
SMILANSKY’S MODEL OF IRREVERSIBLE QUANTUM
GRAPHS, II: THE POINT SPECTRUM

W.D. EVANS AND M. SOLOMYAK

Abstract. In the model suggested by Smilansky [6] one studies an opera-
tor describing the interaction between a quantum graph and a system of K
one-dimensional oscillators attached at different points of the graph. This
paper is a continuation of [3] in which we started an investigation of the case
K > 1. For the sake of simplicity we consider K = 2, but our argument
applies to the general situation. In this second part of the paper we apply
the variational approach to the study of the point spectrum.

1. Introduction

In Smilansky’s model of irreversible quantum graphs, the interaction between
a quantum graph and a finite system of one-dimensional harmonic oscillators
attached at various vertices of the graph is studied. The paper [6] may be
consulted for the physical background and motivation, and [5] for a survey of
recent work on quantum graphs. Our concern here is the spectral analysis of
the self-adjoint operator which generates the dynamical system, and it suffices
to have a precise description of the analytic problem. This paper continues the
study in [3] where a detailed description of the problem may be found and a
survey of earlier results in the literature given. As in [3], we consider the case
of two oscillators attached to the graph constituted by R at vertices ±1. This
special case retains the main features of the general case without obscuring the
argument with technical complications.

On a formal level, the problem is described by the differential expression

(1.1) AU = −U ′′
x2 +

ν2
+

2
(−U ′′

q2
+

+ q2
+U) +

ν2
−
2

(−U ′′
q2
−

+ q2
−U)

for x ∈ R, q± ∈ R, together with the following ‘transmission’, or ‘matching’
conditions across the planes x = ±1 in R3:

U ′
x(1+, q+, q−)− U ′

x(1−, q+, q−) = α+q+U(0, q+, q−),

U ′
x(−1+, q+, q−)− U ′

x(−1−, q+, q−) = α−q−U(0, q+, q−).
(1.2)

Date: 18th May, 2005.
1991 Mathematics Subject Classification. 81Q10, 35P20.
Key words and phrases. Quantum graphs, point spectrum.

1



2 W.D. EVANS AND M. SOLOMYAK

The parameters α± are real and can be assumed to be non-negative since, for
instance, replacing α+ by −α+ corresponds to replacing q+ by −q+ and this
has no effect on the problem to be investigated. The parameters ν± are fixed
positive numbers throughout. To shorten our notation, we set α = (α+, α−)
and ν = (ν+, ν−).

Let χn, n ∈ N0, be the normalized Hermite functions in L2(R). The sequence
{χn}n∈N0 is then an orthonormal basis in L2(R) and any U ∈ L2(R3) can be
written as

U(x, q+, q−) =
∑

m,n∈N0

um,n(x)χm(q+)χn(q−)

for some um,n ∈ L2(R). We write U ∼ {um,n} to indicate this representation.
The mapping U 7→ {um,n} is an isometry of H = L2(R3) onto the Hilbert space
`2(N2

0; L
2(R)). For U ∼ {um,n} we have AU ∼ {Lm,num,n}, where

(1.3) (Lm,nu)(x) = −u′′(x) + rm,nu(x), x 6= ±1;

(1.4) rm,n = ν2
+(m + 1/2) + ν2

−(n + 1/2), m, n ∈ N0.

The number

r0,0 = (ν2
+ + ν2

−)/2

plays a special role since it appears in the formulations of all our basic results.
The conditions (1.2) at x = ±1 become

∑

m,n∈N0

[u′m,n](1)χm(q+)χn(q−) =
∑

m,n∈N0

α+q+χm(q+)χn(q−),

∑

m,n∈N0

[u′m,n](−1)χm(q+)χn(q−) =
∑

m,n∈N0

α−q−χm(q+)χn(q−),
(1.5)

where we have used the notation

[u′](a) := u′(a + 0)− u′(a− 0).

On using the recurrence relation
√

k + 1χk+1(q)−
√

2qχk(q) +
√

kχk−1(q) = 0, q ∈ R,

the matching conditions (1.5) reduce to

[u′m,n](1) =
α+√

2

(√
m + 1um+1,n(1) +

√
mum−1,n(1)

)
;

[u′m,n](−1) =
α−√

2

(√
n + 1um,n+1(−1) +

√
num,n−1(−1)

)
.

(1.6)

The operator realization of (1.1) and (1.2) in the Hilbert space H, which we
denote by Aα,ν can now be defined. Its domain Dα,ν is given by



SPECTRUM OF IRREVERSIBLE QUANTUM GRAPHS 3

Definition 1.1. An element U ∼ {um,n} lies in Dα,ν if and only if
1. um,n ∈ H1(R) for all m,n;
2. for all m,n, the restriction of um,n to each interval (−∞,−1), (−1, 1), (1,∞),
lies in H2 and moreover,

∑
m,n

∫

R
|Lm,num,n|2dx < ∞;

3. the conditions (1.6) are satisfied.

Along with the set Dα,ν , we define its subset

D•
α,ν = {U ∈ Dα,ν : U ∼ {um,n} finite} ,

where by finite we mean that the sequence has only a finite number of non-zero
components.

The operator Aα,ν in H is defined on the domain Dα,ν by

Aα,νU ∼ {Lm,num,n} for U ∼ {um,n} ∈ Dα,ν

where Lm,n is given by (1.3). We denote the restriction of Aα,ν to D•
α,ν by

A•
α,ν .
The following statement is proved in [3], Theorem 2.3.

Theorem 1.2. The operator Aα,ν is self-adjoint for all α± ≥ 0, and is the
closure of A•

α,ν.

Our main goal here, as well as in the preceding paper [3], is to study the
spectrum of the operator Aα,ν for different values of the parameters α±. In-
formally, the mains results of both papers can be summarized as follows: the
spectral properties of a K-oscillator system can be described in terms of the
corresponding properties of K appropriate one-oscillator systems. To obtain
these one-oscillator systems, one divides the original graph into K pieces in
such a way that each part contains only one point at which an oscillator is
attached, and these points should not belong to the new boundary appearing
as a result of the division. On this new boundary we put an additional bound-
ary condition, for instance the Dirichlet condition. For our case (Γ = R and
the oscillators attached at ±1), it is most natural to take x = 0 as the point
of division. Let us denote the corresponding operators by AR±;α±;ν± ; see [3],
section 2.4 for details.

The following theorem is proved in [3], Theorem 2.6.

Theorem 1.3. Let

µ± :=
ν±
√

2

α±
.
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1. If µ± > 1, then σa.c.(Aα,ν) = [r0,0,∞) = [(ν2
+ + ν2

−)/2,∞).

2. Let µ+ = 1 and µ− > 1, or µ− = 1 and µ+ > 1. Then

σa.c.(Aα,ν) = [ν2
−/2,∞) or σa.c.(Aα,ν) = [ν2

+/2,∞)

respectively.

3. Let µ+ = µ− = 1, then σa.c.(Aα,ν) = [0,∞).
In all the cases 1 – 3 the multiplicity function ma.c.(λ;Aα,ν), is finite for all

λ ∈ σa.c.(Aα,ν) and is given by

ma.c.(λ;Aα,ν) =
∑

n∈N0

ma.c.(λ− ν2
−(n + 1/2);AR+;α+;ν+)

+
∑

m∈N0

ma.c.(λ− ν2
+(m + 1/2);AR−;α−;ν−).

(1.7)

4. Let max(µ+, µ−) < 1. Then

σa.c.(Aα,ν) = R, ma.c.(λ;Aα,ν) ≡ ∞.

In the present paper we are concerned with the point spectrum below the
threshold r0,0 in the case that µ+ and µ− are both greater than 1. Below
N−(λ;T), where λ is a real number, stands for the number of eigenvalues
(counting multiplicities) of a self-adjoint operator T, lying on the half-line
(−∞, λ), provided that this part of the spectrum is discrete. We also set
N+(λ;T) = N−(−λ;−T).

On the qualitative level, the main result of this paper can be described as
follows.

For any µ+, µ− < 1 the number N− (r0,0;Aα,ν) is finite and asymptotically

N− (r0,0;Aα,ν) ∼ N−(ν2
+/2;AR+;α+;ν+) + N−(ν2

−/2;AR−;α−;ν−),

r0,0 =(ν2
+ + ν2

−)/2, µ± ↓ 1.
(1.8)

In order to give the precise formulation, we need to describe the behaviour
of the terms on the right-hand side of (1.8), and to explain what we mean
when speaking about the asymptotics in two parameters. To achieve the first
goal, we present a result which is a special case of Theorem 3.1 in [9], see also
(3.10) in [8]. Let Γ = [a, b] (with the standard change if a = −∞ or b = ∞)
be a finite or infinite interval and o ∈ Int Γ. Consider the operator AΓ;α;ν in
L2(Γ× R), defined by the differential expression

AU = −U ′′
x2 +

ν2

2
(−U ′′

q2 + q2U)
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and the matching condition

U ′
x(o+, q)− U ′

x(o−, q) = αqU(o, q),

cf (1.1) and (1.2). If Γ 6= R, the Dirichlet or the Neumann boundary condition
is posed on ∂Γ×R. We do not reflect the type of this condition in our notation.
If Γ = R, we drop the index Γ in the notation of the operator.

Proposition 1.4. For any α ∈ (0, ν
√

2) the spectrum of the operator Aα,ν

below the point ν2/2 is non-empty and finite, and the following asymptotic
formula is satisfied:

(1.9) N−(ν2/2;AΓ;α;ν) ∼ 1

4
√

2(µ− 1)
, µ :=

ν
√

2

α
↓ 1.

It was assumed in [8] and [9] that ν = 1, the general case reduces to this
special case by scaling.

Our next theorem, together with the subsequent explanation of uniformity
of the asymptotics, gives the precise meaning to (1.8). In the formulation of
its second part an arbitrary positive function ψ(t) on (0, 1) which is o(t−1/4) as
t → 0 is involved. We also define the set

(1.10) ΩΨ := {(x, y) : Ψ(x) ≤ y ≤ 1, Ψ(y) ≤ x ≤ 1} , Ψ(t) = e−ψ(t).

Note that the co-ordinate axes are tangents of infinite order to ΩΨ at the origin.

Theorem 1.5. 1. If µ± :=
√

2ν±/α± > 1, then Aα,ν is bounded below and its
spectrum in (−∞, r0,0) is non-empty and finite.

2. Let Ψ be chosen as in (1.10). Then, uniformly for (1− µ−1
+ , 1− µ−1

− ) ∈ ΩΨ,

N− (r0,0;Aα,ν) ∼ 1

4
√

2(µ+ − 1)
+

1

4
√

2(µ− − 1)
, µ± ↓ 1.

Now, let us explain what we mean by ‘uniform asymptotics’. It means
that on the domain (1 − µ−1

+ , 1 − µ−1
− ) ∈ ΩΨ there exists a bounded function

Φ(µ+, µ−), such that Φ(µ+, µ−) → 0 as µ± → 1 and
∣∣N− (r0,0;Aα,ν)− 1

4
√

2
((µ+ − 1)−1/2 + (µ− − 1)−1/2)

∣∣

≤ Φ(µ+, µ−)
(
(µ+ − 1)−1/2 + (µ− − 1)−1/2

)
.

The technical ideas which lead to this result were explained in the introduc-
tion to [3]. Here we only note that for µ± ≥ 1 the operator Aα,ν is bounded
below (see Theorem 2.1), which makes it possible to apply the variational ap-
proach. In contrast to the operator domain of the operator Aα,ν , its quadratic
form domain for µ± > 1 does not depend on the parameters α±. This signifi-
cantly simplifies the analysis. In particular, we do not need to divide the graph
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into two parts, as we did in [3]; cf. (2.9) and Theorem 2.8 there. In our proof
of Theorem 1.5 we will be dealing with the operators Aα±;ν± (i.e., the corre-
sponding graph is Γ = R) rather than with AR±α±;ν± as in (1.8). According
to Proposition 1.4, the passage from R± to R does not affect the asymptotic
behaviour of the function N− for these operators.

We mostly use the same notation as in [3]. However, in this paper we have to
take special care in order to distinguish between the operators which correspond
to the one-oscillator and to the two-oscillator cases. We always denote the first
as Aα,ν and the second as Aα,ν , with the boldface α, ν in the indices. Besides,
we almost never drop the index ν in the notation.

2. Variational description of Aα,ν for µ± > 1

2.1. The quadratic form aα,ν. If U ∼ {um,n} ∈ Dα,ν , the quadratic form
aα,ν [U ] := (Aα,νU,U) is given by

(2.1) aα,ν [U ] = a[U ] + α+b+[U ] + α−b−[U ],

where, in the notation (1.4),

a[U ] =
∑

m,n∈N0

∫

R

(|u′m,n(x)|2 + rm,n|um,n|2
)
dx,(2.2)

b+[U ] = Re
∑

m,n∈N0

√
2mum,n(1)um−1,n(1),(2.3)

b−[U ] = Re
∑

m,n∈N0

√
2num,n(−1)um,n−1(−1).(2.4)

In (2.3) and (2.4) we took by default that u−1,n ≡ 0 and um,−1 ≡ 0 for all
m,n ∈ N.

The quadratic form a (which is the same as a0,ν) is positive definite in H.
Completing the set D0,ν with respect to the ‘energy metric’ a[U ], we obtain a
Hilbert space which we denote by d.

Let us define H1
γ , where γ > 0 is a real parameter, to be the Sobolev space

H1(R) with the scalar product

(2.5) (u1, u2)γ =

∫

R

(
u′1(x)u′2(x) + γ2u1(x)u2(x)

)
dx

and the corresponding norm ‖u‖γ. The space d can be naturally identified
with the orthogonal sum of the spaces H1√

rm,n
. The topology in d does not

depend on the values of ν±.
Our next goal is to prove the following
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Theorem 2.1. Let µ± ≥ 1. Then the quadratic form aα,ν is bounded below.
If µ± > 1, then aα,ν is closed on d and the corresponding self-adjoint operator
in H coincides with Aα,ν.

For the proof we need some auxiliary material. Let Fγ be the two-dimensional
space of functions v ∈ H1

γ which for x 6= ±1 satisfy the equation

−v′′ + γ2v = 0.

Evidently, each function v ∈ H1
γ is uniquely determined by its values at the

points ±1. The space Fγ was discussed in [3], sec. 3.1. In particular, it was
shown there that for any v ∈ Fγ one has

(2.6) [v′](p) = − 2γ

1− e−4γ

(
v(p)− e−2γv(−p)

)
, p = ±1.

It follows from (2.6) that the mapping v 7→ ([v′](1), [v′](−1)) maps Fγ onto C2.
Denote by Πγ the operator of ortogonal projection (in the scalar product

(2.5)) of the space H1
γ onto Fγ.

Lemma 2.2. For any u ∈ H1
γ its projection Πγu is the function v ∈ Fγ, defined

by the conditions

(2.7) v(±1) = u(±1).

Proof. Let v, w ∈ Fγ. We have

(u− v, w)γ =

(∫ −1

−∞
+

∫ 1

−1

+

∫ ∞

1

) (
(u′ − v′)w′ + γ2(u− v)w

)
dx

=

(∫ −1

−∞
+

∫ 1

−1

+

∫ ∞

1

)
(u− v)(−w′′ + γ2w)dx

− (u(1)− v(1))[w′](1)− (u(−1)− v(−1))[w′](−1).

The integrand in the second line vanishes and we get

(u− v, w)γ = −(u(1)− v(1))[w′](1)− (u(−1)− v(−1))[w′](−1).

By (2.6), the set of all possible pairs ([w′](1), [w′](−1)) covers the whole of C2

which implies the result. ¤

Lemma 2.3. For all u ∈ H1
γ ,

(2.8) 2γ(|u(−1)|2 + |u(1)|2) ≤ (1 + e−2γ)

∫

R

(|u′|2 + γ2|u|2) dx.

The constant is optimal. The equality in (2.8) is attained on the one-dimensional
subspace in H1

γ formed by the functions v ∈ Fγ such that v(1) = v(−1).
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Proof. Given a function u ∈ H1
γ , take v = Πγu. Then

‖u− v‖2
γ = ‖u‖2

γ − (v, u)γ = ‖u‖2
γ −

∫

R

(
v′u′ + γ2vu

)
dx.

Integrating by parts as in Lemma 2.2 and denoting u(1) = A, u(−1) = B, we
get

‖u− v‖2
γ = ‖u‖2

γ + A[v′](1) + B[v′](−1).

On using (2.6) and (2.7), we find from here:

0 ≤ ‖u− v‖2
γ = ‖u‖2

γ −
2γ

1− e−4γ

(
A(A− e−2γB) + B(B − e−2γA)

)

= ‖u‖2
γ −

2γ

1 + e−2γ
(|A|2 + |B|2)− 2γe−2γ

1− e−4γ
|A−B|2,

whence the Lemma. ¤
2.2. Proof of Theorem 2.1. We obtain from (2.3):

b+[U ] ≤ 1

2

∑

m,n∈N0

(√
2m +

√
2(m + 1)

)
|um,n(1)|2 ≤

∑

m∈N0,n∈N

√
2m + 1|um,n(1)|2

and similarly

b−[U ] ≤
∑

m∈N,,n∈N0

√
2n + 1|um,n(−1)|2.

Given a number k ≥ −r0,0, denote

(2.9) γm,n(k) =
√

rm,n + k.

The conditions µ+, µ− ≥ 1 imply

max(α+

√
2m + 1, α−

√
2n + 1) ≤ 2γm,n(0).

Hence,

α+

√
2m + 1|um,n(1)|2 + α−

√
2n + 1|um,n(−1)|2

≤ 2γm,n(0)
(|um,n(1)|2 + |um,n(−1)|2) .

Applying Lemma 2.3 with γ = γm,n(k) and k a positive constant to be chosen
later, we obtain
(2.10)

α+

√
2m + 1|um,n(1)|2 + α−

√
2n + 1|um,n(−1)|2 ≤ C(m,n, k)‖um,n‖2

H1
γm,n(k)

where

C(m,n, k) =
γm,n(0)

γm,n(k)
(1 + e−2γm,n(k)).

Now we show that

(2.11) C(m, n, k) ≤ 1, ∀m,n ∈ N0,
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provided that k is large enough. To this end, consider the function

fk(t) = (1− kt−2)1/2
(
1 + e−2t

)
, t ≥ k1/2, k > 0,

then

C(m,n, k) = fk(γm,n(k)).

Note that fk(k
1/2) = 0 and fk(t) → 1 as t →∞. Hence, (2.11) will be proven

if we show that f ′k(t) ≥ 0 for all t.
We have

f ′(t) =
k(1 + e−2t)

t3(1− kt−2)1/2
− 2(1− kt−2)1/2e−2t

=
(1 + e−2t + 2te−2t)k − 2t3e−2t

t3(1− kt−2)1/2
≥ k − 2t3e−2t

t3(1− kt−2)1/2
,

and the desired result follows for k ≥ 27e−3/4 = max (2t3e−2t).
On taking k such that (2.11) is satisfied, we derive from (2.10):

|α+b+[U ] + α−b−[U ]| ≤
∑

m,n∈N0

‖um,n‖2
H1

γm,n(k)
= a[U ] + k‖U‖2

H.

So, the boundedness below of aα,ν for all µ± ≥ 1 is established. The closedness
of this quadratic form for all µ± > 1 easily follows from here, cf. [1]. Since
the operator Aα,ν has a unique self-adjoint realization, it necessarily coincides
with the operator associated with the quadratic form aα,ν .

3. The spectrum of Aα,ν below r0,0.

We next prove that the spectrum below r0,0 is finite and non-empty, and in
the process, give an alternative proof of part 1 of Theorem 1.5. Our argument
is similar to the one in [9] where the one-oscillator case was studied.

3.1. Finiteness. For some L ∈ N, let us consider the quadratic form aα,ν , see
(2.1), on the set

(3.1) d(L) =
{
U ∼ {um,n} : um,n(±1) = 0, m + n ≤ L

}
.

For the operator A
(L)
α,ν , associated with the quadratic form aα,ν ¹d(L), the sub-

space

H(L) =
{
U ∼ {um,n} : um,n ≡ 0, m + n > L

}

is invariant, and the part A
(L,−)
α,ν of A

(L)
α,ν in H(L) decomposes in the orthogonal

sum:

(3.2) A(L,−)
α,ν =

∑
m+n≤L

⊕
(A + rm,n) ,
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where A = − d2

dx2 with domain H2(R). Since

σ(A) = σa.c.(A) = [0,∞),

it follows that

(3.3) σ(A(L,−)
α,ν ) = σa.c.(A

(L,−)
α,ν ) = [r0,0,∞).

An explicit expression for the multiplicity function ma.c.(λ;A
(L,−)
α,ν ) immediately

follows from (3.2), but this is omitted.
On repeating the argument in section 2.2 with k = 0, we have that for

U ∈ d, U ⊥ H(L)

aα,ν [U ] ≥
∑

m+n>L

(
1−max{µ−1

+ , µ−1
− }(1 + e−2γm,n(0))

)

×
∫

R

(|u′m,n|2 + rm,n|um,n|2
)
dx.

Let A
(L,+)
α,ν stand for the part of Aα,ν in the subspace (H(L))⊥. It follows from

the above inequality that for any λ0 > 0 it is possible to choose L sufficiently
large, to ensure that

(3.4) (A(L,+)
α,ν U,U) ≥ λ0‖U‖2.

Hence, in view of (3.3),

(3.5) σ(A(L)
α,ν) = [r0,0,∞),

(3.6) σa.c.(A
(L)
α,ν) ⊇ [r0,0, λ0).

The passage from the operator Aα,ν to A
(L)
α,ν corresponds to the passage

from the quadratic form domain d to its subspace d(L) of finite co-dimension.
In its turn, this corresponds to a finite rank perturbation of the resolvent.
Such perturbations do not affect the absolutely continuous spectrum and its
multiplicity. Hence,

ma.c.(λ;Aα,ν) = ma.c.(λ;A(L)
α,ν), λ ∈ [r0,0,∞).

This immediately leads to (1.7) for r0,0 ≤ λ < λ0 and therefore, for all λ ≥ r0,0.
Besides, the number of eigenvalues of Aα,ν which may appear below r0,0

under such a perturbation, does not exceed the rank of the perturbation and
hence, is finite.
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3.2. Non-emptiness of σp. To prove that the spectrum below r0,0 is non-
empty, and hence complete the proof of Theorem 1.5, we apply the argument
used to prove the analogous result in [7], Theorem 6.2. It is sufficient to find a
function U ∈ d which is such that

(3.7) aα,ν [U ] < r0,0‖U‖2
H.

Choose U ∼ {um,n} as follows. We take

u0,0(x) = −ε−1/2 min(1, e−(ε|x|−1)),

with ε ∈ (0, 1) to be chosen later. Note that∫

R
|u′0,0|2dx = 1, u0,0(±1) = −ε−1/2.

We also take u1,0(x) = e−|x−1|, u0,1(x) = e−|x+1|, then u1,0(1) = u0,1(−1) = 1
and ∫

R
|u′1,0|2dx =

∫

R
|u′0,1|2dx =

∫

R
|u1,0|2dx =

∫

R
|u0,1|2dx = 1.

We take all the other components um,n to be zero. For such U we have

aα,ν [U ]− r0,0‖U‖2
H

=
∫
R

(|u′0,0|2 + |u′1,0|2 + |u′0,1|2 + ν2
+|u1,0|2 + ν2

−|u0,1|2
)
dx

+
√

2α+u1,0(1)u0,0(1) +
√

2α−u0,1(−1)u0,0(−1)

= 3 + ν2
+ + ν2

− − ε−1/2
√

2(α+ + α−).

On choosing ε sufficiently small we obtain a function U which satisfies (3.7).
This completes the proof of part 1 of Theorem 2.1.

4. Asymptotics: reduction to a problem in `2

4.1. Removing the component u0,0. In what follows it is convenient for us
to consider the quadratic form aα,ν , defined in (2.1), for the elements U ∼
{um,n} ∈ d subject to the additional conditions

(4.1) u0,0(1) = u0,0(−1) = 0.

For any α± < ν±
√

2 the quadratic form aα,ν , restricted to this domain, gener-
ates in H a self-adjoint operator, for which the subspace

H0,0 = {U ∼ {u0,0, 0, 0, . . .}}
is invariant. The part of this operator in H0,0 is −u′′0,0 + r0,0u0,0 under the
conditions (4.1) and it has no spectrum below r0,0. Removing this subspace
yields the Hilbert space

H◦ = {U ∼ {um,n} : u0,0 ≡ 0}
and the quadratic form a◦α,ν = aα,ν ¹d◦.



12 W.D. EVANS AND M. SOLOMYAK

Below we denote

γm,n = γm,n(−r0,0) =
√

ν2
+m + ν2−n,

cf (2.9). We shall consider d◦ as a Hilbert space with the norm given by

(4.2) ‖U‖2
d◦ = a◦[U ]− r0,0‖U‖2

H◦ =
∑

m+n>0

∫

R

(|u′m,n|2 + γ2
m,n|um,n|2

)
dx

and the corresponding scalar product (., .)d◦ . The norm ‖U‖d◦ and the “energy

norm”
√

a[U ] are equivalent on d◦. On the whole of d this is not true. This
explains, why the passage from d to d◦ is useful.

Let A◦
α,ν stand for the self-adjoint operator in H◦, associated with the qua-

dratic form a◦α,ν . It follows from the variational argument that

(4.3) 0 ≤ N−(r0,0;Aα,ν)−N−(r0,0;A
◦
α,ν) ≤ 2, ∀µ± > 1.

Therefore, both counting functions have the same asymptotic behaviour as
µ± ↓ 1.

According to the variational principle,

(4.4) N−(r0,0;A
◦
α,ν) = min

E∈E
codim E

where E is the set of all subspaces E ⊂ d◦ such that

a◦α,ν [U ] ≥ r0,0‖U‖2
H◦ , ∀U ∈ E.

The latter inequality can be re-written as

(4.5) ‖U‖2
d◦ + α+b+[U ] + α−b−[U ] ≥ 0, ∀U ∈ E.

4.2. Shrinking the space. Our next goal is to show that it is enough to take
the maximum in (4.4) over the set of subspaces E ⊂ F where

F =
∑

m+n>0

⊕
Fγm,n

(recall that the two-dimensional spaces Fγ were defined in section 2.1). Indeed,
in the variational description of the non-zero spectrum of a self-adjoint operator
T one can always consider only the subspaces orthogonal to kerT. Let us apply
this remark to the operator B in d◦, generated by the right-hand side in (4.5).
It follows from Lemma 2.2 that the orthogonal complement to F in d◦ is given
by

F⊥ = {U ∼ {um,n} : um,n(1) = um,n(−1) = 0.}
Therefore, F⊥ ⊂ kerB, which yields the desired result; see [8], proof of Theo-
rem 3.1, or [9], proof of Theorem 10.1, for further details.
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Now we construct a convenient orthogonal basis in F. It is enough to choose
a basis in each component Fγm,n . To simplify notation, in calculations below
we drop the indices m,n.

The functions u±(x) = e−γ|x∓1| form a linear basis in Fγ. We have

‖u±‖2
γ = 2γ, (u+, u−)γ = 2γe−2γ

where the norm and the scalar product are taken in H1
γ , see (2.5). Let now

(4.6) v+ :=
u+ + κu−

‖u+ + κu−‖γ

, v− :=
u− + κu+

‖u− + κu+‖γ

,

for a constant κ. These are normalized and are orthogonal in H1
γ if and only

if κ2 + 2e2γκ + 1 = 0. We choose the root

(4.7) κ = −e2γ +
√

e4γ − 1 = −1

2
e−2γ(1 + O(e−4γ));

then

(4.8) ρ2 := ‖u± + κu∓‖2
γ = 2γ(1 + κ2 + 2κe−2γ) = 2γ(1 + O(e−4γ)).

Also, using the equation for κ, we find

v+(1) = v−(−1) = ρ̂ −1, v+(−1) = v−(1) = −κρ̂ −1

where

ρ̂ = ρ(1− e−4γ)−1/2.

Below we indicate the dependence of γ, κ and ρ on m, n. In particular, we
write v±m,n. Note that by (4.7), (4.8) we have
(4.9)

κm,n = −e−2γm,n

2

(
1 + O(e−4γm,n)

)
, ρm,n =

√
2γm,n

(
1 + O(e−4γm,n)

)
.

Let U ∼ {C+
m,nv

+
m,n + C−

m,nv−m,n} ∈ F, then the mapping

U 7→ C = {C+
m,n, C

−
m,n}

is an isometry of F onto the Hilbert space G = `2(N2
0 \ {(0, 0)}). We denote by

G± the subspaces in G, formed by the elements

C+ = {C+
m,n, 0}, C− = {0, C−

m,n}
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respectively. On d◦ the quadratic forms b± become

b+[U ] = b′+[C]

=
∑

m+n>0

√
2m

ρ̂m,nρ̂m−1,n

Re[(C+
m,n − κm,nC−

m,n)(C+
m−1,n − κm−1,nC−

m−1,n)],

b−[U ] = b′−[C]

=
∑

m+n>0

√
2n

ρ̂m,nρ̂m,n−1

Re[(C−
m,n − κm,nC+

m,n)(C−
m,n−1 − κm,n−1C

+
m,n−1)],

and the quadratic form a◦α,ν becomes

a′α,ν [C] = ‖C‖2
G + α+b′+[C] + α−b′−[C].

Denote by B′
± the operators in G associated with the quadratic forms b′±; then

the operator associated with a′α,ν is I + α+B′
+ + α−B′

−.
It follows from this construction and (4.4), (4.5) that

(4.10) N−(r0,0;A
◦
α;ν) = N−(0; I+α+B′

+ +α−B′
−) = N+(1;−α+B′

+−α−B′
−).

Consider now the case when one of the parameters α± is equal to zero. Below
we denote

α+ = (α+, 0), α− = (0, α−).

For α = α± the equality (4.10) can be re-written in the standard form of the
Birman – Schwinger principle:
(4.11)

N−(r0,0;A
◦
α+;ν) = N+(α−1

+ ;−B′
+), N−(r0,0;A

◦
α−;ν) = N+(α−1

− ;−B′
−).

4.3. Structure of the operators B′
±. Denote by b′′± the leading terms in

the expressions for b′±, i.e.

b′′+[C] = b′′+[C+] =
∑

m+n>0

√
2m

ρ̂m,nρ̂m−1,n

Re(C+
m,nC+

m−1,n),

b′′−[C] = b′′−[C−] =
∑

m+n>0

√
2n

ρ̂m,nρ̂m,n−1

Re(C−
m,nC−

m,n−1).

Let B′′
± stand for the corresponding operators in G±.

Now we are in a position to explain the scheme of our further analysis. It
is natural to expect that the number N−(0; I + α+B′

+ + α−B′
−), is close to

N−(0; (I+ + α+B′′
+)⊕ (I− + α−B′′

−)). Indeed, consider the operator

Xα := (I + α+B′
+ + α−B′

−)− (I+ + α+B′′
+)⊕ (I− + α−B′′

−)

= α+(B′
+ − (B′′

+ ⊕ 0)) + α−(B′
− − (0⊕B′′

−)),
(4.12)
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then
(XαC,C)G = α+(b′+[C]− b′′+[C+]) + α−(b′−[C]− b′′−[C−]).

This quadratic form is expressed by a sum of terms with exponentially decaying
coefficients, and adding this sum cannot affect the asymptotic behaviour of the
function N−. Further, the behaviour of N− for the operator involving B′′

± is
easy to understand, due to its special structure.

So, our immediate task is to take care of the errors coming from the difference
b′±[C]− b′′±[C]. Each term in these quadratic forms involves at least one of the
factors κm,n,κm−1,n,κm,n−1. We have

γm,n =
√

ν2
+m + ν2−n ≥ δ′

√
m + n, δ′ = min(ν+, ν−).

Note also that by (4.9) the factors
√

2m(ρ̂m,nρ̂m−1,n)−1 and
√

2n(ρ̂m,nρ̂m,n−1)
−1

appearing in the expressions for b′±,b′′± are bounded uniformly in m,n. Taking
this into account, applying the Cauchy – Schwartz inequality, and using the
asymptotic result (4.9) for κm,n, we come to the inequality

|b′±[C]− b′′±[C]| ≤ c
∑

m+n>0

e−2δ
√

m+n|C±
m,n|2,

with some c < ∞ and a positive δ < δ′. Now it follows from the variational
principle that the consecutive eigenvalues of the operator |Xα| do not exceed

the numbers c max(α+, α−)e−2δ
√

m+n, repeated twice and then rearranged in
decreasing order. Hence, given an ε > 0, we derive an estimate, uniform in
α± ≤ ν±

√
2:

(4.13) N+(ε; |Xα|) ≤ #
{

(m,n) ∈ N2 : C0e
−2δ

√
m+n > ε

}
≤ R log4(K/ε),

with some R, K > 0. Note that another way to obtain this inequality is based
on the connection between the eigenvalues and the approximation numbers of
a compact operator, see [2].

Now, let us consider the operator Aα+;ν . Since α− = 0, the variable q− can
be separated and the operator decomposes into the orthogonal sum (see (1.5)
in [3])

Aα+;ν =
∑

n∈N0

⊕
(Aα+;ν+ + ν2

−(n + 1/2)).

This decomposition yields

(4.14) N−(r0,0;Aα+;ν) =
∑

n∈N0

N−(ν2
+/2− ν2

−n;Aα+;ν+).

For α+ ≤ ν+

√
2 the operator Aα+;ν+ is non-negative (see [7]), therefore the

sum in (4.14) has only a finite number of non-zero terms. Besides, the terms
corresponding to any n > 0, are finite, since the essential spectrum of Aα+,ν+
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is [ν2
+,∞). Taking into account that by (4.3) the asymptotic behaviour as

α+ → ν+

√
2 of the function N−(r0,0; .) for the operators Aα+;ν and A◦

α+;ν is
the same, we conclude from (1.9) that

N−(r0,0;A
◦
α+;ν) ∼ N−(ν2

+/2;Aα+;ν+) ∼ 1

4
√

2(µ+ − 1)
, µ+ ↓ 1.

From the last equality and (4.11) we derive that

N−(0; I + α+B′
+) = N+(α−1

± ;−B′
+) ∼ 1

4
√

2(µ+ − 1)
, µ± ↓ 1.

The analogous equality is valid for the operator B′
−.

The same asymptotic formula holds for the operators B′′
±:

(4.15) N−(0; I± + α±B′′
±) ∼ 1

4
√

2(µ+ − 1)
, µ± ↓ 1.

This follows (for the ‘plus’ sign, say) from the evident equality

N−(0; I+ + α+B′′
+) = N−(0; I + α+B′′

+ ⊕ 0)

and from the estimate (4.13) for the case α− = 0.

5. Proof of Theorem 1.5, part 2

The proof is based upon (4.10) and the equality

I + α+B′
+ + α−B′

− = (I+ + α+B′′
+)⊕ (I− + α−B′′

−) + Xα

where the last term is given by (4.12).

Set η± := µ± − 1 = ν±
√

2
α±

− 1 and M = (4
√

2)−1. Then (4.15) means that

there exist two non-negative functions ϕ±(µ±), defined for µ± > 1, vanishing
as µ± → 1 and such that

(5.1)
∣∣N−(0; I± + α±B′′

±)−M(µ± − 1)−1/2
∣∣ ≤ ϕ±(µ±)(µ± − 1)−1/2.

To determine the asymptotic behaviour of N−(0; I + α+B′
+ + α−B′

−), we have
to estimate the smallest co-dimension of subspaces in G on which

(5.2) ‖C+‖2
G + ‖C−‖2

G + α+b′′[C+] + α−b′′[C−] + (XαC,C)G ≥ 0

for all C. By (4.13), for any ε > 0 there exists a subspace K(ε) ⊂ G such that

(5.3) codim K(ε) ≤ R log4(K/ε),

and for all C ∈ K(ε)

(5.4) |(XαC,C)G| ≤ ε‖C‖2
G = ε(|C+‖2

G + |C−‖2
G).

Choose ε ∈ (0, 1) to be such that α±/(1− ε) <
√

2ν±, or equivalently,

(5.5) η± > εµ±.
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Let L±(ε) be subspaces of G± of co-dimension N−(0; I± + α±
1−ε

B′′
±) which are

such that

‖C±‖2
G +

α±
1− ε

b′′±[C±] ≥ 0, ∀C± ∈ L±(ε).

Then, for C ∈ (L+(ε)⊕ L−(ε))∩K(ε) the inequality (5.2) is satisfied. It follows
that

F (η+, η−) := N−(0; I + α+B′
+ + α−B′

−)

≤N−(0; I+ +
α+

1− ε
B′′

+) + N−(0; I− +
α−

1− ε
B′′
−) + R log4(K/ε).

(5.6)

By (5.1), this gives

F (η+, η−) ≤ {M + ϕ+((1− ε)µ+)} (η+ − εµ+)−1/2

+ {M + ϕ−((1− ε)µ−)} (η− − εµ−)−1/2 + R log4(K/ε).
(5.7)

The inequalities (5.5) guarantee that the estimate (5.1) with µ± replaced by
(1− ε)µ± and, correspondingly, η± replaced by η± − εµ± is still valid.

Now we choose ε, keeping in mind to optimize the right-hand side in (5.7).
Let Ψ(t) be a function described in (1.10). Since ψ(t) = o(t−1/4), on choosing

ε = ε(µ+, µ−) =
1

2
Ψ

(
min{ η+

µ+

,
η−
µ−
}
)

,

we find that the inequalities (5.5) are satisfied. For if η+/µ+ ≤ η−/µ−, then

ε < Ψ(η+/µ+) ≤ Ψ(η−/µ−) ≤ η+/µ+ ≤ η−/µ−.

Also, ε = o(η±) as η± → 0.

Introduce the function

ϕ(µ+, µ−) = ϕ+((1− ε)µ+)
η

1/2
+

(η+ − εµ+)1/2
+ ϕ−((1− ε)µ−)

η
1/2
−

(η− − εµ−)1/2
.

It is well-defined for (1 − µ−1
+ , 1 − µ−1

− ) ∈ ΩΨ and ϕ(µ+, µ−) → 0 as µ± → 1.
The inequality (5.7) turns into

F (η+, η−) ≤ Mη
−1/2
+ + Mη

−1/2
− + ϕ(µ+, µ−)(η

−1/2
+ + η

−1/2
− ) + R log4(K/ε).

By (1.10), the last term here is o(η
−1/2
± ) and so

F (η+, η−) ≤ Mη
−1/2
+ + Mη

−1/2
− + Φ(µ+, µ−)(η

−1/2
+ + η

−1/2
− )

where Φ is a bounded function, defined on the same domain as ϕ and having
the same properties. The estimate is uniform for (η+/µ+, η−/µ−) ∈ ΩΨ.

To obtain the lower estimate we again choose K(ε) as in (5.3). There is a
subspace L(ε) of G of co-dimension N−(0; I + α+B′

+ + α−B′
−) which is such

that
‖C‖2

G + α+b′+[C] + α−b′−[C] ≥ 0, ∀C ∈ K(ε).
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Then, for C ∈ G(ε) ∩K(ε),

‖C‖2
G + α+b′′+[C] + α−b′′−[C] ≥ ε‖C‖2

G.

It follows that

N−(0; I+ +
α+

1 + ε
B′′

+) + N−(0; I− +
α−

1 + ε
B′′
−)

≤ N−(0; I + α+B′
+ + α−B′

−) + R log4(K/ε),

and so

F (η+, η−) ≥ N−(0; I+ +
α+

1 + ε
B′′

+) + N−(0; I− +
α−

1 + ε
B′′
−)−R log4(K/ε).

The rest of the argument is the same as for the upper estimate. Actually
it is easier, for if µ±(ε) :=

√
2ν±(1 + ε)/α±, then (1 − µ−1

+ (ε), 1 − µ−1
− (ε))

automatically lies in ΩΨ if (1− µ−1
+ , 1− µ−1

− ) does, and µ±(ε) → 1 as µ± → 1.
All in all we have therefore shown that there exists a bounded function

Φ(µ+, µ−) on ΩΨ which vanishes as (µ+, µ−) → (1, 1) and such that, uniformly
for (η+/µ+, η−/µ−) ∈ ΩΨ,∣∣∣N−(r0,0;A

′
α,ν)−Mη

−1/2
+ −Mη

−1/2
−

∣∣∣ ≤ Φ(µ+, µ−)
(
η
−1/2
+ + η

−1/2
−

)
.

The proof of Theorem 1.5 is therefore complete.
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