Ground State of the Massless Nelson Model in a non-Fock Representation

Itaru Sasaki
Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan e-mail: i-sasaki@math.sci.hokudai.ac.jp

May 1, 2005

Abstract

We consider a model of a particle coupled to a massless scalar field (the massless Nelson model) in a non-Fock representation. We prove the existence of a ground state of the system, applying the mothod of Griesemer, Lieb and Loss.

Key words: Nelson model; ground state.

1 Introduction

The Nelson model is a quantum mechanical model which describes an interaction between some quantum mechanical particles and a Bose field. In this paper, we present a criterion for a Nelson model to have a ground state.

We consider one particle under the influence of an external potential V and coupled to a scalar Bose field. The Hilbert space of the system is given by

$$
\begin{equation*}
\mathcal{F}:=L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathcal{F}_{\mathbf{b}}\left(L^{2}\left(\mathbb{R}^{3}\right)\right), \tag{1}
\end{equation*}
$$

where $\mathcal{F}_{\mathrm{b}}\left(L^{2}\left(\mathbb{R}^{3}\right)\right)$ is the Boson Fock space over $L^{2}\left(\mathbb{R}^{3}\right)$. The standard Nelson Hamiltonian is of the form

$$
H_{m}^{V}:=(-\triangle+V) \otimes \mathbb{1}+\mathbb{1} \otimes H_{f}(m)+\lambda \phi^{\oplus}(v), \quad \text { on } \mathcal{F},
$$

where $\mathbb{1}$ denotes identity, \triangle is the generalized Laplacian on $L^{2}\left(\mathbb{R}^{3}\right), \lambda \in \mathbb{R}$ is a coupling constant, and $H_{f}(m)$ and $\phi^{\oplus}(v)$ are defined by

$$
\begin{aligned}
H_{f}(m) & :=\int_{\mathbb{R}^{3}} \omega_{m}(k) a(k)^{*} a(k) \mathrm{d} k, \\
\phi^{\oplus}(v) & :=\frac{1}{\sqrt{2}} \int_{\mathbb{R}^{3}}\left(v(x, k) \otimes a(k)^{*}+v(x, k)^{*} \otimes a(k)\right) \mathrm{d} k,
\end{aligned}
$$

with

$$
\omega_{m}(k):=\sqrt{k^{2}+m^{2}}, \quad v(x, k):=\frac{1}{\sqrt{(2 \pi)^{3}}} \frac{\hat{\rho}(k)}{|k|^{1 / 2}} e^{-i k x}
$$

where $|k|^{-1 / 2} \hat{\rho} \in \operatorname{Dom}\left(\omega_{m}^{-1 / 2}\right)$ and $a(k)^{*}, a(k)$ are the distribution kernels of the creation and annihilation operators on $\mathcal{F}_{\mathrm{b}}\left(L^{2}\left(\mathbb{R}^{3}\right)\right)(\operatorname{Dom}(A)$ means the domain of operator $A)$. The problem on the ground state of H_{m}^{V} can be classified as follows:
(i) the massive case : $m>0$
(ii) the massless case: $m=0 \quad\left\{\begin{array}{l}|k|^{-1 / 2} \hat{\rho} \in \operatorname{Dom}\left(\omega_{0}^{-1}\right): \text { infrared regular } \\ |k|^{-1 / 2} \hat{\rho} \notin \operatorname{Dom}\left(\omega_{0}^{-1}\right): \text { infrared singular. }\end{array}\right.$

In almost all cases, to prove existence of a ground state for the massive case is easy. The first result on the ground state problem, to our knowledge, is due to Spohn [12]. In [12] he proved existence of a ground state in the case where the infrared regular(I.R.) condition holds and $(-\triangle+V+i)^{-1}$ is compact. If $(-\triangle+V+i)^{-1}$ is not compact, his theorem shows that a ground state exists if the I.R. condition holds and the coupling constant λ is small enough. After the work of Spohn [12], C. Gérard proved existence of a ground state of an extended model of the Nelson model in the case where an abstract particle Hamiiltonian K (which corresponds to $-\triangle+V$ in the above context) is compact and an I.R. like condition holds [3]. On the other hand, J. Lörinczi, R. A. Minlos and H. Spohn [7] showed that H_{0}^{V} has no ground state if the infrared singular(I.S.) condition holds in spite of the condition $V(x)>C|x|^{\alpha}(C, \alpha>0)$ (also refer to [2] about the absence of ground states). Recently, H. Hirokawa, F. Hiroshima and H. Spohn [5] prove existence of a ground state for the renormalized Nelson model.

In the case where the I.S. condition holds, H_{0}^{V} may not has a ground state [7], but A. Arai [1] showed that a massless Nelson model in a non-Fock representation has a ground state.

We work with the non-Fock representation introduced in [1]. In this representation the massless Nelson model we consider is of the form :

$$
\widetilde{H}^{V}:=(-\triangle+V) \otimes \mathbb{1}+\mathbb{1} \otimes H_{f}(0)+\lambda \phi^{\oplus}(G)-\lambda^{2} \mathcal{V}(\hat{x}) \otimes \mathbb{1}+\lambda^{2} \mathcal{W} \mathbb{1},
$$

where $\mathcal{V}(\hat{x})$ is the multiplication operator by $\left.\mathcal{V}(x):=\left.\operatorname{Re}\langle | k\right|^{-1 / 2} v(0),|k|^{-1 / 2} v(x)\right\rangle, \mathcal{W}:=$ $\left\||k|^{-1 / 2} v(0)\right\|^{2}$ is a constant, and $G(x, k):=v(x, k)-v(0, k)$. If $m=0$ and the I.R. condition holds, \widetilde{H}^{V} is unitarily equivalent to H_{0}^{V} (Proposition 2.1). But if the I.S. condition holds, \widetilde{H}^{V} may not be unitarily equivalent to H_{0}^{V}. If the I.S. condition holds, to consider \widetilde{H}^{V} means to choose a non-Fock representation of the canonical commutation relations of a, a^{*} (see [1]). Note that, in the massless case $m=0$, the Hamiltonian we consider is \widetilde{H}^{V}, not H_{0}^{V}.

For the non-Fock Hamiltonian \widetilde{H}^{V}, we present a criterion for \widetilde{H}^{V} to have a ground state. The criterion is essentially the same condition as in [4], and we prove existence of a ground state without assuming the I.R. condition. Out strategy is the same as that of [4]. We, however, improved the proof of the photon derivative bound. In the proof of photon derivative bound in [4], it is difficult to prove that the integer-valued k-dependent sequence $h_{l}(k)$ is measurable. In our new proof of the photon derivative bound, such uncertain sequence does not appear.

This paper is organized as follows. In Sec. 2 we describe rigorous definitions of our system and state main results. In Sec. 3, we prove the main theorem. In Appendix A, we establish a formula which expresses a second quantization operator by the annihilation operators.

2 Notation and Main Results

We consider a model of one particle interacting with a scalar Bose field, and in an external potential $V: \mathbb{R}_{x}^{3} \rightarrow \mathbb{R}$ satisfying $V \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{x}^{3}\right)$. The Hilbert space for the model is given by $\mathcal{F}:=L^{2}\left(\mathbb{R}_{x}^{3}\right) \otimes \mathcal{F}_{\mathrm{b}}\left(L^{2}\left(\mathbb{R}_{k}^{3}\right)\right)$, where $\mathcal{F}_{\mathrm{b}}\left(L^{2}\left(\mathbb{R}_{k}^{3}\right)\right)$ is the Boson Fock space over $L^{2}\left(\mathbb{R}_{k}^{3}\right)$ (see [9]). For $m \geq 0$ we define a function $\omega_{m}: \mathbb{R}_{k}^{3} \rightarrow \mathbb{R}$ by $\omega_{m}(k):=\sqrt{k^{2}+m^{2}}$. The multiplication operator by ω_{m} is denoted by the same symbol. The free Hamiltonian of the scalarBose field is the second quantization of $\omega_{m}([9])$:

$$
\begin{equation*}
H_{f}(m):=\mathrm{d} \Gamma_{\mathrm{b}}\left(\omega_{m}\right) . \tag{2}
\end{equation*}
$$

We set $V_{ \pm}(x):=\max \{0, \pm V(x)\}$. Throughout this paper, we assume that the potential V has the following properties:
[N.1] There exist constants $a<1$ and $b \in \mathbb{R}$ such that

$$
\left\|V_{-}^{1 / 2} \psi\right\|^{2} \leq a\|(-\triangle) \psi\|^{2}+b\|\psi\|^{2}, \quad \psi \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{3}\right)
$$

The particle Hamiltonian H_{p} is a self-adjoint operator defined by

$$
H_{\mathrm{p}}:=-\triangle \dot{+} V, \quad \text { on } L^{2}\left(\mathbb{R}_{x}^{3}\right),
$$

where $\dot{+}$ means the form sum. For $f \in L^{2}\left(\mathbb{R}_{k}^{3}\right)$ we denote by $a(f)^{*}, a(f)$, the creation and annihilation operators respectively, by $\Phi_{\mathrm{S}}(f):=\overline{\left[a(f)+a(f)^{*}\right]} / \sqrt{2}$ the Segal field operators (" - " means closure). It is well known that $\Phi_{\mathrm{S}}(f)$ is a self-adjoint operator on $\mathcal{F}_{\mathrm{b}}\left(L^{2}\left(\mathbb{R}_{k}^{3}\right)\right)\left(\right.$ see [10]). For $x \in \mathbb{R}_{x}^{3}$ and $\hat{\rho} \in L^{2}\left(\mathbb{R}_{k}^{3}\right) \cap \operatorname{Dom}\left(|k|^{-1 / 2}\right)$ we define $v(x) \in$ $L^{2}\left(\mathbb{R}_{k}^{3}\right)$ by

$$
v(x)(k):=v(x, k):=\frac{1}{(2 \pi)^{3 / 2}} \frac{\hat{\rho}(k)}{|k|^{1 / 2}} e^{-i k x}, \quad k \in \mathbb{R}_{k}^{3}
$$

The Hilbert space \mathcal{F} can be identified with the fibre direct integral of $\mathcal{F}_{\mathrm{b}}\left(L^{2}\left(\mathbb{R}_{k}^{3}\right)\right)$ (see [11]):

$$
\mathcal{F}=\int_{\mathbb{R}_{x}^{3}}^{\oplus} \mathcal{F}_{\mathrm{b}}\left(L^{2}\left(\mathbb{R}_{k}^{3}\right)\right) \mathrm{d} x .
$$

In this identification the opeartor

$$
\phi^{\oplus}(v):=\int_{\mathbb{R}_{x}^{3}}^{\oplus} \Phi_{\mathrm{S}}(v(x)) \mathrm{d} x
$$

gives a self-adjoint operator on \mathcal{F} ([11]).
The Hamiltonian of the standard Nelson model is defined by

$$
H_{m}^{V}:=H_{\mathrm{p}} \otimes \mathbb{1}+\mathbb{1} \otimes H_{f}(m)+\lambda \phi^{\oplus}(v)
$$

Here $\lambda \in \mathbb{R}$ is a coupling constant. We set

$$
H_{0}:=H_{\mathrm{p}} \otimes \mathbb{1}+\mathbb{1} \otimes H_{f}(m),
$$

the free Hamiltonian of the Nelson model. By [N.1], H_{p} is bounded below. Therefore H_{0} is self-adjoint on $D\left(H_{0}\right)=D\left(H_{\mathrm{p}} \otimes \mathbb{1}\right) \cap D\left(\mathbb{1} \otimes H_{f}(m)\right)$ and bounded below.

The following fact is well-known:

Proposition 2.1. Assume $|k|^{-1 / 2} \hat{\rho} \in \operatorname{Dom}\left(\omega_{m}^{1 / 2}\right)$ and [N.1]. Then H_{m}^{V} is self-adjoint on $\operatorname{Dom}\left(H_{0}\right)$ and bounded below. Moreover H_{m}^{V} is essentially self-adjoint on each core for H_{0}.

Under the assumption of Proposition 2.1, we set

$$
E^{V}(m):=\inf \sigma\left(H_{m}^{V}\right)
$$

the ground state energy of H_{m}^{V}. Where $\sigma\left(H_{m}^{V}\right)$ means the spectrum of H_{m}^{V}. If $E^{V}(m)$ is an eigenvalue of H_{m}^{V}, we say that H_{m}^{V} has a ground state and a eigenvector $\Phi_{m} \in$ $\operatorname{ker}\left(H_{m}^{V}-E^{V}(m)\right) \backslash\{0\}$ is called a ground state of H_{m}^{V}.

Let $\theta \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{3}\right), \widetilde{\theta} \in C^{\infty}\left(\mathbb{R}_{x}^{3}\right)$ be functions which satisfy the following properties (i), (ii):
(i) $\quad 0 \leq \theta(x), \widetilde{\theta}(x) \leq 1, \quad \theta(x)^{2}+\widetilde{\theta}(x)^{2}=1, \quad\left(x \in \mathbb{R}_{x}^{3}\right)$.
(ii) $\quad \theta(x)= \begin{cases}1 & |x| \leq 1 \\ 0 & |x| \geq 2 .\end{cases}$

For $R>0$ we define particle cut-off functions $\theta_{R}, \widetilde{\theta}_{R}$ as follows:

$$
\theta_{R}(x):=\theta(x / R), \quad \widetilde{\theta}_{R}(x):=\widetilde{\theta}(x / R) .
$$

We abbreviate $\theta_{R} \otimes \mathbb{1}, \widetilde{\theta}_{R} \otimes \mathbb{1}$ to $\theta_{R}, \widetilde{\theta}_{R}$, respectively if there is no danger of confusion. For a self-adjoint operator T, we denote by $Q(T)$ the form domain of T, and for $\Psi, \Phi \in Q(T)$, we write simply $\langle\Psi, T \Phi\rangle=\int_{\mathbb{R}} \mu \mathrm{d}\left\langle\Psi, E_{T}(\mu) \Phi\right\rangle$, where E_{T} means the spectral measure of T.

We define a quantity which physically means the minimal energy in the states where the particle is separated more than R away from the origin:

Definition 2.2.

$$
E_{\infty}(R, m):=\inf _{\substack{\Psi \in Q\left(H_{m}^{V}\right) \\\left\|\tilde{\theta}_{R} \Psi\right\| \neq 0}} \frac{\left\langle\widetilde{\theta}_{R} \Psi, H_{m}^{V} \widetilde{\theta}_{R} \Psi\right\rangle}{\left\langle\Psi, \widetilde{\theta}_{R}^{2} \Psi\right\rangle} .
$$

Remark. For all $R>0$, it is easy to see that $E^{V}(m)-E_{\infty}(R, m) \leq 0$.
The following condition is based on [4]:
Hypothesis I(binding condition for $m>0$)

$$
E^{V}(m)<\limsup _{R \rightarrow \infty} E_{\infty}(R, m) .
$$

Theorem 2.3 (Existence of ground state $(m>0))$. Let $m>0$. Assume [N.1] and Hypothesis I. Then H_{m}^{V} has a ground state.

Proof. This is done in the same method as in the proof of [4, Theorem 4.1]. Therefore we omit the proof.

In the case $m=0$, we need more assumptions:
$[\mathrm{N} .2] \quad \hat{\rho} /|k| \in L^{2}\left(\mathbb{R}_{k}^{3}\right)$.
Under the condition [N.1] and [N.2], the Hamiltonian of the massless Nelson model we consider is:

$$
\widetilde{H}^{V}:=H_{\mathrm{p}} \otimes \mathbb{1}+\mathbb{1} \otimes H_{f}(0)+\lambda \phi^{\oplus}(G)-\lambda^{2} \mathcal{V}(\hat{x}) \otimes \mathbb{1}+\lambda^{2} \mathcal{W} \mathbb{1},
$$

where $\mathcal{W}:=\left\|\omega_{0}^{-1 / 2} v(0)\right\|^{2}$ is a constant and $\mathcal{V}(\hat{x})$ is the multiplication operator by the function $\mathcal{V}(x):=\operatorname{Re}\left\langle\omega_{0}^{-1 / 2} v(0), \omega_{0}^{-1 / 2} v(x)\right\rangle$.

By [N.2], $\mathcal{V}(x)$ is uniformly continuous and $\lim _{|x| \rightarrow 0} \mathcal{V}(x)=0$. The relation between \widetilde{H}^{V} and H_{0}^{V} is given by the following proposition:

Proposition 2.4. Suppose that the infrared regular condition $\hat{\rho} /|k|^{3 / 2} \in L^{2}\left(\mathbb{R}_{k}^{3}\right)$ holds. Then \widetilde{H}^{V} is unitarily equivalent to H_{0}^{V}.

Proof. By the assumption, the operator $T:=\exp \left[-i \lambda \mathbb{1} \otimes \Phi_{\mathrm{S}}\left(i|k|^{-1} v(0)\right)\right]$ is a unitary operator on \mathcal{F} and H_{m}^{V} is unitarily equivalent to $\widetilde{H}^{V}=T H_{m}^{V} T^{*}$.

If the infrared singular condition $\hat{\rho} /|k|^{3 / 2} \notin L^{2}\left(\mathbb{R}_{k}^{3}\right)$ holds, this Hamiltonian \widetilde{H}^{V} gives a Nelson Hamiltonian in a non-Fock representation (see [1]).

For the existence of ground states of \widetilde{H}^{V}, we impose some conditions on $\hat{\rho}$:
[N.3] There exists an open set $S \subset \mathbb{R}^{3}$, such that $\operatorname{supp} \hat{\rho}=\bar{S}$. Moreover, for all $n \in \mathbb{N}$

$$
S_{n}:=\{k \in S| | k \mid<n\}
$$

has the cone-property(see [6]).
[N.4] There exists a function $\eta \in H^{1}\left(\mathbb{R}_{k}^{3}\right)$, such that $\hat{\rho}=\chi_{S} \eta$, where χ_{S} is the characteristic function of S.
[N.5] $\hat{\rho}$ is continuously differentiable in $S \backslash\{0\}$.
[N.6] $|k|^{-3 / 2} \hat{\rho},|k|^{-1 / 2}|\nabla \hat{\rho}| \in L^{p}(S)$ for all $p, 1<p<2$.

Under the condition [N.1] and [N.2], it is easy to see that $E^{V}(0)=\inf \sigma\left(\widetilde{H}^{V}\right)$. One of the most important conditions for the existence of ground states of \widetilde{H}^{V} is
Hypothesis II(binding condition for $m=0$)

$$
\begin{equation*}
E^{V}(0)<\limsup _{R \rightarrow \infty} E_{\infty}(R, 0) \tag{3}
\end{equation*}
$$

Now we state the main result of this paper.
Theorem 2.5 (Existence of ground state $(m=0)$). Assume [N.1]-[N.6] and Hypothesis II. Then the massless Nelson Hamiltonian \widetilde{H}^{V} has a ground state.

Remark. In the case $\lim _{|x| \rightarrow \infty} V(x)=\infty$, it is easy to see that $\lim _{R \rightarrow \infty} E_{\infty}(R, m)=\infty$. Therefore Hypothesis II holds. On the other hand, if $\lim _{|x| \rightarrow \infty} V(x) \rightarrow 0$ and the particle Hamiltonian H_{p} has negative energy ground states, then Hypothesis I, II holds (see [4, Theorem 3.1]).

Remark. Let $\Lambda>0$. Then $\hat{\rho}=\chi_{\Lambda}$ (the characteristic function of the region $|k|<\Lambda$) satisfies the above conditions [N.2]-[N.6]. Note that the function $\hat{\rho}=\chi_{\Lambda}$ is infrared singular, because $|k|^{-3 / 2} \hat{\rho}$ is not in $L^{2}\left(\mathbb{R}^{3}\right)$.

3 Proof of Theorem 2.5

Throughout this section we assume [N.1]-[N.6] and Hypothesis II. In this section, we set $\lambda=1$, because Theorem 2.5 does not depend on λ explicitly (to restore λ, it is enough to replace $\hat{\rho}$ by $\lambda \hat{\rho}$).

For $m>0, T_{m}:=\exp \left[-i \mathbb{1} \otimes \Phi_{\mathrm{S}}\left(i v\left(0 / \omega_{m}\right)\right)\right]$ is a unitary operator on \mathcal{F}, and we have

$$
\begin{aligned}
\widetilde{H}_{m}^{V} & :=T_{m} H_{m}^{V} T_{m}^{*} \\
& =H_{\mathrm{p}} \otimes \mathbb{1}+\mathbb{1} \otimes H_{f}(m)+\phi^{\oplus}(G)-\mathcal{V}_{m}(\hat{x}) \otimes \mathbb{1}+\mathcal{W}_{m} \mathbb{1},
\end{aligned}
$$

where $\mathcal{V}_{m}(\hat{x})$ is the multiplication operator by the function $\mathcal{V}_{m}(x):=\operatorname{Re}\left\langle\omega_{m}^{-1} v(0), v(x)\right\rangle$ and $\mathcal{W}_{m}:=\left\|\omega_{m}^{-1 / 2} v(0)\right\|^{2}$ is a constant. In Fig.1, we show the relation to the original model.

Standard Nelson
Fig. 1
The ground state energy $E^{V}(m)$ is monotone increasing in $m \geq 0$, and $\lim _{m \rightarrow 0} E^{V}(m)=$ $E^{V}(0)$ (see [4, Section 5]). Therefore, by Hypothesis II, for all sufficiently small $m \geq 0$ we have $E^{V}(m)<\lim \sup _{R \rightarrow \infty} E_{\infty}(R, 0)$. Since $E_{\infty}(R, m)$ is monotone increasing in $m \geq 0$, there exists a constant m such that

$$
E^{V}(m)<\limsup _{R \rightarrow \infty} E_{\infty}(R, m), \quad(0 \leq m<\mathrm{m})
$$

In what follows, we consider only the case $0<m<\mathrm{m}$. Hence, by Theorem 2.3, H_{m}^{V} has a ground state Φ_{m}. We set $\widetilde{\Phi}_{m}:=T_{m} \Phi_{m}$ a ground state of \widetilde{H}_{m}^{V}.

Lemma 3.1 (Exponential decay). Let $\beta>0$ be a constant such that

$$
\beta^{2}<\limsup _{R \rightarrow \infty} E_{\infty}(R, m)-E^{V}(m), \quad(0<m<\mathrm{m}) .
$$

Then, for all large $R>0$,

$$
\left\|\exp (\beta|x|) \widetilde{\Phi}_{m}\right\|^{2} \leq C\left(1+\frac{1}{E_{\infty}(R, m)-E^{V}(m)-\beta^{2}+o\left(1 / R^{0}\right)}\right)\left\|\widetilde{\Phi}_{m}\right\|^{2}
$$

where the constant $C>0$ does not depend on m with $C \leq \frac{3}{2} e^{4 \beta R}$.
Proof. See [4].
Let $f \in \operatorname{Dom}\left(\omega_{m}\right)$. Since $\operatorname{Dom}\left(\widetilde{H}_{m}^{V}\right)=\operatorname{Dom}\left(H_{\mathrm{p}} \otimes \mathbb{1}\right) \cap \operatorname{Dom}\left(\mathbb{1} \otimes H_{f}(m)\right), a(f) \widetilde{\Phi}_{m} \in$ $Q\left(\widetilde{H}_{m}^{V}\right)$. Hence, for all $\Psi \in \operatorname{Dom}\left(H_{m}^{V}\right)$, we have

$$
\left\langle\left(\widetilde{H}_{m}^{V}-E^{V}(m)\right) \Psi, a(f) \widetilde{\Phi}_{m}\right\rangle=-\left\langle\Psi, a\left(\omega_{m} f\right) \widetilde{\Phi}_{m}\right\rangle-\frac{1}{\sqrt{2}}\left\langle\Psi,\langle f, G(\hat{x})\rangle \widetilde{\Phi}_{m}\right\rangle
$$

Here we use the canonical commutation relations of a, a^{*}, and $\langle f, G(\hat{x})\rangle$ is the multiplication operator by the function $\langle f, G(x)\rangle$. Since $\Psi \in \operatorname{Dom}\left(\widetilde{H}_{m}^{V}\right)$ is arbitrary, $a(f) \widetilde{\Phi}_{m} \in \operatorname{Dom}\left(\widetilde{H}_{m}^{V}\right)$, and hence,

$$
\begin{equation*}
\left\langle a(f) \widetilde{\Phi}_{m}, a\left(\omega_{m} f\right) \widetilde{\Phi}_{m}\right\rangle+\frac{1}{\sqrt{2}}\left\langle a(f) \widetilde{\Phi}_{m},\langle f, G(\hat{x})\rangle \widetilde{\Phi}_{m}\right\rangle \leq 0 . \tag{4}
\end{equation*}
$$

Lemma 3.2 (Photon number bound). For all $0<m<\mathrm{m}$, we have

$$
\begin{equation*}
\left\|a(k) \widetilde{\Phi}_{m}\right\|^{2} \leq \frac{1}{2(2 \pi)^{3}} \frac{|k|}{\omega_{m}(k)^{2}}|\hat{\rho}(k)|^{2}\left\||x| \widetilde{\Phi}_{m}\right\|^{2}, \quad \text { a.e. } k \in \mathbb{R}^{3} . \tag{5}
\end{equation*}
$$

Proof. Let $q(k)$ be a bounded real-valued measurable function. We choose some complete orthonormal system $\left\{f_{i}\right\}_{i=1}^{\infty} \subset \operatorname{Dom}\left(\omega_{m}\right)$. By (4), we have

$$
\sum_{i=1}^{\infty}\left\langle a\left(\omega_{m}^{-1 / 2} q f_{i}\right) \widetilde{\Phi}_{m}, a\left(\omega_{m}^{1 / 2} q f_{i}\right) \widetilde{\Phi}_{m}\right\rangle+\frac{1}{\sqrt{2}} \sum_{i=1}^{\infty}\left\langle a\left(\left\langle\omega_{m}^{-1 / 2} q f_{i}, G(\hat{x})\right\rangle \omega_{m}^{-1 / 2} q f_{i}\right) \widetilde{\Phi}_{m}, \widetilde{\Phi}_{m}\right\rangle \leq 0
$$

By Lemma A. 1 in Appendix, we have

$$
\begin{aligned}
\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(q^{2}\right) \widetilde{\Phi}_{m}\right\rangle & \leq-\frac{1}{\sqrt{2}}\left\langle a\left(\omega_{m}^{-1} q^{2} G(\hat{x})\right) \widetilde{\Phi}_{m}, \widetilde{\Phi}_{m}\right\rangle \\
& \leq \frac{1}{\sqrt{2}} \int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k)^{2}}{\omega_{m}(k)}\left|\left\langle G(\hat{x}, k)^{*} a(k) \widetilde{\Phi}_{m}, \widetilde{\Phi}_{m}\right\rangle\right| .
\end{aligned}
$$

Note that q is arbitrary. Hence, we obtain

$$
\left\|a(k) \widetilde{\Phi}_{m}\right\|^{2} \leq \frac{1}{\sqrt{2}} \frac{1}{\omega_{m}(k)}\left\|a(k) \widetilde{\Phi}_{m}\right\|\left\|G(\hat{x} ; k) \widetilde{\Phi}_{m}\right\|, \quad \text { a.e. } k .
$$

By the definition of G, we have $|G(x, k)|^{2} \leq|\hat{\rho}(k)|^{2}|k||x|^{2} /(2 \pi)^{3}$. Therefore, (5) holds.

We write $\widetilde{\Phi}_{m}=\left(\widetilde{\Phi}_{m}^{(n)}\right)_{n=0}^{\infty}$ with $\widetilde{\Phi}_{m}^{(n)} \in L^{2}\left(\mathbb{R}_{x}^{3}\right) \otimes\left(\otimes_{s}^{n} L^{2}\left(\mathbb{R}_{k}^{3}\right)\right), n \geq 0$, where $\otimes_{s}^{n} L^{2}\left(\mathbb{R}_{k}^{3}\right)$ is the n-fold symmetric tensor product of $L^{2}\left(\mathbb{R}_{k}^{3}\right)$.

Lemma 3.3 (Photon derivative bound). Let $0<m<\mathrm{m}$. Then, for all $\widetilde{\Phi}_{m}^{(n)}$ is in the Sobolev space $H^{1}\left(\mathbb{R}_{x}^{3} \times S^{3 n}\right)$, and \mathcal{F}-valued function a $(k) \widetilde{\Phi}_{m}$ is strongly differentiable in $k \in S \backslash\{0\}$ for all directions with

$$
\begin{aligned}
\partial_{j} a(k) \widetilde{\Phi}_{m} & =\left(\partial_{j} \widetilde{\Phi}_{m}^{(1)}(k), \sqrt{2} \partial_{j} \widetilde{\Phi}_{m}^{(2)}(k, \cdot), \ldots, \sqrt{n} \partial_{j} \widetilde{\Phi}_{m}^{(n)}(k, \cdot), \ldots\right), \quad j=1,2,3, \\
\left\|\nabla_{k} a(k) \widetilde{\Phi}_{m}\right\|^{2} & \leq \frac{1}{(2 \pi)^{3}} \frac{1}{\omega_{m}(k)^{2}}\left[3 \frac{|\hat{\rho}(k)|^{2}}{|k|}+|k||\nabla \hat{\rho}(k)|^{2}\right]\left\||\hat{x}| \widetilde{\Phi}_{m}\right\|^{2},
\end{aligned}
$$

where ∂_{j} and ∇_{k} means the differential operator for j-th component of k and the nabla operator for the coordinate k.

Proof. For $h \in \mathbb{R}^{3}$ and a function $f(k)$, we define

$$
\left(\Delta_{h} f\right)(k):=f(k+h)-f(k) .
$$

We consider (4) with f replaced by $\Delta_{-h} \omega_{m}^{-1 / 2} q f_{i}$. Here q and f_{i} are the same function as in the proof of the above Lemma. By Lemma A.1, we have

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left\langle a\left(\Delta_{-h} \omega_{m}^{-1 / 2} q f_{i}\right) \widetilde{\Phi}_{m}, a\left(\omega_{m} \Delta_{-h} \omega_{m}^{-1 / 2} q f_{i}\right) \widetilde{\Phi}_{m}\right\rangle=\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{-h} \omega_{m}^{-1} q^{2} \Delta_{h} \omega_{m}\right) \widetilde{\Phi}_{m}\right\rangle \tag{6}
\end{equation*}
$$

We introduce an operator $\left(T_{h} f\right)(k):=f(k+h)$. It is easy to see that $\Delta_{h} \omega_{m}=$ $\left(\Delta_{h} \omega_{m}\right) T_{h}+\omega_{m} \Delta_{h}$. therefore, we have

$$
(6)=\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{-h} q^{2} \Delta_{h}\right) \widetilde{\Phi}_{m}\right\rangle+\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{-h} q^{2} \omega_{m}^{-1}\left(\Delta_{h} \omega_{m}\right) T_{h}\right) \widetilde{\Phi}_{m}\right\rangle
$$

On the other hand,

$$
\sum_{i=1}^{\infty}\left\langle a\left(\Delta_{-h} \omega_{m}^{-1 / 2} q f_{i}\right) \widetilde{\Phi}_{m},\left\langle\Delta_{-h} \omega_{m}^{-1 / 2} q f_{i}, G(\hat{x})\right\rangle \widetilde{\Phi}_{m}\right\rangle=\left\langle a\left(\Delta_{-h} \omega_{m}^{-1} q^{2} \Delta_{h} G(\hat{x})\right) \widetilde{\Phi}_{m}, \widetilde{\Phi}_{m}\right\rangle
$$

Therefore, we obtain

$$
\begin{align*}
\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{-h} q^{2} \Delta_{h}\right) \widetilde{\Phi}_{m}\right\rangle \leq & -\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{-h} q^{2} \omega_{m}^{-1}\left(\Delta_{h} \omega_{m}\right) T_{-h}\right) \widetilde{\Phi}_{m}\right\rangle \\
& -\frac{1}{\sqrt{2}}\left\langle a\left(\Delta_{-h} \omega_{m}^{-1} q^{2} \Delta_{h} G(\hat{x})\right) \widetilde{\Phi}_{m}, \widetilde{\Phi}_{m}\right\rangle \tag{7}
\end{align*}
$$

By the Schwarz inequality, we have

$$
\begin{aligned}
& \left|\left\langle a\left(\Delta_{-h} \omega_{m}^{-1} q^{2} \Delta_{h} G(\hat{x})\right) \widetilde{\Phi}_{m}, \widetilde{\Phi}_{m}\right\rangle\right| \\
& =\left\langle\Phi, \mathrm{d} \Gamma\left(\Delta_{-h} q^{2} \Delta_{h}\right) \Phi\right\rangle^{1 / 2}\left[\int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k)^{2}}{\omega_{m}(k)^{2}}\left\|\left(\Delta_{h} G(\hat{x})\right)(k) \widetilde{\Phi}_{m}\right\|^{2}\right]^{1 / 2}
\end{aligned}
$$

By using the general inequality $\left|\left\langle\Phi, \mathrm{d} \Gamma\left(S^{*} T\right) \Psi\right\rangle\right| \leq\left\langle\Phi, \mathrm{d} \Gamma\left(S^{*} S\right) \Phi\right\rangle^{1 / 2}\left\langle\Phi, \mathrm{~d} \Gamma\left(T^{*} T\right) \Psi\right\rangle^{1 / 2}$, we have

$$
\begin{aligned}
\left|\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{-h} q^{2} \omega_{m}^{-1}\left(\Delta_{h} \omega_{m}\right) T_{h}\right) \widetilde{\Phi}_{m}\right\rangle\right| \leq & \left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\left(\Delta_{-h} q\right)\left(\Delta_{-h} q\right)^{*}\right) \widetilde{\Phi}_{m}\right\rangle^{1 / 2} \\
& \times\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(T_{-h}\left(\Delta_{h} \omega_{m}\right) q^{2} \omega_{m}^{-2}\left(\Delta_{h} \omega_{m}\right) T_{h}\right) \widetilde{\Phi}_{m}\right\rangle^{1 / 2}
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
& \left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{-h} q^{2} \Delta_{h}\right) \widetilde{\Phi}_{m}\right\rangle \\
& \leq \int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k)^{2}}{\omega_{m}(k)^{2}}\left\|\left(\Delta_{h} G(\hat{x})\right)(k) \widetilde{\Phi}_{m}\right\|^{2}+2\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(T_{-h}\left(\Delta_{h} \omega_{m}\right) q^{2} \omega_{m}^{-2}\left(\Delta_{h} \omega_{m}\right) T_{h}\right) \widetilde{\Phi}_{m}\right\rangle \\
& =\int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k)^{2}}{\omega_{m}(k)^{2}}\left\|\left(\Delta_{h} G(\hat{x})\right)(k) \widetilde{\Phi}_{m}\right\|^{2}+2 \int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k-h)^{2}}{\omega_{m}(k-h)^{2}}\left|\left(\Delta_{h} \omega_{m}\right)(k-h)\right|^{2}\left\|a(k) \widetilde{\Phi}_{m}\right\|^{2} .
\end{aligned}
$$

By (5), this is dominated by

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k)^{2}}{\omega_{m}(k)^{2}}\left\|\left(\Delta_{h} G(\hat{x})\right)(k) \widetilde{\Phi}_{m}\right\|^{2} \\
& +\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k)^{2}}{\omega_{m}(k)^{2}}\left|\left(\Delta_{h} \omega_{m}\right)(k)\right|^{2} \frac{|k+h| \hat{\rho}(k+h)^{2}}{\omega_{m}(k+h)^{2}}\left\||x| \widetilde{\Phi}_{m}\right\|^{2}
\end{aligned}
$$

Since the function q is arbitrary, we have

$$
\left\|\Delta_{h} a(k) \widetilde{\Phi}_{m}\right\|^{2} \leq \frac{\left\|\left(\Delta_{h} G(\hat{x})\right)(k) \widetilde{\Phi}_{m}\right\|^{2}}{\omega_{m}(k)^{2}}+\frac{|k+h| \hat{\rho}(k+h)^{2}\left|\left(\Delta_{h} \omega_{m}\right)(k)\right|^{2}}{(2 \pi)^{3} \omega_{m}(k+h)^{2} \omega_{m}(k)^{2}}\left\|x \mid \widetilde{\Phi}_{m}\right\|^{2}
$$

for a.e. $k \in \mathbb{R}^{3}$. By using the definition of $G(x, k)$, we have

$$
\begin{aligned}
& \sqrt{(2 \pi)^{3}}\left|\Delta_{h} G(x, k)\right| \\
& \leq \frac{|h||k+h||x|}{|k+h|^{1 / 2}|k|}|\hat{\rho}(k+h)|+\frac{|h||x|}{|k|^{1 / 2}}|\hat{\rho}(k+h)|+|k|^{1 / 2}|x||\hat{\rho}(k+h)-\hat{\rho}(k)|
\end{aligned}
$$

and it is easy to see that $\left|\left(\Delta_{h} \omega_{m}\right)(k)\right| \leq|h|$. Therefore we obtain

$$
\begin{align*}
\left\|\Delta_{h} a(k) \widetilde{\Phi}_{m}\right\|^{2} \leq & \frac{1}{(2 \pi)^{3}} \frac{1}{\omega_{m}(k)^{2}}\left[3 \frac{|h|^{2}}{|k|^{2}}|k+h||\hat{\rho}(k+h)|^{2}+3 \frac{|h|^{2}}{|k|}|\hat{\rho}(k+h)|^{2}\right. \\
& \left.+3|k||\hat{\rho}(k+h)-\hat{\rho}(k)|^{2}+\frac{|k+h \| \hat{\rho}(k+h)|^{2}|h|^{2}}{\omega_{m}(k+h)^{2}}\right]\left\||x| \widetilde{\Phi}_{m}\right\|^{2} \tag{8}
\end{align*}
$$

By this inequality with [N.5], we see that \mathcal{F}-valued function $a(k) \widetilde{\Phi}_{m}$ is strongly continuous in $k \in S \backslash\{0\}$. Next, we show that $a(k) \widetilde{\Phi}_{m}$ is strongly differentiable. For this purpose, we introduce the operator $\Delta_{h, \ell}$ by

$$
\left(\Delta_{h, \ell} f\right)(k)=\frac{f(k+h)-f(k)}{|h|}-\frac{f(k+\ell)-f(k)}{|\ell|}, \quad k, \ell \in \mathbb{R}^{3} .
$$

We define $\Delta_{h, \ell}^{*}:=\Delta_{-h,-\ell}$. Returning to (4) with f replaced by $\Delta_{h, \ell}^{*} \omega_{m}^{-1 / 2} q f_{i}$ and summing over $i=1, \ldots, \infty$ we have

$$
\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \omega_{m}^{-1} \Delta_{h, \ell} \omega_{m}\right) \widetilde{\Phi}_{m}\right\rangle+\frac{1}{\sqrt{2}}\left\langle a\left(\Delta_{h, \ell}^{*} \omega_{m}^{-1} q^{2} \Delta_{h, \ell} G(\hat{x})\right) \widetilde{\Phi}_{m}, \widetilde{\Phi}_{m}\right\rangle \leq 0
$$

It is easy to see that $\Delta_{h, \ell} \omega_{m}=\omega_{m} \Delta_{h, \ell}+F_{h}-F_{\ell}$, where $F_{h}:=\left(\Delta_{h} \omega_{m}\right)|h|^{-1} T_{h}$. Hence, we have

$$
\begin{align*}
\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \Delta_{h, \ell}\right) \widetilde{\Phi}_{m}\right\rangle \leq & -\frac{1}{\sqrt{2}}\left\langle a\left(\Delta_{h, \ell}^{*} \omega_{m}^{-1} q^{2} \Delta_{h, \ell} G(\hat{x})\right) \widetilde{\Phi}_{m}, \widetilde{\Phi}_{m}\right\rangle \tag{9}\\
& +\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \omega_{m}^{-1} F_{h}\right) \widetilde{\Phi}_{m}\right\rangle+\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \omega_{m}^{-1} F_{\ell}\right) \widetilde{\Phi}_{m}\right\rangle \tag{10}
\end{align*}
$$

By the Schwarz inequality, we have

$$
\begin{align*}
\mid \text { r.h.s of }(9) \mid \leq & \left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \Delta_{h, \ell}\right) \widetilde{\Phi}_{m}\right\rangle^{1 / 2}\left[\int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k)^{2}}{\omega_{m}(k)^{2}}\left\|\left(\Delta_{h, \ell} G(\hat{x})\right)(k) \widetilde{\Phi}_{m}\right\|^{2}\right]^{1 / 2} \\
|(10)| \leq & \left|\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \omega_{m}^{-1}\left[\Delta_{h, \ell}^{*} \omega_{m}\right] T_{h}\right) \widetilde{\Phi}_{m}\right\rangle\right| \tag{11}\\
& +\left|\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \omega_{m}^{-1}\left[\frac{\Delta_{\ell}}{|\ell|} \omega_{m}\right]\left(T_{h}-T_{\ell}\right)\right) \widetilde{\Phi}_{m}\right\rangle\right| \tag{12}
\end{align*}
$$

Moreover,
r.h.s. of (11)

$$
\begin{aligned}
& \leq\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \Delta_{h, \ell}\right) \widetilde{\Phi}_{m}\right\rangle^{1 / 2}\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(T_{-h} q^{2} \omega_{m}^{-2}\left[\Delta_{h, \ell}^{*} \omega_{m}\right]^{2} T_{h}\right) \widetilde{\Phi}_{m}\right\rangle^{1 / 2} \\
& =\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \Delta_{h, \ell}\right) \widetilde{\Phi}_{m}\right\rangle^{1 / 2}\left[\int_{\mathbb{R}^{3}} \mathrm{~d} k q(k)^{2} \omega_{m}^{-2}(k)\left[\Delta_{h, \ell}^{*} \omega_{m}\right]^{2}(k)\left\|a(k+h) \widetilde{\Phi}_{m}\right\|^{2}\right]^{1 / 2}
\end{aligned}
$$

and
r.h.s. of (12)

$$
\begin{aligned}
& \leq\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \Delta_{h, \ell}\right) \widetilde{\Phi}_{m}\right\rangle^{1 / 2}\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\left(T_{-h}-T_{-\ell}\right)\left[\frac{\Delta_{\ell}}{|\ell|} \omega_{m}\right]^{2} q^{2} \omega_{m}^{-2}\left(T_{h}-T_{\ell}\right)\right)\right\rangle^{1 / 2} \\
& \leq\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \Delta_{h, \ell}\right) \widetilde{\Phi}_{m}\right\rangle^{1 / 2}\left[\int_{\mathbb{R}^{3}} \mathrm{~d} k q(k)^{2} \omega_{m}(k)^{-2}\left\|a(k+h) \widetilde{\Phi}_{m}-a(k+\ell) \widetilde{\Phi}_{m}\right\|^{2}\right]^{1 / 2}
\end{aligned}
$$

These inequality yields

$$
\begin{aligned}
\left\langle\widetilde{\Phi}_{m}, \mathrm{~d} \Gamma\left(\Delta_{h, \ell}^{*} q^{2} \Delta_{h, \ell}\right) \widetilde{\Phi}_{m}\right\rangle \leq & \frac{3}{2} \int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k)^{2}}{\omega_{m}(k)^{2}}\left\|\left(\Delta_{h, \ell} G(\hat{x})\right)(k) \widetilde{\Phi}_{m}\right\|^{2} \\
& +3 \int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k)^{2}}{\omega_{m}(k)^{2}}\left|\Delta_{h, \ell}^{*} \omega_{m}\right|^{2}(k)\left\|a(k+h) \widetilde{\Phi}_{m}\right\|^{2} \\
& +3 \int_{\mathbb{R}^{3}} \mathrm{~d} k \frac{q(k)^{2}}{\omega_{m}(k)^{2}}\left\|a(k+h) \widetilde{\Phi}_{m}-a(k+\ell) \widetilde{\Phi}_{m}\right\|^{2}
\end{aligned}
$$

Since the function q is arbitrary, we have

$$
\begin{align*}
\left\|\Delta_{h, \ell} a(k) \widetilde{\Phi}_{m}\right\|^{2} \leq & \frac{3}{\omega_{m}(k)^{2}}\left[\frac{1}{2}\left\|\left(\Delta_{h, \ell} G(\hat{x})\right)(k) \widetilde{\Phi}_{m}\right\|^{2}+\left|\Delta_{h, \ell}^{*} \omega_{m}\right|^{2}(k)\left\|a(k+h) \widetilde{\Phi}_{m}\right\|^{2}\right. \\
& \left.+\left\|a(k+h) \widetilde{\Phi}_{m}-a(k+\ell) \widetilde{\Phi}_{m}\right\|^{2}\right], \quad \text { a.e. } k \in \mathbb{R}^{3} . \tag{13}
\end{align*}
$$

Remembering the condition [N.5] and that $a(k) \widetilde{\Phi}_{m}$ is continuous, we get,

$$
\lim _{h, \ell \rightarrow 0}\left\|\Delta_{|h| e,|\ell| e} a(k) \widetilde{\Phi}_{m}\right\|^{2}=0, \quad \text { a.e. } k \in S \backslash\{0\}
$$

for all $\boldsymbol{e} \in \mathbb{R}^{3}$. Therefore the \mathcal{F}-valued function $\Delta_{|h| e} a(k) \widetilde{\Phi}_{m} /|h|$ is a Cauchy sequence in $|h|$ as $|h| \rightarrow 0$. Namely, for all directions, $a(k) \widetilde{\Phi}_{m}$ is strongly differentiable in $k \in S \backslash\{0\}$. Let $e_{j}(j=1,2,3)$ be the unit vectors of the j-th direction, and let

$$
v_{j}(k):=\operatorname{s-lim}_{|h| \rightarrow 0} \frac{1}{|h|} \Delta_{|h| e_{j}} a(k) \widetilde{\Phi}_{m}, \quad \text { a.e. } k \in S
$$

Next, we show that $\widetilde{\Phi}_{m}^{(n)} \in H^{1}\left(\mathbb{R}_{x}^{3} \times S^{3 n}\right)$ for all $n \in \mathbb{N}$. Let $\psi \in C_{0}^{\infty}\left(\mathbb{R}_{x}^{3}\right) \times S^{3 n}$. Then, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{3(n+1)}}\left(\partial_{j} \psi\right)(x, k, K) \widetilde{\Phi}_{m}^{(n)}(x, k, K) \mathrm{d} x \mathrm{~d} k \mathrm{~d} K \\
& =\lim _{h \rightarrow 0} \frac{1}{|h|} \int_{\mathbb{R}^{3(n+1)}}\left[\psi(x, k, K)-\psi\left(x, k-|h| e_{j}, K\right)\right] \widetilde{\Phi}_{m}^{(n)}(x, k, K) \mathrm{d} x \mathrm{~d} k \mathrm{~d} K \\
& =-\lim _{h \rightarrow 0} \frac{1}{|h|} \int_{\mathbb{R}^{3}} \mathrm{~d} k\left[\int_{\mathbb{R}^{3(n+1)}} \psi(x, k, K)\left[\widetilde{\Phi}_{m}^{(n)}\left(x, k+|h| e_{j}, K\right)-\widetilde{\Phi}_{m}^{(n)}(x, k, K)\right] \mathrm{d} x \mathrm{~d} K\right],
\end{aligned}
$$

where $K=\left(k_{1}, k_{2}, \ldots, k_{n-1}\right) \in \mathbb{R}^{3(n-1)}$. On the other hand,

$$
\begin{align*}
& \left|\int_{\mathbb{R}^{3}} \mathrm{~d} k\left[\int_{\mathbb{R}^{3 n}} \mathrm{~d} x \mathrm{~d} K \psi(x, k, K)\left\{\frac{1}{|h|}\left[\widetilde{\Phi}_{m}^{(n)}\left(x, k+|h| e_{j}, K\right)+\widetilde{\Phi}_{m}^{(n)}(x, k, K)\right]-v_{j}^{(n)}(x, k, K)\right\}\right]\right| \\
& \leq \int_{\mathbb{R}^{3}} \mathrm{~d} k\|\psi(k, \cdot)\|_{L^{2}\left(\mathbb{R}^{3 n}\right)}\left\|\frac{1}{|h|}\left(\Delta_{|h| e_{j}} a(k) \widetilde{\Phi}_{m}\right)^{(n)}-v_{j}^{(n)}(k)\right\| \\
& \leq \int_{\mathbb{R}^{3}} \mathrm{~d} k\|\psi(k, \cdot)\|_{L^{2}\left(\mathbb{R}^{3 n}\right)}\left\|\frac{1}{|h|} \Delta_{|h| e_{j}} a(k) \widetilde{\Phi}_{m}-v_{j}(k)\right\| \tag{14}
\end{align*}
$$

Returning to (13) with $h \rightarrow|h| e_{j}, \ell \rightarrow|\ell| e_{j}$ and $\lim _{|\ell| \rightarrow 0}$, we have

$$
\begin{aligned}
& \left\|\frac{1}{|h|} \Delta_{h} a(k) \widetilde{\Phi}_{m}-v_{j}(k)\right\|^{2} \\
& \leq \frac{3}{\omega_{m}(k)^{2}}\left[\frac{1}{2}\left\|\left(\frac{1}{h}\left(\Delta_{h e_{j}} G\right)(\hat{x}, k)-\partial_{j} G(\hat{x}, k)\right) \widetilde{\Phi}_{m}\right\|^{2}\right. \\
& \left.\quad+\frac{2|h|}{\omega_{m}(k)}\left\|a(k+h) \widetilde{\Phi}_{m}\right\|^{2}+\left\|a(k+h) \widetilde{\Phi}_{m}-a(k) \widetilde{\Phi}_{m}\right\|^{2}\right], \quad \text { a.e. } k \in \mathbb{R}^{3}
\end{aligned}
$$

where we use the elementary inequality $\left|\frac{1}{h} \Delta_{h e_{j}} \omega_{m}(k)-\partial_{j} \omega_{m}(k)\right| \leq 2|h| / \omega_{m}(k)$. Since the set $S_{\psi}:=\operatorname{supp}\|\psi(k, \cdot)\|$ is a subset of $S, k+h \in S$ for all h and $k \in S_{\psi}$ with $|h|<\operatorname{dist}\left\{S_{\psi}, S\right\}$. Using this fact and (8), we obtain

$$
\lim _{|h| \rightarrow 0} \int_{\mathbb{R}^{3}} \mathrm{~d} k\|\psi(k, \cdot)\|_{L^{2}\left(\mathbb{R}^{3 n}\right)}\left[|h| \frac{\left\|a(k+h) \widetilde{\Phi}_{m}\right\|}{\omega_{m}(k)^{2}}+\frac{\left\|a(k+h) \widetilde{\Phi}_{m}-a(k) \widetilde{\Phi}_{m}\right\|}{\omega_{m}(k)}\right]=0 .
$$

By condition [N.4] and the dominated convergence theorem, we have

$$
\begin{aligned}
\left\|\chi_{S_{\psi}}|h|^{-1} \Delta_{h} \hat{\rho}-\partial_{j} \hat{\rho}\right\|^{2} & \leq\left\||h|^{-1} \Delta_{h} \eta-\partial_{j} \eta\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \\
& \leq \int_{\mathbb{R}_{y}^{3}}\left|\frac{e^{-i|h| y_{j}}-1}{|h| y_{j}}+i\right|^{2} y_{j}^{2}|(\mathrm{~F} \eta)(y)|^{2} \mathrm{~d} y \rightarrow 0,(|h| \rightarrow 0),
\end{aligned}
$$

where F means Fourier transformation. By this formula and simple but tedious estimates, we can show that

$$
\lim _{|h| \rightarrow 0} \int_{\mathbb{R}^{3}} \mathrm{~d} k\|\psi(k, \cdot)\|_{L^{2}\left(\mathbb{R}^{3 n}\right)} \cdot \frac{1}{\omega_{m}}\left\|\left(\frac{1}{h}\left(\Delta_{h e_{j}} G\right)(\hat{x}, k)-\partial_{j} G(\hat{x}, k)\right) \widetilde{\Phi}_{m}\right\|=0
$$

These facts mean that

$$
\lim _{h \rightarrow 0}(14)=0 .
$$

Therefore, $\widetilde{\Phi}_{m}^{(n)} \in H^{1}\left(\mathbb{R}_{x}^{3} \times S^{3 n}\right)$.
Pick a sequence $m_{1}>m_{2}>\cdots$ tending to zero and we set

$$
\widetilde{\Phi}_{j}:=\widetilde{\Phi}_{m_{j}}, \quad j=1,2, \ldots
$$

Since $\widetilde{\Phi}_{j}$'s are normalized, a subsequence of $\left\{\widetilde{\Phi}_{j}\right\}_{j}$ has a weak limit $\widetilde{\Phi}$ (the subsequence denoted by the same symbol).

Lemma 3.4. $\widetilde{\Phi} \in \operatorname{Dom}\left(\widetilde{H}^{V}\right)$ and,

$$
\begin{equation*}
\widetilde{H}^{V} \widetilde{\Phi}=E^{V}(0) \widetilde{\Phi} \tag{15}
\end{equation*}
$$

Proof. First, we show that $\widetilde{\Phi} \in Q\left(\widetilde{H}^{V}\right)=\operatorname{Dom}\left(H_{f}(0)^{1 / 2}\right) \cap Q\left(H_{\mathrm{p}}\right)$. For all $\Psi \in$ $\operatorname{Dom}\left(H_{f}(0)^{1 / 2}\right)$, we have

$$
\left|\left\langle\widetilde{\Phi}, H_{f}(0)^{1 / 2} \Psi\right\rangle\right|=\lim _{j \rightarrow \infty}\left|\left\langle H_{f}(0)^{1 / 2} \widetilde{\Phi}_{j}, \Psi\right\rangle\right|=\limsup _{j \rightarrow \infty}\left\|H_{f}(0)^{1 / 2} \widetilde{\Phi}_{j}\right\|\|\Psi\|
$$

Since H_{p} is bounded below, we have

$$
\left\|H_{f}(0)^{1 / 2} \widetilde{\Phi}_{j}\right\|^{2} \leq \text { const. }\left\langle\widetilde{\Phi}_{j},\left(\widetilde{H}^{V}\left(m_{j}\right)-E^{V}\left(m_{j}\right)+1\right) \widetilde{\Phi}_{j}\right\rangle \leq \text { const. }
$$

where const. is a constant independent of j. Hence $\widetilde{\Phi} \in \operatorname{Dom}\left(H_{f}(0)^{1 / 2}\right)$. Similarly we have $\widetilde{\Phi} \in Q\left(H_{\mathrm{p}}\right)$. Since $E^{V}\left(m_{j}\right) \rightarrow E^{V}(0)(j \rightarrow \infty)$, we have
$\left\|\left(\widetilde{H}^{V}-E^{V}(0)\right)^{1 / 2} \widetilde{\Phi}_{j}\right\|^{2} \leq\left\|\left(\widetilde{H}^{V}\left(m_{j}\right)-E^{V}(0)\right)^{1 / 2} \widetilde{\Phi}_{j}\right\|^{2} \leq\left(E^{V}\left(m_{j}\right)-E^{V}(0)\right)\left\|\widetilde{\Phi}_{j}\right\|^{2} \rightarrow 0$, as $j \rightarrow \infty$. Therefore $\left(\widetilde{H}^{V}-E^{V}(0)\right)^{1 / 2} \widetilde{\Phi}=0$. This means $\widetilde{\Phi} \in \operatorname{Dom}\left(\widetilde{H}^{V}\right)$ and $\widetilde{H}^{V} \widetilde{\Phi}=$ $E^{V}(0) \widetilde{\Phi}$.

By this lemma, if $\widetilde{\Phi} \neq 0$ then $\widetilde{\Phi}$ is a ground state of \widetilde{H}^{V}. This proof is essentially same as [4, 7 Proof of Theorem 2.1], so we omit it (Notice that the condition [N.3] and [N.6] were used there).

A Parseval's Equality for the Annihilation Operators

Let \mathcal{K} be a complex separable Hilbert space, and let $\mathcal{F}_{\mathrm{b}}(\mathcal{K})$ be the Boson Fock space over \mathcal{K}. We denote by N_{b} the number operator on $\mathcal{F}_{\mathrm{b}}(\mathcal{K})$. Let S and T be densely defined closed linear operators on \mathcal{K}, such that $\operatorname{Dom}(S) \cap \operatorname{Dom}(T)$ is dense.

Lemma A. 1 (Parseval's equality for the annihilation operators). Assume that, for vectors $\Psi, \Phi \in \operatorname{Dom}\left(N_{\mathrm{b}}^{1 / 2}\right)$, there exist constants $\alpha, \beta(\alpha+\beta=1, \alpha, \beta \geq 0)$ such that,

$$
N_{\mathrm{b}}^{\alpha-1} \Phi \in \operatorname{Dom}\left(\mathrm{~d} \Gamma\left(T^{*}\right)\right), \quad N_{\mathrm{b}}^{\beta-1} \Psi \in \operatorname{Dom}\left(\mathrm{~d} \Gamma\left(S^{*}\right)\right) .
$$

Then, for all complete orthonormal basis $\left\{f_{j}\right\}_{j=1}^{\infty} \subset \operatorname{Dom}(S) \cap \operatorname{Dom}(T)$, the following equality holds:

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left\langle a\left(S f_{j}\right) \Psi, a\left(T f_{j}\right) \Phi\right\rangle=\sum_{n=1}^{\infty} n\left\langle S^{*} \otimes \mathbb{1}_{n-1} \Psi^{(n)}, T^{*} \otimes \mathbb{1}_{n-1} \Phi^{(n)}\right\rangle_{\otimes^{n} \mathcal{K}} \tag{16}
\end{equation*}
$$

In particular, if $\Phi \in \operatorname{Dom}\left(\mathrm{d} \Gamma\left(S T^{*}\right)\right)$, then

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left\langle a\left(S f_{j}\right) \Psi, a\left(T f_{j}\right) \Phi\right\rangle=\left\langle\Psi, \mathrm{d} \Gamma\left(S T^{*}\right) \Phi\right\rangle \tag{17}
\end{equation*}
$$

Proof. It is enough to show in the case that \mathcal{K} is L^{2}-space on a measurable space. For simplicity, we prove (16) only in the case $\mathcal{K}=L^{2}\left(\mathbb{R}^{3}\right)$. Using the definition of $a(f)$, we have

$$
\begin{aligned}
& \left\langle a\left(S f_{j}\right) \Psi, a\left(T f_{j}\right) \Phi\right\rangle=\int \mathrm{d} k \int \mathrm{~d} k^{\prime}\left(S f_{j}\right)(k)\left(T f_{j}\right)^{*}\left(k^{\prime}\right)\left\langle a(k) \Psi, a\left(k^{\prime}\right) \Phi\right\rangle \\
& \quad=\int \mathrm{d} k \int \mathrm{~d} k^{\prime} \sum_{n=1}^{\infty} n \int \mathrm{~d} K\left(S f_{j}\right)(k)\left(T f_{j}\right)^{*}\left(k^{\prime}\right) \Psi^{(n)}(k, K)^{*} \Phi^{(n)}\left(k^{\prime}, K\right)
\end{aligned}
$$

where $K=\left(k_{2}, \ldots, k_{n}\right), \mathrm{d} K=\mathrm{d} k_{2} \cdots \mathrm{~d} k_{n}$. In the above equation, the integral and the
summation commute, because

$$
\begin{aligned}
& \int \mathrm{d} k \int \mathrm{~d} k^{\prime} \sum_{n=1}^{\infty} n \int \mathrm{~d} K\left|\left(S f_{j}\right)(k)\left(T f_{j}\right)^{*}\left(k^{\prime}\right) \Psi^{(n)}(k, K)^{*} \Phi^{(n)}\left(k^{\prime}, K\right)\right| \\
& \leq \int \mathrm{d} k \mathrm{~d} k^{\prime}\left|\left(S f_{j}\right)(k)\left(T f_{j}\right)\left(k^{\prime}\right)\right|\left[\sum_{n=1}^{\infty} n \int \mathrm{~d} K\left|\Psi^{(n)}(k, K)\right|^{2}\right]^{1 / 2}\left[\sum_{n=1}^{\infty} n \int \mathrm{~d} K\left|\Phi^{(n)}\left(k^{\prime}, K\right)\right|^{2}\right]^{1 / 2} \\
& =\int \mathrm{d} k \mathrm{~d} k^{\prime}\left|\left(S f_{j}\right)(k)\right| \cdot\left|\left(T f_{j}\right)\left(k^{\prime}\right)\right| \cdot\|a(k) \Psi\|\left\|a\left(k^{\prime}\right) \Phi\right\| \\
& \leq\left\|S f_{j}\right\|\left\|T f_{j}\right\|\left[\int \mathrm{d} k\|a(k) \Psi\|^{2}\right]^{1 / 2}\left[\int \mathrm{~d} k\left\|a\left(k^{\prime}\right) \Phi\right\|^{2}\right]^{1 / 2} \\
& =\left\|S f_{j}\right\|\left\|T f_{j}\right\|\left\|N_{\mathrm{b}}^{1 / 2} \Psi\right\|\left\|N_{\mathrm{b}}^{1 / 2} \Phi\right\|<\infty
\end{aligned}
$$

and hence on can apply Fubini's theorem. Hence,

$$
\begin{aligned}
& \sum_{j=1}^{\infty}\left\langle a\left(S f_{j}\right) \Psi, a\left(T f_{j}\right) \Phi\right\rangle= \\
& \sum_{j=1}^{\infty} \sum_{n=0}^{\infty} n \int \mathrm{~d} K\left\langle\left(T^{*} \otimes \mathbb{1} \Phi^{(n)}\right)(\cdot, K), f_{j}(\cdot)\right\rangle\left\langle f_{j}(\cdot),\left(S^{*} \otimes \mathbb{1} \Psi^{(n)}\right)(\cdot, K)\right\rangle
\end{aligned}
$$

Using Bessel's inequality, we have

$$
\begin{align*}
& \left|\sum_{j=1}^{N}\left\langle\left(T^{*} \otimes \mathbb{1} \Phi^{(n)}\right)(\cdot, K), f_{j}(\cdot)\right\rangle\left\langle f_{j}(\cdot),\left(S^{*} \otimes \mathbb{1} \Psi^{(n)}\right)(\cdot, K)\right\rangle\right| \\
& \leq\left\|\left(T^{*} \otimes \mathbb{1} \Phi^{(n)}\right)(\cdot, K)\right\|\left\|\left(S^{*} \otimes \mathbb{1} \Psi^{(n)}\right)(\cdot, K)\right\| \\
& \leq \frac{1}{2 n}\left\{n^{2 \alpha}\left\|\left(T^{*} \otimes \mathbb{1} \Phi^{(n)}\right)(\cdot, K)\right\|^{2}+n^{2 \beta}\left\|\left(S^{*} \otimes \mathbb{1} \Psi^{(n)}\right)(\cdot, K)\right\|^{2}\right\}, \quad \text { a.e. } K \in \mathbb{R}^{3(n-1)} . \tag{18}
\end{align*}
$$

By assumpsion for Ψ, Φ, we have

$$
\sum_{n=1}^{\infty} n \int \mathrm{~d} K(\text { r.h.s of }(18))=\frac{1}{2} \sum_{n=1}^{\infty}\left\|n^{\alpha} T^{*} \otimes \mathbb{1} \Phi^{(n)}\right\|^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left\|n^{\beta} S^{*} \otimes \mathbb{1} \Psi^{(n)}\right\|^{2}<\infty
$$

Hence, by applying the dominated convergence theorem and the standard parseval equality, we obtain (16).

Acknowledgements

The author is grateful to Professor A. Arai of Hokkaido university for discussions and helpful comments.

References

[1] A. Arai, Ground state of the massless Nelson model without infrared cutoff in a non-Fock representation, Rev. Math. Phys. 9 (2001), 1075-1094.
[2] A. Arai, M. Hirokawa and F. Hiroshima, Regularities of ground states of quantum field models, preprint.
[3] C. Gérard, On the existence of ground states for massless Pauli-Fierz Hamiltonians, Ann. Henri Poincaré 1 (2000), 443-459.
[4] M. Griesemer, E. Lieb and M. Loss, Ground states in non-relativistic quantum electrodynamics, Invent. math. 145 (2001), 557-595.
[5] M. Hirokawa, F. Hiroshima and H. Spohn, Ground states for point particles interacting through a massless scalar bose field, Adv. Math. 191 (2005), 339-392.
[6] E. H. Lieb, M. Loss, Anasysis, Amer. Math. Soc. second edition, 2001.
[7] J. Lörinczi, R. A. Minlos and H. Spohn The infrared behaviour in Nelson's model of a quantum particle coupled to a massless scalar field, Ann. Henri Poincaré $\mathbf{3}$ (2001), 1-28.
[8] E. Nelson, "Interaction of nonrelativistic particles with a quantized scalar field", J. Math. Phys. 5 (1964) 1190-1197.
[9] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. I, Academic Press, New York, 1972.
[10] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. II, Academic Press, New York, 1975.
[11] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. IV, Academic Press, New York, 1978.
[12] H. Spohn, Ground states of a quantum particle coupled to a scalar bose field, Lett. Math. Phys. 44, (1998), 9-16.

