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Abstract Bond-percolation graphs are random subgraphs of the d-dimensional
integer lattice generated by a standard bond-percolation process. The associated
graph Laplacians, subject to Dirichlet or Neumann conditions at cluster bound-
aries, represent bounded, self-adjoint, ergodic random operators with off-diagonal
disorder. They possess almost surely the non-random spectrum [0,4d] and a self-
averaging integrated density of states. The integrated density of states is shown to
exhibit Lifshits tails at both spectral edges in the non-percolating phase. While the
characteristic exponent of the Lifshits tail for the Dirichlet (Neumann) Laplacian
at the lower (upper) spectral edge equals d/2, and thus depends on the spatial di-
mension, this is not the case at the upper (lower) spectral edge, where the exponent
equals 1/2.

Mathematics Subject Classification (2000): 47B80, 34B45, 05C80

Introduction

Spectral graph theory studies linear operators which are associated with graphs.
The goal is to see how properties of the graph are reflected in properties of the
operators and vice versa. This has attracted vivid interest in the last two decades
[19, 13, 10, 12]. The kind of graphs we shall be concerned with in this paper
are bond-percolation graphs [14], a special type of random subgraphs of the d-
dimensional integer lattice. They are of popular use in Physics for modelling vari-
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ous types of random environments [26, 7]. On these graphs we consider Laplacians
with different kinds of boundary conditions at cluster borders and study some of
their spectral properties. Apart from the non-randomness of the spectrum, and of
the spectral components in the Lebesgue decomposition, we show the existence
and self-averaging of the integrated density of states. The main result establishes
Lifshits tails of the integrated density of states at the lower and upper spectral
edge in the non-percolating phase. Depending on the boundary condition and on
the spectral edge, the Lifshits tail discriminates between stretched (i.e. linear) and
condensed (i.e. cube- or ball-like) clusters which contribute the dominating eigen-
values. The crucial technical estimates in our proof are Cheeger [12] and Faber-
Krahn [11] isoperimetric inequalities on graphs. Our analysis here is facilitated
by the fact that in the non-percolating phase almost all graphs consist of infinitely
many finite clusters. Yet, the non-percolating phase gives rise to interesting phe-
nomena, because it supplies clusters of arbitrarily large size. In the percolating
phase one has to cope with the infinite cluster, too, which requires a more intricate
understanding. This case will be studied in [21].

Spectral properties of Laplacians on bond-percolation (or related) graphs have
been studied in the Physics literature, see the general accounts [26, 7] or the re-
cent examples [3, 6, 20] for applications to soft matter. The Lifshits tails, whose
existence we prove here, were sought after in the numerical simulations [5] for the
Neumann Laplacian on two- and three-dimensional bond-percolation graphs. The
tails could not be observed there due to finite-size corrections and the consider-
able numerical effort needed to access such rare events. For the different case of
Erdős–Rényi random graphs, however, the existence of Lifshits tails for the Neu-
mann Laplacian was known on the basis of analytical, non-rigorous arguments
[4, 5], which inspired our proof here. Moments of the eigenvalue density for this
model were rigorously analysed in [15]. Other models in the physics literature
deal with the adjacency operator on bond-percolation graphs [16, 24]. Quite often,
this goes under the name quantum percolation. Yet, from a rigorous mathematical
point of view, all of the above models with off-diagonal disorder have remained
widely unexplored.

In contrast, Laplacians on site-percolation graphs of the d-dimensional inte-
ger lattice belong to the class of models with diagonal disorder. Therefore they
are closer to the range of applicability of the highly developed theory of random
Schrödinger operators [17, 8, 22, 27, 18]. This is partly of help for analysing their
spectral properties with mathematical rigour. For finite-range hopping operators
on site-percolation graphs, the non-randomness of the spectrum and existence of
the integrated density of states was shown in [28, 29]. Particular emphasis is laid
on the behaviour of the spectrum related to finitely supported eigenfunctions, see
also [9], where the issue was first taken up from a mathematical point of view.
Furthermore, a Wegner estimate is established in [29] for an Anderson model on
site-percolation graphs.

This paper is organised as follows. In Section 1 we give the precise definitions
of the objects we are dealing with and state our results. Theorem 1.14 in Sub-
section 1.3 contains the central result on Lifshits tails of the integrated density of
states. All proofs are deferred to Section 2.
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1 Definitions and Results

1.1 Bond-percolation graphs

A thorough and comprehensive account of (bond) percolation can be found in
Grimmett’s textbook [14], which serves as a standard reference on the subject. For
d ∈ N , a natural number, we denote by L

d the (simple hypercubic) lattice in d di-
mensions. Being a graph, the lattice Ld = (Zd ,Ed) has a vertex set, which consists
of the d-dimensional integer numbers Z

d , and an edge set E
d given by all un-

ordered pairs [x, y] of nearest-neighbour vertices x, y ∈ Z
d , that is, those vertices

which have Euclidean distance
�
x − y

�
:= ��� d

ν=1

�
xν − yν

� 2 � 1/2
= 1. Here, ele-

ments of Zd are canonically represented as d-tuples x = (x1, . . . , xd) with entries
from Z.

Given any subset of vertices � ⊆ Z
d and a subset of edges � ⊆ {[x, y] ∈ E

d :
x, y ∈ � } between them, we call the graph � := ( � , � ) a subgraph of Ld . The
vertex degree

d � (x) :=
�
{y ∈ Z

d : [x, y] ∈ � }
�

(1.1)

of x ∈ Z
d counts the number of edges in � that share the vertex x as an endpoint.

Here,
�
Λ
�
denotes the cardinality of a subset Λ ⊂ Z

d , and we use the convention�
	��
= 0 for the empty set. A graph is called finite, if

� � �
<∞.

A given graph � consists of finitely or infinitely many clusters � j , j =

1,2, . . . , J  ∞, which are the maximally connected subgraphs of � . More pre-
cisely, � j := ( � j , � j ) is a connected subgraph of � , if � j ⊆ � with

� � j
���

2,
� j ⊆ � and if for every x, y ∈ � j with x 6= y there exists K ∈ N and xk ∈ � j ,
k = 0,1,2, . . . , K , such that x0 := x , xK := y and [xk−1,, xk] ∈ � j for all k =

1,2, . . . , K . A connected subgraph � j of � is maximal, and hence a cluster, if for
every connected subgraph � ′ := ( � ′, � ′) of � obeying � ′ ⊇ � j and � ′ ⊇ � j one
has � ′ = � j . Apparently, the decomposition of � into its clusters is unique – apart
from enumeration.

Next, we consider the probability space Ω = {0,1}E
d
, which is endowed with

the usual product sigma-algebra, generated by finite cylinder sets, and equipped
with a product probability measure P. Elementary events in Ω are sequences of
the form ω ≡ (ω[x,y])[x,y]∈Ed , and we assume their entries to be independently and
identically distributed according to a Bernoulli law

P(ω[x,y] = 1) = p (1.2)

with parameter p ∈]0,1[, the bond probability. To a given ω ∈Ω we associate the
edge set

� (ω) := � [x, y] ∈ E
d : ω[x,y] = 1 � . (1.3)

Definition 1.1. The mapping Ω 3 ω 7→ � (ω) := (Zd , � (ω)) with values in the set
of subgraphs of Ld is called bond-percolation graph in Z

d .

The most basic properties of bond-percolation graphs are recalled in

Proposition 1.2. For d
�

2 there exists pc ∈]0,1[, depending on d, such that
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(i) for every p ∈]0, pc[, the non-percolating phase, one has

P � ω ∈ Ω : � (ω) consists of ∞–many
clusters, which are all finite � = 1 , (1.4)

(ii) for every p ∈]pc,1[, the percolating phase, one has

P � ω ∈ Ω : � (ω) consists of exactly one infinite
cluster and ∞–many finite clusters � = 1 . (1.5)

Remarks 1.3. (i) The proposition collects results from Thms. 1.10, 1.11,
4.2 and 8.1 in [14], which were mainly obtained by Hammersley in the late fifties.
The uniqueness of the infinite cluster, however, was only proven thirty years later
by Aizenman, Kesten and Newman, see [14].

(ii) In the one-dimensional situation, d = 1, one has pc = 1 and part (i) of
the proposition remains true.

1.2 Graph Laplacians

The subsequent definition introduces Laplacian-type operators associated with an
arbitrary subgraph of the integer lattice. The particularisation to operators on bond-
percolation graphs follows at the end of this subsection.

For a given subset Λ ⊆ Z
d let `2(Λ) denote the Hilbert space of complex-

valued, square-summable sequences that are indexed by Λ.

Definition 1.4. Given any subgraph � = ( � , � ) of L
d , we introduce the following

bounded and self-adjoint linear operators on `2( � ).
(i) The degree operator D( � ) is defined as the multiplication operator

with the vertex-degree function d � : � → N ∪ {0}, x 7→ d � (x), that is,

[D( � )ϕ](x) := d � (x) ϕ(x) (1.6)

for all ϕ ∈ `2( � ) and all x ∈ � .

(ii) The adjacency operator A( � ) is defined through its action

[A( � )ϕ](x) := �
y∈ � : [x,y]∈ � ϕ(y) (1.7)

for all ϕ ∈ `2( � ) and all x ∈ � . Here, we use the convention � y∈ � ϕ(y) = 0 for
the empty sum.

(iii) The Neumann Laplacian is defined by

∆N( � ) := D( � )− A( � ) . (1.8)

(iv) The Pseudo-Dirichlet Laplacian is defined by

∆ �D( � ) := � 2d1− D( � ) � +∆N( � ) = 2d1− A( � ) , (1.9)

where 1 ≡ 1 � stands for the identity operator on `2( � ).
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(v) The Dirichlet Laplacian is defined by

∆D( � ) := 2 � 2d1− D( � ) � +∆N( � ) = 2d1+ � 2d1− D( � ) � − A( � ). (1.10)

Remarks 1.5. (i) The asserted boundedness and self-adjointness of the
Laplacians ∆X( � ), X ∈ {N,

�
D,D}, follow from the corresponding properties of

D( � ) and A( � ). Indeed, since 0  d � (x)  2d for all x ∈ � , it is clear that D( � )
is self-adjoint and obeys 0  D( � )  2d1 in the sense of quadratic forms. The
operator A( � ) is symmetric, because

�
ψ, A( � )ϕ � = 2 �

[x,y]∈ � ψ∗(x) ϕ(y) (1.11)

for all ψ,ϕ ∈ `2( � ), where
�
ψ,ϕ � := � x∈ � ψ∗(x) ϕ(x) denotes the standard

Hilbert-space scalar product on `2( � ). The factor 2 in (1.11) reflects that the sum
is over unordered pairs. Moreover, applying the Cauchy–Schwarz inequality to
(1.11), yields the upper bound 2d for the usual operator norm of A( � ), and self-
adjointness follows from symmetry and boundedness.

(ii) The Neumann Laplacian∆N( � ) is called graph Laplacian or combina-
torial Laplacian in spectral graph theory, where it is commonly studied in various
forms [19, 13, 10, 12].

(iii) The quadratic form

�
ϕ,∆N( � )ϕ � = �

[x,y]∈ � �� ϕ(x)− ϕ(y)
�� 2 , ϕ ∈ `2( � ) , (1.12)

for the Neumann Laplacian reveals that

∆N( � ) � 0 . (1.13)

Thus, a necessary and sufficient condition for ϕ ∈ `2( � ) to belong to the zero-
eigenspace of ∆N( � ) is that ϕ stays constant within each of the finite clusters of
� (separately). Consequently, each finite cluster of � and each isolated vertex, i.e.
each point in � := {x ∈ � : d � (x) = 0}, contributes exactly one zero eigenvalue
to ∆N( � ). In contrast, zero is not an eigenvalue of ∆ �D( � ) and ∆D( � ).

(iv) Let X ∈ {N,
�
D,D} and let � j := ( � j , � j ), j = 1, . . . J  ∞ denote the

clusters a graph � := ( � , � ) is composed of. Then∆X( � ) is block-diagonal with
respect to the clusters,

∆X( � ) =
J

⊕
j=1
∆X( � j )⊕γX1 � (1.14)

on `2( � ), where γN := 0, γ �D := 2d, respectively γ D := 4d.

(v) The Neumann and the Dirichlet Laplacian are related to each other. To
see this we define a unitary involution U = U −1 = U ∗ on `2( � ) by setting

(Uϕ)(x) := (−1) � d

ν=1 � xν � ϕ(x) (1.15)
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for all x ∈ � and all ϕ ∈ `2( � ). This involution commutes with D( � ) and anti-
commutes with A( � ) so that D( � ) = U D( � )U and

A( � ) = −U A( � )U . (1.16)

Hence, we infer the relation

∆D( � ) = 4d1− U∆N( � )U . (1.17)

Combining (1.17) with (1.13), (1.9) and (1.10), we arrive at the chain of inequali-
ties

0  ∆N( � )  ∆ �D( � )  ∆D( � )  4d1 . (1.18)

(vi) Our terminology of the Laplacians is motivated by Simon [25]. Divide
a graph � = ( � , � ) into two subgraphs � k = ( � k , � k), k = 1,2, such that � 1 ∩

� 2 =
	

and � 1 ∪ � 2 = � . Then one gets super-, respectively subadditive behaviour

∆N( � ) � ∆N( � 1)⊕∆N( � 2) ,

∆D( � )  ∆D( � 1)⊕∆D( � 2)

(1.19)

as a consequence of (1.12) and (1.17). Thus, introducing a separating boundary
surface lowers Neumann eigenvalues and raises Dirichlet eigenvalues – in analogy
to the well-known behaviour of Laplacian eigenvalues of regions in continuous
space, see e.g. Prop. 4 in Chap. XIII.15 of [23]. In contrast, the eigenvalues of the
Pseudo-Dirichlet Laplacian∆ �D( � ) behave indifferently with respect to this proce-
dure. Though, ∆ �D( � ) is commonly termed a Dirichlet Laplacian in the literature.

Next, we associate Laplacians to the bond-percolation graphs of Definition1.1.

Definition 1.6. The mapping∆X : Ω 3 ω 7→ ∆
(ω)
X := ∆X( � (ω)) with values in the

bounded, self-adjoint operators on `2(Zd) is called Neumann or Pseudo-Dirichlet
or Dirichlet Laplacian on bond-percolation graphs in Z

d , depending on whether X
stands for N or

�
D or D.

1.3 Results

To begin with we summarise the most basic spectral properties of the Laplacian
on bond-percolation graphs in

Lemma 1.7. Fix X ∈ {N,
�
D,D} and p ∈]0,1[. Then

(i) the random operator∆X is ergodic with respect to Z
d -translations.

(ii) its spectrum is P-almost surely non random, more precisely, it is given
by spec(∆X) = [0,4d] P-almost surely.

(iii) the components in the Lebesgue decomposition of the spectrum are also
P-almost surely non random. For every � ∈ {pp, sc, ac} there exists a closed subset
Σ
( � )
X ⊂ R such that spec � (∆X) = Σ

( � )
X P-almost surely.
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(iv) in the non-percolating phase, p ∈]0, pc[, the spectrum of ∆X is P-
almost surely only a dense pure-point spectrum with infinitely degenerate eigen-
values. The dense set of eigenvalues is also non random P-almost surely.

Remarks 1.8. (i) The lemma is proven in Section 2.

(ii) Part (ii) implies that the discrete spectrum of ∆X is P-almost surely
empty.

(iii) As compared to the non-percolating phase considered in part (iv), there
are additional spectral contributions from the percolating cluster if p ∈]pc,1[.
Among others, the percolating cluster contributes also infinitely degenerate, P-
almost surely non-random eigenvalues corresponding to compactly supported
eigenfunctions. This can be established with the same mirror techniques as it was
done for related models on site-percolation graphs [9, 28, 29]. Non-rigorous argu-
ments [16, 24, 3] suggest the existence of continuous spectrum if p lies above the
“quantum-percolation threshold” pq > pc.

We proceed with the existence and self-averaging of the integrated density of
states of ∆X. To this end let δx ∈ `2(Zd) be the sequence which is concentrated at
the point x ∈ Z

d , i.e. δx(x) := 1 and δx(y) := 0 for all y 6= x ∈ Z
d . Moreover, Θ

stands for the Heaviside unit-step function, which we choose to be right continu-
ous, viz. Θ(E) := 0 for all real E < 0 and Θ(E) := 1 for all real E

�
0.

Definition 1.9. For every p ∈]0,1[ and every X ∈ {N,
�
D,D} we call the function

NX : R 3 E 7→ NX(E) :=
∫
Ω

P(dω)
�
δ0,Θ � E −∆

(ω)
X

� δ0 � (1.20)

with values in the interval [0,1] the integrated density of states of ∆X.

Remarks 1.10. (i) Thanks to the ergodicity of ∆X with respect to Z
d -

translations, one can replace δ0 by δx with some arbitrary x ∈ Z
d in Definition 1.9

without changing the result.

(ii) The integrated density of states NX is the right-continuous distribution
function of a probability measure on R. The set of its growth points coincides with
the P-almost-sure spectrum [0,4d] of ∆X.

(iii) For p < pc the growth points of NX form a dense countable set, where
NX is discontinuous. These jumps in NX are due to the infinitely degenerate eigen-
values of ∆X, which arise solely from the finite clusters, cf. Lemma 1.7(iv). For
p > pc there are also contributions to the jumps that arise from the percolating
cluster. In addition, the set of growth points of NX should not be restricted to dis-
continuities for p > pc, cf. Remark 1.8(iii).

(iv) Eqs. (1.16) and (1.17) imply the symmetries

N �D(E) = 1 − lim
ε↑4d−E

N �D(ε) ,
ND(N)(E) = 1 − lim

ε↑4d−E
NN(D)(ε)

(1.21)

of the integrated densities of states for all E ∈ R.
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Definition 1.9 of the integrated density of states coincides with the usual one in
terms of a macroscopic limit. To make this statement precise, we have to introduce
restrictions of ∆X to finite volume.

Definition 1.11. Let � = ( � , � ) be a subgraph of Ld and consider a subset Λ ⊆

Z
d .

(i) The graph � Λ := ( � Λ, � Λ) with � Λ := � ∩Λ and � Λ := {[x, y] ∈ � :
x, y ∈ � Λ} is called the restriction of � toΛ. In particular, � (ω)

Λ = (Λ, � (ω)Λ ) is the
restriction to Λ of a realisation � (ω) = (Zd , � (ω)) of the bond-percolation graph.

(ii) For X ∈ {N,
�
D,D} we define the restriction ∆X,Λ of the Laplacian ∆X

to `2(Λ) as the random operator with realisations ∆(ω)
X,Λ := ∆X( � (ω)

Λ ) for all ω ∈

Ω .

Lemma 1.12. Given p ∈]0,1[ and X ∈ {N,
�
D,D}, there exists a setΩ ′ ⊂Ω of full

probability, P(Ω ′) = 1, such that

NX(E) = lim
Λ↑Zd

�
1�
Λ
� trace

`2(Λ)
Θ � E −∆

(ω)
X,Λ

��� (1.22)

holds for all ω ∈ Ω ′ and all E ∈ R , except for the (at most countably many)
discontinuity points of NX.

Remarks 1.13. (i) As to the limitΛ ↑ Z
d , we think of a sequence of cubes

centred at the origin whose edge lengths tend to infinity. But there exist more
general sequences of expanding regions in Z

d for which the lemma remains true.

(ii) The proof of Lemma 1.12 for X ∈ {N,D} follows from the Ackoglu–
Krengel superergodic theorem on account of (1.19), see Thm. VI.1.7 in [8] and the
discussion after Eq. (VI.16) there. For X =

�
D, the proof follows from Lemma 4.5

in [22], which establishes weak convergence of the associated density-of-states
probability measures, and Thm. 30.13 in [1].

(iii) The arguments in Sec. 6 of [29] show that the convergence in (1.22)
holds whenever E is an algebraic number, that is the root of a polynomial with
integer coefficients. Hence, the convergence (1.22) may even hold at discontinuity
points of NX. In particular, for p < pc it holds for all E ∈ R.

The central result of this paper is

Theorem 1.14. Let d ∈ N and assume p ∈]0, pc[. Then the integrated density of
states NX of the Laplacian ∆X on bond-percolation graphs in Z

d exhibits Lifshits
tails at both the lower spectral edge

lim
E↓0

ln
�� ln[NX(E)− NX(0)]

��
ln E

= � −1/2
−d/2

for
X = N ,
X =

�
D,D

(1.23)

and at the upper spectral edge

lim
E↑4d

ln
�� ln[N −

X (4d)− NX(E)]
��

ln(4d − E)
= � −1/2

−d/2
for

X = D ,
X = N,

�
D ,

(1.24)

where N −
X (4d) := limE↑4d NX(E).
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Remarks 1.15. (i) The Lifshits tails at the upper spectral edge are related
to the ones at the lower spectral edge due to the symmetries (1.21).

(ii) Remark 1.5(iii), the symmetries (1.21), Lemma 1.12 and Remark
1.13(iii) imply the values

N �D(0) = ND(0) = 0, N −
N (4d) = N −�D (4d) = 1,

1 − N −
D (4d) = NN(0) = lim

Λ↑Zd

trace
`2(Λ)

Θ � −∆(ω)
N,Λ

�
�
Λ
� = κ(p)+ (1 − p)2d

(1.25)

for the constants in Theorem 1.14. Here, κ(p) is the mean number density of
clusters, see e.g. Chap. 4 in [14], and (1 − p)2d the mean number density of iso-
lated vertices. Thanks to the right-continuity of the Theta-function, the operator
Θ � −∆(ω)

N,Λ
� is nothing but the projector onto the null space of ∆(ω)

N,Λ.

(iii) The Lifshits tails for NN at the lower spectral edge – and hence the one
for ND at the upper spectral edge – is determined by the linear clusters of bond-
percolation graphs. This explains why the associated Lifshits exponent −1/2 is not
affected by the spatial dimension d. Technically, this relies on a Cheeger inequality
[12] for the second-lowest Neumann eigenvalue of a connected graph.

(iv) If d
�

2, then all other Lifshits tails of the theorem are determined by
the most condensed clusters of bond-percolation graphs, like cubic clusters (see
Remark 2.5 below for their definition), as they maximise the mean vertex degree
among all clusters with a given number of vertices. In the proof of the theorem this
will follow from a Faber-Krahn inequality [11] for the lowest (Pseudo-) Dirichlet
eigenvalue of a connected graph. In contrast, for d = 1 there are no other clusters
than linear ones, and the Lifshits exponent cannot discriminate between different
boundary conditions.

2 Proofs

In this section we shall prove Lemma 1.7 and Theorem 1.14.

Proof (of Lemma 1.7). We follow the standard arguments laid down in [17, 8,
22]. The function Ω 3 ω 7→ ∆

(ω)
X , which takes on values in the set of bounded

self-adjoint operators on `2(Zd), is measurable, and the probability measure P is
ergodic with respect to the group of translations (τz)z∈Zd onΩ , which act as τzω :=
(ω[x+z,y+z])[x,y]∈Zd . Moreover, for every z ∈ Z

d let Tz be the unitary translation
operator on `2(Zd), that is, Tzϕ(x) := ϕ(x − z) for all ϕ ∈ `2(Zd) and all x ∈ Z

d .
The operator identity ∆(τzω)

X = T −1
z ∆

(ω)
X Tz holds for all z ∈ Z

d and all ω ∈ Ω and
renders ∆X an ergodic random operator [17], as claimed in part (i) of the lemma.
Part (iii) is now a consequence of the general theory of ergodic random operators
[17, 8, 22].

As to part (ii) it suffices to show the inclusion

spec(∆(ω)
X ) ⊇ [0,4d] for P-almost every ω ∈Ω (2.1)
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for all X ∈ {N,
�
D,D}, because the opposite inclusion is already supplied by (1.18).

To verify (2.1), we define the event�
Ω := � ω ∈Ω : for every l ∈ N there exists a cube Λ(ω)

l ⊂ Z
d

with ld points such that � (ω)

Λ
(ω)

l

= L
d
Λ
(ω)

l � . (2.2)

Here, we say that a subset of Zd is a cube with ld points (or, equivalently, with
edges of length l − 1 ∈ N), if this subset is some translate of the d-fold Cartesian
product {1, . . . , l}d . Colloquially speaking, the condition in (2.2) requires all bonds
inside of Λ(ω)

l to be present.
Now, fix an arbitrary E ∈ [0,4d] = spec(∆) in the spectrum of the ordinary

lattice Laplacian ∆ = ∆X(L
d). Then, there exists a Weyl sequence (ψE,n)n∈N ⊂

`2(Zd) for ∆, that is, � ψE,n � :=
�
ψE,n,ψE,n � 1/2 = 1 for all n ∈ N and

lim
n→∞

� (∆− E1)ψE,n � = 0 . (2.3)

We may also assume without loss of generality that the support suppψE,n is com-
pact for all n ∈ N, since ∆ is bounded. Furthermore, if (ψE,n)n∈N is such a Weyl
sequence, then so is (TznψE,n)n∈N with arbitrary zn ∈ Z

d . Thus, given any ω ∈
�
Ω

there exists a Weyl sequence (ψ (ω)
E,n)n∈N for∆with the property that, loosely speak-

ing, all the supports are contained well inside the cubes of (2.2). More precisely,
we mean that given every ω ∈

�
Ω and every n ∈ N there must exist an integer

l(ω)n > 3 and a cube Λ(ω)

l(ω)n
from (2.2) such that min � � x − y

�
: x ∈ suppψ (ω)

E,n, y ∈

Z
d \Λ

(ω)

l(ω)n
� > 1. This yields

� (∆(ω)
X − E1)ψ

(ω)
E,n � = � (∆− E1)ψ

(ω)
E,n � (2.4)

for all n ∈ N and all ω ∈
�
Ω . Hence, (ψ (ω)

E,n)n∈N is also a Weyl sequence for ∆(ω)
X ,

and we have shown the inclusion in (2.1) for all ω ∈
�
Ω . But P(

�
Ω)= 1, as we shall

argue now.
For every given integer l

�
2 let (Λl,µ)µ∈N ⊂ Z

d be a sequence of cubes in
Z

d with ld points such that Λl,µ1 ∩ Λl,µ2 =
	

, whenever µ1 6= µ2. Then, the
events Ωl,µ := {ω ∈ Ω : � (ω)

Λl,µ
= L

d
Λl,µ

} are pairwise statistically independent, and
P(Ωl,µ) > 0 does not depend on µ ∈ N. So the Borel–Cantelli lemma implies
P(Ωl) = 1 for all integers l

�
2, where Ωl := lim supµ→∞Ωl,µ. The proof of

part (ii) is completed by noting that
�
Ω ⊃ ∩l−1∈NΩl .

Finally, we turn to part (iv) and assume p < pc. We observe that in P-almost
every realisation of a bond-percolation graph the translates of any given finite clus-
ter occur infinitely often. This follows from a Borel–Cantelli argument like the one
in the previous paragraph. Hence, the block-diagonal structure (1.14) of ∆X im-
plies that (apart from the infinitely degenerate eigenvalue γX) the set of eigenval-
ues of∆X is P-almost surely given by the union of the spectra of∆X( � ), where �
runs through all possible finite clusters in L

d . In particular, the set of eigenvalues
is a non-random dense set and all eigenvalues are infinitely degenerate. ut
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The remaining part of this section concerns the proof of Theorem 1.14. It re-
lies on deterministic upper and lower bounds for small eigenvalues of clusters.
The lower bounds are discrete versions of well-known isoperimetric estimates for
Laplacian eigenvalues on manifolds.

Definition 2.1. For X ∈ {N,
�
D,D} and a connected subgraph � := ( � , � ) of Ld

let E (1)
X ( � ) denote the lowest non-zero eigenvalue of ∆X( � ).

Proposition 2.2 (Cheeger inequality). Let � := ( � , � ) be a connected finite sub-
graph of Ld . Then its lowest non-zero Neumann eigenvalue obeys

E (1)
N ( � ) � [hCh( � )]2

4d
. (2.5)

The quantity hCh( � ) := min �
�
∂

� �
/
� � �

is the Cheeger constant, where the min-
imum is taken over all subgraphs

�
of � whose vertex set � obeys

�
�

�  � � �
/2.

Here,
�
∂

� �
:= {[x, y] ∈ � : x ∈ � , y ∈ � \ � } denotes the edge boundary of�

in � .

Remarks 2.3. (i) Proposition 2.2 just quotes a special case of a more gen-
eral, well-known result in graph theory, see e.g. Thm. 3.1(2) in [12].

(ii) The simple lower bound hCh( � ) � 1/(
� � �
/2) on the Cheeger constant

yields

E (1)
N ( � ) � d−1� � �

2
. (2.6)

This bound produces asymptotically the correct
� � �

-dependence as
� � �

→ ∞, if
� is a linear cluster � n , i.e. a connected subgraph of Ld having 2 vertices with
degree 1 and n − 2 vertices with degree 2. For highly connected clusters, such as
cubic clusters in d > 1 dimensions (see Remark 2.5 below for their definition), the
bound (2.6) is very crude as compared to (2.5). Though, (2.6) will suffice for our
purpose.

The next lemma provides a Faber–Krahn inequality on graphs. In contrast to
Cheeger inequalities, such estimates for graphs have not been known for a long
time, see [11] for a detailed exposition. Lemma 2.4 adapts a result from [11],
which is proven there for more general graphs, to the type of graph Laplacians we
use here.

Lemma 2.4 (Faber–Krahn inequality). Let � := ( � , � ) be a connected finite
subgraph of Ld . Then its lowest Pseudo-Dirichlet eigenvalue obeys

E (1)�D ( � ) � hFK� � �
2/d
, (2.7)

where hFK ∈]0,∞[ is a constant that depends only on the spatial dimension d.

Remark 2.5. The Faber–Krahn inequality produces asymptotically the correct
� � �

-
dependence as

� � �
→ ∞, if, for example, � is a cubic cluster � l , that is, � l = L

d
Λl

for some finite cube Λl ⊂ Z
d with

�
Λl

�
= ld points, i.e. edges of length l − 1 ∈ N.
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Proof (of Lemma 2.4). We reduce the assertion to a particular case of Prop. 7.1
and Cor. 6.4 in [11] by choosing the weighted graph in Prop. 7.1 as L

d with unit
weights on all bonds – note that these results in [11] extend to d = 1. Given any
Λ ⊂ Z

d , this yields the inequality

λ1(Λ) := inf
06=ϕ∈c0(Λ)

�
ϕ,∆N(L

d)ϕ �
2d

�
ϕ,ϕ �

� β2
d

2
�
Λ
�
2/d
. (2.8)

The constant βd ∈]0,∞[ is the isoperimetric constant of Cor. 6.4 in [11], which is
independent of Λ ⊂ Z

d . Moreover, c0(Λ) stands for the `2(Zd)-subspace of real-
valued sequences with support in Λ. In order to check that the above definition of
λ1(Λ) matches the one in [11], we refer to Sect. 5.5 of that paper. The claim of the
lemma follows from the estimate

E (1)�D ( � ) � 2d λ1( � ) , (2.9)

which we prove now. To this end we observe that the adjacency operator has
only non-negative matrix elements

�
δx , A( � )δy � for all x, y ∈ � and that A( � )

is irreducible on `2( � ) due to the connectedness of � . Hence, it follows from
the Perron–Frobenius theorem, see e.g. Thm. 2.1.4 in [2], that the eigenvector of
∆ �D( � ) = 2d1 − A( � ) corresponding to the non-degenerate smallest eigenvalue

E (1)�D ( � ) can be chosen to have non-negative entries. This implies

E (1)�D ( � ) = inf
06=φ∈`2( � )

φ(x) � 0 for all x∈ �
�
φ,∆ �D( � )φ ��

φ,φ � . (2.10)

The proof of (2.9) is completed by noting that
�
φ,∆ �D( � )φ � = �

[x,y]∈ � [φ(x)− φ(y)]2 + �
x∈ � [2d − d � (x)] � φ(x) � 2

= �
[x,y]∈Ed

[ϕ(x)− ϕ(y)]2 + 2 �
[x,y]∈Ed \ � ϕ(x)ϕ(y)� �

ϕ,∆N(L
d)ϕ � (2.11)

for all φ as in (2.10), where ϕ(x) := � φ(x), x ∈ � ,
0, x ∈ Z

d \ � . ut

As a last ingredient for the proof of Theorem 1.14 we need some simple upper
estimates on E (1)

X ( � ) for special types of clusters. These estimates are obtained
from the minmax-principle. For our purpose it is only important that they repro-
duce the asymptotically correct functional dependence on the number of vertices
for large clusters.

Lemma 2.6. (i) The lowest non-zero Neumann eigenvalue for a linear
cluster � n , which was defined in Remark 2.3(ii), obeys

E (1)
N ( � n)  12

n2
(2.12)

for all n ∈ N, n
�

2.
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(ii) The lowest Dirichlet eigenvalue for a cubic cluster � l , which was de-
fined in Remark 2.5, obeys

E (1)
D ( � l)  27d

l2
(2.13)

for all l ∈ N, l
�

2.

Proof. (i) The minmax-principle yields the upper estimate

E (1)
N ( � n)  � n−1

j=1(u j+1 − u j )
2

� n
j=1 u2

j

(2.14)

for every (u1, . . . ,un) ∈ R
n subject to the orthogonality constraint � n

j=1 u j = 0.
Choosing u j := − j + (n + 1)/2 for j ∈ {1, . . . ,n}, which is in accordance with
the orthogonality constraint, proves part (i).

(ii) Appealing to the minmax-principle with a trial “function” that fac-
torises with respect to the d Cartesian directions, gives

E (1)
D ( � l)  d

2u2
1 + 2u2

l + � l−1
j=1(u j+1 − u j )

2

� l
j=1 u2

j

(2.15)

for all (u1, . . . ,ul) ∈ R
l . Now, we choose u j := −

�
j − (l + 1)/2

�
+ (l − 1)/2 for

all j ∈ {1, . . . , l} so that u1 = ul = 0. If l
�

3 is odd, an explicit calculation shows

E (1)
D ( � l)  12d

l2 − 2l + 3
 27d

l2
, (2.16)

while for an even integer l
�

2 it yields

E (1)
D ( � l)  12d

l(l − 1)
 24d

l2
, (2.17)

and the lemma is proven. ut

The next two lemmas provide the key estimates for Theorem 1.14. While the
lower bounds in Lemma 2.9 hold for all p ∈]0,1[, the upper bounds in Lemma 2.7
are restricted to the non-percolating phase.

Lemma 2.7 (Upper bounds). Let d ∈ N and consider p ∈]0, pc[. Then there exist
constants α+

N , α
+
D ∈]0,∞[ such that

NN(E)− NN(0)  exp{−α+
N E−1/2} for all E ∈]0,4d] , (2.18)

ND(E)  N�D(E)  exp{−α+
D E−d/2} for all E ∈]0,2d[. (2.19)

Remark 2.8. It is only the right inequality in (2.19) whose validity is restricted to
E ∈]0,2d[. The proof below will show that ND(E)  exp{−α+

D E−d/2} holds for
all E ∈]0,4d[.
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Lemma 2.9 (Lower bounds). Let d ∈ N and consider p ∈]0,1[. Then there exist
constants α−

N , α
−
D ∈]0,∞[ such that for every E ∈]0,4d] one has

NN(E)− NN(0)
�

exp{−α−
N E−1/2} , (2.20)

N�D(E) � ND(E)
�

exp{−α−
D E−d/2} . (2.21)

Proof (of Theorem 1.14). Due to the symmetries (1.21), it suffices to prove the
asserted Lifshits tails at the lower spectral edge. These follow from the estimates
in Lemma 2.7 and Lemma 2.9, because after taking appropriate logarithms, the
respective bounds coincide in the limit E ↓ 0. ut

Proof (of Lemma 2.7). Fix E ∈]0,4d] subject to E < γX if X ∈ {
�
D,D}. The con-

stants γX were defined in Remark 1.5(iv). Definition 1.9 of the integrated density
of states implies

NX(E)− NX(0) =

∫
Ω

P(dω)
�
δ0,

�
Θ � E −∆

(ω)
X

� − P (ω)
X � δ0 � , (2.22)

where PX := Θ(−∆X) denotes the (random) projector onto the null space of ∆X.
Due to our assumptions on E and the block-diagonal form (1.14) of∆X, the right-
hand side of (2.22) is only different from zero if the origin is part of a cluster. Let
us call this event Ω0 and the corresponding cluster � (ω)

0 := ( � (ω)
0 , � (ω)0 ) for all

ω ∈ Ω0. Hence, we obtain

NX(E)− NX(0) =

∫
Ω0

P(dω)
�
δ0,

�
Θ � E −∆X( � (ω)

0 ) � − PX( � (ω)
0 ) � δ0 �


∫
Ω0

P(dω) Θ � E − E (1)
X ( � (ω)

0 ) � �
δ0,

�
1− PX( � (ω)

0 ) � δ0 �

 P � ω ∈ Ω0 : E
�

E (1)
X ( � (ω)

0 ) � . (2.23)

Before we make a distinction of the two cases X = N and X ∈ {
�
D,D} in order to

apply the Cheeger, respectively the Faber–Krahn inequality, we recall from Propo-
sition 1.2 (and Remark 1.3(ii) for the case d = 1) that the cluster � (ω)

0 is finite for
P-almost all ω ∈Ω0, since we assume p < pc.

The Neumann case. Applying the weakened version (2.6) of Cheeger’s in-
equality to (2.23), yields the claim

NN(E)− NN(0)  P � ω ∈Ω0 :
� � (ω)

0

� �
1/(d E)1/2 �  exp{−d−1/2ζ(p)E−1/2} .

(2.24)
The second inequality in (2.24) reflects the exponential decay of the cluster-size
distribution in the non-percolating phase, see Thm. 6.75 in [14]. Here, ζ(p) > 0
is some finite constant for every p ∈]0, pc[, which depends only on d. Formally,
Thm. 6.75 in [14] does not cover the one-dimensional situation d = 1. But for d =

1 the exponential decay of the cluster-size distribution follows from elementary
combinatorics.
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The (Pseudo-) Dirichlet case. The inequalities (1.18), (2.23), the Faber–Krahn
inequality of Lemma 2.4 and the exponential decay of the cluster-size distribution
yield

ND(E)  N �D(E)  P � ω ∈Ω0 :
� � (ω)

0

� �
(hFK/E)d/2 �  exp{−hd/2

FK ζ(p)E
−d/2} .

(2.25)
Here we have used that ND(0) = N �D(0) = 0, see Remark 1.15(ii). ut

Proof (of Lemma 2.9). Lemma 1.12, the isotony of the right-hand side of (1.22) in
E , the right-continuity of NX and (1.25) imply that

NX(E)− NX(0)
�

lim sup
Λ↑Zd

1�
Λ
� trace`2(Λ)

�
Θ � E −∆

(ω)
X,Λ

� − P (ω)
X,Λ � (2.26)

for all E > 0 and all ω ∈Ω ′. Concerning the limit in (2.26), we think of a sequence
of expanding cubes that are centred at the origin, cf. Remark 1.13(i). Due to the
block-diagonal form (1.14) of ∆X, which continues to hold for ∆(ω)

X,Λ with respect

to the decomposition of � (ω)
Λ into clusters � (ω)

Λ, j := ( � (ω)
Λ, j , � (ω)Λ, j ), j ∈ {1, . . . , J (ω)Λ },

we get

NX(E)− NX(0)
�

lim sup
Λ↑Zd

1�
Λ
�

J (ω)
Λ�

j=1

trace
`2( � (ω)

Λ, j )

�
Θ � E −∆X( � (ω)

Λ, j )
� − PX( � (ω)

Λ, j ) � .
(2.27)

At this point we make again a distinction of the cases X = N and X ∈ {
�
D,D}.

The Neumann case. Let � n denote the set of all linear clusters with n vertices
in L

d and let χ �
n be the characteristic function of this set of graphs. A crude lower

bound on the j -sum in (2.27) for X = N results from discarding all branched
clusters, i.e. those which are not linear,

J (ω)
Λ�

j=1

∞�
n=2

χ �
n ( � (ω)

Λ, j ) trace
`2( � (ω)

Λ, j )

�
Θ � E −∆N( � (ω)

Λ, j )
� − PN( � (ω)

Λ, j ) �

� ∞�
n=2

J (ω)
Λ�

j=1

χ �
n ( � (ω)

Λ, j )Θ � E − E (1)
N ( � (ω)

Λ, j )
�

� ∞�
n=2

Θ(E − 12/n2)

J (ω)
Λ�

j=1

χ �
n ( � (ω)

Λ, j ) . (2.28)

The first inequality in (2.28) follows from restricting the trace to the spectral sub-
space corresponding to E (1)

N ( � (ω)
Λ, j ), the second inequality follows from the varia-

tional upper bound in Lemma 2.6(i). Thus, (2.27) and (2.28) yield

NN(E)− NN(0)
�

lim sup
Λ↑Zd

∞�
n=2

Θ(E − 12/n2)n−1 L (ω)n (Λ) (2.29)
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with

L (ω)n (Λ) :=
n�
Λ
�

J (ω)
Λ�

j=1

χ �
n ( � (ω)

Λ, j ) =
1�
Λ
� �� � x ∈ Λ : � (ω)

Λ (x) ∈ � n � �� (2.30)

being the number of points in Λ that are vertices of a cluster of type � n . Here,
� (ω)
Λ (x) denotes the cluster of � (ω)

Λ that contains x ∈ Λ; if d � (ω)

Λ

(x) = 0, we set

� (ω)
Λ (x) = ({x},

	
). For a given n ∈ N, n

�
2, and a sufficiently large bounded

cube Λ ⊂ Z
d with

�
Λ
� 1/d �

2n + 1, let us also define the number density�
L (ω)n (Λ) :=

1�
Λ
�

��� � x ∈ Λ : min
1 � ν � d

min
y∈Zd \Λ

�
xν − yν

� �
n + 1 and � (ω)

Λ (x) ∈ � n �
���

(2.31)
of vertices which are, in addition, sufficiently far away from the boundary of Λ.
Clearly, one has

lim
Λ↑Zd

�
L (ω)n (Λ)−

�
L (ω)n (Λ) � = 0 (2.32)

for all ω ∈Ω and all n ∈ N, n
�

2, since the difference in the two quantities results
from a surface effect. The vertices that count for

�
L (ω)n (Λ) are so far away from the

boundary of Λ that the clusters they belong to cannot grow when enlarging Λ.
Hence,

�
Λ1 ∪Λ2

� �
L (ω)n (Λ1 ∪Λ2)

� �
Λ1

� �
L (ω)n (Λ1)+

�
Λ2

� �
L (ω)n (Λ2) (2.33)

holds for all Λ1,Λ2 ⊂ Z
d provided Λ1 ∩ Λ2 =

	
. Thus, Ln(Λ) defines a su-

perergodic process and the Ackoglu–Krengel superergodic theorem, see e.g.
Thm. VI.1.7 in [8], and (2.32) imply

lim
Λ↑Zd

L (ω)n (Λ) = sup
Λ⊂Zd

∫
Ω

P(dω′)
�
L (ω

′)
n (Λ) = P � ω′ ∈Ω0 : � (ω′)

0 ∈ � n � (2.34)

for all n ∈ N, n
�

2, and P-almost all ω ∈Ω . The eventΩ0 and the random cluster
� 0 were defined above (2.23).

Now, we neglect all terms in the n-sum in (2.29) except for the one which
corresponds to the biggest integer n(E) obeying n(E) < (12/E)1/2 + 1. From this
we conclude together with (2.34) that

NN(E)− NN(0)
�

[n(E)]−1
P � ω ∈Ω0 : � (ω)

0 ∈ � n(E) � . (2.35)

Elementary combinatorics shows that the probability on the right-hand side of
(2.35) is bounded below by exp{−n(E) f (p)}, where f (p) ∈]0,∞[ is a constant
that depends only on d for a given p ∈]0,1[. This leads to the estimate

NN(E)− NN(0)
� e− f (p)

(12/E)1/2 + 1
exp � −121/2 f (p) E−1/2 � , (2.36)

which can be cast into the form (2.20) for E ∈]0,4d].
The (Pseudo-) Dirichlet case. This case parallels exactly the previous one,

except that here we retain cubic clusters instead of linear clusters. Let � l denote
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the set of all cubic clusters in L
d with ld vertices, i.e. edges of length l − 1 ∈ N,

let χ �
l be the characteristic function of this set of graphs and define the number

density Q(ω)
l (Λ) := (ld/

�
Λ
�
) � J (ω)

Λ

j=1
χ �

l ( � (ω)
Λ, j ) of points in Λ that are vertices of

such a cubic cluster (when restricted to Λ). Now, the rôle of � n in the previous
case will be played by � l . Hence, the analogue of (2.29) reads

N �D(E) � ND(E)
�

lim sup
Λ↑Zd

∞�
l=2

Θ � E − 27d/ l2 � l−d Q(ω)
l (Λ) , (2.37)

where we have used Lemma 2.6(ii) instead of Lemma 2.6(i). The very same argu-
ments that led to (2.34) imply in the present context

lim
Λ↑Zd

Q(ω)
l (Λ) = P � ω′ ∈ Ω0 : � (ω′)

0 ∈ � l � (2.38)

for all l ∈ N, l
�

2, and P-almost all ω ∈ Ω . By neglecting all terms in the l-sum
in (2.37) except for the one which corresponds to the biggest integer l(E) obeying
l(E) < (27d/E)1/2 + 1, we conclude with (2.38) that

N �D(E) � ND(E)
�

[l(E)]−d
P � ω ∈ Ω0 : � (ω)

0 ∈ � l(E) � . (2.39)

Again, there is an elementary combinatorial lower bound exp{−[l(E)]d g(p)} for
the probability in (2.39), where g(p) ∈]0,∞[ is a constant that depends only on d
for a given p ∈]0,1[. So we arrive at

N �D(E) � ND(E)
�

[(27d/E)1/2 + 1]−d exp � −[(27d/E)1/2 + 1]d g(p) � , (2.40)

which can be cast into the form (2.21) for E ∈]0,4d]. ut
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