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Abstract

We have investigated the unstable spinodal region of asymmetric nuclear matter
in the extended Zimanyi-Moszkowski (EZM) model. It is found that the model pro-
duces larger spinodal region, higher upper-density boundary and maximum asym-
metry, than the familiar nonlinear Walecka model. This is due to the renormalized
vector-meson coupling constants in the EZM model.

Recent experimental developments of nuclear multifragmentation reaction have provided

valuable information [1] on the liquid-gas phase transition and the critical phenomena

in nuclear matter. The nuclear multifragmentation is considered as the spinodal decom-

position [2-4]. A hot homogeneous nuclear matter, which is produced by high-energy

heavy-ion reaction, expands due to thermal pressure and cools o¤ below the critical tem-

perature, and then falls into unstable spinodal region. Because of density �uctuations,

a homogeneous system converts into a mixed-phase state that consists of droplets sur-

rounded by nuclear gas.

In this respect, there are renewed theoretical interests [5-10] on the spinodal instability

in nuclear matter. The investigations of Refs. [5], [7] and [9] are based on the nonlinear

Walecka (NLW) model of relativistic mean-�eld (RMF) theory [11]. The NLW model

has been most widely used in the investigations of nuclear matter, �nite nuclei, strange

hadronic matter and neutron stars. Most of their calculations did not take into account

the isovector-scalar meson � that has signi�cant e¤ect to split the e¤ective masses of

proton and neutron in the medium and alter the symmetry energy of asymmetric nuclear

matter [12], although the recent works [7] and [9] considered the e¤ect. We further have

to stress that the NLW model [5] cannot reproduce the empirical value of the critical

temperature [13] for nuclear matter. Recently, the author has developed the extended

Zimanyi-Moszkowski (EZM) model [14] and applied it to warm symmetric nuclear matter

[15]. The model has succeeded to reproduce the empirical values of the critical temper-

ature [13] and critical exponents [2] of nuclear matter in contrast to the NLW model. It

is therefore valuable to investigate the spinodal instability of asymmetric nuclear matter

in the EZM model.
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The EZM model for cold asymmetric nuclear matter taking into account � meson has

already been developed in Ref. [16]. In the present work, we will extend it to �nite

temperature. The thermodynamic potential per volume ~
 � 
=V of asymmetric nuclear
matter at temperature T is
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where kB is the Boltzmann constant and E�ki = (k2 +M�
i
2)
1=2 with the e¤ective mass

M�
i of a proton or neutron in the medium. The spin degeneracy factor  is equal to 2.

The �i is de�ned by the chemical potential �i and the vector potential V0i of a proton or

neutron as

�i = �i � V0i: (2)
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where M is the free nucleon mass and M�
i = m

�
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On the other hand, the vector mean-�eld h!0i is determined [16] from the vector potentials
as
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where V0i = v0iM . Similarly, the h�03i is determined [16] from
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The renormalized meson coupling constants [16] are
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with

� = 1=3: (12)

It is noted that � = 0 corresponds to the Walecka model [11].

Then, the e¤ective mass m�
i and the vector potential v0i are determined from extrem-

izing the thermodynamical potential ~
 by them. We have
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where the quantities A, B, C and D are de�ned by
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Given the baryon density �Bi and the temperature T , Eqs. (13)-(16) and (25) have to be

solved numerically utilizing 6-dimensional Newton-Raphson method so that the e¤ective

masses m�
p and m

�
n, the vector potentials v0p and v0n, and the chemical potentials �p and

�n are determined selfconsistently. Once the chemical potentials are determined, we can

evaluate the stability (or metastability) condition for asymmetric nuclear matter [7-9]:
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Figure 1: (a) The chemical potentials of proton (black curves) and neutron (red curves) as
functions of the total baryon density for the asymmetry a = 0:0 � 0:8 at T = 10MeV. (b)
The chemical potentials as functions of the asymmetry for �B = 0:25, 0:50 and 0:75 fm

�3.
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where �B = �Bp + �Bn is the total baryon density and a =
�
�Bn � �Bp

�
=�B is the asym-

metry. The derivatives of the pressure P are calculated using the Gibbs-Duhem relation:�
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Employing the isoscalar meson coupling constants given in Ref. [14] and the isovector

meson coupling constants (gNN�=m�)
2 = 0:39 fm2 and (gNN�=m�)

2 = 0:82 fm2 (hereafter

referred to as the coupling set 1) from Bonn A potential [17], Figs. 1(a) and (b) calculate

�p (black curves) and �n (red curves) as functions of �B for several asymmetries and

as functions of asymmetry for several densities at T = 10MeV. (Of course �p = �n at

a = 0:0.) From these results we can calculate (@�i=@�B)T;a and (@�i=@ a)T;�B in Eqs.

(29)-(31). Then, Fig. 2 shows � (@P=@�B)T;a
�
@�p=@ a

�
T;P

as a function of �B. The

region of negative values is just the unstable spinodal region. It becomes narrower as

the asymmetry grows because the larger breaking of symmetry make the system more

disordered. It is also seen that the minimum of the curve shifts to lower density as the

asymmetry increases. In other words, the upper-density boundary of the spinodal region

decreases faster than its lower-density boundary increases. This is because the e¤ects

of isovector mesons are larger at higher density. Figure 3 shows the resultant spinodal

regions in the density-asymmetry plain at T = 0, 8, 10, 12 and 14MeV. Because the

system generally becomes more disordered at higher temperature, the spinodal region

becomes smaller.

The symmetry energy of nuclear matter using the coupling set 1 is Es = 24:6MeV that

is lower than its empirical value 30�4MeV. This is due to the relatively weak NN� cou-
pling. In order to investigate the e¤ect of the symmetry energy, we calculate the spinodal

region using (gNN�=m�)
2 = 0:39 fm2 but stronger NN� coupling (gNN�=m�)

2 = 1:432 fm2

(referred to as the set 2) that produces the symmetry energy Es = 32:0MeV. Moreover, in

order to investigate the e¤ect of ambiguity in the isovector coupling constants, we calcu-

late using strongerNN� coupling (gNN�=m�)
2 = 1:0 fm2 and much strongerNN� coupling

(gNN�=m�)
2 = 1:888 fm2 (referred to as the set 3) that also reproduce Es = 32:0MeV.

The results at T = 10MeV are shown in Fig. 4. The solid, dashed and dotted curves

are the results using the set 1, 2 and 3, respectively. In the comparison of the set 1 with

the set 2, we can see that the maximum asymmetry of spinodal region becomes lower

for higher symmetry energy while the spinodal region in a < 0:4 is not a¤ected by the

di¤erence of the energy. In the comparison of the set 2 with the set 3, it is seen that for

a �xed value of the symmetry energy the di¤erences of the isovector coupling constants

have little e¤ect on the spinodal region.

The above results can be recognized as follows. For a �xed weak NN� coupling

constant in the sets 1 and 2, the stronger NN� coupling constant in the set 2 produces
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Figure 3: The spinodal regions in the density-asymmetry plain at T = 0, 8, 10, 12
and 14MeV. The instability regions lie inside the curves. The isovector meson coupling
constants are from Bonn A potential of Ref. [17].
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Figure 4: The spinodal regions in the density-asymmetry plain for the three sets of
isovector meson coupling constants at T = 10MeV. The solid curve is calculated using
the coupling constants (gNN�=m�)

2 = 0:39 fm2 and (gNN�=m�)
2 = 0:82 fm2 (set 1) from

Bonn A potential of Ref. [17]. The dashed and dotted curves are calculated using
(gNN�=m�)

2 = 0:39 fm2 and (gNN�=m�)
2 = 1:432 fm2 (set 2), and (gNN�=m�)

2 = 1:0 fm2

and (gNN�=m�)
2 = 1:888 fm2 (set 3).

stronger isovector repulsive potential than the set 1 at large asymmetry. The stronger

repulsion produces more disordered system. Then, the unstable spinodal region becomes

smaller at large asymmetry. Although the stronger NN� coupling in the set 3 requires

the much stronger NN� coupling to reproduce the same symmetry energy as the set 2

[12], the large cancellation between the attractive scalar and repulsive vector potentials

produces the same net result of spinodal region in the set 3 as the set 2.

Finally, we return to Fig. 3 and compare it with the spinodals in Fig. 4 of Ref. [9] by

the NLW model. Even if the di¤erence of the symmetry energy is considered, the EZM

model produces longer and wider spinodal region than the NLW model. The result is due

to the renormalized vector-meson coupling constants (8)-(11). The renormalized NN!

coupling constant is reduced from its free value at larger isoscalar density �B. This means

that the isoscalar repulsive potential becomes weaker. Consequently, the upper-density

boundary of the spinodal region in the EZM model shifts to higher density in comparison

with the NLW model. (The lower-density boundary is not altered largely because the

reduction of the renormalized coupling constant is little at low density.) Similarly, the

renormalized NN� coupling constant is reduced from its free value at larger isovector
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density or asymmetry. This means that the isovector repulsive potential becomes weaker.

Consequently, at �nite temperature the maximum asymmetry of the spinodal region in

the EZM model shifts to higher asymmetry as compared with the NLW model.

We have investigated the unstable spinodal region of asymmetric nuclear matter in the

extended Zimanyi-Moszkowski model, which reproduces well the saturation properties

and the critical phenomena of symmetric nuclear matter. It is found that the maximum

asymmetry of the spinodal region shifts to lower value for higher symmetry energy. On the

other hand, for a �xed symmetry energy the di¤erences of the isovector coupling constants

have little e¤ect on the spinodal region. It is also found that at a �xed temperature the

EZMmodel produces larger spinodal region in the density-asymmetry plain, higher upper-

density boundary and maximum asymmetry, than the familiar NLW model because of

the renormalized vector-meson coupling constants.
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