). If, moreover, V satisfies (1.2), then 0 ≤ W (X⊥) ≤ C ′0〈X⊥〉−m0+1, X⊥ ∈ R2,
with C ′0 = C0

∫
R〈x〉

−m0dx.
In the following two theorems we assume that V has a definite sign, i.e. that either V ≤ 0 (then we
will write H− instead of H), or V ≥ 0 (then we will write H+ instead of H).

Theorem 2.1. (cf. [10, Theorem 3.1]) Assume that (1.2) is valid, and ±V ≥ 0. Let q ∈ Z+, b > 0.
Then the asymptotic estimates

ξ(2bq − λ;H+,H0) = O(1), (2.7)

−n+((1− ε)2
√
λ; pqWpq) +O(1) ≤ ξ(2bq − λ;H−,H0) ≤ −n+((1 + ε)2

√
λ; pqWpq) +O(1), (2.8)

hold as λ ↓ 0 for each ε ∈ (0, 1).
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Suppose that the potential V satisfies (1.1). For λ ≥ 0 define the matrix-valued function

Wλ = Wλ(X⊥) :=
(
w11 w12

w21 w22

)
, X⊥ ∈ R2, (2.9)

where
w11 :=

∫
R
|V (X⊥, x3)| cos2 (

√
λx3)dx3,

w12 = w21 :=
∫

R
|V (X⊥, x3)| cos (

√
λx3) sin (

√
λx3)dx3,

w22 :=
∫

R
|V (X⊥, x3)| sin2 (

√
λx3)dx3.

It is easy to check that for λ ≥ 0 and q ∈ Z+ the operator pqWλpq : L2(R2)2 → L2(R2)2 satisfies
0 ≤ pqWλpq ∈ S1, and rank pqWλpq = ∞.

Theorem 2.2. (cf. [10, Theorem 3.2]) Assume that (1.2) is valid, and ±V ≥ 0. Let q ∈ Z+, b > 0.
Then the asymptotic estimates

± 1
π

Tr arctan (((1± ε)2
√
λ)−1pqWλpq) +O(1) ≤ ξ(2bq + λ;H±,H0) ≤

± 1
π

Tr arctan (((1∓ ε)2
√
λ)−1pqWλpq) +O(1) (2.10)

hold as λ ↓ 0 for each ε ∈ (0, 1).

Relations (2.8) and (2.10) allow us to reduce the analysis of the behaviour as λ→ 0 of ξ(2bq+λ;H±,H0),
to the study of the asymptotic distribution of the eigenvalues of Toeplitz-type operators pqUpq. The
following three lemmas concern the spectral asymptotics of such operators.

Lemma 2.2. [31, Theorem 2.6] Let the function 0 ≤ U ∈ C1(R2) satisfy the estimates

U(X⊥) = u0(X⊥/|X⊥|)|X⊥|−α(1 + o(1)), |X⊥| → ∞,

|∇U(X⊥)| ≤ C1〈X⊥〉−α−1, X⊥ ∈ R2,

where α > 0, and u0 is a continuous function on S1 which is non-negative and does not vanish identi-
cally. Then for each q ∈ Z+ we have

n+(s; pqUpq) =
b

2π

∣∣{X⊥ ∈ R2|U(X⊥) > s
}∣∣ (1 + o(1)) = ψα(s) (1 + o(1)), s ↓ 0,

where |.| denotes the Lebesgue measure, and

ψα(s) := s−2/α b

4π

∫
S1
u0(t)2/αdt, s > 0. (2.11)

Lemma 2.3. [38, Theorem 2.1, Proposition 4.1] Let 0 ≤ U ∈ L∞(R2). Assume that

lnU(X⊥) = −µ|X⊥|2β(1 + o(1)), |X⊥| → ∞,

for some β ∈ (0,∞), µ ∈ (0,∞). Then for each q ∈ Z+ we have

n+(s; pqUpq) = ϕβ(s)(1 + o(1)), s ↓ 0,

where

ϕβ(s) :=


b

2µ1/β | ln s|1/β if 0 < β < 1,
1

ln (1+2µ/b) | ln s| if β = 1,
β

β−1 (ln | ln s|)−1| ln s| if 1 < β <∞.

s ∈ (0, e−1). (2.12)
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Lemma 2.4. [38, Theorem 2.2, Proposition 4.1] Let 0 ≤ U ∈ L∞(R2). Assume that the support of U
is compact, and that there exists a constant C > 0 such that U ≥ C on an open non-empty subset of
R2. Then for each q ∈ Z+ we have

n+(s; pqUpq) = ϕ∞(s) (1 + o(1)), s ↓ 0,

where
ϕ∞(s) := (ln | ln s|)−1| ln s|, s ∈ (0, e−1). (2.13)

Employing Lemmas 2.2, 2.3, 2.4, we easily find that asymptotic estimates (2.8) and (2.10) entail the
following

Corollary 2.1. [10, Corollaries 3.1 – 3.2] Let (1.2) hold with m0 > 3.
i) Assume that the hypotheses of Lemma 2.2 hold with U = W and α > 2. Then we have

ξ(2bq − λ;H−,H0) = − b

2π

∣∣∣{X⊥ ∈ R2|W (X⊥) > 2
√
λ
}∣∣∣ (1 + o(1)) =

−ψα(2
√
λ) (1 + o(1)), λ ↓ 0, (2.14)

ξ(2bq + λ;H±,H0) = ± b

2π2

∫
R2

arctan ((2
√
λ)−1W (X⊥))dX⊥ (1 + o(1)) =

± 1
2 cos (π/α)

ψα(2
√
λ) (1 + o(1)), λ ↓ 0.

the function ψα being defined in (2.11).
ii) Assume that the hypotheses of Lemma 2.3 hold with U = W . Then we have

ξ(2bq − λ;H−,H0) = −ϕβ(2
√
λ) (1 + o(1)), λ ↓ 0, β ∈ (0,∞),

the functions ϕβ being defined in (2.12). If, in addition, V satisfies (1.1) for some m⊥ > 2 and m3 > 2,
we have

ξ(2bq + λ;H±,H0) = ± 1
2
ϕβ(2

√
λ) (1 + o(1)), λ ↓ 0, β ∈ (0,∞).

iii) Assume that the hypotheses of Lemma 2.4 hold with U = W . Then we have

ξ(2bq − λ;H−,H0) = −ϕ∞(2
√
λ) (1 + o(1)), λ ↓ 0,

the function ϕ∞ being defined in (2.13). If, in addition, V satisfies (1.1) for some m⊥ > 2 and m3 > 2,
we have

ξ(2bq + λ;H±,H0) = ± 1
2
ϕ∞(2

√
λ) (1 + o(1)), λ ↓ 0,

the function ϕ∞ being defined in (2.13).

In particular, we find that

lim
λ↓0

ξ(2bq − λ;H−,H0)
ξ(2bq + λ;H−,H0)

=
1

2 cos π
α

(2.15)

if W has a power-like decay at infinity (i.e. if the assumptions of Corollary 2.1 i) hold), or

lim
λ↓0

ξ(2bq − λ;H−,H0)
ξ(2bq + λ;H−,H0)

=
1
2

(2.16)

if W decays exponentially or has a compact support (i.e. if the assumptions of Corollary 2.1 ii) - iii)
are fulfilled). Relations (2.15) and (2.16) could be interpreted as analogues of the classical Levinson
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formulae (see e.g. [40]).
Remarks: i) Since the ranks of pqWpq and pqWλpq are infinite, the quantities n+(s2

√
λ; pqWpq) and

Tr arctan ((s2
√
λ)−1pqWλpq) tend to infinity as λ ↓ 0 for every s > 0. Therefore, Theorems 2.1 and 2.2

imply that the SSF ξ(·;H±,H0) has a singularity at each Landau level. The existence of singularities
of the SSF at strictly positive energies is in sharp contrast with the non-magnetic case b = 0 where the
SSF ξ(E;−∆ + V,−∆) is continuous for E > 0 (see e.g. [40]). The main reason for this phenomenon
is the fact that the Landau levels play the role of thresholds in σ(H0) while the free Laplacian −∆ has
no strictly positive thresholds in its spectrum.
It is conjectured that the singularity of the SSF ξ(·;H±(b),H0(b)), b > 0, at a given Landau level
2bq, q ∈ Z+, could be related to a possible accumulation of resonances and/or eigenvalues of H at
2bq. Here it should be recalled that in the case b = 0 the high energy asymptotics (see [27]) and the
semi-classical asymptotics (see [28]) of the derivative of the SSF for appropriate compactly supported
perturbations of the Laplacian, are related by the Breit-Wigner formula to the asymptotic distribution
near the real axis of the resonances defined as poles of the meromorphic continuation of the resolvent
of the perturbed operator.
ii) In the case q = 0, when by (1.3) we have ξ(−λ;H−,H0) = −N(−λ;H−) for λ > 0, asymptotic
relations of the type of (2.14) have been known since long ago (see [43], [42], [44], [31], [17]). An
important characteristic feature of the methods used in [31], and later in [38], is the systematic use,
explicit or implicit, of the connection between the spectral theory of the Schrödinger operator with
constant magnetic field, and the theory of Toeplitz operators acting in holomorphic spaces of Fock-
Segal-Bargmann type, and the related pseudodifferential operators with generalised anti-Wick symbols
(see [12], [3], [41], [15]). Various important aspects of the interaction between these two theories have
been discussed in [37] and [7, Section 9]). The Toeplitz-operator approach turned to be especially
fruitful in [38] where electric potentials decaying rapidly at infinity (i.e. decaying exponentially, or
having compact support) were considered (see Lemmas 2.3 - 2.4). It is shown in [11] that the precise
spectral asymptotics for the Landau Hamiltonian perturbed by a compactly supported electric potential
U of fixed sign recovers the logarithmic capacity of the support of U .
iii) Let us mention several other existing extensions of Lemmas 2.2 – 2.4. Lemmas 2.2 and 2.4 have been
generalised to the multidimensional case where pq is the orthogonal projection onto a given eigenspace
of the Schrödinger operator with constant magnetic field of full rank, acting in L2(R2d), d > 1 (see [31]
and [25] respectively). Moreover, Lemma 2.4 has been generalised in [25] to a relativistic setting where
pq is an eigenprojection of the Dirac operator. Finally, in [36] Lemmas 2.2 – 2.4 have been extended
to the case of the 2D Pauli operator with variable magnetic field from a certain class including the
almost periodic fields with non-zero mean value (in this case the role of the Landau levels is played by
the origin), and electric potentials U satisfying the assumptions of Lemmas 2.2 – 2.4. In the case of
compactly supported U of definite sign, [11] contains a more precise version of the corresponding result
of [36], involving again the logarithmic capacity of the support of U .
iv) To the author’s best knowledge, the singularities at the Landau levels of the SSF for the 3D
Schrödinger operator in constant magnetic field has been investigated for the first time in [10]. However,
it is appropriate to mention here the article [19] where an axisymmetric potential V = V (|X⊥|, x3) has
been considered. It is well-known (see e.g. [1]) that in this case the operators H0 and H are unitarily
equivalent to the orthogonal sums

∑
m∈Z⊕H(m) and

∑
m∈Z⊕H

(m)
0 respectively, where the operators

H
(m)
0 := −1

%

∂

∂%
%
∂

∂%
− ∂2

∂x2
3

+
(
b%

2
+
m

%

)2

− b, H(m) := H
(m)
0 + V (%, x3), m ∈ Z, (2.17)

are self-adjoint in L2(R+ × R; %d%dx3). For a fixed magnetic quantum number m ∈ Z the authors of
[19] studied the behaviour of the SSF ξ(E;H(m),H

(m)
0 ) for energies E near the Landau level 2m if

m > 0, and near the origin if m ≤ 0, and deduced analogues of the classical Levinson formulae for the
operator pair

(
H(m),H

(m)
0

)
. Later, the methods in [19] were developed in [23] and [24]. However, it is
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not possible to recover the results our Theorem 2.1, Theorem 2.2 and/or Corollary 2.1 from the results
of [19], [23], and [24] even in the case of axisymmetric V .
v) Finally, [16] contains general bounds on the SSF for appropriate pairs of magnetic Schrödinger
operators. These bounds are applied in order to deduce Wegner estimates of the integrated density of
states for some random alloy-type models.

2.3 Strong Magnetic Field Asymptotics of the SSF

Our first theorem in this subsection treats the asymptotics as b → ∞ of ξ(·;H(b),H0(b)) far from the
Landau levels.

Theorem 2.3. (cf. [7, Theorem 2.1]) Let (1.1) hold. Assume that E ∈ (0,∞) \ 2Z+, and λ ∈ R. Then

ξ(Eb+ λ;H(b),H0(b)) =
b1/2

4π2

[E/2]∑
l=0

(E − 2l)−1/2

∫
R3
V (x)dx +O(1), b→∞, (2.18)

where [E/2] denotes the integer part of the real number E/2.

The following two theorems concern the asymptotics of the SSF near a given Landau level. In order to
formulate our next theorem, we introduce the following self-adjoint operators

χ0 := −d2/dx2
3, χ = χ(X⊥) := χ0 + V (X⊥, .), X⊥ ∈ R2,

which are defined on the Sobolev space H2(R), and depend on the parameter X⊥ ∈ R2. If (1.1) holds,
then (χ(X⊥) − λ0)−1 − (χ0 − λ0)−1 ∈ S1 for each X⊥ ∈ R2 and λ0 < inf σ(χ(X⊥)). Hence, the SSF
ξ(.;χ(X⊥), χ0) is well-defined. Set Λ: = minX⊥∈R2 inf σ(χ(X⊥)). Evidently, Λ ∈ [−C0, 0]. Moreover,

Λ = lim
b→∞

inf σ(H(b)) (2.19)

(see [1, Theorem 5.8]).

Proposition 2.1. (cf. [7, Proposition 2.2]) Assume that (1.1) holds.
i) For each λ ∈ R \ {0} we have ξ(λ;χ(.), χ0) ∈ L1(R2).
ii) The function (0,∞) 3 λ 7→

∫
R2 ξ(λ;χ(X⊥), χ0)dX⊥ is continuous, while the non-increasing function

(−∞, 0) 3 λ 7→
∫

R2
ξ(λ;χ(X⊥), χ0)dX⊥ = −

∫
R2
N(λ;χ(X⊥))dX⊥

(see (1.3)), is continuous at the point λ < 0 if and only if

|{X⊥ ∈ R2|λ ∈ σ(χ(X⊥))}| = 0. (2.20)

iii) Assume ±V ≥ 0. If λ > Λ, λ 6= 0, then ±
∫

R2 ξ(λ;χ(X⊥), χ0)dX⊥ > 0.

Remark: Proposition 2.1 iii) in [7, Proposition 2.2]. However, it follows easily from the representation
of the SSF described in Subsection 3.1 below, and the hypotheses v 6=≡ 0 and V ∈ C(R3).

Theorem 2.4. (cf. [7, Theorem 2.3]) Assume that (1.1) holds. Let q ∈ Z+, λ ∈ R \ {0}. If λ < 0,
suppose also that (2.20) holds. Then we have

lim
b→∞

b−1ξ(2bq + λ;H(b),H0(b)) =
1
2π

∫
R2
ξ(λ;χ(X⊥), χ0) dX⊥. (2.21)

7



The proofs of Theorems 2.3 and 2.4 are contained in Subsection 4.2. We present these proofs under
the additional assumption that V has a definite sign, and refer the reader to the original paper [7] for
the proofs in the general case.
By Proposition 2.1 iii), if ±V ≥ 0, then the r.h.s. of (2.21) is different from zero if λ > Λ, λ 6= 0.
Unfortunately, we cannot prove that the same is true for general non-sign-definite electric potentials
V . On the other hand, it is obvious that for arbitrary V we have

∫
R2 ξ(λ;χ(X⊥), χ0)dX⊥ = 0 if λ < Λ.

The last theorem of this subsection contains a more precise version of (2.21) for the case λ < Λ.

Theorem 2.5. (cf. [7, Theorem 2.4]) Let (1.1) hold.
i) Let λ < Λ. Then for sufficiently large b > 0 we have ξ(λ;H(b),H0(b)) = 0.
ii) Let q ∈ Z+, q ≥ 1, λ < Λ. Assume that the partial derivatives of 〈x3〉m3V with respect to the
variables X⊥ ∈ R2 exist, and are uniformly bounded on R3. Then we have

lim
b→∞

b−1/2ξ(2bq + λ;H(b),H0(b)) =
1

4π2

q−1∑
l=0

(2(q − l))−1/2

∫
R3
V (x)dx. (2.22)

The first part of the theorem is trivial, and follows immediately from (2.19). We omit the proof of
Theorem 2.5 ii) and refer the reader to the original work [7].
Remarks: i) Relations (2.18), (2.21), and (2.22) can be unified into a single asymptotic formula. In order
to see this, notice that a general result on the high-energy asymptotics of the SSF for 1D Schrödinger
operators (see e.g. [40]) implies, in particular, that

lim
E→∞

E1/2ξ(E;χ(X⊥), χ0) =
1
2π

∫
R
V (X⊥, x3) dx3, X⊥ ∈ R2.

Then relation (2.18) with 0 < E/2 6∈ Z+, or relations (2.21) and (2.22) with E = 2q, q ∈ Z+, entail

ξ(Eb+ λ;H(b),H0(b)) =
b

2π

[E/2]∑
l=0

∫
R2
ξ(b(E − 2l) + λ;χ(X⊥), χ0)dX⊥ (1 + o(1)), b→∞. (2.23)

On its turn, (2.23) can be re-written as

ξ(Eb+ λ;H(b),H0(b)) =
∫

R

∫
R2
ξ(Eb+ λ− s;χ(X⊥), χ0)dX⊥dνb(s) (1 + o(1)), b→∞,

where νb(s) := b
2π

∑∞
l=0 Θ(s− 2bl), s ∈ R, and Θ(s) :=

{
0 if s ≤ 0,
1 if s > 0, is the Heaviside function. It

is well-known that ν is the integrated density of states for the 2D Landau Hamiltonian (see (2.6)).
ii) By (1.3) for λ < 0 we have ξ(λ;H(b),H0) = −N(λ;H(b)). The asymptotics as b → ∞ of the
counting function N(λ;H0(b)) with λ < 0 fixed, has been investigated in [32] under considerably less
restrictive assumptions on V than in Theorems 2.3 – 2.5. The asymptotic properties as λ ↑ 0, and as
λ ↓ Λ if Λ < 0, of the asymptotic coefficient − 1

2π

∫
R2 N(λ;χ(X⊥)dX⊥ which appears at the r.h.s. of

(2.21) in the case of a negative perturbation, have been studied in [33]. The asymptotic distribution
of the discrete spectrum for the 3D magnetic Pauli and Dirac operators in strong magnetic fields has
been considered in [35] and [34] respectively. The main purpose in [32], [34], and [35] was to obtain the
main asymptotic term (without any remainder estimates) of the corresponding counting function of the
discrete spectrum under assumptions close to the minimal ones which guarantee that the Hamiltonians
are self-adjoint, and the asymptotic coefficient is well-defined. Other results which again describe
the asymptotic distribution of the discrete spectrum of the Schrödinger and Dirac operator in strong
magnetic fields, but contain also sharp remainder estimates, have been obtained [17], [9], and [18] under
assumptions on V which, naturally, are considerably more restrictive than those in [32], [34], and [35].
iii) Generalisations of asymptotic relation (2.18) in several directions can be found in [26]. In particular,
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[26, Theorem 4] implies that if V ∈ S(R3), then the SSF ξ(Eb+λ;H(b),H0(b)), E ∈ (0,∞)\2Z+, λ ∈ R,
admits an asymptotic expansion of the form

ξ(Eb+ λ;H(b),H0(b)) ∼
∞∑

j=0

cjb
1−2j

2 , b→∞.

iv) Together with the pointwise asymptotics as b → ∞ of the SSF for the pair (H0(b),H(b)) (see
(2.18), (2.21), or (2.22)), it also is possible to consider its weak asymptotics, i.e. the asymptotics of the
convolution of the SSF with an arbitrary ϕ ∈ C∞0 (R). Results of this type are contained in [6].

2.4 High energy asymptotics of the SSF

Theorem 2.6. [8, Theorem 2.1] Assume that V satisfies (1.1). Then we have

lim
E→∞,E∈Or

E−1/2ξ(E;H,H0) =
1

4π2

∫
R3
V (x)dx, r ∈ (0, b), (2.24)

where Or := {E ∈ (0,∞)|dist(E, 2bZ+)}.

We omit the proof of Theorem 2.6 which is quite similar to that of Theorem 2.3, and refer the reader
to the original paper [8].
Remarks: i) It is essential to avoid the Landau levels in (2.24), i.e. to suppose that E ∈ Or, r ∈ (0, b),
as E →∞, since by Theorems 2.1 - 2.2, the SSF has singularities at the Landau levels, at least in the
case ±V ≥ 0.
ii) For E ∈ R set

ξcl(E) :=
∫

T∗R3

(
Θ(E − |p + A(x)|2)−Θ(E − |p + A(x)|2 − V (x))

)
dxdp =

4π
3

∫
R3

(
E

3/2
+ − (E − V (x))3/2

+

)
dx

where Θ, as above, is the Heaviside function. Note that ξcl(E) is independent of the magnetic field
b ≥ 0. Evidently, under the assumptions of Theorem 2.6 we have limE→∞E−1/2ξcl(E) = 2π

∫
R3 V (x)dx.

Hence, if
∫

R3 V (x)dx 6= 0, then (2.24) is equivalent to

ξ(E;H,H0) = (2π)−3ξcl(E)(1 + o(1)), E →∞, E ∈ Or, r ∈ (0, b).

iii) As far as the author is informed, the high-energy asymptotics of the SSF for 3D Schrödinger
operators in constant magnetic fields was investigated for the first time in [8]. Nonetheless, in [19]
the asymptotic behaviour as E → ∞, E ∈ Or, of the SSF ξ(E;H(m),H

(m)
0 ) for the operator pair

(H(m),H
(m)
0 ) (see (2.17)) with fixed m ∈ Z has been been investigated. It does not seem possible to

deduce (2.24) from the results of [19] even in the case of axial symmetry of V .

3 Auxiliary Results

3.1 A. Pushnitski’s representation of the SSF

In the first part of this subsection we summarise several results due to A. Pushnitski on the represen-
tation of the SSF for a pair of lower-bounded self-adjoint operators (see [29]).
Let I ∈ R be a Lebesgue measurable set. Set µ(I) := 1

π

∫
I

dt
1+t2 . Note that µ(R) = 1.
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Lemma 3.1. [29, Lemma 2.1] Let T1 = T ∗1 ∈ S∞ and T2 = T ∗2 ∈ S1. Then∫
R
n±(s1 + s2;T1 + t T2) dµ(t) ≤ n±(s1;T1) +

1
πs2

‖T2‖1, s1, s2 > 0. (3.1)

Let H± and H0 be two lower-bounded self-adjoint operators. Assume that

V := ±(H± −H0) ≥ 0. (3.2)

Let λ0 < inf σ(H±) ∪ σ(H0). Suppose that

(H0 − λ0)−γ − (H0 − λ0)−γ ∈ S2, γ > 0, (3.3)

V1/2(H0 − λ0)−1/2 ∈ S∞, (3.4)

V1/2(H0 − λ0)−γ′ ∈ S2, γ′ > 0. (3.5)

For z ∈ C with Im z > 0 set T (z): = V1/2(H0 − z)−1V1/2.

Lemma 3.2. [29, Lemma 4.1] Let (3.3) – (3.5) hold. Then for almost every E ∈ R the operator-norm
limit T (E + i0) := n − limδ↓0 T (E + iδ) exists, and by (3.4) we have T (E + i0) ∈ S∞. Moreover,
0 ≤ Im T (E + i0) ∈ S1.

Theorem 3.1. [29, Theorem 1.2] Let (3.2) – (3.5) hold. Then the SSF ξ(·;H±,H0) for the operator
pair (H±,H0) is well-defined, and for almost every E ∈ R we have

ξ(E;H±,H0) = ±
∫

R
n∓(1; Re T (E + i0) + t Im T (E + i0)) dµ(t).

Remark: The representation of the SSF described in the above theorem was generalised to non-sign-
definite perturbations in [14] in the case of trace-class perturbations, and in [30] in the case of relatively
trace-class perturbations. These generalisations are based on the concept of the index of orthogonal
projections (see [2]).
Suppose now that V satisfies (1.1), and ±V ≥ 0. Then relations (3.2) – (3.5) hold with V = |V |,
H0 = H0, and γ = γ′ = 1. For z ∈ C, Im z > 0, set T (z) := |V |1/2(H0 − z)−1|V |1/2. By Lemma 3.2,
for almost every E ∈ R the operator-norm limit

T (E + i0) := n− lim
δ↓0

T (E + iδ) (3.6)

exists, and
0 ≤ ImT (E + i0) ∈ S1. (3.7)

The following proposition contains a more precise version of the above statement, and provides estimates
of the norm of T (E + i0), and the trace-class norm of ImT (E + i0).

Proposition 3.1. [7, Lemma 4.2] Assume that (1.1) holds, and E ∈ R\2bZ+. Then the operator limit
(3.6) exists, and we have

‖T (E + i0)‖ ≤ C1 (dist (E, 2bZ+))−1/2 (3.8)

with C1 independent of E and b.
Moreover, (3.7) holds, and if E < 0 then ImT (E + i0) = 0, while for E ∈ (0,∞) \ 2bZ+ we have

‖ImT (E + i0)‖1 = Tr ImT (E + i0) =
b

4π

[ E
2b ]∑

l=0

(E − 2bl)−1/2

∫
R3
|V (x)|dx. (3.9)
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By Lemma 3.1 and Proposition 3.1, the quantity

ξ̃(E;H±,H0) = ±
∫

R
n∓(1; ReT (E + i0) + t ImT (E + i0)) dµ(t), E ∈ R \ 2bZ+. (3.10)

is well-defined for every E ∈ R \ 2bZ+, and bounded on every compact subset of R \ 2bZ+. Moreover,
by [7, Proposition 2.5], ξ̃(·;H±,H0) is continuous on R \ {2bZ+ ∪ σpp(H±}. On the other hand, by
Theorem 3.1 we have

ξ̃(E;H±,H0) = ξ(E;H±,H0) (3.11)

for almost every E ∈ R. As explained in the introduction, in the case of sign-definite perturbations we
will identify the SSF ξ(E;H±,H0) with ξ̃(E;H±,H0), while in the case of non-sign-definite perturba-
tions, we will identify it with the generalisation of ξ̃(E;H±,H0) described in [7, Section 3] on the basis
of the general results of [14] and [30].
Here it should be underlined that in contrast to the case b = 0, we cannot rule out the possibility that
the operator H has infinite discrete spectrum, or eigenvalues embedded in the continuous spectrum by
imposing conditions about the fast decay of the potential V at infinity. First, it is well-known that if
V satisfies

V (x) ≤ −Cχ(x), x ∈ R3, (3.12)

where C > 0, and χ is the characteristic function of a non-empty open subset of R3, then the discrete
spectrum of H is infinite (see [1, Theorem 5.1]), [38, Theorem 2.4]). Further, if V is axisymmetric and
satisfies (3.12), then the operator H(q) defined in (2.17) with q ≥ 0 has at least one eigenvalue in the
interval (2bq − ‖V ‖L∞(R3), 2bq), and hence the operator H has infinitely many eigenvalues embedded
in its continuous spectrum (see [1, Theorem 5.1]). Assume now that V is axisymmetric and satisfies
the estimate

V (X⊥, x3) ≤ −Cχ⊥(X⊥)〈x3〉−m3 , (X⊥, x3) ∈ R3, (3.13)

where C > 0, χ⊥ is the characteristic function of a non-empty open subset of R2, and m3 ∈ (0, 2) which
is compatible with (1.1) if m3 ∈ (1, 2). Then, using the argument of the proof of [1, Theorem 5.1]
and the variational principle, we can easily check that for each q ≥ 0 the operator H(q) has infinitely
many discrete eigenvalues which accumulate to the infimum 2bq of its essential spectrum. Hence, if V
is axisymmetric and satisfies (3.13), then below each Landau level 2bq, q ∈ Z+, there exists an infinite
sequence of finite-multiplicity eigenvalues of H, which converges to 2bq. Note however that the claims
in [10, p. 385] and [8, p. 3457] that [1, Theorem 5.1]) implies the same phenomenon for axisymmetric
non-positive potentials compactly supported in R3, are not justified. The challenging and interesting
problem about the accumulation at a given Landau level of embedded eigenvalues and/or resonances
of H will be considered in a future work.
Finally, we note that generically the only possible accumulation points of the eigenvalues of H are the
Landau levels (see [1, Theorem 4.7], [13, Theorem 3.5.3 (iii)]). Further information on the location of
the eigenvalues of H can be found in [7, Proposition 2.6].

3.2 Estimates for Birman-Schwinger operators

For x,x′ ∈ R2 denote by Pq,b(x,x′) the integral kernel of the orthogonal projection pq(b) onto the
subspace Ker (h(b) − 2bq), q ∈ Z+, the Landau Hamiltonian h(b) being defined in (2.6). It is well-
known that

Pq,b(x,x′) =
b

2π
Lq

(
b|x− x′|2

2

)
exp

(
− b

4
(|x− x′|2 + 2i(x1x

′
2 − x′1x2))

)
(3.14)
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(see [21] or [37, Subsection 2.3.2]) where Lq(t) := 1
q!e

t dq(tqe−t)
dtq =

∑q
k=0

(
q
k

) (−t)k

k! , t ∈ R, q ∈ Z+, are the
Laguerre polynomials. Note that

Pq,b(x,x) =
b

2π
, q ∈ Z+, x ∈ R2. (3.15)

Define the orthogonal projections Pq : L2(R3) → L2(R3), q ∈ Z+, by Pq := pq ⊗ I3 where I3 is the
identity operator in L2(Rx3).

For z ∈ C with Im z > 0, define the operator R(z) :=
(
− d2

dx2
3
− z

)−1

bounded in L2(R). Note that the

operator R(z) admits the integral kernel Rz(x3−x′3) where Rz(x) = iei
√

z|x|/(2
√
z), x ∈ R, the branch

of
√
z being chosen so that Im

√
z > 0.

Define that the operators

Tq(z) := |V |1/2Pq(H0 − z)−1|V |1/2, q ∈ Z+,

bounded in L2(R3). We have Tq(z) = |V |1/2
(
pq(b)⊗R(z − 2bq)

)
|V |1/2.

For λ ∈ R, λ 6= 0, define R(λ) as the operator with integral kernel Rλ(x3 − x′3) where

Rλ(x) := lim
δ↓0

Rλ+iδ(x) =

 e−
√
−λ|x|

2
√
−λ

if λ < 0,
iei

√
λ|x|

2
√

λ
if λ > 0,

x ∈ R. (3.16)

Evidently, if w1, w2 ∈ L2(R) and λ 6= 0, then w1R(λ)w2 ∈ S2. For E ∈ R, E 6= 2bq, q ∈ Z+, set

Tq(E) := |V |1/2
(
pq(b)⊗R(E − 2bq)

)
|V |1/2.

Then limδ↓0 ‖Tq(E + iδ)− Tq(E)‖2 = 0 (see [10, Proposition 4.1]).

Proposition 3.2. Let E ∈ R, q ∈ Z+, E 6= 2bq. Let (1.1) hold. Then

‖Tq(E)‖ ≤ C2|E − 2bq|−1/2, (3.17)

‖Tq(E)‖22 ≤ C2b|E − 2bq|−1, (3.18)

with C2 independent of E, b, and q.

Proof. We have
Tq(E) = MGq,m⊥ ⊗ t(E − 2bq)M (3.19)

where M is the multiplier by the bounded function |V (X⊥, x3)|1/2〈X⊥〉m⊥/2〈x3〉m3/2, (X⊥, x3) ∈ R3,
Gq,m⊥ : L2(R2) → L2(R2) is the operator with integral kernel

〈X⊥〉−m⊥/2Pb,q(X⊥, X ′
⊥)〈X ′

⊥〉−m⊥/2, X⊥, X
′
⊥ ∈ R2,

and t(λ) : L2(R) → L2(R), λ ∈ R \ {0}, is the operator with integral kernel

〈x3〉−m3/2Rλ(x3 − x′3)〈x′3〉−m3/2, x3, x
′
3 ∈ R.

Then we have

‖Tq(E)‖ ≤ ‖M‖2∞‖Gq,m⊥‖ ‖t(E − 2bq)‖ ≤ ‖M‖2∞‖Gq,m⊥‖ ‖t(E − 2bq)‖2, (3.20)

‖Tq(E)‖2 ≤ ‖M‖2∞‖Gq,m⊥‖2 ‖t(E − 2bq)‖2, (3.21)
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where ‖M‖∞ := ‖M‖L∞(R2). Evidently,

‖Gq,m⊥‖ ≤ 1, (3.22)

‖Gq,m⊥‖22 ≤ Tr pq〈X⊥〉−m⊥pq =
b

2π

∫
R2
〈X⊥〉−m⊥dX⊥ (3.23)

(see (3.15)), and

‖t(E − 2bq)‖22 ≤
1

4|E − 2bq|

∫
R
〈x3〉−m3dx3 (3.24)

(see (3.16)). Now the combination of (3.20), (3.22), and (3.24) yields (3.17), while the combination of
(3.21), (3.23), and (3.24) yields (3.18).

Remark: Using more sophisticated tools than those of the proof of Proposition 3.2, it is shown in [7]
that for E 6= 2bq we have not only Tq(E) ∈ S2, but also Tq(E) ∈ S1. We will not use this fact here.

Proposition 3.3. Assume that V satisfies (1.1). Let E ∈ R \ 2bZ+, q ∈ Z+. Then we have 0 ≤
ImTq(E) ∈ Sp with any p > 2/m⊥. If E < 2bq, then ImTq(E) = 0. If E > 2bq, then the estimate

n+(s; Im Tq(E)) ≤ C3

(
1 + b (E − 2bq)−1/m⊥s−2/m⊥

)
(3.25)

holds for each s > 0 with C3 independent of s, b, and E. Moreover, if E > 2bq, then we have

‖Im Tq(E)‖1 = Tr Im Tq(E) =
b

4π
(E − 2bq)−1/2

∫
R3
|V (x)|dx. (3.26)

Proof. By (3.19), we have
ImTq(E) = MGp,m⊥ ⊗ Im t(E − 2bq)M

If E < 2bq, then Im t(E − 2bq) = 0. If E > 2bq, then Im t(E − 2bq) admits the integral kernel

1
2
√
E − 2bq

〈x3〉−m3/2 cos (
√
E − 2bq (x3 − x′3))〈x′3〉−m3/2, x3, x

′
3 ∈ R.

Since the function 〈X⊥〉−m⊥/2 is radially symmetric, the eigenvalues νk, k ∈ N, of the operator Gp,m⊥ ≥
0 can be computed explicitly, and for k ≥ k0 we have νk ≤ C ′3b

m⊥/2k−m⊥/2 with k0 ∈ N and C ′3
independent of b and E (see the proof of [7, Lemma 9.4]). Further, if E > 2bq, we have rank Im t(E −
2bq) = 2, and the eigenvalues of Im t(E−2bq) are upper-bounded by 1

2
√

E−2bq

∫
R〈x3〉−m3dx3. Therefore,

n+(s; ImTq(E)) ≤ k0 + 2
(
C ′3‖M‖2∞bm⊥/2s−1

2
√
E − 2bq

∫
R
〈x3〉−m3dx3

)2/m⊥

, s > 0,

which entails immediately (3.25). Finally, if we write the trace of the operator Im Tq(E) as the integral
of the diagonal value of its kernel, and take into account (3.15) and (3.16), we get (3.26).

Proposition 3.4. [10, Proposition 4.2] Let q ∈ Z+, λ ∈ R, |λ| ∈ (0, b), and δ > 0. Assume that V
satisfies (1.1). Then the operator series T+

q (2bq + λ+ iδ) :=
∑∞

l=q+1 Tl(2bq + λ+ iδ), and

T+
q (2bq + λ) :=

∞∑
l=q+1

Tl(2bq + λ) (3.27)

converge in S2. Moreover,

‖T+
q (2bq + λ)‖22 ≤

C0b

8π

∞∑
l=q+1

(2b(l − q)− λ)−3/2

∫
R3
V (x)dx. (3.28)

Finally, limδ↓0 ‖T+
q (2bq + λ+ iδ)− T+

q (2bq + λ)‖2 = 0.
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4 Proofs of the Main Results

4.1 Proofs of the results on the singularities of the SSF at the Landau levels

The first step in the proofs of both Theorems 2.1 and 2.2 is to show that we can replace the operator
T (E + i0) by Tq(E) in the r.h.s of (3.10) when we deal with the first asymptotic term of ξ̃(E;H±,H0)
as the energy E approaches a given Landau level 2bq, q ∈ Z+. More precisely, we pick q ∈ Z+ λ ∈ R
with |λ| ∈ (0, b), and set T−q (2bq+λ) :=

∑q−1
l=0 Tl(2bq+λ); if q = 0 the sum should be set equal to zero.

Evidently,
T (2bq + λ+ i0) = T−q (2bq + λ) + Tq(2bq + λ) + T+

q (2bq + λ),

Re T (2bq + λ+ i0) = Re T−q (2bq + λ) + Re Tq(2bq + λ) + T+
q (2bq + λ),

Im T (2bq + λ+ i0) = Im T−q (2bq + λ) + Im Tq(2bq + λ),

the operator T+
q (2bq + λ) being defined in (3.27). Combining the Weyl inequalities (2.3), Lemma 3.1,

(3.26), the Chebyshev-type estimates (2.5) with p = 2, (3.18), and (3.28), we easily find that the
asymptotic estimates∫

R
n±(1 + ε; ReTq(2bq + λ) + t ImTq(2bq + λ)) dµ(t) +O(1) ≤

∫
R
n±(1; ReT (2bq + λ+ i0) + t ImT (E + i0)) dµ(t) ≤∫

R
n±(1− ε; ReTq(2bq + λ) + t ImTq(2bq + λ)) dµ(t) +O(1) (4.1)

hold as λ→ 0 for each ε ∈ (0, 1) (see [10, Proposition 5.1] for the details).
If λ > 0, then Tq(2bq − λ) is a self-adjoint operator with integral kernel

1
2π

√
|V (X⊥, x3)| Pq,b(X⊥, X ′

⊥)
∫

R

eip(x3−x′3)

p2 + λ
dp

√
|V (X ′

⊥, x
′
3)| =

1
2
√
λ

√
|V (X⊥, x3)| Pq,b(X⊥, X ′

⊥)e−
√

λ|x3−x′3|
√
|V (X ′

⊥, x
′
3)|, (X⊥, x3), (X ′

⊥, x
′
3) ∈ R3,

In particular, Im Tq(2bq − λ) = 0, and Re Tq(2bq − λ) = Tq(2bq − λ) ≥ 0. Therefore,∫
R
n±(s; ReTq(2bq − λ) + t ImTq(2bq − λ)) dµ(t) = n±(s;Tq(2bq − λ)), s > 0, λ > 0. (4.2)

Since Tq(2bq − λ) ≥ 0, we have n−(s;Tq(2bq − λ)) = 0 for all s > 0 and λ > 0, which combined with
(3.10), (4.1), and (4.2), implies (2.7). In order to prove (2.8), we write

Tq(2bq − λ) = Oq(λ) + T̃q(λ)

where Oq(λ) is an operator with integral kernel

1
2
√
λ

√
|V (X⊥, x3)| Pq,b(X⊥, X ′

⊥)
√
|V (X ′

⊥, x
′
3)|, (X⊥, x3), (X ′

⊥, x
′
3) ∈ R3,

and T̃q(λ) := Tq(2bq−λ)−Oq(λ). By (1.2) we have n− limλ↓0 T̃q(λ) = T̃q(0) where T̃q(0) is a compact
operator with integral kernel

−1
2

√
|V (X⊥, x3)| Pq,b(X⊥, X ′

⊥)|x3 − x′3|
√
|V (X ′

⊥, x
′
3)|, (X⊥, x3), (X ′

⊥, x
′
3) ∈ R3.
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Hence, the Weyl inequalities easily imply that the asymptotic estimates

n+(s′ : Oq(λ)) +O(1) ≤ n+(s;Tq(2bq − λ)) ≤ n+(s′′ : Oq(λ)) +O(1) (4.3)

hold for every 0 < s′ < s < s′′ as λ ↓ 0. Further, define the operator K : L2(R3) → L2(R2) by

(Ku)(X⊥) :=
∫

R2

∫
R
Pq,b(X⊥, X ′

⊥)
√
|V (X ′

⊥, x
′
3)|u(X ′

⊥, x
′
3) dx

′
3 dX

′
⊥, X⊥ ∈ R2,

where u ∈ L2(R3). The adjoint operator K∗ : L2(R2) → L2(R3) is given by

(K∗v)(X⊥, x3) :=
√
|V (X⊥, x3)|

∫
R2
Pq,b(X⊥, X ′

⊥)v(X ′
⊥) dX ′

⊥, (X⊥, x3) ∈ R3,

where v ∈ L2(R2). Obviously, Oq(λ) = 1
2
√

λ
K∗K, pqWpq = KK∗. Therefore,

n+(s;Oq(λ)) = n+(s2
√
λ; pqWpq), s > 0, λ > 0. (4.4)

Now the combination of (3.10) with (4.1) – (4.4) entails (2.8). Thus, we are done with the proof of
Theorem 2.1.
In order to complete the proof of Theorem 2.2, we recall that if λ > 0, then the operator ReTq(2bq+λ)
admits the integral kernel

− 1
2
√
λ

√
|V (X⊥, x3)| sin

(√
λ|x3 − x′3|

)
Pq,b(X⊥, X ′

⊥)
√
|V (X ′

⊥, x
′
3)|, (X⊥, x3), (X ′

⊥, x
′
3) ∈ R3,

and hence n− limλ↓0 ReTq(2bq+λ) = T̃q(0). Applying the Weyl inequalities and the evident identities∫
R
n±(s; tT )dµ(t) =

1
π

Tr arctan (s−1T ), s > 0,

where T = T ∗ ≥ 0, T ∈ S1, we find that asymptotic estimates

1
π

Tr arctan (((1 + ε)s)−1Im Tq(2bq + λ)) +O(1) ≤
∫

R
n±(s; Re Tq(2bq + λ) + t Im Tq(2bq + λ))dµ(t) ≤

1
π

Tr arctan (((1− ε)s)−1Im Tq(2bq + λ)) +O(1) (4.5)

are valid as λ ↓ 0 for each s > 0 and ε ∈ (0, 1). Define the operator K : L2(R3) → L2(R2)2 by

Ku := v = (v1, v2) ∈ L2(R2)2, u ∈ L2(R3),

where
v1(X⊥) :=

∫
R2

∫
R
Pq,b(X⊥, X ′

⊥) cos(
√
λx′3)

√
|V (X ′

⊥, x
′
3)|u(X ′

⊥, x
′
3) dx

′
3 dX

′
⊥,

v2(X⊥) :=
∫

R2

∫
R
Pq,b(X⊥, X ′

⊥) sin(
√
λx′3)

√
|V (X ′

⊥, x
′
3)|u(X ′

⊥, x
′
3) dx

′
3 dX

′
⊥, X⊥ ∈ R2.

Evidently, the adjoint operator K∗ : L2(R2)2 → L2(R3) is given by

(K∗v)(X⊥, x3) := cos(
√
λx3)

√
|V (X⊥, x3)|

∫
R2
Pq,b(X⊥, X ′

⊥)v1(X ′
⊥) dX ′

⊥+

sin(
√
λx3)

√
|V (X⊥, x3)|

∫
R2
Pq,b(X⊥, X ′

⊥)v2(X ′
⊥) dX ′

⊥, (X⊥, x3) ∈ R3,
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where v = (v1, v2) ∈ L2(R2)2. Obviously,

Im Tq(2bq + λ) =
1

2
√
λ
K∗K, pqWλpq = KK∗.

n+(s; Im Tq(2bq + λ)) = n+(s2
√
λ; pqWλpq), s > 0, λ > 0,

and, therefore,

Tr arctan (s−1Im Tq(2bq + λ)) = Tr arctan ((s2
√
λ)−1pqWλpq), s > 0, λ > 0. (4.6)

Now the combination of (3.10), (4.1), (4.5), and (4.6) yields (2.10).

4.2 Proofs of the results on the strong-magnetic-field asymptotics of the
SSF

In this subsection we prove Theorems 2.3 and 2.4 under the additional assumption that ±V ≥ 0. As
before if V ≥ 0 (or if V ≤ 0), we will write H+ and χ+(X⊥), X⊥ ∈ R2, (or H− and χ−(X⊥)) instead
of H and χ(X⊥) respectively.
First, we prove Theorem 2.3. For brevity set

A = A(b) = ReT (Eb+ λ), B = B(b) = ImT (Eb+ λ).

Note that if E ∈ (0,∞) \ 2Z+, and λ ∈ R, then (3.8) and (3.9) imply

‖A(b)‖ = O(b−1/2), ‖B(b)‖ = O(b−1/2), ‖B(b)‖1 = O(b1/2), b→∞. (4.7)

Assume that b so large that ‖A(b)‖ < 1. Then the operator I − A is boundedly invertible, and
limb→∞ ‖(I −A(b))−1‖ = 1. By the Birman-Schwinger principle we have∫

R
n±(1;A+ tB)dµ(t) =

∫
R
n±(1; tB1/2(I ∓A)−1B1/2)dµ(t) =

∫ ∞

0

n+(s;B1/2(I ∓A)−1B1/2)dµ(s) =
1
π

Tr arctan
(
B1/2(I ∓A)−1B1/2

)
. (4.8)

Further,

Tr arctan
(
B1/2(I ±A)−1B1/2

)
≤ Tr

(
B1/2(I ±A)−1B1/2

)
= TrB ∓ Tr

(
(I ±A)−1AB

)
, (4.9)

Tr arctan
(
B1/2(I ±A)−1B1/2

)
≥ Tr

(
B1/2(I ±A)−1B1/2

)
− 1

3
‖B1/2(I ±A)−1B1/2‖33 =

TrB ∓ Tr
(
(I ±A)−1AB

)
− 1

3
‖B1/2(I ±A)−1B1/2‖33. (4.10)

By (4.7) we have

|Tr
(
(I ±A)−1AB

)
| ≤ ‖(I ±A)−1A‖‖B‖1 = O(1), b→∞, (4.11)

‖B1/2(I ±A)−1B1/2‖33 ≤ ‖B1/2(I ±A)−1B1/2‖2 ‖B1/2(I ±A)−1B1/2‖1 = O(b−1/2), b→∞. (4.12)

Putting together (4.8) – (4.12), and bearing in mind (3.10), we get

ξ(Eb+ λ;H±(b),H0(b)) =
1
π

TrB(b) +O(1), b→∞. (4.13)
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Recalling (3.9), we find that the asymptotic estimate

Tr B(b) =
b1/2

4π

[E/2]∑
l=0

(E − 2l)−1/2

∫
R3
|V (x)|dx +O(b−1/2) (4.14)

holds as b→∞. Now the combination of (4.13) and (4.14) yields (2.18).
Next, we pass to the proof of Theorem 2.4 under the additional assumption that ±V ≥ 0. To this end
we establish some auxiliary results. Introduce the operator

τ(X⊥; z) := |V (X⊥, .)|1/2(χ0 − z)−1|V (X⊥, .)|1/2,

defined on L2(R), and depending on the parameters X⊥ ∈ R2 and z ∈ C with Im z > 0. The operator
τ(X⊥; z) admits the integral kernel

|V (X⊥, x3)|1/2Rz(x3 − x′3)|V (X⊥, x′3)|1/2, x3, x
′
3 ∈ R.

Evidently, τ(X⊥; z) ∈ S2. For X⊥ ∈ R2, λ ∈ R\{0}, define the operator τ(X⊥;λ+i0) : L2(R) → L2(R)
as the operator with integral kernel

|V (X⊥, x3)|1/2Rλ(x3 − x′3)|V (X⊥, x′3)|1/2, x3, x
′
3 ∈ R,

the function Rλ(x), x ∈ R, being defined in (3.16). Some explicit simple calculations with the kernel
of the operator τ(X⊥;λ+ i0) yield the following

Proposition 4.1. Let X⊥ ∈ R2, λ ∈ R \ {0}. Assume that (1.1) holds.
i) We have τ(X⊥;λ+ i0) ∈ S2,

‖τ(X⊥;λ+ i0)‖22 ≤
1

4|λ|

(∫
R
|V (X⊥, x3)|dx3

)2

, (4.15)

and τ(X⊥;λ+ iδ) → τ(X⊥;λ+ i0) in S2 as δ ↓ 0, uniformly with respect to X⊥ ∈ R2.
ii) We have Im τ(X⊥;λ+ i0) ≥ 0, and Im τ(X⊥;λ+ i0) = 0 if λ < 0. If λ > 0, then rank Im τ(X⊥;λ+
i0) = 2, and

n+(s; Im τ(X⊥;λ+ i0)) ≤ 2Θ
(

1
2
√
λ

∫
R
|V (X⊥, x3)|dx3 − s

)
, s > 0. (4.16)

For X⊥ ∈ R2, λ ∈ R \ {0}, s > 0, set

Ξ±λ,s(X⊥) :=
∫

R
n±(s; Re τ(X⊥;λ+ i0) + t Im τ(X⊥;λ+ i0) dµ(t). (4.17)

Corollary 4.1. Let (1.1) hold. Fix X⊥ ∈ R2, λ ∈ R \ {0}, s > 0. Then we have

ξ(λ;χ±(X⊥), χ0) = ± Ξ∓λ,1(X⊥) (4.18)

where ξ(·;χ±(X⊥), χ0)) is the representative of SSF for the operator pair (χ±(X⊥), χ0)) which is
monotonous and left-continuous for λ < 0, and continuous for λ > 0.

Proof. It suffices to apply Theorem 3.1 with H± = χ±(X⊥) and H0 = χ0.

Corollary 4.2. Under the assumptions of Corollary 4.1 we have

Ξ±λ,s(·) ∈ L
1(R2). (4.19)
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Proof. Combine Lemma 3.1 for T1 = Re τ(X⊥;λ + i0)) and T2 = Im τ(X⊥;λ + i0)), with Proposition
4.1.

Proposition 4.2. Let λ > 0. Assume that (1.1) holds. Then the function
∫

R2 Ξ±λ,s(X⊥)dX⊥ is con-
tinuous with respect to s > 0.

Proof. Fix s > 0. First of all we will show that for almost every (X⊥, t) ∈ R2 × R the functions

s′ 7→ n±(s′; Re τ(X⊥;λ+ i0) + t Im τ(X⊥;λ+ i0))

are continuous at the point s′ = s. Evidently, this is equivalent to

±s 6∈ σ(Re τ(X⊥;λ+ i0) + t Im τ(X⊥;λ+ i0)). (4.20)

In order to prove (4.20), we will use an argument quite close to the one of the proof of [29, Lemma 4.1].
Note that the compact operator Re τ(X⊥;λ + i0) + t Im τ(X⊥;λ + i0) depends linearly on t. By the
Fredholm alternative the sets

Ω±(s,X⊥, λ) := {z ∈ C | ± s ∈ σ(Re τ(X⊥;λ+ i0) + z Im τ(X⊥;λ+ i0))}

either coincide with C, or are discrete. However, i ∈ Ω±(s,X⊥, λ) is equivalent to dim Ker (χ0 ∓
s−1|V (X⊥, .)|−λ) ≥ 1. On the other hand, it is well-known that the operators χ0∓s−1|V (X⊥, .)| have
no positive eigenvalues (see e.g. [39, Theorem XIII.58]) since (1.1) implies lim|x3|→∞ |x3|V (X⊥, x3) = 0.
Therefore, dim Ker (χ0∓s−1|V (X⊥, .)|−λ) = 0, i 6∈ Ω±(s,X⊥, λ), and the sets Ω±(s, λ,X⊥) are discrete.
In particular, |R ∩ Ω±(s,X⊥, λ)| = 0. Put

Ω̃±(s, λ) := {(X⊥, t) ∈ R2 × R| ± s ∈ σ(Re τ(X⊥;λ+ i0) + t Im τ(X⊥;λ+ i0))}.

The eigenvalues of the compact operator Re τ(X⊥;λ + i0) + t Im τ(X⊥;λ + i0) are continuous, and
hence measurable with respect to (X⊥, t) ∈ R2 × R. Therefore, the sets Ω̃±(s, λ) are measurable, and
by the Fubini-Tonelli theorem

|Ω̃±(s, λ)| =
∫

R2

∫
R
1Ω̃±(s,λ)(X⊥, t)dtdX⊥ =

∫
R2
|R ∩ Ω±(s,X⊥, λ)|dX⊥ = 0

where 1Ω̃±(s,λ) denotes the characteristic function of Ω±(s, λ). On the other hand,

lim
s′→s

n±(s′; Re τ(X⊥;λ+i0)+t Im τ(X⊥;λ+i0)) = n±(s; Re τ(X⊥;λ+i0)+t Im τ(X⊥;λ+i0)) (4.21)

if (X⊥, t) 6∈ Ω̃±(s, λ). The Weyl inequalities (2.3) and estimates (4.15) – (4.16) imply

n±(s′; Re τ(X⊥;λ+ i0) + t Im τ(X⊥;λ+ i0)) ≤

1
s′2λ

(∫
R
|V (X⊥, x3)|dx3

)2

+ 2Θ
(
|t|√
λ

∫
R
|V (X⊥, x3)|dx3 − s′

)
. (4.22)

Note that the r.h.s. is in L1(R2 × R; dX⊥ dµ(t)) for each s′ > 0, and is a sum of two monotonous
functions of s′ > 0. Bearing in mind (4.21) – (4.22), we apply the dominated convergence theorem, and
get lims′→s

∫
R2 Ξ±λ,s′(X⊥)dX⊥ =

∫
R2 Ξ±λ,s(X⊥)dX⊥.

Set
Φ±λ,s(t) :=

∫
R2
n±(s; Re τ(X⊥;λ+ i0) + t Im τ(X⊥;λ+ i0)) dX⊥, t ∈ R.

Corollary 4.3. Assume that (1.1) holds. Let λ > 0, s > 0. Then lims′→s Φ±λ,s′(t) = Φ±λ,s(t) for almost
every t ∈ R.
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Proof. Since the functions Φ±λ,s(t) are non-increasing with respect to s > 0, the one-sided limits
Φ±λ,s−0(t) ≥ Φ±λ,s+0(t) exist. Next, Proposition 4.2 implies

∫
R2 Ξ±λ,s−0(X⊥)dX⊥ =

∫
R2 Ξ±λ,s+0(X⊥)dX⊥.

By the Fubini theorem
∫

R2 Ξ±λ,s(X⊥)dX⊥ =
∫

R Φ±λ,s(t)dµ(t). Hence,
∫

R

(
Φ±λ,s−0(t)− Φ±λ,s+0(t)

)
dµ(t) =

0. Since, the functions Φ±λ,s−0(t)− Φ±λ,s+0(t) are non-negative, we conclude that∣∣∣{t ∈ R
∣∣∣Φ±λ,s−0(t) > Φ±λ,s+0(t)

}∣∣∣ = 0.

The following proposition contains key limiting relations used in the proof of Theorem 2.4.

Proposition 4.3. (cf. [7, Proposition 7.1]) Let (1.1) hold. Then we have

lim
b→∞

b−1Tr (Re Tq(2bq + λ) + t Im Tq(2bq + λ))p =

1
2π

∫
R2

Tr (Re τ(X⊥;λ+ i0) + t Im τ(X⊥;λ+ i0))p
dX⊥ (4.23)

for every t ∈ R and each integer p ≥ 2.

Proof. Let t ∈ R, x ∈ R. If λ > 0, set R̃λ,t(x) := − sin(
√

λ|x|)
2
√

λ
+ t cos(

√
λ x)

2
√

λ
. If λ < 0, then R̃λ,t(x) =

Rλ(x) = e−
√
−λ|x|

2
√
−λ

. We have

Tr (Re Tq(2bq + λ) + t Im Tq(2bq + λ))p =∫
R2p

∫
Rp

Πp
j=1|V (X⊥,j , x3,j)|Π′

p
j=1Pq,b(X⊥,j , X⊥,j+1)R̃λ,t(x3,j − x3,j+1)Π

p
j=1dX⊥,jdx3,j

where the notation Π′pj=1 means that in the product of p factors the variables X⊥,p+1 and x3,p+1 should
be set equal respectively to X⊥,1 and x3,1. Change the variables

X⊥,1 = X ′
⊥,1, X⊥,j = X ′

⊥,1 + b−1/2X ′
⊥,j , j = 2, . . . , p. (4.24)

Thus we obtain
Tr (Re Tq(2bq + λ) + t Im Tq(2bq + λ))p =

b

∫
R2p

∫
Rp

|V (X ′
⊥,1, x3,1)|Πp

j=2|V (X ′
⊥,1 + b−1/2X ′

⊥,j , x3,j)| ×

Pq,1(0, X ′
⊥,2)Π

p−1
j=2Pq,1(X⊥′,j , X⊥

′
,j+1)Pq,1(X ′

⊥,p, 0)Π′pj=1R̃λ,t(x3,j − x3,j+1)Π
p
j=1dX

′
⊥,jdx3,j . (4.25)

Here and in the sequel, if p = 2, then the product Πp−1
j=2Pq,b(X⊥′,j , X⊥

′
,j+1) should be set equal to one.

Bearing in mind (1.1) and (3.14), and applying the dominated convergence theorem, we easily find that
(4.25) entails

lim
b→∞

b−1Tr (Re Tq(2bq + λ+ i0) + t Im Tq(2bq + λ+ i0))p =∫
R2

∫
Rp

Πp
j=1|V (X⊥,1, x3,j)|Π′

p
j=1R̃λ,t(x3,j − x3,j+1)dX⊥,1Π

p
j=1dx3,j ×∫

R2(p−1)
Pq,1(0, X⊥,2)Π

p−1
j=2Pq,1(X⊥,j , X⊥,j+1)Pq,1(X⊥,p, 0)Πp

j=2dX⊥,j =∫
R2

Tr
(
Re τ(X⊥,1;λ+ i0) + t Im τ(X⊥,1;λ+ i0)

)p
dX⊥,1×
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∫
R2(p−1)

Pq,1(0, X⊥,2)Π
p−1
j=2Pq,1(X⊥,j , X⊥,j+1)Pq,1(X⊥,p, 0)Πp

j=2dX⊥,j .

In order to conclude that the above limiting relation is equivalent to (4.23), it remains to recall (3.15),
and note that∫

R2(p−1)
Pq,1(0, X⊥,2)Π

p−1
j=2Pq,1(X⊥,j , X⊥,j+1)Pq,1(X⊥,p, 0)Πp

j=2dX⊥,j = Pq,1(0, 0) =
1
2π
.

Corollary 4.4. Assume that the assumptions of Theorem 2.4 hold. Then we have

lim
b→∞

b−1n±(s; Re Tq(2bq + λ) + t Im Tq(2bq + λ)) =

1
2π

∫
R2
n±(s; Re τ(X⊥;λ+ i0) + t Im τ(X⊥;λ+ i0))dX⊥,

for each t ∈ R, provided that s > 0 is a continuity point of the r.h.s.

Proof. It suffices to notice that norm of the operator Tq(2bq+ λ) is uniformly bounded with respect to
b, and to apply a suitable version the Kac-Murdock-Szegö theorem (see e.g. [32, Lemma 3.1]) which
tells us that under appropriate hypotheses the convergence of the moments of a given measure implies
the convergence of the measure itself, and to take into account Proposition 4.3.

Now we are in position to prove Theorem 2.4. By A. Pushnitski’s representation of the SSF (see (3.10)
and (4.18)), in order to check the validity of (2.21), it suffices to show that

lim
b→∞

b−1

∫
R
n±(1; ReT (2bq + λ+ i0) + tImT (2bq + λ+ i0))dµ(t) =

1
2π

∫
R

∫
R2
n±(1; Re τ(X⊥;λ+ i0) + tIm τ(X⊥;λ+ i0))dµ(t)dX⊥. (4.26)

Arguing as in the derivation of (4.1), we easily find that the asymptotic estimates∫
R
n±(1 + ε; ReTq(2bq + λ) + t ImTq(2bq + λ)) dµ(t) + o(b) ≤

∫
R
n±(1; ReT (2bq + λ+ i0) + t ImT (2bq + λ+ i0)) dµ(t) ≤∫

R
n±(1− ε; ReTq(2bq + λ) + tImTq(2bq + λ)) dµ(t) + o(b), (4.27)

hold as b→∞ for each ε ∈ (0, 1). Assume λ > 0. Corollary 4.3 and Corollary 4.4 imply

lim
b→∞

b−1n±(s; ReTq(2bq + λ) + t ImTq(2bq + λ)) =

1
2π

∫
R2
n±(s; Re τ(X⊥;λ+ i0) + tIm τ(X⊥;λ+ i0)) dX⊥ (4.28)

for any fixed s > 0, and almost every t ∈ R. Further, by (2.3), (2.5) with p = 2, Proposition 3.2, and
Proposition 3.3 we have

b−1n±(s; ReTq(2bq + λ+ i0) + t ImTq(2bq + λ+ i0)) ≤ C4(1 + |t|2/m⊥), t ∈ R, (4.29)
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with C4 which may depend on s > 0, λ ∈ R \ {0}, q and m⊥ but is independent of b ≥ 1 and t. Note
that the function on the r.h.s of (4.29) is in L1(R; dµ). By (4.28) – (4.29), the dominated convergence
theorem and the Fubini Theorem imply

lim
b→∞

b−1

∫
R
n±(s; ReTq(2bq + λ+ i0) + t ImTq(2bq + λ+ i0) dµ(t) =

1
2π

∫
R2

∫
R
n±(s; Re τ(X⊥;λ+ i0) + t Im τ(X⊥;λ+ i0)) dµ(t) dX⊥, s > 0. (4.30)

Putting together (4.27) and (4.30), we find that the following estimates∫
R2

Ξ±λ,1+ε(X⊥)dX⊥ ≤ lim inf
b→∞

b−1

∫
R
n±(1; ReT (2bq + λ+ i0) + t ImT (2bq + λ+ i0) dµ(t) ≤

lim sup
b→∞

b−1

∫
R
n±(1; ReT (2bq + λ+ i0) + t ImT (2bq + λ+ i0) dµ(t) ≤

∫
R2

Ξ±λ,1−ε(X⊥)dX⊥

are valid for each ε ∈ (0, 1). Letting ε ↓ 0, and taking into account Proposition 4.2, we obtain (4.26),
and hence (2.21), in the case λ > 0. The modifications of the argument for λ < 0 are quite obvious; in
this case we essentially use assumption (2.20) guaranteeing that λ is a continuity point of the r.h.s of
(2.21).
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The partial support by the Chilean Science Foundation Fondecyt under Grant 1050716 is acknowledged.

References

[1] J.Avron, I.Herbst, B.Simon, Schrödinger operators with magnetic fields. I. General interac-
tions, Duke Math. J. 45 (1978), 847-883.

[2] J.Avron, R.Seiler, B.Simon, The index of a pair of projections, J. Funct. Anal. 120 (1994),
220–237.

[3] F.A.Berezin, M.A.Shubin The Schrödinger Equation. Kluwer Academic Publishers, Dordrecht,
1991.
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[5] M.Š.Birman, D.R.Yafaev, The spectral shift function. The papers of M. G. Krĕın and their fur-
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