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The absorption of acoustic wave propagation in a broad variety of lossy media is characterized 

by an empirical power law function of frequency, yωα0 . It has long been noted that exponent y 

ranges from 0 to 2 for diverse media. Recently, the present author10 developed a fractional 

Laplacian wave equation to accurately model the power law dissipation, which can be further 

reduced to the fractional Laplacian diffusion equation. The latter is known underlying the Lévy 

stable distribution theory. Consequently, the parameters y is found to be the Lévy stability index, 

which is known bounded within 0<y≤2. This finding first provides a theoretical explanation of 

empirical observations y∈[0,2]. Statistically, the frequency-dependent absorption can thus be 

understood a Lévy stable process, where the parameter y describes the fractal nature of 

attenuative media. 

 
PACS numbers: 43.20.Bi, 43.20.Hq, 43.35.Bf, 43.35.Cg  
 

The effect of the dissipative attenuation of acoustic wave propagation over a finite range 

of frequency is typically characterized by a measured power law function of frequency  

yωαα 0= ,  y∈[0,2],   (1) 

where ω denotes angular frequency, and α0 and y are non-negative media-dependent 

constants.1-3. The frequency-dependent attenuation is described by . Here E 

represents the amplitude of an acoustic field variable such as pressure, and z is the traveling 

distance. It is well known that the standard mathematical modeling approach using time-space 

( )zωα−eEE = 0
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derivatives of integer orders can not accurately reflect power law function (1) except for two 

extreme cases: y=0,2. Unfortunately, 0<y<2 exponents present in most media of practical 

interest. For example, sediments and fractal rock layers have y around 1,1,4 and Table 1 

displays values of y for different human tissues, and Fig. 1 (reproduced from Ref. 5) shows 

log-log plots of absorption versus frequency in some materials, where “shear” and “long” 

means shear and longitudinal waves, respectively. YIG is the abbreviation of yttrium indium 

garnet, and granites 1 and 2 denote the two types of granite, respectively. The unit decibel 

(dB) is based on powers of 10 (decade) to provide a relative measure of the sound intensity. 

The slope of the straight line is the exponent y of frequency power law of dissipation. For 

example, y=1.3 for 1–100 MHz in longitudinal wave loss of bovine liver. YIG as a single 

crystalline material has y=2 for both longitudinal and shear absorptions at very high 

frequencies. Clearly, YIG is an ideal solid (atomic lattice) rather than soft matter (fractal 

macromolecules). The longitudinal wave dissipation of granite 1 follows a linear dependence 

(y=1) on frequency from 140 Hz to 2.2 MHz. 

 

Table. I. Tissue coefficients of frequency-dependent power law attenuation 

 Water5 Fat6 Duct cancer6 structural tissue6

α0 (dB/cm/MHzy) 0.0022 0.158 0.57 0.87 

 y 2 1.7 1.3 1.5 

 

 

Fig. 1. Data for shear and longitudinal wave loss which show power-law dependence over 

four decades of frequency (taken from ref. 5). 
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I. Anomalous diffusion equation by the fractional Laplacian 

Among various methodologies to tackle this mathematical modeling challenge, the time 

derivative of fractional order has long been considered a most effective means of describing 

the attenuation of non-zero and non-quadratic frequency dependency.8-10 However, it is 

observed from power law formula (1) that exponent y is irrelevant to temporal frequency ω. 

Instead, y is found to vary with media. It is therefore reasonable to think that y may underlie 

spatial structures of media. In fact, the temporal representation of absorption effect works 

under the conditions that the thermoviscous term is relatively small4 and the interaction 

between two oppositely traveling sound waves can be neglected.8 In addition, for y>1, the 

time expression of attenuation needs the initial condition of the second order derivative, 

which is not available in most cases. It is also impossible to express the spatial anisotropicity 

of attenuation via scalar time operation. Thus, a combination of spatial and temporal 

representation of absorption is more physically sound.  

Instead of the fractional time derivative, Chen and Holm10 applied the space fractional 

Laplacian, also known as the Riesz fractional derivative, to develop causal linear and 

nonlinear wave equation models being consistent with attenuations having arbitrary power 

law frequency dependency. The dissipative equation for linear isotropic media is expressed as 
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where p denotes pressure, c0 is the small signal velocity, and ( ) 2y∆−  represents the symmetric 

fractional Laplacian.10-12 The above equation (2) describes both dispersion (waveform 

alternation with respect to frequency) and attenuation behaviors. When y=2, eq. (2) turns out 

to be the thermoviscous wave equation corresponding to the squared-frequency dependent 

attenuation. When y=0, eq. (2) is reduced to the standard damped wave equation reflecting 

frequency-dependent attenuation. The hyperbolic wave equation (2) can be approximated to 
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the generalized diffusion equation via the approach detailed in ref. 1. Namely, removing the 

left-hand side term of eq. (2) produces 
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And then integrating (3) with respect to time t and multiplying by , we have the fractional 

Laplacian diffusion equation,

2
0c

10 known as the anomalous diffusion equation11

( ) 02 21
00 =∆−+

∂
∂ + pc

t
p yyα .    (4) 

When y=2, eq. (4) is the normal diffusion equation corresponding to the squared-frequency 

dependent attenuation.4  

 

II. Lévy stable distribution and y∈[0,2] power law 

The Cauchy problem of the one-dimensional anomalous diffusion equation is expressed as 
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( ) ( )xxp δ=0, ,  ∞∞− pp x ,    (6) 

where κ represents the diffusion coefficient, and δ(x) is the Dirac delta function. The solution 

of the above equations (5) and (6) is 13
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Wy is the characteristic function of wy

( ) ykekW κ−= ,     (9) 

(9) is also the Fourier transform of the probability density function of the y-stable Lévy 

distribution. The anomalous diffusion equation is thus considered underlying the Lévy stable 
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distribution.13,14 In the limiting case y=2 for the standard diffusion equation, the solution is the 

explicit Gaussian probability density function 

( ) txe
t

txp κ

πκ
42

4
1, −=     (10) 

Saichev and Zaslavsky13 pointed out that in order to satisfy the positive probability density 

function, the Lévy stable index y must obey 

20 ≤yp .     (11) 

Namely, the y-stable distribution requires the power y to be positive but not greater than 2.15 

In particular, y=1 corresponds to the Cauchy distribution.13. In terms of this statistical theory, 

the media having y>2 power law attenuation are not statistically stable in nature. In other 

words, the corresponding probability density function is no longer positively defined. It is 

noted that the Lévy process does not include y=0. This means that the media obeying 

absolutely frequency-independent attenuation is simply an ideal approximation. For acoustic 

wave propagations, all media exhibit more or less degree of absorption dependence on 

frequency.  

As shown in power law formula (1), exponent y obtained by experimental data fitting has 

always been observed within the finite scope in between 0 and 2 for all media. The above 

analysis shows that the Lévy stable distribution theory provides a mathematical interpretation 

of empirical [0,2] power dependence of the absorption coefficient y on the frequency.  

 

III. Power law dissipation and fractal 

Rewriting the power law attenuation (1) as  

( )
ω
αωα

ln
ln 0=y      (12) 

clearly reveals the self-similar property of frequency power law dissipation. Fractal underlies 

self-similarity, and y can thus be interpreted as the fractal dimension. On the other hand, 
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Mandelbrot16 and Sato17 note the inherent connections between the Lévy stable distribution 

and fractals due to the inherent self-similarity of the Lévy probability density functions as 

illustrated in (7). As discussed previously, y represents the stability index of the Lévy process, 

and thus is the fractal indeed.  

The invariance of y on different frequencies (time scales) implies that y depends 

essentially on the space mesostructures or microstructures rather than time process. The 

parameter y actually represents the spatial fractal of media on diffusion process. For example, 

varying absorption coefficient y over different human body tissues means that the fractal y 

characterizes the stochastic geometric property of macromolecules of biomaterials, which 

dominate their physical behaviors.  

Herrchen18 points out that the self-similarity extends usually only over a finite range in 

real physical problems. This is in agreement with many experiment observations that the 

power law attenuation takes effect over a finite range of finite frequency, as illustrated in Fig. 

1.  

 

 

IV. Concluding remarks 

Through the analysis of the fractional Laplacian models of the frequency power law 

attenuation, this study found that the exponent y of the frequency power law dissipation can 

be interpreted as the Lévy stability index which are theoretically bounded within (0,2). To our 

knowledge, this work is the first attempt to present a theoretical explanation of [0,2] exponent 

range of the power law attenuation, which has widely been observed not only in acoustics but 

also in many other physical behaviors such as vibrational damping, dielectrics, 

thermoviscosity, and fluid thermoviscous dissipation4. For soft matter and non-Newtonian 

fluids, the parameter y is mostly found in between 0 and 2. 
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