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Abstract

We consider a model of a particle coupled to a massless scalar field (the
massless Nelson model) in a non-Fock representation. We prove the existence
of a ground state of the system, applying the mothod of Griesemer, Lieb and
Loss.
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1 Introduction

The Nelson model is a quantum mechanical model which describes an interaction

between some quantum mechanical particles and a Bose field. In this paper, we present

a criterion for a Nelson model to have a ground state.

We consider one particle under the influence of an external potential V and coupled

to a scalar Bose field. The Hilbert space of the system is given by

F := L2(R3)⊗Fb(L
2(R3)), (1)

where Fb(L
2(R3)) is the Boson Fock space over L2(R3). The standard Nelson Hamil-

tonian is of the form

HV
m := (−4+ V )⊗ 1l + 1l⊗Hf (m) + λφ⊕(v), on F ,
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where 1l denotes identity, 4 is the generalized Laplacian on L2(R3), λ ∈ R is a coupling

constant, and Hf (m) and φ⊕(v) are defined by

Hf (m) :=

∫

R3

ωm(k)a(k)∗a(k)dk,

φ⊕(v) :=
1√
2

∫

R3

(v(x, k)⊗ a(k)∗ + v(x, k)∗⊗ a(k)) dk,

with

ωm(k) :=
√

k2 + m2, v(x, k) :=
1√

(2π)3

ρ̂(k)

|k|1/2
e−ikx,

where |k|−1/2ρ̂ ∈ Dom(ω
−1/2
m ) and a(k)∗, a(k) are the distribution kernels of the creation

and annihilation operators on Fb(L
2(R3)) (Dom(A) means the domain of operator A).

The problem on the ground state of HV
m can be classified as follows:

(i) the massive case : m > 0

(ii) the massless case: m = 0

{
|k|−1/2ρ̂ ∈ Dom(ω−1

0 ) : infrared regular

|k|−1/2ρ̂ /∈ Dom(ω−1
0 ) : infrared singular.

In almost all cases, to prove existence of a ground state for the massive case is easy. The

first result on the ground state problem, to our knowledge, is due to Spohn［12］. In

［12］he proved existence of a ground state in the case where the infrared regular(I.R.)

condition holds and (−4+ V + i)−1 is compact. If (−4+ V + i)−1 is not compact, his

theorem shows that a ground state exists if the I.R. condition holds and the coupling

constant λ is small enough. After the work of Spohn［12］, C. Gérard proved existence

of a ground state of an extended model of the Nelson model in the case where an

abstract particle Hamiiltonian K (which corresponds to −4+ V in the above context)

is compact and an I.R. like condition holds［3］. On the other hand, J. Lörinczi, R.

A. Minlos and H. Spohn［7］showed that HV
0 has no ground state if the infrared

singular(I.S.) condition holds in spite of the condition V (x) > C|x|α(C, α > 0) (also

refer to［2］about the absence of ground states). Recently, H. Hirokawa, F. Hiroshima

and H. Spohn［5］prove existence of a ground state for the renormalized Nelson model.

In the case where the I.S. condition holds, HV
0 may not has a ground state［7］, but

A. Arai［1］showed that a massless Nelson model in a non-Fock representation has a

ground state.
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We work with the non-Fock representation introduced in［1］. In this representation

the massless Nelson model we consider is of the form :

H̃V := (−4+ V )⊗ 1l + 1l⊗Hf (0) + λφ⊕(G)− λ2V(x̂)⊗ 1l + λ2W1l,

where V(x̂) is the multiplication operator by V(x) := Re〈|k|−1/2v(0), |k|−1/2v(x)〉, W :=

‖|k|−1/2v(0)‖2 is a constant, and G(x, k) := v(x, k) − v(0, k). If m = 0 and the I.R.

condition holds, H̃V is unitarily equivalent to HV
0 (Proposition 2.1). But if the I.S.

condition holds, H̃V may not be unitarily equivalent to HV
0 . If the I.S. condition

holds, to consider H̃V means to choose a non-Fock representation of the canonical

commutation relations of a, a∗(see［1］). Note that, in the massless case m = 0, the

Hamiltonian we consider is H̃V , not HV
0 .

For the non-Fock Hamiltonian H̃V , we present a criterion for H̃V to have a ground

state. The criterion is essentially the same condition as in［4］, and we prove existence

of a ground state without assuming the I.R. condition. Out strategy is the same as

that of［4］. We, however, improved the proof of the photon derivative bound. In the

proof of photon derivative bound in［4］, it is difficult to prove that the integer-valued

k-dependent sequence hl(k) is measurable. In our new proof of the photon derivative

bound, such uncertain sequence does not appear.

This paper is organized as follows. In Sec. 2 we describe rigorous definitions of our

system and state main results. In Sec. 3, we prove the main theorem. In Appendix A, we

establish a formula which expresses a second quantization operator by the annihilation

operators.

2 Notation and Main Results

We consider a model of one particle interacting with a scalar Bose field, and in an

external potential V : R3
x → R satisfying V ∈ L1

loc(R3
x). The Hilbert space for the model

is given by F := L2(R3
x)⊗Fb(L

2(R3
k)), where Fb(L

2(R3
k)) is the Boson Fock space over

L2(R3
k) (see［9］). For m ≥ 0 we define a function ωm : R3

k → R by ωm(k) :=
√

k2 + m2.

The multiplication operator by ωm is denoted by the same symbol. The free Hamiltonian

of the scalarBose field is the second quantization of ωm(［9］):

Hf (m) := dΓb(ωm). (2)
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We set V±(x) := max{0,±V (x)}. Throughout this paper, we assume that the potential

V has the following properties:

[N.1] There exist constants a < 1 and b ∈ R such that

‖V 1/2
− ψ‖2 ≤ a‖(−4)ψ‖2 + b‖ψ‖2, ψ ∈ C∞

0 (R3
x).

The particle Hamiltonian Hp is a self-adjoint operator defined by

Hp := −4+̇V, on L2(R3
x),

where +̇ means the form sum. For f ∈ L2(R3
k) we denote by a(f)∗, a(f), the creation

and annihilation operators respectively, by ΦS(f) := [a(f) + a(f)∗]/
√

2 the Segal field

operators ( “ – ” means closure). It is well known that ΦS(f) is a self-adjoint operator

on Fb(L
2(R3

k))(see［10］). For x ∈ R3
x and ρ̂ ∈ L2(R3

k) ∩ Dom(|k|−1/2) we define v(x) ∈
L2(R3

k) by

v(x)(k) := v(x, k) :=
1

(2π)3/2

ρ̂(k)

|k|1/2
e−ikx, k ∈ R3

k.

The Hilbert space F can be identified with the fibre direct integral of Fb(L
2(R3

k))(see

［11］):

F =

∫ ⊕

R3
x

Fb(L
2(R3

k))dx.

In this identification the opeartor

φ⊕(v) :=

∫ ⊕

R3
x

ΦS(v(x))dx

gives a self-adjoint operator on F (［11］).

The Hamiltonian of the standard Nelson model is defined by

HV
m := Hp⊗ 1l + 1l⊗Hf (m) + λφ⊕(v).

Here λ ∈ R is a coupling constant. We set

H0 := Hp⊗ 1l + 1l⊗Hf (m),

the free Hamiltonian of the Nelson model. By [N.1], Hp is bounded below. Therefore

H0 is self-adjoint on D(H0) = D(Hp⊗ 1l) ∩D(1l⊗Hf (m)) and bounded below.

The following fact is well-known:
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Proposition 2.1. Assume |k|−1/2ρ̂ ∈ Dom(ω
1/2
m ) and [N.1]. Then HV

m is self-adjoint

on Dom(H0) and bounded below. Moreover HV
m is essentially self-adjoint on each core

for H0.

Under the assumption of Proposition 2.1, we set

EV (m) := inf σ(HV
m),

the ground state energy of HV
m. Where σ(HV

m) means the spectrum of HV
m. If EV (m)

is an eigenvalue of HV
m, we say that HV

m has a ground state and a eigenvector Φm ∈
ker(HV

m − EV (m))\{0} is called a ground state of HV
m.

Let θ ∈ C∞
0 (R3

x), θ̃ ∈ C∞(R3
x) be functions which satisfy the following properties (i),

(ii):

(i) 0 ≤ θ(x), θ̃(x) ≤ 1, θ(x)2 + θ̃(x)2 = 1, (x ∈ R3
x).

(ii) θ(x) =

{
1 |x| ≤ 1

0 |x| ≥ 2.

For R > 0 we define particle cut-off functions θR, θ̃R as follows:

θR(x) := θ(x/R), θ̃R(x) := θ̃(x/R).

We abbreviate θR⊗ 1l, θ̃R⊗ 1l to θR, θ̃R, respectively if there is no danger of confusion.

For a self-adjoint operator T , we denote by Q(T ) the form domain of T , and for

Ψ, Φ ∈ Q(T ), we write simply 〈Ψ, TΦ〉 =
∫
R µd〈Ψ, ET (µ)Φ〉, where ET means the

spectral measure of T .

We define a quantity which physically means the minimal energy in the states where

the particle is separated more than R away from the origin:

Definition 2.2.

E∞(R, m) := inf
Ψ∈Q(HV

m)

‖eθRΨ‖6=0

〈θ̃RΨ, HV
mθ̃RΨ〉

〈Ψ, θ̃2
RΨ〉

.

Remark. For all R > 0, it is easy to see that EV (m)− E∞(R, m) ≤ 0.

The following condition is based on［4］:

Hypothesis I(binding condition for m > 0)

EV (m) < lim sup
R→∞

E∞(R, m).
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Theorem 2.3 (Existence of ground state (m > 0)). Let m > 0. Assume [N.1] and

Hypothesis I. Then HV
m has a ground state.

Proof. This is done in the same method as in the proof of［4，Theorem 4.1］. Therefore

we omit the proof.

In the case m = 0, we need more assumptions:

[N.2] ρ̂/|k| ∈ L2(R3
k).

Under the condition [N.1] and [N.2], the Hamiltonian of the massless Nelson model we

consider is:

H̃V := Hp⊗ 1l + 1l⊗Hf (0) + λφ⊕(G)− λ2V(x̂)⊗ 1l + λ2W1l,

where W := ‖ω−1/2
0 v(0)‖2 is a constant and V(x̂) is the multiplication operator by the

function V(x) := Re〈ω−1/2
0 v(0), ω

−1/2
0 v(x)〉.

By [N.2], V(x) is uniformly continuous and lim|x|→0 V(x) = 0. The relation between

H̃V and HV
0 is given by the following proposition:

Proposition 2.4. Suppose that the infrared regular condition ρ̂/|k|3/2 ∈ L2(R3
k) holds.

Then H̃V is unitarily equivalent to HV
0 .

Proof. By the assumption, the operator T := exp[−iλ1l⊗ΦS(i|k|−1v(0))] is a unitary

operator on F and HV
m is unitarily equivalent to H̃V = THV

mT ∗.

If the infrared singular condition ρ̂/|k|3/2 /∈ L2(R3
k) holds, this Hamiltonian H̃V gives

a Nelson Hamiltonian in a non-Fock representation (see［1］).

For the existence of ground states of H̃V , we impose some conditions on ρ̂:

[N.3] There exists an open set S ⊂ R3, such that supp ρ̂ = S̄. Moreover, for all n ∈ N

Sn := {k ∈ S||k| < n}

has the cone-property(see［6］).

[N.4] There exists a function η ∈ H1(R3
k), such that ρ̂ = χSη, where χS is the charac-

teristic function of S.

[N.5] ρ̂ is continuously differentiable in S\{0}.
[N.6] |k|−3/2ρ̂, |k|−1/2|∇ρ̂| ∈ Lp(S) for all p, 1 < p < 2.
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Under the condition [N.1] and [N.2], it is easy to see that EV (0) = inf σ(H̃V ) . One

of the most important conditions for the existence of ground states of H̃V is

Hypothesis II(binding condition for m = 0)

EV (0) < lim sup
R→∞

E∞(R, 0). (3)

Now we state the main result of this paper.

Theorem 2.5 (Existence of ground state (m = 0)). Assume [N.1]-[N.6] and Hypothesis

II. Then the massless Nelson Hamiltonian H̃V has a ground state.

Remark. In the case lim|x|→∞ V (x) = ∞, it is easy to see that limR→∞ E∞(R,m) = ∞.

Therefore Hypothesis II holds. On the other hand, if lim|x|→∞ V (x) → 0 and the particle

Hamiltonian Hp has negative energy ground states, then Hypothesis I, II holds (see［4，

Theorem 3.1］).

Remark. Let Λ > 0. Then ρ̂ = χΛ (the characteristic function of the region |k| < Λ)

satisfies the above conditions [N.2]-[N.6]. Note that the function ρ̂ = χΛ is infrared

singular, because |k|−3/2ρ̂ is not in L2(R3).

3 Proof of Theorem 2.5

Throughout this section we assume [N.1]-[N.6] and Hypothesis II. In this section, we

set λ = 1, because Theorem 2.5 does not depend on λ explicitly (to restore λ, it is

enough to replace ρ̂ by λρ̂).

For m > 0, Tm := exp[−i1l⊗ΦS(iv(0/ωm))] is a unitary operator on F , and we have

H̃V
m :=TmHV

mT ∗
m

=Hp⊗ 1l + 1l⊗Hf (m) + φ⊕(G)− Vm(x̂)⊗ 1l +Wm1l,

where Vm(x̂) is the multiplication operator by the function Vm(x) := Re〈ω−1
m v(0), v(x)〉

and Wm := ‖ω−1/2
m v(0)‖2 is a constant. In Fig.1, we show the relation to the original

model.
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HV
0

HV
m H̃V

m

H̃V

m
↓
0

Tm

T ∗
m

m
↓
0

Standard Nelson

Fig.1

The ground state energy EV (m) is monotone increasing in m ≥ 0, and limm→0 EV (m) =

EV (0) (see［4，Section 5］). Therefore, by Hypothesis II, for all sufficiently small m ≥ 0

we have EV (m) < lim supR→∞ E∞(R, 0). Since E∞(R,m) is monotone increasing in

m ≥ 0, there exists a constant m such that

EV (m) < lim sup
R→∞

E∞(R, m), (0 ≤ m < m).

In what follows, we consider only the case 0 < m < m. Hence, by Theorem 2.3, HV
m

has a ground state Φm. We set Φ̃m := TmΦm a ground state of H̃V
m.

Lemma 3.1 (Exponential decay). Let β > 0 be a constant such that

β2 < lim sup
R→∞

E∞(R,m)− EV (m), (0 < m < m).

Then, for all large R > 0,

‖exp(β|x|)Φ̃m‖2 ≤ C

(
1 +

1

E∞(R, m)− EV (m)− β2 + o(1/R0)

)
‖Φ̃m‖2,

where the constant C > 0 does not depend on m with C ≤ 3
2
e4βR.

Proof. See［4］.

Let f ∈ Dom(ωm). Since Dom(H̃V
m) = Dom(Hp ⊗ 1l) ∩ Dom(1l⊗Hf (m)), a(f)Φ̃m ∈

Q(H̃V
m). Hence, for all Ψ ∈ Dom(HV

m), we have

〈
(H̃V

m − EV (m))Ψ, a(f)Φ̃m

〉
= −〈

Ψ, a(ωmf)Φ̃m

〉− 1√
2

〈
Ψ, 〈f,G(x̂)〉Φ̃m

〉
.

Here we use the canonical commutation relations of a, a∗, and 〈f, G(x̂)〉 is the mul-

tiplication operator by the function 〈f, G(x)〉. Since Ψ ∈ Dom(H̃V
m) is arbitrary,

a(f)Φ̃m ∈ Dom(H̃V
m), and hence,

〈
a(f)Φ̃m , a(ωmf)Φ̃m

〉
+

1√
2

〈
a(f)Φ̃m , 〈f,G(x̂)〉Φ̃m

〉 ≤ 0. (4)
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Lemma 3.2 (Photon number bound). For all 0 < m < m, we have

‖a(k)Φ̃m‖2 ≤ 1

2(2π)3

|k|
ωm(k)2

|ρ̂(k)|2‖|x|Φ̃m‖2, a.e. k ∈ R3. (5)

Proof. Let q(k) be a bounded real-valued measurable function. We choose some com-

plete orthonormal system {fi}∞i=1 ⊂ Dom(ωm). By (4), we have

∞∑
i=1

〈
a(ω−1/2

m qfi)Φ̃m , a(ω1/2
m qfi)Φ̃m

〉
+

1√
2

∞∑
i=1

〈
a(〈ω−1/2

m qfi, G(x̂)〉ω−1/2
m qfi)Φ̃m , Φ̃m

〉 ≤ 0.

By Lemma A.1 in Appendix, we have

〈Φ̃m, dΓ(q2)Φ̃m〉 ≤ − 1√
2
〈a(ω−1

m q2G(x̂))Φ̃m, Φ̃m〉

≤ 1√
2

∫

R3

dk
q(k)2

ωm(k)
|〈G(x̂, k)∗a(k)Φ̃m, Φ̃m〉|.

Note that q is arbitrary. Hence, we obtain

‖a(k)Φ̃m‖2 ≤ 1√
2

1

ωm(k)
‖a(k)Φ̃m‖ ‖G(x̂; k)Φ̃m‖, a.e. k.

By the definition of G, we have |G(x, k)|2 ≤ |ρ̂(k)|2|k||x|2/(2π)3. Therefore, (5) holds.

We write Φ̃m = (Φ̃
(n)
m )∞n=0 with Φ̃

(n)
m ∈ L2(R3

x)⊗ (⊗n
s L2(R3

k)), n ≥ 0, where ⊗n
s L

2(R3
k)

is the n-fold symmetric tensor product of L2(R3
k).

Lemma 3.3 (Photon derivative bound). Let 0 < m < m. Then, for all Φ̃
(n)
m is in the

Sobolev space H1(R3
x×S3n), and F-valued function a(k)Φ̃m is strongly differentiable in

k ∈ S\{0} for all directions with

∂ja(k)Φ̃m =
(
∂jΦ̃

(1)
m (k),

√
2∂jΦ̃

(2)
m (k, ·), . . . ,√n∂jΦ̃

(n)
m (k, ·), . . .

)
, j = 1, 2, 3,

‖∇ka(k)Φ̃m‖2 ≤ 1

(2π)3

1

ωm(k)2

[
3
|ρ̂(k)|2
|k| + |k||∇ρ̂(k)|2

]
‖|x̂|Φ̃m‖2,

where ∂j and ∇k means the differential operator for j-th component of k and the nabla

operator for the coordinate k.

Proof. For h ∈ R3 and a function f(k), we define

(∆hf)(k) := f(k + h)− f(k).
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We consider (4) with f replaced by ∆−hω
−1/2
m qfi. Here q and fi are the same function

as in the proof of the above Lemma. By Lemma A.1, we have

∞∑
i=1

〈
a(∆−hω

−1/2
m qfi)Φ̃m , a(ωm∆−hω

−1/2
m qfi)Φ̃m

〉
=

〈
Φ̃m , dΓ(∆−hω

−1
m q2∆hωm)Φ̃m

〉
.

(6)

We introduce an operator (Thf)(k) := f(k + h). It is easy to see that ∆hωm =

(∆hωm)Th + ωm∆h. therefore, we have

(6) = 〈Φ̃m, dΓ(∆−hq
2∆h)Φ̃m〉+ 〈Φ̃m, dΓ(∆−hq

2ω−1
m (∆hωm)Th)Φ̃m〉.

On the other hand,

∞∑
i=1

〈
a(∆−hω

−1/2
m qfi)Φ̃m , 〈∆−hω

−1/2
m qfi, G(x̂)〉Φ̃m

〉
=

〈
a(∆−hω

−1
m q2∆hG(x̂))Φ̃m , Φ̃m

〉
.

Therefore, we obtain

〈
Φ̃m , dΓ(∆−hq

2∆h)Φ̃m

〉 ≤− 〈
Φ̃m , dΓ(∆−hq

2ω−1
m (∆hωm)T−h)Φ̃m

〉

− 1√
2

〈
a(∆−hω

−1
m q2∆hG(x̂))Φ̃m , Φ̃m

〉
. (7)

By the Schwarz inequality, we have

|〈a(∆−hω
−1
m q2∆hG(x̂))Φ̃m , Φ̃m

〉|

=
〈
Φ, dΓ(∆−hq

2∆h)Φ
〉1/2

[∫

R3

dk
q(k)2

ωm(k)2

∥∥(∆hG(x̂))(k)Φ̃m

∥∥2
]1/2

.

By using the general inequality |〈Φ, dΓ(S∗T )Ψ〉| ≤ 〈Φ, dΓ(S∗S)Φ〉1/2〈Φ, dΓ(T ∗T )Ψ〉1/2,

we have

∣∣〈Φ̃m , dΓ(∆−hq
2ω−1

m (∆hωm)Th)Φ̃m

〉∣∣ ≤〈
Φ̃m , dΓ((∆−hq)(∆−hq)

∗)Φ̃m

〉1/2

× 〈
Φ̃m , dΓ(T−h(∆hωm)q2ω−2

m (∆hωm)Th)Φ̃m

〉1/2
.

Hence, we obtain

〈Φ̃m, dΓ(∆−hq
2∆h)Φ̃m〉

≤
∫

R3

dk
q(k)2

ωm(k)2

∥∥(∆hG(x̂))(k)Φ̃m

∥∥2
+ 2

〈
Φ̃m, dΓ(T−h(∆hωm)q2ω−2

m (∆hωm)Th)Φ̃m

〉

=

∫

R3

dk
q(k)2

ωm(k)2

∥∥(∆hG(x̂))(k)Φ̃m

∥∥2
+ 2

∫

R3

dk
q(k − h)2

ωm(k − h)2
|(∆hωm)(k − h)|2‖a(k)Φ̃m‖2.
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By (5), this is dominated by
∫

R3

dk
q(k)2

ωm(k)2

∥∥(∆hG(x̂))(k)Φ̃m

∥∥2

+
1

(2π)3

∫

R3

dk
q(k)2

ωm(k)2
|(∆hωm)(k)|2 |k + h|ρ̂(k + h)2

ωm(k + h)2
‖|x|Φ̃m‖2

Since the function q is arbitrary, we have

‖∆ha(k)Φ̃m‖2 ≤ ‖(∆hG(x̂))(k)Φ̃m‖2

ωm(k)2
+
|k + h|ρ̂(k + h)2|(∆hωm)(k)|2

(2π)3ωm(k + h)2ωm(k)2
‖|x|Φ̃m‖2,

for a.e. k ∈ R3. By using the definition of G(x, k), we have
√

(2π)3|∆hG(x, k)|

≤ |h||k + h||x|
|k + h|1/2|k| |ρ̂(k + h)|+ |h||x|

|k|1/2
|ρ̂(k + h)|+ |k|1/2|x||ρ̂(k + h)− ρ̂(k)|,

and it is easy to see that |(∆hωm)(k)| ≤ |h|. Therefore we obtain

‖∆ha(k)Φ̃m‖2 ≤ 1

(2π)3

1

ωm(k)2

[
3
|h|2
|k|2 |k + h||ρ̂(k + h)|2 + 3

|h|2
|k| |ρ̂(k + h)|2

+ 3|k||ρ̂(k + h)− ρ̂(k)|2 +
|k + h||ρ̂(k + h)|2|h|2

ωm(k + h)2

]
‖|x|Φ̃m‖2. (8)

By this inequality with [N.5], we see that F -valued function a(k)Φ̃m is strongly con-

tinuous in k ∈ S\{0}. Next, we show that a(k)Φ̃m is strongly differentiable. For this

purpose, we introduce the operator ∆h,` by

(∆h,`f)(k) =
f(k + h)− f(k)

|h| − f(k + `)− f(k)

|`| , k, ` ∈ R3.

We define ∆∗
h,` := ∆−h,−`. Returning to (4) with f replaced by ∆∗

h,`ω
−1/2
m qfi and

summing over i = 1, . . . ,∞ we have

〈
Φ̃m, dΓ(∆∗

h,`q
2ω−1

m ∆h,`ωm)Φ̃m

〉
+

1√
2

〈
a(∆∗

h,`ω
−1
m q2∆h,`G(x̂))Φ̃m, Φ̃m

〉 ≤ 0.

It is easy to see that ∆h,`ωm = ωm∆h,` + Fh − F`, where Fh := (∆hωm)|h|−1Th. Hence,

we have

〈
Φ̃m, dΓ(∆∗

h,`q
2∆h,`)Φ̃m

〉 ≤− 1√
2
〈a(∆∗

h,`ω
−1
m q2∆h,`G(x̂))Φ̃m, Φ̃m〉 (9)

+ 〈Φ̃m, dΓ(∆∗
h,`q

2ω−1
m Fh)Φ̃m〉+ 〈Φ̃m, dΓ(∆∗

h,`q
2ω−1

m F`)Φ̃m〉.
(10)

11



By the Schwarz inequality, we have

|r.h.s of (9)| ≤〈
Φ̃m , dΓ(∆∗

h,`q
2∆h,`)Φ̃m

〉1/2
[∫

R3

dk
q(k)2

ωm(k)2
‖(∆h,`G(x̂))(k)Φ̃m‖2

]1/2

,

|(10)| ≤
∣∣〈Φ̃m , dΓ(∆∗

h,`q
2ω−1

m [∆∗
h,`ωm]Th)Φ̃m

〉∣∣ (11)

+
∣∣∣
〈
Φ̃m, dΓ

(
∆∗

h,`q
2ω−1

m

[∆`

|`| ωm

]
(Th − T`)

)
Φ̃m

〉∣∣∣. (12)

Moreover,

r.h.s. of (11)

≤ 〈
Φ̃m, dΓ(∆∗

h,`q
2∆h,`)Φ̃m

〉1/2〈
Φ̃m, dΓ

(
T−hq

2ω−2
m [∆∗

h,`ωm]2Th

)
Φ̃m

〉1/2

=
〈
Φ̃m, dΓ(∆∗

h,`q
2∆h,`)Φ̃m

〉1/2
[∫

R3

dkq(k)2ω−2
m (k)[∆∗

h,`ωm]2(k)‖a(k + h)Φ̃m‖2

]1/2

,

and

r.h.s. of (12)

≤ 〈Φ̃m, dΓ(∆∗
h,`q

2∆h,`)Φ̃m〉1/2
〈
Φ̃m, dΓ

(
(T−h − T−`)

[∆`

|`| ωm

]2

q2ω−2
m (Th − T`)

)〉1/2

≤ 〈Φ̃m, dΓ(∆∗
h,`q

2∆h,`)Φ̃m〉1/2

[∫

R3

dk q(k)2ωm(k)−2‖a(k + h)Φ̃m − a(k + `)Φ̃m‖2

]1/2

.

These inequality yields

〈Φ̃m, dΓ(∆∗
h,`q

2∆h,`)Φ̃m〉 ≤3

2

∫

R3

dk
q(k)2

ωm(k)2
‖(∆h,`G(x̂))(k)Φ̃m‖2

+ 3

∫

R3

dk
q(k)2

ωm(k)2
|∆∗

h,`ωm|2(k)‖a(k + h)Φ̃m‖2

+ 3

∫

R3

dk
q(k)2

ωm(k)2
‖a(k + h)Φ̃m − a(k + `)Φ̃m‖2

Since the function q is arbitrary, we have

‖∆h,`a(k)Φ̃m‖2 ≤ 3

ωm(k)2

[
1

2
‖(∆h,`G(x̂))(k)Φ̃m‖2 + |∆∗

h,`ωm|2(k)‖a(k + h)Φ̃m‖2

+ ‖a(k + h)Φ̃m − a(k + `)Φ̃m‖2

]
, a.e. k ∈ R3. (13)

Remembering the condition [N.5] and that a(k)Φ̃m is continuous, we get,

lim
h,`→0

‖∆|h|e,|`|ea(k)Φ̃m‖2 = 0, a.e. k ∈ S\{0},

12



for all e ∈ R3. Therefore the F -valued function ∆|h|ea(k)Φ̃m/|h| is a Cauchy sequence in

|h| as |h| → 0. Namely, for all directions, a(k)Φ̃m is strongly differentiable in k ∈ S\{0}.
Let ej (j = 1, 2, 3) be the unit vectors of the j-th direction, and let

vj(k) := s-lim|h|→0
1

|h|∆|h|ej
a(k)Φ̃m, a.e. k ∈ S.

Next, we show that Φ̃
(n)
m ∈ H1(R3

x × S3n) for all n ∈ N. Let ψ ∈ C∞
0 (R3

x)× S3n. Then,

we have
∫

R3(n+1)

(∂jψ)(x, k, K)Φ̃(n)
m (x, k, K)dxdkdK

= lim
h→0

1

|h|
∫

R3(n+1)

[ψ(x, k, K)− ψ(x, k − |h|ej, K)]Φ̃(n)
m (x, k,K)dxdkdK

= − lim
h→0

1

|h|
∫

R3

dk

[∫

R3(n+1)

ψ(x, k, K)
[
Φ̃(n)

m (x, k + |h|ej, K)− Φ̃(n)
m (x, k, K)

]
dxdK

]
,

where K = (k1, k2, . . . , kn−1) ∈ R3(n−1). On the other hand,

∣∣∣∣
∫

R3

dk

[∫

R3n

dxdKψ(x, k, K)

{
1

|h| [Φ̃
(n)
m (x, k + |h|ej, K)+Φ̃(n)

m (x, k, K)]− v
(n)
j (x, k,K)

}]∣∣∣∣

≤
∫

R3

dk‖ψ(k, ·)‖L2(R3n)

∥∥∥ 1

|h|(∆|h|ej
a(k)Φ̃m)(n) − v

(n)
j (k)

∥∥∥

≤
∫

R3

dk‖ψ(k, ·)‖L2(R3n)

∥∥∥ 1

|h|∆|h|ej
a(k)Φ̃m − vj(k)

∥∥∥. (14)

Returning to (13) with h → |h|ej, ` → |`|ej and lim|`|→0, we have

∥∥∥ 1

|h|∆ha(k)Φ̃m − vj(k)
∥∥∥

2

≤ 3

ωm(k)2

[1

2

∥∥∥
(

1

h
(∆hej

G)(x̂, k)− ∂jG(x̂, k)

)
Φ̃m

∥∥∥
2

+
2|h|

ωm(k)
‖a(k + h)Φ̃m‖2 + ‖a(k + h)Φ̃m − a(k)Φ̃m‖2

]
, a.e. k ∈ R3,

where we use the elementary inequality | 1
h
∆hej

ωm(k) − ∂jωm(k)| ≤ 2|h|/ωm(k). Since

the set Sψ := supp ‖ψ(k, ·)‖ is a subset of S, k + h ∈ S for all h and k ∈ Sψ with

|h| < dist{Sψ, S}. Using this fact and (8), we obtain

lim
|h|→0

∫

R3

dk‖ψ(k, ·)‖L2(R3n)

[
|h|‖a(k + h)Φ̃m‖

ωm(k)2
+
‖a(k + h)Φ̃m − a(k)Φ̃m‖

ωm(k)

]
= 0.

13



By condition [N.4] and the dominated convergence theorem, we have

‖χSψ
|h|−1∆hρ̂− ∂j ρ̂‖2 ≤ ‖|h|−1∆hη − ∂jη‖2

L2(R3)

≤
∫

R3
y

∣∣∣∣
e−i|h|yj − 1

|h|yj

+ i

∣∣∣∣
2

y2
j |(Fη)(y)|2dy → 0, (|h| → 0),

where F means Fourier transformation. By this formula and simple but tedious esti-

mates, we can show that

lim
|h|→0

∫

R3

dk‖ψ(k, ·)‖L2(R3n) · 1

ωm

∥∥∥
(

1

h
(∆hej

G)(x̂, k)− ∂jG(x̂, k)

)
Φ̃m

∥∥∥ = 0.

These facts mean that
lim
h→0

(14) = 0.

Therefore, Φ̃
(n)
m ∈ H1(R3

x × S3n).

Pick a sequence m1 > m2 > · · · tending to zero and we set

Φ̃j := Φ̃mj
, j = 1, 2, . . . .

Since Φ̃j’s are normalized, a subsequence of {Φ̃j}j has a weak limit Φ̃ (the subsequence

denoted by the same symbol).

Lemma 3.4. Φ̃ ∈ Dom(H̃V ) and,

H̃V Φ̃ = EV (0)Φ̃. (15)

Proof. First, we show that Φ̃ ∈ Q(H̃V ) = Dom(Hf (0)1/2) ∩ Q(Hp). For all Ψ ∈
Dom(Hf (0)1/2), we have

|〈Φ̃, Hf (0)1/2Ψ〉| = lim
j→∞

|〈Hf (0)1/2Φ̃j, Ψ〉| = lim sup
j→∞

‖Hf (0)1/2Φ̃j‖‖Ψ‖.

Since Hp is bounded below, we have

‖Hf (0)1/2Φ̃j‖2 ≤ const.
〈
Φ̃j , (H̃

V (mj)− EV (mj) + 1)Φ̃j

〉 ≤ const.,

where const. is a constant independent of j. Hence Φ̃ ∈ Dom(Hf (0)1/2). Similarly we

have Φ̃ ∈ Q(Hp). Since EV (mj) → EV (0) (j →∞), we have

‖(H̃V − EV (0))1/2Φ̃j‖2 ≤ ‖(H̃V (mj)− EV (0))1/2Φ̃j‖2 ≤ (EV (mj)− EV (0))‖Φ̃j‖2 → 0,

as j →∞. Therefore (H̃V − EV (0))1/2Φ̃ = 0. This means Φ̃ ∈ Dom(H̃V ) and H̃V Φ̃ =

EV (0)Φ̃.

By this lemma, if Φ̃ 6= 0 then Φ̃ is a ground state of H̃V . This proof is essentially

same as［4，7 Proof of Theorem 2.1］, so we omit it (Notice that the condition [N.3]

and [N.6] were used there ).
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A Parseval’s Equality for the Annihilation Operators

Let K be a complex separable Hilbert space, and let Fb(K) be the Boson Fock space

over K. We denote by Nb the number operator on Fb(K). Let S and T be densely

defined closed linear operators on K, such that Dom(S) ∩Dom(T ) is dense.

Lemma A.1 (Parseval’s equality for the annihilation operators). Assume that, for

vectors Ψ, Φ ∈ Dom(N
1/2
b ), there exist constants α, β (α + β = 1, α, β ≥ 0) such that,

Nα−1
b Φ ∈ Dom(dΓ(T ∗)), Nβ−1

b Ψ ∈ Dom(dΓ(S∗)).

Then, for all complete orthonormal basis {fj}∞j=1 ⊂ Dom(S) ∩ Dom(T ), the following

equality holds:

∞∑
j=1

〈a(Sfj)Ψ, a(Tfj)Φ〉 =
∞∑

n=1

n〈S∗⊗ 1ln−1Ψ
(n), T ∗⊗ 1ln−1Φ

(n)〉⊗nK. (16)

In particular, if Φ ∈ Dom(dΓ(ST ∗)), then

∞∑
j=1

〈a(Sfj)Ψ, a(Tfj)Φ〉 = 〈Ψ, dΓ(ST ∗)Φ〉. (17)

Proof. It is enough to show in the case that K is L2-space on a measurable space. For

simplicity, we prove (16) only in the case K = L2(R3). Using the definition of a(f), we

have

〈
a(Sfj)Ψ, a(Tfj)Φ

〉
=

∫
dk

∫
dk′(Sfj)(k)(Tfj)

∗(k′)
〈
a(k)Ψ, a(k′)Φ

〉

=

∫
dk

∫
dk′

∞∑
n=1

n

∫
dK(Sfj)(k)(Tfj)

∗(k′)Ψ(n)(k, K)∗Φ(n)(k′, K),

where K = (k2, . . . , kn), dK = dk2 · · · dkn. In the above equation, the integral and the
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summation commute, because

∫
dk

∫
dk′

∞∑
n=1

n

∫
dK|(Sfj)(k)(Tfj)

∗(k′)Ψ(n)(k, K)∗Φ(n)(k′, K)|

≤
∫

dkdk′|(Sfj)(k)(Tfj)(k
′)|

[ ∞∑
n=1

n

∫
dK|Ψ(n)(k, K)|2

]1/2[ ∞∑
n=1

n

∫
dK|Φ(n)(k′, K)|2

]1/2

=

∫
dkdk′|(Sfj)(k)| · |(Tfj)(k

′)| · ‖a(k)Ψ‖‖a(k′)Φ‖

≤ ‖Sfj‖‖Tfj‖
[∫

dk‖a(k)Ψ‖2

]1/2 [∫
dk‖a(k′)Φ‖2

]1/2

= ‖Sfj‖‖Tfj‖‖N1/2
b Ψ‖‖N1/2

b Φ‖ < ∞,

and hence on can apply Fubini’s theorem. Hence,

∞∑
j=1

〈
a(Sfj)Ψ, a(Tfj)Φ

〉
=

∞∑
j=1

∞∑
n=0

n

∫
dK

〈
(T ∗⊗ 1lΦ(n))(·, K), fj(·)

〉〈
fj(·) , (S∗⊗ 1lΨ(n))(·, K)

〉
.

Using Bessel’s inequality, we have
∣∣∣∣∣

N∑
j=1

〈
(T ∗⊗ 1lΦ(n))(·, K), fj(·)

〉〈
fj(·), (S∗⊗ 1lΨ(n))(·, K)

〉
∣∣∣∣∣

≤ ‖(T ∗⊗ 1lΦ(n))(·, K)‖‖(S∗⊗ 1lΨ(n))(·, K)‖
≤ 1

2n

{
n2α‖(T ∗⊗ 1lΦ(n))(·, K)‖2 + n2β‖(S∗⊗ 1lΨ(n))(·, K)‖2

}
, a.e. K ∈ R3(n−1).

(18)

By assumpsion for Ψ, Φ, we have

∞∑
n=1

n

∫
dK(r.h.s of (18)) =

1

2

∞∑
n=1

‖nαT ∗⊗ 1lΦ(n)‖2 +
1

2

∞∑
n=1

‖nβS∗⊗ 1lΨ(n)‖2 < ∞.

Hence, by applying the dominated convergence theorem and the standard parseval

equality, we obtain (16).
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