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CONTENTS 1

Abstract

The paper is devoted to Schrödinger operators on bounded intervals of the real axis with
dissipative boundary conditions. In the framework of the Lax-Phillips scattering theory
the asymptotic behaviour of the phase shift is investigated in detail and its relation to the
spectral shift is discussed. In particular, the trace formula and the Birman-Krein formula
are verified directly. The results are exploited for dissipative Schrödinger-Poisson systems.
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1 Introduction

Stationary Schrödinger-Poisson systems play an important role for the quantum description
of semi-conductors, cf. [27, 28, 29, 34, 35, 36]. The main ingredient of such systems is a
Schrödinger operator which defines the carrier densities entering into the Poisson equation.
It urns out that as far as the involved Schrödinger operator is defined by self-adjoint
boundary conditions the arising current densities are always zero. Hence, carrier transport
cannot be modelled by self-adjoint boundary conditions. A natural way to overcome this
problem is to replace them by dissipative ones [10, 12, 13, 24, 25] or, more advanced, by
families of dissipative operators with spectral parameter dependent dissipative boundary
conditions, cf. [9, 11, 15, 16, 19]. In order to handle dissipative Schrödinger-Poisson
systems a detailed investigation of dissipative Schrödinger operators and a comprehensive
knowledge of their properties is highly desirable.

Moreover, besides the physical relevance of dissipative Schrödinger operators there is an
intrinsic mathematical interest in such operators since they are examples of non-selfadjoint
operators which admit a fairly good investigation. The powerful tool for this is the dila-
tion and model theory for dissipative operators, cf. [18]. With respect to physical appli-
cations the self-adjoint dilation of a dissipative Schrödinger operator can be regarded as
the Hamiltonian of a closed quantum system in which the dissipative Schrödinger system
is embedded. This gives rise to interpret dissipative systems as open ones. There is an
rich literature on dissipative Schrödinger operators, their dilations and eigenfunction ex-
pansions mainly for Sturm-Liouville operators [2, 3, 5, 7],[38]-[41] but also for Schrödinger
operator in higher dimensions, cf. [37]. The investigations are extended to matrix-valued
dissipative Sturm-Liouville operators, see [4, 6, 8].

From [18] it s known that dissipative operators are completely described by the charac-
teristic function which is an analytic contraction-valued operator function defined in the
lower half-plane. It turns out that the characteristic function of a dissipative operator can
be regarded as the scattering matrix of a suitable posed Lax-Phillips scattering theory,
cf. [32]. In view of dissipative Schrödinger-Poisson systems the characteristic function is
a very important quantity, too. In fact, it is directly related to the current density of
such systems, cf. [11, 12, 24], and the asymptotic properties of the so-called phase shift
strongly affects the definition of the carrier density. We show this in a forthcoming paper
[33]. Current and carrier densities, however, are crucial for Schrödinger-Poisson systems
with carrier transport.

In the following we consider Schrödinger-type operators H[κa, κb, V ] defined by

(H[κa, κb, V ]g)(x) = (l[V ]g)(x), g ∈ dom(H[κa, κb, V ]),

dom(H[κa, κb, V ]) =





f ∈ W 1,2(Ω) :

1
m(x)f

′(x) ∈ W 1,2,
1

2m(a)f
′(a) = −κaf(a),

1
2m(b)f

′(b) = κbf(b)





where
(l[V ]g)(x) := −1

2
d

dx

1
m(x)

d

dx
g(x) + V (x)g(x),

such that the boundary coefficients obey κa, κb ∈ C+ := {z ∈ C : =m(z) ≥ 0} and the
potential V ∈ L∞(Ω) is real. Throughout the paper we always assume that m is a real
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function obeying

0 ≤ m +
1
m
∈ L∞(Ω)

without mentioning this explicitly in the following. In [26] we have calculated the charac-
teristic function Θ[κa, κb, V ], the self-adjoint dilation K[κa, κb, V ] of H[κa, κb, V ] as well
as the generalized eigenfunctions of K[κa, κb, V ] for the case κa, κb ∈ C+ := {z ∈ C+ :
=m(z) > 0}. Now we are interested in the associated Lax-Phillips scattering theory, the
phase and spectral shifts and their asymptotic behaviour.

The paper is organized as follows. In Section 2 we introduce a boundary triplet which
allows us appropriately to describe self-adjoint and maximal dissipative Schrödinger-type
operators used in the following. In particular, we verify in this way some properties of
Schrödinger-type operators not proven in [26] and introduce the characteristic function
quite different from [26] in terms of that boundary triplet. In Section 3 we give a short
introduction to the Lax-Phillips scattering theory for Schrödinger-type operators. Section 4
is devoted to the phase shift of the Lax-Phillips scattering theory; in particular, asymptotic
estimates of the phase shift are verified. Finally, in Section 5 we introduce the spectral shift
for the pair {H[κa, κb, V ],HD[V ]} where HD[V ] is the the self-adjoint operator generated
by l[V ] with Dirichlet boundary conditions. The existence of the spectral shift follows from
an abstract result proven in [1].

Notation: Hilbert spaces are denoted by Gothic letters, for instance H = L2(Ω), the
dilation space K, etc, where Lp(Ω), 1 ≤ p ≤ ∞, denoted the usual Banach spaces of
summable functions on Ω ⊆ R. If we have in mind real functions, we write Lp

R(Ω). By
W l,p(Ω), p ≥ 1, l ≥ 1, we denote the standard Sobolev spaces. The norm of a Banach
space X is denoted by ‖ · ‖X or simply by ‖ · ‖. The scalar product of a Hilbert space H is
denoted by (·, ·)H or simply by (·, ·). In the special case of the Hilbert space C2 we use the
notation 〈·, ·〉 for the scalar product. The set of bounded operators on some Banach space
X is denoted by B(X). For a densely defined linear operator A : X −→ X we denote by A∗,
spec(A) and res(A) its adjoint operator, the spectrum and resolvent set, respectively.

2 Dissipative Schrödinger-type operators

2.1 Boundary triplets, Weyl function and γ-field

We note that the operators H[κa, κb, V ], κa, κb ∈ C+, and HD[V ] can be regarded as
dissipative or self-adjoint extensions of one and the same closed symmetric operator S[V ],

(S[V ]g)(x) := (l[V ]g)(x), g ∈ dom(S[V ]),

dom(S[V ]) =



g ∈ W 1,2(Ω) :

1
mg′ ∈ W 1,2

g(b) = 1
2m(b)g

′(b) = 0
g(a) = 1

2m(a)g
′(a) = 0





(2.1)

which has the deficiency indices (2, 2). The adjoint operator S[V ]∗ is given by

(S[V ]∗g)(x) := (l[V ]g)(x), g ∈ dom(S[V ]∗),

dom(S[V ]∗) =
{
g ∈ W 1,2(Ω) : 1

mg′ ∈ W 1,2
}

.
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It is straightforward to verify that (C2,Γ0,Γ1) performs a boundary triplet for S[V ]∗,
for definition see [23] and references therein, where Γ0, Γ1 : dom(S[V ]∗) → C2 are linear
operators, given by

Γ0g :=
(

g(b)
−g(a)

)
and Γ1g := −1

2

(
1

m(b)g
′(b)

1
m(a)g

′(a)

)
. (2.2)

That is, one has to show that Green’s identity

(S[V ]∗f, g)− (f, S[V ]∗g) = 〈Γ1f, Γ0g〉 − 〈Γ0f, Γ1g〉 , f, g ∈ dom(S[V ]∗),

is satisfied and the operator Γ : H −→ C2 ⊕ C2,

Γf := Γ0f ⊕ Γ1f, f ∈ dom(Γ) := dom(S[V ]∗),

is surjective, which can be easily seen. We note that the selfadjoint extension HD[V ] :=
S[V ]∗ ¹ ker(Γ0) corresponds to the Dirichlet boundary conditions, that is,

dom(HD[V ]) =
{

g ∈ W 1,2(Ω) :
1
m

g′ ∈ W 1,2(Ω), f(a) = f(b) = 0
}

.

Let B a dissipative or self-adjoint operator on the Hilbert space C2. By

HB [V ] := S[V ]∗ ¹ ker(Γ1 −BΓ0)

one defines a maximal dissipative or self-adjoint extension of the symmetric operator S[V ].
Setting

κ :=
(

κb 0
0 κa

)
, κa, κb ∈ C+,

we find that H−κ[V ] = H[κa, κb, V ].

The defect subspace of S[V ] at the point z ∈ C is denoted by Nz[V ], i.e., Nz[V ] :=
ker(S[V ]∗ − z), z ∈ C+. For every z ∈ res(HD[V ]) we set

γ[V ](z) := (Γ0 ¹ Nz[V ])−1 and M [V ](z) := Γ1γ[V ](z).

The functions res(HD[V ]) 3 z −→ γ[V ](z) and res(HD[V ]) 3 z −→ M [V ](z) are called the
γ-field and the Weyl function corresponding to S[V ] and the boundary triplet {C2,Γ0,Γ1}.
We note that the Weyl function is a Nevanlinna function, that is, a holomorphic operator-
valued function in C+ and C− such that =m(M [V ](z)) ≥ 0 for z ∈ C+, and

M [V ](z)∗ = M [V ](z), z ∈ res(HD[V ]).

In the present case the Weyl function is meromorphic in C with poles on R which coincide
with the eigenvalues of HD[V ].

For any dissipative or self-adjoint operator B on C2 the so-called Krein’s formula

(HB [V ]− z)−1 = (HD[V ]− z)−1 + γ(z)(B −M [V ](z))−1γ(z)∗, z ∈ C+,

holds, cf. [20]. In particular, we have

(H[κa, κb, V ]− z)−1 = (HD[V ]− z)−1 − γ(z)(κ + M [V ](z))−1γ(z)∗, z ∈ C+. (2.3)
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The Schrödinger-type operator H[κa, κb, V ] is maximal dissipative if either κa ∈ C+ or κb ∈
C+. In both cases the operator is completely non-selfadjoint, see [25]. In accordance with
[26] we consider only the case κa, κb ∈ C+ in the following. The spectrum of H[κa, κb, V ]
consists of isolated eigenvalues in the lower half-plane with the only accumulation point at
infinity. Since the operator H[κa, κb, V ] is completely non-selfadjoint, its eigenvalues are
non-real. The extension H[qa, qb, V ], qa, qb ∈ R, of S is self-adjoint and semi-bounded from
below.

Lemma 2.1 If V ∈ L∞R (Ω) and κa, κb ∈ C+, then

lim
|κa| → ∞
|κb| → ∞

∥∥(H[κa, κb, V ]− z)−1 − (HD[V ]− z)−1
∥∥
B(H)

= 0 (2.4)

for z ∈ C+.

Proof. We note that the γ-field γ[V ](z) as well as the Weyl function M [V ](z) are inde-
pendent from κa, κb ∈ C+. Using Krein’s formula (2.3) we immediately verify the relation
(2.4). ¤

2.2 Characteristic function

If B is dissipative operator, then in accordance with [21] the characteristic function
ΘHB [V ](z), z ∈ C−, of the maximal dissipative operator HB [V ] is given by

ΘHB [V ](z) =
(
IC2 − 2i

√
−=m(B)(B∗ −M [V ](z))−1

√
−=m(B)

)
¹ ran(=m(B)), z ∈ C−,

where =m(B) := 1
2i (B − B∗). The characteristic function is analytic and its values are

contractions, if z ∈ C−. In the present case the characteristic function admits a mero-
morphic continuation to C+ for any dissipative operator B. The characteristic function
entirely characterizes the non-selfadjoint part of the maximal dissipative operator HB [V ],
cf. [18].

In the following we use the representations

κa = qa + i
α2

a

2
and κb = qb + i

α2
b

2
,

where qa, qb ∈ R and αa, αb > 0. If B = −κ, then

−=m(B) =
1
2i

(κ− κ∗) =
1
2

(
α2

b 0
0 α2

a

)
.

Hence we obtain √
−=m(B) =

1√
2
α, α :=

(
αb 0
0 αa

)
.

Setting Θ[κa, κb, V ](z) := ΘH−κ [V ](z), z ∈ C−, and using the definition (2.2) we get

Θ[κa, κb, V ](z) = IC2 + iα(κ∗ + M [V ](z))−1α, z ∈ C−. (2.5)
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Since the spectrum of H[κa, κb, V ] is non-real the characteristic function Θ[κa, κb, V ](·) is
well-defined on R and, moreover, holomorphic in a neighbourhood of R. Furthermore, a
straightforward computation shows that Θ[κa, κb, V ](λ) is unitary for of λ ∈ R. Since the
maximal dissipative operator H[κa, κb, V ] is completely non-selfadjoint for κa, κb ∈ C+,
the characteristic function Θ[κa, κb, V ](·) completely characterizes H[κa, κb, V ].

The characteristic function of the operator H[κa, κb, V ] can be represented by the operator
H[κa, κb, V ] itself and αa, αb. Indeed, multiplying Krein’s formula on the left by Γ0 we
obtain

G[κa, κb, V ](z) := Γ0(H[κa, κb, V ]− z)−1 = −(κ + M [V ](z))−1γ(z)∗, z ∈ C+.

Taking the adjoint we get

G[κa, κb, V ](z)∗ = −γ(z)(κ∗ + M [V ](z)∗)−1, z ∈ C+. (2.6)

Multiplying again this equation on the left by Γ0 we find

Γ0G[κa, κb, V ](z)∗ = −(κ∗ + M [V ](z)∗)−1, z ∈ C+.

Since M [V ](z)∗ = M [V ](z), z ∈ res(HD[V ]), we finally get

Γ0G[κa, κb, V ](z)∗ = −(κ∗ + M [V ](z))−1, z ∈ C−.

Inserting this expression into (2.5) one obtains

Θ[κa, κb, V ](z) = IC2 − iαΓ0G[κa, κb, V ](z)∗α, z ∈ C−.

In [26] the operator-valued function T [κa, κb, V ](z) : H −→ C2,

T [κa, κb, V ](z)f :=
(

αb((H[κa, κb, V ]− z)−1f)(b)
−αa((H[κa, κb, V ]− z)−1)f(a)

)
, f ∈ H,

was introduced for z ∈ res(H[κa, κb, V ]). We note that

T [κa, κb, V ](z) = αΓ0(H[κa, κb, V ]− z)−1 = αG[κa, κb, V ](z), z ∈ C+.

Hence the adjoint operator T [κa, κb, V ](z)∗ : C2 −→ L2(Ω) exists and admits the repre-
sentation

T [κa, κb, V ](z)∗ = G[κa, κb, V ](z)∗α, z ∈ C+.

Taking into account (2.6) we find

ran(T [κa, κb, V ](z)∗) ⊆ Nz[V ] ⊆ W 1,2(Ω), z ∈ C+.

In [26] the operator α̂ : L2(Ω) −→ C,

α̂f =
(

αbf(b)
−αaf(a)

)
, f ∈ dom(α̂) := C(Ω̄), (2.7)

was introduced. Since

α̂f = αΓ0f, f ∈ dom(S[V ]∗) ⊆ W 1,2(Ω),

the characteristic function Θ[κa, κb, V ](·) admits the representation

Θ[κa, κb, V ](z) = IC2 − iα̂T [κa, κb, V ](z)∗, z ∈ C−, (2.8)

which coincides with the representation of the characteristic function of [26]. Using the
representation (2.8) we prove the following lemma.
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Lemma 2.2 If V ∈ L∞R (Ω) and κa, κb ∈ C+, then the characteristic function
Θ[κa, κb, V ](·) is holomorphic in a neighbourhood of R and obeys

lim
λ→−∞

‖Θ[κa, κb, V ](λ)− IC2‖B(C2) = 0. (2.9)

Proof. For simplicity we set H[V ] := H[qa, qb, V ]. Obviously, we have

H[V ] := H[0] + V, V ∈ L∞R (Ω).

We note that inf spec(H[V ]) =: γV is finite. Let us introduce the operator

U [V ](λ) := α̂(H[V ]− λ)−1/2, λ < γV ,

where α̂ is defined by (2.7). A straightforward computation shows that the representation

T [V ](λ) = U [V ](λ)
(

I − i

2
U [V ](λ)∗U [V ](λ)

)−1

(H[V ]− λ)−1/2

is valid for λ < γV . Hence the characteristic function admits the representation

Θ[κa, κb, V ](λ) = I − iU [V ](λ)
(

I +
i

2
U [V ](λ)∗U [V ](λ)

)−1

U [V ](λ)∗

for λ < γV . Using the representation

U [V ](λ) = U [V ](λ0)D[V ](λ), D[V ](λ) := (H[V ]− λ0)1/2(H[V ]− λ)−1/2,

λ0, λ < γV , we have

Θ[κa, κb, V ](λ) =

IC2 − iU [V ](λ0)D[V ](λ)
(

I +
i

2
U [V ](λ)∗U [V ](λ)

)−1

D[V ](λ)U [V ](λ0)∗

for λ0, λ < γV . Since s − limλ→−∞D[V ](λ) = 0 we obtain s − limλ→−∞Θ[V ](λ) = IC2

which yields immediately the operator-norm convergence of (2.9). ¤

3 Dilation and Lax-Phillips scattering

Since H[κa, κb, V ] is a maximal dissipative operator there is a larger Hilbert space K ⊇ H
and a self-adjoint operator K[κa, κb, V ] on K such that

PK
H (K[κa, κb, V ]− z)−1 ¹H = (H[κa, κb, V ]− z)−1, =m(z) > 0, (3.1)

see [18]. The operator K[κa, κb, V ] is called a self-adjoint dilation of the maximal dissipative
operator H[κa, κb, V ]. Obviously, from the condition (3.1) one gets

PK
H (K[κa, κb, V ]− z)−1 ¹H = (H[κa, κb, V ]∗ − z)−1, =m(z) < 0.

If the condition
clospanz∈C\R(K[κa, κb, V ]− z)−1H = K
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is satisfied, then K[κa, κb, V ] is called a minimal self-adjoint dilation of H[κa, κb, V ]. Mini-
mal self-adjoint dilations of maximal dissipative operators are determined up to an iso-
morphism, in particular, all minimal self-adjoint dilations are unitarily equivalent. The
self-adjoint operator K[κa, κb, V ] is absolutely continuous and its spectrum coincides with
the real axis, i.e. spec(K) = R. The multiplicity of its spectrum is two. The dilation space
K and the dilation K[κa, κb, V ] can be explicitly given by

K := L2(R−,C2)⊕ L2(Ω)⊕ L2(R+,C2).

and
(K[κa, κb, V ]~f)(x) = −i

d

dx−
f−(x−)⊕ (l[V ]f)(x)⊕−i

d

dx+
f+(x+), (3.2)

x := (x−, x, x+), for ~f := ~f− ⊕ f ⊕ ~f+ ∈ dom(K[κa, κb, V ]) where

~f− :=
(

f b
−(x−)

fa
−(x−)

)
~f+ :=

(
f b
+(x+)

fa
+(x+)

)

and

dom(K[κa, κb, V ]) :=





~f ∈ W 1,2(R−,C2)⊕W 1,2(Ω)⊕W 1,2(R+,C2) :
1
mf ′ ∈ W 1,2(Ω)

1
2m(b)f

′(b)− κbf(b) = αbf
b
−(0)

1
2m(a)f

′(a) + κaf(a) = αafa
−(0)

1
2m(b)f

′(b)− κbf(b) = αbf
b
+(0)

1
2m(b)f

′(a) + κaf(b) = αafa
+(0)





(3.3)

For more details the reader is referred to [26]. Obviously, the closed symmetric operator
L[V ],

(L[V ]~f)(x) := −i d
dx−

~f−(x−)⊕ (S[V ]f)(x)⊕−i d
dx+

~f+(x+)

~f ∈ dom(L[V ]) := W 1,2
0 (R−,C2)⊕ dom(S[V ])⊕W 1,2

0 (R+,C2)

is a symmetric restriction of K[κa, κb, V ], where

W 1,2
0 (R±,C2) := {~f± ∈ W 1,2(R,C2) : ~f±(0) = 0}.

The deficiency indices of L[V ] are (4, 4). The domain of the adjoint operator L[V ]∗ is given
by

dom(L[V ]∗) := W 1,2(R−,C2)⊕ dom(S[V ]∗)⊕W 1,2(R+,C2).

Another self-adjoint extension of L[V ] is defined by KD[V ],

(KD[V ]~f)(x) := −i d
dx−

~f−(x−)⊕ (HD[V ]f)(x)⊕−i d
dx+

~f+(x+),

~f ∈ dom(KD[V ]) := {~f ∈ dom(L[V ]∗) : ~f−(0) = ~f+(0)} .
(3.4)

If we introduce the differentiation operator K0

(K0
~f0)(x) := −i d

dx
~f0(x), x ∈ R,

~f0 ∈ dom(K0) := W 1,2(R,C2)
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and using the decomposition

K = L2(Ω)⊕ K0, K0 := L2(R,C2), (3.5)

then the operator KD[V ] admits the representation

KD[V ] = HD[V ]⊕K0. (3.6)

The wave operators W±[κa, κb, V ],

W±[κa, κb, V ] := s− lim
t→±∞

eitK[κa,κb,V ]e−itKD[V ]P ac(KD[V ])

can be identified with the Lax-Phillips wave operators, cf. [14, 32], because the absolutely
continuous subspace Kac(KD[V ]) of KD[V ] coincides with K0. We note that the absolutely
continuous part Kac

D [V ] of KD[V ] coincides with K0. The wave operators exist by the Lax-
Phillips scattering theory and are complete, cf. [32]. However, in our special situation there
is an additional reason for the existence and completeness of the wave operators. Since
K[κa, κb, V ] and KD[V ] are self-adjoint extensions of one and the same closed symmetric
operator L[V ] with deficiency indices (4, 4) its turns out that the resolvent difference of
K[κa, κb, V ] and KD[V ] is a four dimensional operator. Hence the wave operator exist and
are complete by the trace class existence theorem, cf. [14, 30].

The Lax-Phillips scattering operator SLP [κa, κb, V ] is defined by

SLP [κa, κb, V ] := W+[κa, κb, V ]∗W−[κa, κb, V ].

It acts only on the subspace K0 and is unitary there. Further, the Lax-Phillips scattering
operator commutes with KD[V ], in particular, with 0 ⊕ K0. The Fourier transform F :
L2(R,C2) −→ L2(R,C2),

(F ~f0)(λ) :=
1√
2π

∫

R
dxe−iλx ~f0(x), ~f0 ∈ L2(R,C2),

defines a unitary operator such that FK0F
∗ coincides with the multiplication operator M ,

(M ~f)(λ) := λ~f(λ), λ ∈ R,

~f ∈ dom(M) := {~f ∈ L2(R,C2) : λ~f(λ) ∈ L2(R,C2).

Since Lax-Phillips scattering operator SLP [κa, κb, V ] commutes with K0 the transformed
operator FSLP [κa, κb, V ]F ∗ commutes with M . Hence there is a measurable family
{SLP [κa, κb, V ](λ)}λ∈R of unitary operators on C2 such that the FSLP [κa, κb, V ]F ∗ co-
incides with the multiplication operator induced by {SLP [κa, κb, V ](λ)}λ∈R. The family
{SLP [κa, κb, V ](λ)}λ∈R is called the Lax-Phillips scattering matrix. One of the main results
of the Lax-Phillips scattering theory is that

SLP [κa, κb, V ](λ) = Θ[κa, κb, V ](λ)∗

holds for a.e. λ ∈ R, see also [24].
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4 Phase shift

The phase shift ω[κa, κb, V ](·) : R −→ R is defined by

e−2πiω[κa,κb,V ](λ) := det(SLP [κa, κb, V ](λ)), λ ∈ R, (4.1)

which is equivalent to

e2πiω[κa,κb,V ](λ) = det(Θ[κa, κb, V ](λ)), λ ∈ R

Notice that the phase shift is determined modulo Z. To eliminate this non-uniqueness of
the definition we demand in the following that ω[κa, κb, V ](λ) is continuous in λ ∈ R and
obeys

lim
λ→−∞

ω[κa, κb, V ](λ) = 0 (4.2)

which is in accordance with Lemma 2.2.

Lemma 4.1 If V ∈ L∞R (Ω) and κa, κb ∈ C+, then the phase shift ω[κa, κb, V ](·) is holo-
morphic in a neighbourhood of R and satisfies

ω′[κa, κb, V ](λ) :=
d

dλ
ω[κa, κb, V ](λ) = − 1

2π
tr(T [κa, κb, V ](λ)T [κa, κb, V ](λ)∗) ≤ 0

for λ ∈ R.

Proof. For brevity we set H := H[κa, κb, V ], T (λ) := T [κa, κb, V ](λ), T∗(λ) :=
T∗[κa, κb, V ](λ) := α̂(H[κa, κb, V ]∗ − λ)−1 and Θ(λ) := Θ[κa, κb, V ](λ) as well as ω(λ) :=
ω[κa, κb, V ](λ). Since the characteristic function Θ(λ) is holomorphic in a neighbourhood
of R one gets that the phase shift ω(λ) is also holomorphic there. By

T (λ)T (λ)∗ = α
(
(H − λ)−1 − (H∗ − λ)−1

)
T (λ)∗ + T∗(λ)T (λ)∗,

λ ∈ R, and Lemma 3.1 of [26] we find

T (λ)T (λ)∗ = iαT∗(λ)∗T∗(λ)T (λ)∗ + T∗(λ)T (λ)∗, λ ∈ R,

or
T (λ)T (λ)∗ = {I + iαT∗(λ)∗}T∗(λ)T (λ)∗, λ ∈ R.

Using Formula (3.39) of [26] we obtain

T (λ)T (λ)∗ = Θ(λ)∗T∗(λ)T (λ)∗, λ ∈ R.

Using (2.8), a straightforward computation shows

∂

∂λ
Θ(λ) = −iT∗(λ)T (λ)∗, λ ∈ R,

which gives

T (λ)T (λ)∗ = iΘ(λ)∗
∂

∂λ
Θ(λ), λ ∈ R.
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Taking into account formula (IV.1.14) of [22] we obtain

0 ≤ tr(T (λ)T (λ)∗) = i tr(Θ(λ)∗
∂

∂λ
Θ(λ)) = i

d

dλ
ln (det(Θ(λ))) = −2π

d

dλ
ω(λ)

for λ ∈ R. ¤
Lemma 4.1 shows that the phase shift is a non-increasing function. Since
limλ→−∞ ω[κa, κb, V ](λ) = 0 the phase function is non-positive. In order to estimate
the growth of −ω[κa, κb, V ](·) let us investigate the counting function

Φ[κa, κb, V ](λ) := card{s < λ : det(Θ[κa, κb, V ](s)) = 1}, λ ∈ R.

To estimate Φ[κa, κb, V ](λ) we consider the eigenvalue problem

Θ[κa, κb, V ](λ)~x = µ~x, µ ∈ T, ~x ∈ C2,

for each fixed λ ∈ R. To treat this problem we introduce the family {Hθ[V ]}θ∈(0,2π),

Hθ[V ] := H[qa(θ), qb(θ), V ] and H0[V ] := HD[V ]

where the boundary coefficients are given by

qb(θ) := qb − α2
b cot(θ/2)

2
and qa(θ) := qa − α2

a cot(θ/2)
2

.

The spectrum spec(Hθ[V ]) consists of simple eigenvalues spec(Hθ[V ]) = {λk[V ](θ)}k∈N,
−∞ < λ1[V ](θ) < λ2[V ](θ) < . . . .

Lemma 4.2 If V ∈ L∞R (Ω), then Hθ[V ] ≥ Hθ′ [V ] for 0 ≤ θ ≤ θ′ < 2π.

Proof. The sesquilinear form tθ[V ] corresponding to Hθ[V ] is given by dom(tθ[V ]) =
W 1,2(Ω),

tθ[V ](f, g) = (4.3)

−qa(θ)f(a)g(a)− qb(θ)f(b)g(b) +
∫ b

a

dx
1

2m(x)
f ′(x)g′(x) + V (x)f(x)g(x),

f, g ∈ dom(tθ[V ]) = W 1,2(Ω), θ ∈ (0, 2π). Since qa(θ′) ≤ qa(θ) and qb(θ′) ≤ qb(θ) for
θ′ < θ we easily obtain tθ[V ] ≤ tθ′ [V ]. If θ′ = 0, then dom(t0[V ]) = W 1,2

0 (Ω) ⊆ W 1,2(Ω) =
dom(tθ[V ]) and

tθ[V ](f, f) ≤ t0[V ](f, f), f ∈ dom(t0[V ]), θ ∈ (0, 2π)

which completes the proof. ¤
The min-max principle gives the following

Corollary 4.3 If V ∈ L∞R (Ω), then the eigenvalue curves λn[V ](·) of Hθ[V ] satisfy

λn[V ](θ′) ≤ λn[V ](θ), 0 ≤ θ ≤ θ′ < 2π, n ∈ N.

Let us show that in fact the monotonicity of the eigenvalue curves is strict:
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Lemma 4.4 If V ∈ L∞R (Ω), then

λn[V ](θ′) < λn[V ](θ), 0 ≤ θ < θ′ < 2π, n ∈ N.

Proof. We note that {Hθ := Hθ[V ]}θ∈(0,2π) is not only a monotone family but also an
analytic one of self-adjoint operators of type (B), cf. [30, Section VII.4.2]. This yields that
the eigenvalues of λn(θ) := λn[V ](θ) depend analytically on θ ∈ (0, 2π). Assuming now
that there is a k ∈ N such that λk(θ′) = λk(θ′′) for some 0 < θ′ < θ′′ < 2π. In this case we
get λk(θ′) = λk(θ) = λk(θ′′) for θ ∈ [θ′, θ′′]. Since λk(θ) is analytic we find λk(θ) = λk(0),
θ ∈ (0, 2π), that is, λk(θ) is constant and equals the Dirichlet eigenvalue λk(0).

Next we show that if for some k ∈ N we have λk(θ) = λk(0), θ ∈ (0, 2π), then for each
j ∈ 1, 2, . . . , k one has λj(θ) = λj(0), θ ∈ (0, 2π). Indeed, let us assume that there
is a θ ∈ (0, 2π) such that λk−1(θ) < λk−1(0). In this case there is a neighbourhood
U := (λk−1(θ), λk(0)) of λk−1(0) which contains no eigenvalue of Hθ′ for θ′ ∈ (θ, 2π).
However, this is impossible by Lemma 2.1. In fact, if θ′ is sufficiently close to 2π, then the
neighbourhood U has to contain an eigenvalue of Hθ′ . Hence the assumption λk−1(θ) <
λk−1(0) was false which yields λk−1(θ) = λk−1(0) for θ ∈ (0, 2π). By induction we get that
λj(θ) = λj(0), θ ∈ (0, 2π), holds for each j = 1, 2, . . . , k.

In particular, this holds for the lowest eigenvalue λ1(θ) = λ1(0), θ ∈ (0, 2π), which is given
by

λ1(θ) := inf{tθ[V ](f, f) : f ∈ W 1,2(Ω), ‖f‖L2(Ω) = 1}, θ ∈ (0, 2π).

But (4.3) implies limθ↑2π λ1(θ) = −∞ which contradicts the conclusion that λ1(θ) remains
unchanged for θ ∈ (0, 2π). ¤
Our next aim is to determine limθ↓0 λn[V ](θ) and limθ↑2π λk[V ](θ).

Lemma 4.5 If V ∈ L∞R (Ω), then the eigenvalue curves satisfy

lim
θ↓0

λn[V ](θ) = λn[V ](0), n ∈ N, (4.4)

and
lim
θ↑2π

λn[V ](θ) = λn−2[V ](0), n ∈ N, (4.5)

where λ−1[V ](0) := λ0[V ](0) := −∞.

Proof. The family {Hθ[V ]}θ∈(0,π) is operator norm continuous in the resolvent sense. In
particular, this yields that the eigenvalues λk[V ](θ), k ∈ N, are continuous in θ ∈ (0, 2π).
Moreover, since limθ↓0 qa(θ) = limθ↓0 qb(θ) = ∞ and limθ↑2π qa(θ) = limθ↑2π qb(θ) = ∞ we
get by Lemma 2.1

lim
θ↓0

‖(Hθ[V ]− i)−1 − (HD[V ]− i)−1‖B(H) =

lim
θ↑2π

‖(Hθ[V ]− i)−1 − (HD[V ]− i)−1‖B(H) = 0.

An application of Lemma 4.2 implies (4.4). It remains to show (4.5). First, by monotonicity
the limits limθ↑2π λk[V ](θ), k ∈ N, exist, too. We introduce the intervals

∆1 := (−∞, λ1[V ](0)) and ∆n := (λn−1[V ](0), λn[V ](0)), n = 2, 3, . . . ,
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that is, the sequence of spectral gaps of the Dirichlet operator HD[V ]. Further, we consider
the symmetric operator Ŝ[V ] defined by

Ŝ[V ]g := l[V ]g, g ∈ dom(Ŝ[V ]),

dom(Ŝ[V ]) :=
{

g ∈ W 1,2(Ω) :
1
mg′ ∈ W 1,2(Ω), g(a) = 0,

1
2m(b)g

′(b) = g(b) = 0

}
.

The closed symmetric operator Ŝ[V ] has the deficiency indices (1, 1). Obviously we have
S[V ] ≤ Ŝ[V ] ≤ HD[V ] where S[V ] is defined by (2.1). By Ĥθ[V ], θ ∈ (0, 2π), we denote
the self-adjoint operator

Ĥθ[V ]g := l[V ]g, g ∈ dom(Ĥθ[V ]),

dom(Ĥθ[V ]) :=

{
g ∈ W 1,2(Ω) :

1
m(x)g

′(x) ∈ W 1,2, g(a) = 0,
1

2m(b)g
′(b) = qb(θ)g(b) ,

}

and we set Ĥ0[V ] := HD[V ]. Moreover, similar to Lemma 4.2 the family {Ĥθ[V ]}θ∈(0,2π)

is non-increasing, i.e.
Ĥθ′ [V ] ≤ Ĥθ[V ], 0 ≤ θ ≤ θ′ < 2π,

and analytic in sense of type B, cf. [30, Sect. VII.4.2]. Denoting by {λ̂k[V ](θ)}k∈N the
eigenvalues of Ĥθ[V ] we get similarly to Lemma 4.4 that

λ̂k[V ](θ′) < λ̂k[V ](θ), k ∈ N, 0 ≤ θ < θ′ < 2π. (4.6)

Since HD[V ] is a self-adjoint extension of Ŝ[V ] the open intervals ∆k are gaps for Ŝ[V ].
Since Ŝ[V ] has deficiency indices (1, 1) the self-adjoint extension Ĥθ[V ] of Ŝ[V ] has at most
one eigenvalue in each gap ∆k. Taking into account (4.6) we find

λ̂k[V ](θ) ∈ ∆k, k ∈ N, θ ∈ (0, 2π).

We set

∆̂1(θ) := (−∞, λ̂1[V ](θ)), ∆̂k(θ) := (λ̂k−1[V ](θ), λ̂k[V ](θ)), k = 2, 3, . . . ,

θ ∈ (0, 2π). Obviously we have

∆̂k(θ) ⊆ ∆k−1 ∪ {λk−1[V ](0)} ∪∆k θ ∈ (0, 2π), k ∈ N. (4.7)

Further, let us introduce the symmetric operator S̃[V ] defined by

S̃[V ]g := l[V ]g, dom(S̃[V ]) :=



g ∈ W 1,2(Ω) :

1
mg′ ∈ W 1,2(Ω),

1
2m(a)g

′(a) = g(a) = 0,
1

2m(b)g
′(b) = qb(θ)g(b)



 ,

which has the deficiency indices (1, 1), too. Obviously, the operator Ĥθ[V ], θ ∈ [0, 2π),
is a self-adjoint extension of S̃[V ]. Therefore, the open intervals ∆̂k(θ) are spectral gaps
of the closed symmetric operator S̃[V ]. Moreover, the operator Hθ[V ], θ ∈ [0, 2π), is a
self-adjoint extension of S̃[V ], too. As above we get

λk[V ](θ) ∈ ∆̂k(θ), k ∈ N, θ ∈ (0, 2π).
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Taking into account (4.7) we obtain λk[V ](θ) ∈ ∆k−1 ∪{λk−1[V ](0)}∪∆k. Hence we have
either

lim
θ↑2π

λk[V ](θ) = λk−1[V ](0) or lim
θ↑2π

λk[V ](θ) = λk−2[V ](0)

for k = 2, 3, . . . . Let us assume that for some j ≥ 2 we have

lim
θ↑2π

λj [V ](θ) = λj−1[V ](0).

In this case, we find that limθ↑2π λj−1[V ](θ) = λj−3[V ](0) is impossible. Indeed, if θ
is sufficiently close to 2π, then there is neighbourhood of λj−2[V ](0) which does not
contain an eigenvalue of Hθ[V ]. However, this contradicts Lemma 2.1. Therefore, we
obtain that limθ↑2π λk[V ](θ) = λk−1[V ](0), k = 2, 3, . . . , j − 1. Furthermore, one gets
that limθ↑2π λj+1[V ](θ) = λj−1[V ](0) is also impossible. In fact, for each sufficiently
small neighbourhood of λj−1[V ](0) there is a sufficiently large θ ∈ (0, 2π) such that
this neighbourhood contains two eigenvalues of Hθ[V ] which contradicts again Lemma
2.1. Hence limθ↑2π λk[V ](θ) = λk−1[V ](0), k = j + 1, j + 2, . . . . Therefore, we find
limθ↑2π λk[V ](θ) = λk−1[V ](0) for k ∈ N. In particular, we have that the interval ∆1

contains only one eigenvalue of Hθ[V ] for each θ ∈ (0, 2π). However, this is impossible,
too. To show this we introduce the self-adjoint operator hθ, θ ∈ (0, 2π),

(hθg)(x) := −τ d2

dx2 g(x) + ‖V ‖L∞g(x), g ∈ dom(hθ),

dom(hθ) :=
{

f ∈ W 2,2(Ω) : τf ′(a) = −qa(θ)f(a)
τf ′(b) = qb(θ)f(b)

}

and τ := ‖1/2m‖L∞ . Obviously, we have Hθ[V ] ≤ hθ, θ ∈ (0, 2π), which yields λk[V ](θ) ≤
µk(θ), k ∈ N, for θ ∈ (0, 2π), where {µk(θ)}k∈N are the eigenvalues of hθ. An involved
but straightforward computation shows that the first two eigenvalues µ1(θ) and µ2(θ) of
hθ tend to −∞ as θ ↑ 2π. Hence the first two eigenvalues λ1[V ](θ) and λ2[V ](θ) tend also
to −∞ as θ ↑ 2π which shows that for sufficiently large θ ∈ (0, 2π) one has λ1[V ](θ) ∈ ∆1

and λ2[V ](θ) ∈ ∆1. ¤
Next we show that the eigenvalues of the characteristic function Θ[κa, κb, V ](λ) are intrin-
sically connected with the eigenvalues of the family {Hθ[V ]}θ∈[0,2π).

Lemma 4.6 If V ∈ L∞R (Ω) and κa, κb ∈ C+, then

µ = eiθ ∈ spec(Θ[κa, κb, V ](λ)) ⇐⇒ λ ∈ spec(Hθ[V ]), θ ∈ [0, 2π), λ ∈ R.

Proof. Multiplying the relation (2.8) on the left by T [κa, κb, V ](λ)∗ we find

T [κa, κb, V ](λ)∗ξ − iT [κa, κb, V ](λ)∗αT [κa, κb, V ](λ)∗ξ = µT [κa, κb, V ](λ)∗ξ.

Setting g := T [κa, κb, V ](λ)∗ξ ∈ W 1,2(Ω) we obtain

g − iT [κa, κb, V ](λ)∗αg = µg or T [κa, κb, V ](λ)∗αg = i(µ− 1)g.

Let h ∈ L2(Ω). Then
〈αg, T [κa, κb, V ](λ)h〉 = i(µ− 1)(g, h)
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where we recall that 〈·, ·〉 denotes the scalar product of C2. Setting f := (H[κa, κb, V ] −
λ)−1h ∈ dom(H[κa, κb, V ]) we get

〈αg, αf〉 = i(µ− 1)(g, (H[κa, κb, V ]− λ)f). (4.8)

One has

(g, (H[κa, κb, V ]− λ)f) =
∫ b

a

dx g(x)((l[V ]f)(x)− λf(x)).

Since (l[V ]− λ)g = 0 we find

(g, (H[κa, κb, V ]− λ)f) =

−g(b)
1

2m(b)
f ′(b) + g(a)

1
2m(a)

f ′(a) +
1

2m(b)
g′(b)f(b)− 1

2m(a)
g′(a)f(a).

Since f ∈ dom(H[κa, κb, V ])) we get that

(g, (H[κa, κb, V ]− λ)f) =

−g(b)κbf(b)− g(a)κaf(a) +
1

2m(b)
g′(b)f(b)− 1

2m(a)
g′(a)f(a)

which yields

(g, (H[κa, κb, V ]− λ)f) ={
1

2m(b)
g′(b)− κbg(b)

}
f(b) +

{
− 1

2m(a)
g′(a)− κag(a)

}
f(a).

Taking into account (4.8) one gets that the element g has to satisfy the boundary conditions

α2
bg(b) = i(µ− 1)

{
1

2m(b)g
′(b)− κbg(b)

}
,

α2
ag(a) = i(µ− 1)

{
− 1

2m(a)g
′(a)− κag(a)

}

which implies

1
2m(b)

g′(b) = qb(θ)g(b), and
1

2m(a)
g′(a) = −qa(θ)g(a), θ ∈ (0, 2π),

for µ 6= 1. If µ = 1, then g(a) = g(b) = 0. Hence, g ∈ dom(HD[V ]) and λ ∈ spec(HD[V ]) =
spec(H0[V ]), i.e θ = 0.

Conversely, if λ ∈ spec(Hθ[V ]), θ ∈ [0, 2π), then the eigenfunction g, Hθ[V ]g = λg, satisfies
the equation

T [V ]∗(λ)αg = i(µ− 1)g

or
(I − iT [V ]∗(λ)α)g = µg.

Multiplying on the left by α we obtain

(I − iαT [V ]∗(λ))αg = µαg.

Setting ξ := αg and using (2.8) we complete the proof. ¤
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Lemma 4.7 If V ∈ L∞R (Ω) and κa, κb ∈ C+, then we have

{λ ∈ R : det(Θ[κa, κb, V ](λ)) = 1} =
⋃

θ∈(0,π)

spec(Hθ[V ]) ∩ spec(H2π−θ[V ]). (4.9)

Proof. At first we note that det(Θ[κa, κb, V ](λ)) = 1 if and only if µ = eiθ ∈
spec(Θ[κa, κb, V ](λ)) and µ = ei(2π−θ) ∈ spec(Θ[κa, κb, V ](λ)), θ ∈ [0, 2π). It remains
to show that the cases θ = 0 and θ = π are impossible: indeed, if θ = 0, then µ = 1. In
this case the eigenvalue µ = 1 of Θ[κa, κb, V ](λ) has the multiplicity two. Hence, there
are two mutually orthogonal eigenvectors ξ1, ξ2 ∈ C2 such that that Θ[κa, κb, V ](λ)ξi = ξi,
i = 1, 2. We set

gi := T [κa, κb, V ](λ)∗ξi ∈ W 1,2(Ω), i = 1, 2.

Both functions gi are eigenfunctions of HD[V ] with the eigenvalue λ. Since the spectrum
of HD[V ] is simple there are constants Ci ∈ C such that C1g1 + C2g2 = 0. Hence

T [κa, κb, V ](λ)∗{C1ξ1 + C2ξ2} = 0.

For each h ∈ L2(Ω) we have

(C1ξ1 + C2ξ2, T [κa, κb, V ](λ)h) = 0.

Since ran(T [κa, κb, V ](λ)) = C2 we find C1ξ1 + C2ξ2 = 0 which is impossible. The
same holds for θ = π which yields µ = −1. By Lemma 4.6 we have µ =
eiθ ∈ spec(Θ[κa, κb, V ](λ)) if and only if λ ∈ spec(Hθ[V ]) and µ = ei(2π−θ) ∈
spec(Θ[κa, κb, V ](λ)) if and only if λ ∈ spec(H2π−θ[V ]). Hence

µ = eiθ, µ = ei(2π−θ) ∈ spec(Θ[κa, κb, V ](λ)) ⇐⇒ λ ∈ spec(Hθ[V ]) ∩ spec(H2π−θ[V ])

which proves (4.9). ¤
Let us introduce the spectral distribution function

ND[V ](λ) := card{s < λ : s ∈ spec(HD[V ])}, λ ∈ R.

Theorem 4.8 If V ∈ L∞R (Ω) and κa, κb ∈ C+, then

ND[V ](λ) ≤ Φ[κa, κb, V ](λ) ≤ ND[V ](λ) + 1, λ ∈ R. (4.10)

Proof. Let us consider the sets

Λn := ∆n ∩
⋃

θ∈(0,π)

spec(Hθ[V ]) ∩ spec(H2π−θ[V ]), n ∈ N.

By Lemma 4.7 one has

{λ ∈ R : det(Θ[κa, κb, V ](λ)) = 1} =
⋃

n∈N
Λn.

By Proposition 4.5 only the eigenvalues λn[V ](θ), λn+1[V ](θ), θ ∈ (0, 2π), belong to the
interval ∆n, other eigenvalues cannot. Further, by Proposition 4.5 we have

lim
θ↓0

λn[V ](θ) = λn[V ](0) and lim
θ↓0

λn+1[V ](2π − θ) = λn−1[V ](0), n ∈ N.
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Since λn[V ](θ) is decreasing and λn+1[V ](2π − θ) is increasing in θ ∈ (0, 2π), there is at
most one θ ∈ (0, π) such that λn+1[V ](2π − θ) = λn[V ](θ) which yields card{Λn} ≤ 1.
Moreover, we have

λn−1[V ](0) < λn+1[V ](θ) < λn+1[V ](π), θ ∈ (π, 2π),

and
λn[V ](π) < λn[V ](θ) < λn[V ](0), θ ∈ (0, π),

as well as λn[V ](π) < λn+1[V ](π). Hence there is at least one θ ∈ (0, π) such that
λn+1[V ](2π − θ) = λn[V ](θ) which shows card{Λn} ≥ 1. Therefore card{Λn} = 1 which
implies immediately (4.10). ¤

Corollary 4.9 If V ∈ L∞R (Ω) and κa, κb ∈ C+, then

0 ≤ −ω[κa, κb, V ](λ) ≤ 2 +
1
π

√
2‖m‖L∞ |Ω|

√
(λ + ‖V−‖L∞)+, λ ∈ R, (4.11)

where (λ + ‖V−‖L∞)+ := 1
2 (λ + ‖V−‖L∞ + |λ + ‖V−‖L∞ |) ≥ 0.

Proof. Obviously, we have

−ω[κa, κb, V ](λ) ≤ 1 + Φ[κa, κb, V ](λ), λ ∈ R.

Using Theorem 4.8 we find

−ω[κa, κb, V ](λ) ≤ 2 + ND[V ](λ), λ ∈ R.

Further, we note that hD ≤ HD[V ],

(hDg)(x) := − 1
2‖m‖L∞

d2

dx2 g(x)− ‖V−‖L∞g(x),

g ∈ dom(hD) := {f ∈ W 2,2(Ω) : f(a) = f(b) = 0}.

The spectral distribution function nD(·) of hD can be estimated by

nD(λ) ≤ 1
π

√
2‖m‖L∞ |Ω|

√
(λ + ‖V−‖L∞)+, λ ∈ R.

Since ND[V ](λ) ≤ nD(λ), λ ∈ R, one gets (4.11). ¤

5 Spectral shift and trace formula

Since H[κa, κb, V ] and HD[V ] are extensions of one and the same closed symmetric operator
S[V ] with deficiency indices (2, 2) the resolvent difference obeys

(H[κa, κb, V ]− z)−1 − (HD[V ]− z)−1 ∈ L1(H), z ∈ C+.

In fact, the difference is a two dimensional operator.
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Theorem 5.1 If V ∈ L∞(Ω) and κa, κb ∈ C+, then there is a real function
ξ[κa, κb, V ](·) ∈ L1(R, (1 + λ2)−1dλ) such that the trace formula

tr
(
(H[κa, κb, V ]− z)−1 − (HD[V ]− z)−1

)
= −

∫

R
(λ− z)−2ξ[κa, κb, V ](λ)dλ (5.1)

holds for z ∈ C+.

Proof. Using formulas (3.13) of [26] we find that

−iT [κa, κb, V ](i)∗T [κa, κb, V ](i) =
(H[κa, κb, V ]∗ + i)−1 − (H[κa, κb, V ]− i)−1 +
2i(H[κa, κb, V ]∗ + i)−1(H[κa, κb, V ]− i)−1

which shows that Condition (4.2) of Theorem 4.1 of [1] is satisfied. Since HD[V ] is self-
adjoint Condition (4.3) of [1] also holds. Applying Theorem 4.1 of [1] we complete the
proof. ¤
A real function ξ[κa, κb, V ](λ) ∈ L1(R, (1 + λ2)dλ) is called the spectral shift of the pair
{H[κa, κb, V ],HD[V ]} if the trace formula (5.1) is satisfied

Considering the pair {K[κa, κb, V ],KD[V ]} one gets that

(K[κa, κb, V ]− z)−1 − (KD[V ]− z)−1 ∈ L1(H)

for z ∈ C \ R. This follows from the fact that K[κa, κb, V ] and KD[V ] are self-adjoint
extensions of the same closed symmetric operator L[V ] which has deficiency indices (4, 4).
Using again Theorem 4.1 of [1] we find that the pair {K[κa, κb, V ],KD[V ]} admits a spectral
shift η[κa, κb, V ](·) ∈ L1(R, (1 + λ2)−1dλ), too. The trace formula then takes the form

tr
(
(K[κa, κb, V ]− z)−1 − (KD[V ]− z)−1

)
= −

∫

R
(λ− z)−2η[κa, κb, V ](λ)dλ, z ∈ C \ R.

Let us clarify the relation between ξ[κa, κb, V ](·) and η[κa, κb, V ](·).

Lemma 5.2 Assume V ∈ L∞R (Ω) and κa, κb ∈ C+. Then

tr
(
(K[κa, κb, V ]− z)−1 − (KD[V ]− z)−1

)
= tr

(
(H[κa, κb, V ]− z)−1 − (HD[V ]− z)−1

)

for z ∈ C+. Consequently, any spectral shift ξ[κa, κb, V ](·) ∈ L1(R, (1 + λ2)−1dλ) of the
pair {H[κa, κb, V ],HD[V ]} is a spectral shift of the pair {K[κa, κb, V ],KD[V ]} and vice
versa.

Proof. Using the terminology of Ch. 3 and taking into account (3.5) and (3.6) we find
that

((KD[V ]− z)−1 ~f)(x) = (5.2)

i

∫ x−

−∞
dy ei(x−−y)z ~f−(y)⊕ (HD[V ]− z)−1f(x)⊕

i

∫ x+

0

dy ei(x+−y)z ~f+(y) + i

∫ 0

−∞
dy ei(x+−y)z ~f−(y),
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~f = ~f− ⊕ f ⊕ ~f+ and z ∈ C+. From Theorem 4.2 of [27] one gets the representation

((K[κa, κb, V ]− z)−1 ~f)(x) = (5.3)

i

∫ x−

−∞
dy ei(x−−y)z ~f−(y)⊕

(H[κa, κb, V ]− z)−1f(x) + iT∗[κa, κb, V ](z)∗
∫ 0

−∞
dy e−iyz ~f−(y)⊕

i

∫ x+

0

dy ei(x+−y)z ~f+(y) + ieizx+T [κa, κb, V ](z)f +

iΘ[κa, κb, V ](z)∗
∫ 0

−∞
dy ei(x+−y)z ~f−(y),

~f = ~f− ⊕ f ⊕ ~f+ and z ∈ C+. Denoting by P± the orthogonal projections form K onto the
subspaces L2(R±,C2) one easily obtains from (5.2) and (5.3) that

P±
(
(K[κa, κb, V ]− z)−1 − (KD[V ]− z)−1

)
P± = 0 (5.4)

for z ∈ C+. Using the representation

tr
(
(K[κa, κb, V ]− z)−1 − (KD[V ]− z)−1

)
=

tr
(
P−

{
(K[κa, κb, V ]− z)−1 − (KD[V ]− z)−1

}
P−

)
+

tr
(
PK

H

{
(K[κa, κb, V ]− z)−1 − (KD[V ]− z)−1

}
PK

H

)
+

tr
(
P+

{
(K[κa, κb, V ]− z)−1 − (KD[V ]− z)−1

}
P+

)

and taking into account (5.4) we get

tr
(
(K[κa, κb, V ]− z)−1 − (KD[V ]− z)−1

)
=

tr
(
PK

H

{
(K[κa, κb, V ]− z)−1 − (KD[V ]− z)−1

}
PK

H

)

for z ∈ C+. Using that K[κa, κb, V ] is a self-adjoint dilation of the maximal dissipative
operator H[κa, κb, V ] we have thus proved (5.2). The second assertion follows directly from
the first. ¤

Lemma 5.3 If V ∈ L∞R (Ω) and κa, κb ∈ C+, then

d

dλ
(EK[κa,κb,V ](λ)PK

H
~f, PK

H~g)K =
1
2π
〈T [κa, κb, V ](λ)f, T [κa, κb, V ](λ)g〉C2 (5.5)

for a.e. λ ∈ R and ~f,~g ∈ K where EK[κa,κb,V ](·) denotes the spectral measure of the
self-adjoint dilation K[κa, κb, V ].

Proof. We note that

d

dλ
(EK[κa,κb,V ](λ)PK

H
~f, PK

H~g)K =

1
2πi

lim
ε↓0

{
((K[κa, κb, V ]− λ− iε)−1)PK

H
~f, PK

H~g)K −

((K[κa, κb, V ]− λ + iε)−1)PK
H

~f, PK
H~g)K

}
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for a.e. λ ∈ R. Since K[κa, κb, V ] is a dilation of H[κa, κb, V ] we find

d

dλ
(EK[κa,κb,V ](λ)PK

H
~f, PK

H~g)K =

1
2πi

lim
ε↓0

{
((H[κa, κb, V ]− λ− iε)−1)f, g)H − ((H[κa, κb, V ]∗ − λ + iε)−1)f, g)H

}

which yields

d

dλ
(EK[κa,κb,V ](λ)PK

H
~f, PK

H~g)K = (5.6)

1
2πi

{
((H[κa, κb, V ]− λ)−1)f, g)H − ((H[κa, κb, V ]∗ − λ)−1)f, g)H

}

where we have used that the spectrum of H[κa, κb, V ] is non-real. Finally, Lemma 3.1 of
[26] states the coincidence of the right hand sides of (5.6) and (5.5), what completes the
proof. ¤

Theorem 5.4 If V ∈ L∞R (Ω) and κa, κb ∈ C+, then

ξ0[κa, κb, V ](λ) := ω[κa, κb, V ](λ) + ND[V ](λ), λ ∈ R, (5.7)

defines a spectral shift of the pair {H[κa, κb, V ],HD[V ]} and, hence, of the pair
{K[κa, κb, V ],KD[V ]}.

Proof. Using that K[κa, κb, V ] is a dilation of H[κa, κb, V ] we get

((H[κa, κb, V ]− z)−1f, f) =
∫

R
(λ− z)−1 d(EK[κa,κb,V ](λ)f, f),

f ∈ H, for z ∈ C+. Since K[κa, κb, V ] is absolutely continuous we obtain

((H[κa, κb, V ]− z)−1f, f) =
∫

R
(λ− z)−1 d

dλ
(EK[κa,κb,V ](λ)f, f) dλ,

f ∈ H, for z ∈ C+. Using Lemma 5.3 we find

((H[κa, κb, V ]− z)−1f, f) =
1
2π

∫

R
(λ− z)−1(T [κa, κb, V ](λ)f, T [κa, κb, V ](λ)f) dλ, (5.8)

f ∈ H, for z ∈ C+. Further, we have

((HD[V ]− z)−1f, f) =
∫

R
(λ− z)−1 d(EHD[V ](λ)f, f), (5.9)

f ∈ H, for z ∈ C+. We note that

tr
(
(H[κa, κb, V ]− z)−1 − (HD[V ]− z)−1

)
= (5.10)

∑

n∈N

((
(H[κa, κb, V ]− z)−1 − (HD[V ]− z)−1

)
fn, fn

)
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where{fn}n∈N is an orthonormal basis of H. Inserting (5.8) and (5.9) into (5.10) we get

tr
(
(H[κa, κb, V ]− z)−1 − (HD[V ]− z)−1

)
=

∑

n∈N

{ 1
2π

∫

R
(λ− z)−1(T [κa, κb, V ](λ)fn, T [κa, κb, V ](λ)fn) dλ−

∫

R
(λ− z)−1 d(EHD[V ](λ)fn, fn)

}

which leads to the relation

tr
(
(H[κa, κb, V ]− z)−1 − (HD[V ]− z)−1

)
=

1
2π

∫

R
(λ− z)−1tr(T [κa, κb, V ](λ)∗T [κa, κb, V ](λ)) dλ−

∫

R
(λ− z)−1 d tr(EHD[V ](λ)).

Since
ND[V ](λ) = tr(EHD[V ](λ)), λ ∈ R,

one has ∫

R
(λ− z)−1 d tr(EHD[V ](λ)) =

∫

R
(λ− z)−1d ND[V ](λ).

Integrating by parts and using that ND(λ) behaves like the square root of λ at +∞ we get
∫

R
(λ− z)−1 d tr(EHD[V ](λ)) =

∫

R
(λ− z)−2ND[V ](λ) dλ.

Similarly, by Lemma 4.1 we get

1
2π

∫

R
(λ− z)−1tr(T [κa, κb, V ](λ)∗T [κa, κb, V ](λ)) dλ =

1
2π

∫

R
(λ− z)−1tr(T [κa, κb, V ](λ)T [κa, κb, V ](λ)∗) dλ =

−
∫

R
(λ− z)−1ω′[κa, κb, V ](λ) dλ.

Again, integrating by parts and taking into account Theorem 4.8 we obtain

1
2π

∫

R
(λ− z)−1tr(T [κa, κb, V ](λ)∗T [κa, κb, V ](λ)) dλ = −

∫

R
(λ− z)−2ω[κa, κb, V ](λ) dλ

Summing up we find

tr
(
(H[κa, κb, V ]− z)−1 − (HD[V ]− z)−1

)
=

−
∫

R
(λ− z)−2 {ω[κa, κb, V ](λ) + ND[V ](λ)} dλ

for z ∈ C+ which proves (5.7). ¤
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Corollary 5.5 If V ∈ L∞R (Ω) and κa, κb ∈ C, then the spectral shift ξ0[κa, κb, V ](λ) of the
pair {H[κa, κb, V ],HD[V ]} obeys

lim
λ→−∞

ξ0[κa, κb, V ](λ) = 0 (5.11)

and
−2 ≤ ξ0[κa, κb, V ](λ) ≤ 0, λ ∈ R. (5.12)

Proof. The relation (5.11) follows from (4.2). To verify (5.12) we note that by definition
one has

Φ[κa, κb, V ](λ) ≤ −ω[κa, κb, V ](λ) ≤ Φ[κa, κb, V ](λ) + 1, λ ∈ R.

Taking into account Theorem 5.4 we find

Φ[κa, κb, V ](λ)−ND[V ](λ) ≤ −ξ0[κa, κb, V ](λ) ≤ Φ[κa, κb, V ](λ)+1−ND[V ](λ), λ ∈ R.

Finally, using Theorem 4.8 we have

0 ≤ −ξ0[κa, κb, V ](λ) ≤ 2, λ ∈ R,

which yields (5.12). ¤

Remark 5.6 We note that a weaker version of Corollary 5.5 can be obtained using abstract
results on the spectral shift. Indeed, let us introduce the Cayley transforms

U := (i−K[κa, κb, V ])(i + K[κa, κb, V ])−1

and
UD := (i−KD[κa, κb, V ])(i + KD[κa, κb, V ])−1

where K[κa, κb, V ] and KD[κa, κb, V ] are given by (3.2)-(3.3) and (3.4). We note that
U −UD is a four dimensional operator. This follows from the fact K[κa, κb, V ] and KD[V ]
are self-adjoint extension of the symmetric operator L[V ] which has deficiency indices
(4, 4). Since ξ0[κa, κb, V ](λ) obeys the trace formula (5.1) one gets by a straightforward
computation that

η0(t) := ξ0[κa, κb, V ](tan(t/2)), t = (−π, π),

obeys the trace formula

tr((U − ζ)−1 − (UD − ζ)−1) = −i

∫ π

−π

η0(t)
(eit − ζ)2

eit dt, |ζ| 6= 1,

for the pair {U,UD}. The function η0(·) is called a spectral shift of the pair {U,UD}. Any
function η(t) := η0(t) + c, t ∈ (−π, π], c ∈ R, is, of course, a spectral shift of the pair
{U,UD}, too. Conversely, any spectral shift of the pair {U,UD} differs from η0(·) by a real
constant. Among all spectral shifts there is a special normalized one ηn(·) obeying

i

∫ π

−π

ηn(t)dt = tr(ln0(U−1
D U))

where ln0(·) is a suitably chosen branch of ln(·), see [31, 42]. Notice that there is a real
constant cn such that

ηn(t) = η0(t) + cn, t ∈ (−π, π].
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Since U−UD is a four-dimensional operator one gets from [31] that |ηn(t)| ≤ 4, t ∈ (−π, π].
By limt→−π η0(t) = 0 we obtain that |cn| ≤ 4. Hence, we find |η0(t)| ≤ 8, t ∈ (−π, π],
which yields

|ξ0[κa, κb, V ](λ)| ≤ 8, λ ∈ R. (5.13)

We note that (5.13) is weaker than (5.12), however, the proof relies only on abstract results
on the spectral shift.

Remark 5.7 The result (5.13) immediately implies that

ND[V ](λ)− 8 ≤ ω[κa, κb, V ](λ) ≤ ND[V ](λ) + 8, λ ∈ R.

Remark 5.8 From (4.1) and (5.7) we get

det(SLP [κa, κb, V ](λ)) = e−2πiξ0[κa,κb,V ](λ) (5.14)

for a.e. λ ∈ R. However, formula (5.14) is the well-known Birman-Krein formula for the
pair {K[κa, κb, V ],KD[V ]} which relates the spectral shift to the scattering matrix, cf.
[17, 42].

Acknowledgement

The financial support of DFG (Grant RE 1480/2-1) is gratefully acknowledged.

References

[1] V. M. Adamjan, H. Neidhardt, On the summability of the spectral shift function for
pair of contractions and dissipative operators J. Oper. Theory 24 (1990), no. 1, 187–
205.

[2] B. P. Allakhverdiev, On dissipative extensions of the symmetric Schrödinger operator
in Weyl’s limit-circle case Dokl. Akad. Nauk SSSR 293 (1987), 777-781.

[3] B. P. Allakhverdiev, F. G. Maksudov, On the theory of the characteristic function and
spectral analysis of a dissipative Schrödinger operator Dokl. Akad. Nauk SSSR 303
(1988), no.6, 1307-1309.

[4] B. P. Allakhverdiev, Schrödinger type dissipative operator with a matrix potential, in
Spectral theory of operators and its applications No.9, 11-41, “Élm”, Baku, 1989.
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