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Abstract

The paper is devoted to the dissipative Schrödinger-Poisson system. We indicate conditions
in terms of the Schrödinger-Poisson data which guarantee the uniqueness of the solution.
Moreover, it is shown that if the system is sufficiently small shrunken, then it always admits
a unique solution.
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1 Introduction

Let us first consider a closed quantum system on the bounded domain Ω consisting of
positively and negatively charged carriers which are called holes and electrons in the fol-
lowing. These systems can be described by one-electron Hamiltonians in effective mass
approximation (Ben-Daniel-Duke form)

H±[V ]ψ = −1
2
∇ ·

(
1

m±∇ψ

)
+ V ψ, (1.1)

supplemented by self-adjoint boundary conditions where “+′′ indicates holes and “−′′
stands for electrons. By m± the position dependent effective masses of holes and elec-
trons are denoted. The potential V is different for holes and electrons:

V ± = V ±
0 ± ϕ

where V ±
0 are potentials which are fixed for a given device, for instance, a double barrier.

The Planck constant ~ and the elementary charge q are scaled to 1 for simplicity.

The collective behaviour of holes and electrons is described by density operators %±[V ]. If
the system is closed, then it is assumed that the density operators are equilibrium states,
i.e non-negative trace class operators of the form by

%±[V ] = f±
(
H±[V ]

)

where f± are equilibrium distribution functions. The trace class property is satisfied if the
distribution functions f± decay sufficiently fast. In this case they admit the definition of
carrier density operators N±

f±(·) : L∞R (Ω) −→ L1
R(Ω), cf. [16, 17], which assign for bounded

electrostatic potentials V ∈ L∞R (Ω) a L1-function which is called the carrier densities such
that the relations

tr(%±[V ]χω) = tr(f±(H±[V ])χω) =
∫

ω

dxN±
f±(V )(x)

are satisfied for all Borel subsets ω of Ω. The subindex R indicates real functions. If to the
quadrouble {H+[V +

0 + ϕ],H−[V −
0 − ϕ], f+, f−} we add the Poisson equation

−∇ · (ε∇ϕ) = C +N+
f+(V +

0 + ϕ)−N−
f−(V −

0 − ϕ) (1.2)

with boundary conditions
ϕ(a) = ϕa and ϕ(b) = ϕb, (1.3)

then we get the so-called (closed) Schrödinger-Poisson system. By ε and C the dielectric
permittivity and the doping profile are denoted. It turns out that if the functions f± are
strictly monotone, then the carrier density operators N±

f±(·) are anti-monotone, cf. [8, 21].
Using this anti-monotonicity one gets that the (closed) Schrödinger-Poisson system admits
a unique solution, [8, 27, 28], even for heterogeneous material compositions and mixed
Dirichlet and Neumann boundary conditions for Schrödinger’s operator, see [16, 17].

Up to now the quantum system was supposed to be closed. Hence, there is no interaction
with the environment, in particular, no exchange of carriers, i.e. the carrier currents vanish.
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In view of modelling semiconductor devices the operating principle of which is the flow of
electrons and holes this is not justified. That is why we pass to open quantum systems,
see also [10, 29]. In [16] non-selfadjoint boundary conditions for the Schrödinger operators
(1.1) were proposed which are induced by a potential flow acting on the boundary ∂Ω of the
quantum system. The spectral theory for the associated non self-adjoint Schrödinger-type
operators has been developed in [18]. For a one dimensional device this ansatz was analyzed
in detail in [2, 18, 19, 20]. The arising model was called a dissipative Schrödinger-Poisson
system.

More precisely, on the Hilbert space H := L2(Ω), Ω := (a, b) ⊆ R1, the self-adjoint oper-
ators H±[V ] are now replaced by dissipative Schrödinger-type operators which arise from
the same differential expressions (1.1), however, supplemented by dissipative boundary
conditions of the form

1
2m±(a)

ψ′(a) = −κ±a ψ(a) and
1

2m±(b)
ψ′(b) = κ±b ψ(b) (1.4)

κ±a , κ±b ∈ C+ := {z ∈ C : =m(z) > 0}. The equilibrium distribution functions f± are
substituted by density matrices ρ± ∈ L∞(R,B(C2)) obeying

ρ±(λ) = ρ±(λ)∗ and ρ±(λ) ≥ 0

for a.e λ ∈ R with respect to the Lebesgue measure. The density matrices ρ± define density
operators %±[V ] on the so-called dilation space K ⊇ H which are non-negative self-adjoint
but not trace class operators commuting with the minimal self-adjoint dilation K±[V ] of
H±[V ], see [19]. However, under certain decaying assumptions on the density matrices ρ±

the reduced density operators %±H [V ±] := PK
H %±[V ±] ¹ H are always of trace class. Using

this property one can introduce carrier density operators N±
ρ±(·) : L∞R (Ω) −→ L1

R(Ω), cf.
[20], which like above assign to each electrostatic V ∈ L∞R (Ω) carrier densities from L1

R(Ω)
such that

tr(%±H [V ]χω) =
∫

ω

dxN±
ρ±(V )(x)

holds for all Borel subsets ω of Ω. Again, if to the quadrouble {H+[V +
0 + ϕ],H−[V −

0 −
ϕ], ρ+, ρ−} we add the Poisson equation (1.2), where N±

f±(·) is replaced by N±
ρ±(·), and

the boundary conditions (1.3), then we get the so-called open or dissipative Schrödinger-
Poisson system, see [2, 3, 20]. In contrast to the closed case the monotonicity property of
the carrier density operators is lost now. This has the consequence that one can prove the
existence of a solution of the dissipative Schrödinger-Poisson system but not its uniqueness,
see [3].

In the following we are going to fill this gap. The main technical tool for this business
is to show that the carrier density operators are in fact locally Lipschitz continuous and
not only continuous as proven in [3]. The proof of this property relies on the theory of
Kato-smooth operators, see [22, 23]. We show that the orthogonal projection PK

H from the
dilation space K onto the original space H is Kato-smooth with respect to the minimal
self-adjoint dilations K±[V ] and we calculate their smoothness constants which allows
us to compute the local Lipschitz constants for the carrier density operators. For this
purpose we have to strengthen the assumptions on the effective masses m±. In [3] it
was assumed that m± + 1

m± ∈ L∞R (Ω). In addition we demand that now that m± has
a finite total variation. This admits countably many discontinuities, what is sufficient
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for applications to heterogeneous material compositions. The solutions becomes unique if
the local Lipschitz constants of the carrier density operators are small enough. This result
should be interpreted as follows: it is known that uniqueness cannot be expected in general
because there are physical situations where the existence of several solutions explain well
observed hysteresis phenomena [14, 30]. Thus, our uniqueness result can physically be seen
as a filtering instrument in the following sense: if the parameters of the system obey our
conditions, then the above hysteresis phenomena are definitely absent.

It turns out that uniqueness takes always place if we shrink the dissipative Schrödinger-
Poisson system to a sufficiently small subdevice Ω′ ⊆ Ω. That means, we consider the same
boundary conditions (1.4) and (1.3), the same density matrices ρ± but replace the mass
functions m± by m± ¹ Ω′, the potentials V ±

0 by V ±
0 ¹ Ω′, the dielectric permittivity ε by

ε¹ Ω′ and the doping profile C by C ¹ Ω′. If Ω′ will be sufficiently small, then the shrunken
Schrödinger-Poisson systems admits a unique solution.

This has implications for dissipative hybrid models considered in [4] which use a mixed
description by a drift-diffusion model and a dissipative Schrödinger-Poisson system. In
more detail, one divides the device ∆ = [a0, b0] into two regions Ωc = (a0, a) ∪ (b, b0) and
Ωq = (a, b), which are called “classical zone” and “quantum zone”, respectively. On the
“classical zone” Ωc, which is disconnected, one uses a classical drift diffusion description,
cf. [11, 25, 31], while on the “quantum zone” Ωq a dissipative Schrödinger-Poisson system
is considered. The length |Ωq| of the quantum zone Ωq is crucial for the hybrid model.
Indeed, if Ω is very large, then we have nearly a quantum description of the device which
increases the costs of the numerical treatment of the model. If the quantum zone Ω is very
small, then by the above result it can happen that the hybrid model has only one solution
in contradiction to a pure classical description which usually allows several solutions. This
shows us that one has very carefully to choose the quantum zone in hybrid models.

The paper is organized as follows. In Section 2 we introduce a series of constants repeatedly
used in the following. If the Schrödinger-Poisson data are fixed, then the constants are
fixed.The dissipative Schrödinger-type operator is introduced and in detail investigated in
Section 3. Crucial are the notions of the characteristic function, see subsection 3.3, and the
phase shift, see subsection 3.4. The self-adjoint dilations and Lax-Phillips scattering theory
are recalled in subsection 3.6 and 3.7. The carrier density operator is defined in Section
4. Its local Lipschitz continuity is verified in subsection 4.2. The dissipative Schrödinger-
Poisson system is considered in Section 5. The existence proof is sketched in subsection 5.2,
the uniqueness is proven in subsection 5.3, the uniqueness for a sufficiently small shrunken
Schrödinger-Poisson system is established in subsection 5.4. We end with some remarks in
Section 6.

2 Notation, Assumptions and Constants

By Lp(Ω, X, m) 1 ≤ p < ∞, Ω = (a, b), we denote the space of m-measurable and p-
integrable functions over Ω with values in a Banach space X. By L∞(Ω, X, m) the space
of essentially bounded functions is denoted. If m is the Lebesgue measure, then we write
Lp(Ω) = Lp(Ω,C,m) and Lp

R(Ω) := Lp(Ω,R, m), 1 ≤ p ≤ ∞. The Lebesgue measure of a
set is denoted by | · |.
The norm of a Banach or Hilbert space X is indicated by ‖ · ‖X or simply by ‖ · ‖, the
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scalar product of a Hilbert space X by (·, ·)X or simply by (·, ·) where the first argument
is the linear one. The dual space is indicated by X∗. By B(X, Y ) the space of all linear
bounded operators from the Banach space X to the Banach space Y is denoted with
norm ‖ · ‖B(X,Y ). If X = Y , then B(X, X) = B(X) and ‖ · ‖B(X,Y ) = ‖ · ‖B(X). If X
is a Hilbert spaces, then B1(X) and B2(X) denote the spaces of trace class and Hilbert-
Schmidt operators, respectively. For a densely defined linear operator A : X −→ Y we
denote by A∗, spec(A) and res(A) its adjoint, spectrum and resolvent set, respectively. We
write X[V ] if we have in mind a parameter dependence on V and X(V ) if a functional
dependence on V is considered. Of course, it is quite possible that a parameter dependence
becomes a functional one and vice versa.

Furthermore, we denote by W 1,2(Ω) the usual Sobolev spaces of complex-valued functions
on Ω. The subspace of elements with homogeneous Dirichlet boundary conditions at the
end points of the interval Ω ⊆ R is denoted by W 1,2

0 (Ω). Its dual with respect to the
L2-pairing is denoted by W−1,2

0 (Ω) = (W 1,2
0 (Ω))∗. If we have in mind only real-valued

functions, then we write W 1,2
R (Ω) and W 1,2

0,R(Ω).

With respect to the Schrödinger-type operators we made the following

Assumptions 2.1 (Schrödinger assumptions)

(Q1) There are constants m± > 0 and m± > 0 such that m± ≤ m±(x) ≤ m± for x ∈ Ω.

(Q2) κ±a , κ±b ∈ C+ = {z ∈ C : =m(z) > 0}
(Q3) V ±

0 ∈ L∞R (Ω)

(Q4) The matrix valued-functions ρ±(·) ∈ L∞(R,B(C2)) obey 0 ≤ ρ±(λ) = ρ±(λ)∗. There
are real, continuous differentiable, even functions g±(·) : R −→ R+ such that

0 ≤ ρ±(λ) ≤ g±(λ)IC2 , λ ∈ R, (2.1)

sign(λ)
d

dλ
g±(λ) ≤ 0, λ ∈ R, (2.2)

∫ ∞

0

dλ
g±(λ)√

λ
< ∞ (2.3)

and ∣∣∣∣
d

dλ
g±(λ)

∣∣∣∣ ≤ c±g±(λ), λ ∈ R, (2.4)

where c± are given real constants.

In particular, the functions

g±(λ) = c±0 (1 + λ2)−1/2, λ ∈ R,

used in [2] satisfy the assumptions (2.2)-(2.4) with c± = c±0 .

The parameter set Q := {m±, κ±a , κ±b , V ±
0 , ρ±} is called the Schrödinger data of the device

Ω. The Schrödinger data are fixed in the following.

With respect to the Poisson equation we made the following
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Assumptions 2.2 (Poisson assumptions)

(P1) The doping profile C is from W−1,2
0 (Ω).

(P2) The dielectric permittivity ε is positive and satisfies ε + 1
ε ∈ L∞R (Ω).

The quadrouble P := {C, ε, ϕa, ϕb} is called the Poisson data of the device Ω which are
also fixed through the paper. The union D := Q∪P is called the Schrödinger-Poisson data
of the device Ω.

For the convenience of the reader we collect here important constants which are composed
of the Schrödinger-Poisson data and which are needed in the following. We set

B±
0 := 2g±(0) +

1
2π

√
|Ω|m±

∫ ∞

0

dλ
g±(λ)√

λ
(2.5)

and
B±

1 :=
1
π

g(0)
√
|Ω|m±. (2.6)

We note that the quantities B±
0 and B±

1 depend only one the Schrödinger data and on the
length |Ω| of the device.

The embedding operators from W 1,2
0 (Ω) into L∞(Ω) and L1(Ω) into W−1,2

0 (Ω) are denoted
by E∞ and E1, respectively. We note that E1 = E∗

∞ ¹L1(Ω). Their norms are equal and
are denoted by ε1 in the sequel. A straightforward computation shows that ε1 ≤

√
|Ω|.

Let ϕ̂ be the function

Ω 3 x −→ 1∫ b

a
dt 1

ε(t)

{
ϕa

∫ x

a

dt
1

ε(t)
+ ϕb

∫ b

x

dt
1

ε(t)

}
. (2.7)

Clearly, ϕ̂ ∈ W 1,2(Ω) ↪→ L∞(Ω). We set

D0 := ε1‖1/ε‖L∞
√

1 + |Ω|
{
‖C‖W−1,2

0
+ (2.8)

ε1

(
B+

0 + B−
0 + B+

1

√
‖V +

0 + ϕ̂‖L∞ + B−
1

√
‖V −

0 − ϕ̂‖L∞

)}

and
D1 := ε2

1‖1/ε‖L∞
√

1 + |Ω| (B+
1 + B−

1

)
. (2.9)

Using D0 and D1 we introduce the radii

r0 :=
1
2

(
D1 +

√
D2

1 + 4D0

)
(2.10)

and
r±1 := ‖V ±

0 + ϕ̂‖L∞ + r0 (2.11)

If h : [a, b] −→ R is a function of finite total variation and x, y ∈ [a, b], then the total
variation of h|[x,y] is denoted by

∨y
x h. If 1

m± has a finite total variation, then we set

M± :=
√

m± exp

{
m±

2

b∨
a

1
m±

}
. (2.12)
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Next we introduce the functions

R±j (y) := M±
(

1 + |κ±j |
√

2
m±

)
exp

{
y |Ω| (M±)2

√
2

m±

}
(2.13)

for y ≥ 0 and j = a, b. Further we set

L±(y) :=

√
2
π

{
R±a [2y + 2 + γ±0 ]2

(α±a )2
+

R±b [2y + 2 + γ±0 ]2

(α±b )2

}1/2

. (2.14)

for y ≥ 0 where the representation

κ±a = q±a + i
(α±a )2

2
and κ±b = q±b + i

(α±b )2

2
. (2.15)

is used. The constants γ±0 are given by

γ±0 := 2m±(q±)2
{

1
2

+
1

q±|Ω|m± +

√
1
4

+
1

q±|Ω|m±

}
(2.16)

where

q± := max{0, q±a , q±b }. (2.17)

We define

G±(y) =
√

B±
0 + B±

1

√
y, y ≥ 0. (2.18)

and

L±(x, y) := c±(G±(x) + G±(y))2 + 4π|Ω|L±(x) L±(y) G±(x)G±(y), (2.19)

for x, y ≥ 0. Finally, we introduce the constant

L := L+(r+
1 , r+

1 ) + L−(r−1 , r−1 ). (2.20)

and we set

U := ε2
1‖1/ε‖L∞

√
1 + |Ω| L. (2.21)

We note again that the introduce constants (2.5)-(2.21) depend only on the Schrödinger-
Poisson data which means that they are fixed for fixed Schrödinger-Poisson data.

3 Schrödinger-type operators

Since it is unimportant in this section whether we have to do with electrons or with holes we
admit the superscript ± in this section. Further, throughout we assume that Schrödinger
data Q = {m,κa, κb, V0, ρ} satisfy the Schrödinger assumptions mutatis mutandis.
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3.1 Definitions

Following the suggestion of [16, 17] we consider the non-selfadjoint Schrödinger-type oper-
ator H[V ] on the Hilbert space H defined by

dom(H[κa, κb, V ]) =





f ∈ W 1,2 :

1
m(x)f

′(x) ∈ W 1,2(Ω),
1

2m(a)f
′(a) = −κaf(a),

1
2m(b)f

′(b) = κbf(b)





and
(H[κa, κb, V ]g)(x) = (l[V ]g)(x), g ∈ dom(H[κa, κb, V ]),

where

(l[V ]g)(x) := −1
2

d

dx

1
m(x)

d

dx
g(x) + V (x)g(x),

cf. [18, 19], where V ∈ L∞R (Ω) and κa, κb ∈ C+ := {z ∈ C : =m(z) ≥ 0}, are called the
boundary coefficients. The operator H[κa, κb, V ] is maximal dissipative if either κa ∈ C+

or κb ∈ C+. In both cases the operator is completely non-selfadjoint, see [18]. In the
following we consider the case κa, κb ∈ C+. In this case we usually write H[V ] instead of
H[κa, κb, V ]. The spectrum of H[V ] consists of isolated eigenvalues in the lower half-plane
with the only accumulation point at infinity, i.e spec(H[V ]) ⊆ C− := {z ∈ C : =m(z) ≤ 0}.
Since the operator H[V ] is completely non-selfadjoint, its eigenvalues are non-real.

Besides the operator H[V ] we consider the operator HR[V ] := H[qa, qb, V ], V ∈ L∞R (Ω),
qa, qb ∈ R. The operator HR[V ] is self-adjoint and semi-bounded from below. In some sense
the operator HR[V ] can be regarded as the real part of the maximal dissipative H[V ]. By
γ[V ] we denote the bottom of the spectrum of HR[V ], i.e. γ[V ] := inf spec(HR[V ]).

Lemma 3.1 Let the Schrödinger assumptions Q1 be satisfied. If qa, qb ∈ R, then

γ[V ] ≥ −γ0 − ‖V−‖L∞ (3.1)

where V−(x) := 1
2{|V (x)| − V (x)}, x ∈ Ω, and γ0 is given by (2.16).

Proof. We consider the quadratic form h[qa, qb](·, ·),

h[qa, qb](f, f) := −qa|f(a)|2 − qb|f(b)|2 +
∫ b

a

1
2m(x)

|f ′(x)|2 dx,

f ∈ dom(h[qa, qb, V ]) = W 1,2(Ω), which is associated with the self-adjoint operator
H[qa, qb, 0]. The quadratic form h[qa, qb](·, ·) admits the estimate

h[qa, qb](f, f) ≥ ĥ(f, f) := −q{|f(a)|2 + |f(b)|2}+
1

2m

∫ b

a

|f ′(x)|2 dx

where q := max{0, qa, qb}, cf. (2.17). The quadratic form ĥ corresponds to the self-adjoint
operator Ĥ,

(Ĥf)(x) = − 1
2m

d2

dx2
f(x), f ∈ dom(Ĥ),
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dom(Ĥ) =
{

f ∈ W 2,2(Ω) :
1

2m
f ′(a) = −qf(a),

1
2m

f ′(b) = qf(b)
}

.

A straightforward computation shows that λ = −µ2, µ ≥ q
√

2m, is an eigenvalue of Ĥ if
and only if µ satisfies the equation

µ|Ω|
√

2m = ln

(
µ + q

√
2m

µ− q
√

2m

)
.

Hence, if λ = −µ2 is an eigenvalue, then the estimate

µ|Ω|
√

2m ≤ 2q
√

2m

µ− q
√

2m

holds. This yields

λ = −µ2 ≥ −2mq2

{
1
2

+
1

q|Ω|m +

√
1
4

+
1

q|Ω|m

}
.

Using this estimate we immediately verify (3.1). ¤

3.2 Elementary solutions and estimates

An important tool to investigate the dissipative operator H[V ] are the so-called elementary
solutions defined by

l[V ](va(x, z)) = zva(x, z), va(a, z) = 1,
1

2m(a)
v′a(a, z) = −κa (3.2)

l[V ](vb(x, z)) = zvb(x, z), vb(b, z) = 1,
1

2m(b)
v′b(b, z) = κb. (3.3)

The existence of these solutions for each z ∈ C can be proved by writing (3.2) and (3.3) in
integral form

va(x, z) = 1− 2κaMa(x) + 2
∫ x

a

dt (Ma(x)−Ma(t))(V (t)− z)va(t, z) (3.4)

and

vb(x, z) = 1− 2κbMb(x) + 2
∫ b

x

dt (Mb(x)−Mb(t))(V (t)− z)vb(t, z) (3.5)

where

Ma(x) :=
∫ x

a

dt m(t) and Mb(x) :=
∫ b

x

dt m(t)

Since (3.4) and (3.5) are Volterra-type equations they have always solutions for any z ∈ C,
in particular, for z = λ ∈ R. Moreover, one gets that va and vb as well as 1

mv′a and 1
mv′b

are absolutely continuous.

In the following the estimates are based on Gronwall’s lemma which we need in a slightly
generalized form.
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Lemma 3.2 (Gronwall’s lemma) Let µ be a finite Borel measure on [a, b]. If the non-
negative continuous function g(·) : [a, b] −→ R obeys

0 ≤ g(x) ≤ C +
∫

[a,x]

g(t) dµ(t), x ∈ [a, b], C > 0, (3.6)

then the estimate

g(x) ≤ C exp

{∫

[a,x]

dµ(t)

}
, x ∈ [a, b], (3.7)

holds.

The proof follows immediately from Lemma 5 of [15]. Using Gronwall’s lemma we are
going to establish bounds for the elementary solutions if λ > 0. At first we prove this for
the special case V = 0 and later on we extend the result to V 6= 0.

Let V = 0. We consider the the boundary value problem

l[0]w(x, λ) = λw(x, λ), w(a, λ) = p,
1

2m(a)
w′(a, λ) = q,

where p, q ∈ C.

Lemma 3.3 Let the Schrödinger assumption Q1 be satisfied. If m has a finite total vari-
ation, then

|w(x, λ)| ≤
√
|p|2 +

2
λm(a)

|q|2 M, (3.8)

for x ∈ [a, b] and λ > 0, where M is defined by (2.12).

Proof. We note that
−1

2
d

dx

1
m(x)

d

dx
w(x, λ) = λw(x, λ)

is satisfied for a.e. x ∈ [a, b] with respect of the Lebesgue measure. Multiplying by
1

m(x)w
′(x, λ) we get

−1
2

1
m(x)

w′(x, λ)
d

dx

1
m(x)

w′(x, λ) = λw(x, λ)
1

m(x)
w′(x, λ)

which yields
1
2

d

dx

∣∣∣∣
1

m(x)
w′(x, λ)

∣∣∣∣
2

= − λ

m(x)
d

dx
|w(x, λ)|2

for a.e. x ∈ [a, b]. Since 1
m(x)w

′(x, λ) is absolutely continuous we obtain

1
2

∣∣∣∣
1

m(x)
w′(x, λ)

∣∣∣∣
2

=
1
2

∣∣∣∣
1

m(a)
w′(a, λ)

∣∣∣∣
2

− λ

∫ x

a

1
m(t)

d

dt
|w(t, λ)|2 dt

for x ∈ [a, b]. Since m has a finite total variation, the limits m(x − 0) := limy↑x m(y) for
x ∈ (a, b] and m(x+0) := limy↓x m(y) for x ∈ [a, b) exist. Further, we set m(a−0) := m(a)
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and m(b + 0) := m(b). Notice that m(x) and m(x − 0) are different only on a countable
set. Hence we can replace 1

m(t) by 1
m(t−0) above. Using the boundary conditions we get

∣∣∣∣
1

m(x)
w′(x, λ)

∣∣∣∣
2

= 4 |q|2 − 2λ

∫

[a,x]

1
m(t− 0)

d |w(t, λ)|2

for all x ∈ [a, b] where the integral on the right-hand side is regarded as a Lebesgue-Stieltjes
integral. If m has a finite total variation, then by assumption Q1 the function 1

m has a
finite total variation, too. By Theorem 21.67 and Remark 21.68 of [13] we get

∣∣∣∣
1

m(x)
d

dx
w(x, λ)

∣∣∣∣
2

+
2λ

m(x + 0)
|w(x, λ)|2 = (3.9)

4 |q|2 +
2λ

m(a)
|w(a, λ)|2 + 2λ

∫

[a,x]

|w(t, λ)|2 dµ(t)

where µ is the signed measure associated with 1
m . Since 1

m is of bounded variation, the
functions $(x) :=

∨x
a

1
m and ν(x) := $(x) − 1

m(x) , x ∈ [a, b], are non-decreasing. Notice
that 1

m(x) = $(x)− ν(x). Thus we find
∫

[a,x]

|w(t, λ)|2 dµ(t) =
∫

[a,x]

|w(t, λ)|2 dµ$(t)−
∫

[a,x]

|w(t, λ)|2 dµν(t),

where µ$ and µν the measures associated with $ and ν, respectively. Hence
∫

[a,x]

|w(t, λ)|2 dµ(t) ≤
∫

[a,x]

|w(t, λ)|2 dµ$(t), x ∈ [a, b].

Inserting this estimate into (3.9) and using the boundary condition w(a, λ) = p we get

1
m(x + 0)

|w(x, λ)|2 ≤ 2
λ
|q|2 +

1
m(a)

|p|2 +
∫

[a,x]

|w(t, λ)|2 dµ$(t), x ∈ [a, b],

which yields

|w(x, λ)|2 ≤ m(x + 0)
(

2
λ
|q|2 +

1
m(a)

|p|2
)

+ m(x + 0)
∫

[a,x]

|w(t, λ)|2 dµ$(t)

for x ∈ [a, b]. Since m(x) ≤ m, x ∈ [a, b], we obtain

|w(x, λ)|2 ≤ m

(
2
λ
|q|2 +

1
m(a)

|p|2
)

+ m

∫

[a,x]

|w(t, λ)|2 dµ$(t)

Applying Lemma 3.2, we immediately get

|w(x, λ)|2 ≤
(

2
λ
|q|2 +

1
m(a)

|p|2
)

exp

{
m

∫

[a,x]

dµ$(t)

}

for x ∈ [a, b]. Hence

|w(x, λ)| ≤
√
|p|2 +

2
λm(a)

|q|2
√

m exp

{
m

2

∫

[a,x]

dµ$(t)

}



12 H. Neidhardt, J. Rehberg

for x ∈ [a, b]. Finally, taking into account

∫

[a,x]

dµ$(t) ≤
∫

[a,b]

dµ$(t) ≤
b∨
a

1
m

we prove (3.8). ¤
We note that a similar lemma holds if the end point a is replaced by b.

In the following we consider the solutions w0(x, λ) and w1(x, λ) of the boundary value
problems

(l[0]w1)(x) = λw1(x, λ), w1(a, λ) = 1,
1

2m(a)
w′1(a, λ) = 0,

(l[0]w0)(x) = λw0(x, λ), w0(a, λ) = 0,
1

2m(a)
w′0(a, λ) = 1.

By Lemma 3.3 we have the estimates

|w1(x, λ)| ≤ M and |w0(x, λ)| ≤
√

2
λm(a)

M, x ∈ [a, b], λ > 0.

Lemma 3.4 Let the Schrödinger assumption Q1 be satisfied and let V ∈ L∞R (Ω). If m has
a finite total variation, then

|vj(x, λ)| ≤
{

Rj(‖V ‖L∞), λ ≥ 1,

Rj(‖V + 1− λ‖L∞), λ < 1,
, j = a, b, x ∈ Ω, (3.10)

where Rj(·) is defined by (2.13)

Proof. The solution va(x, λ) satisfies the integral equation

va(x, λ) = w1(x, λ)− κaw0(x, λ)+∫ x

a

dt {w0(x, λ)w1(t, λ)− w0(t, λ)w1(x, λ)}V (t)va(t, λ),

x ∈ Ω and λ ∈ R. Therefore, we have the estimate

|va(x, λ)| ≤

M

(
1 + |κa|

√
2

λm(a)

)
+ M2

√
2

λ m(a)

∫ x

a

dt |V (t)| |va(t, λ)|,

x ∈ Ω and λ > 0. Applying Gronwall’s lemma we find

|va(x, λ)| ≤ M

(
1 + |κa|

√
2

λm(a)

)
exp

{
M2

√
2

λm(a)

∫ x

a

dt |V (t)|
}

for x ∈ Ω and λ > 0. If λ ≥ 1, then we immediately verify the first part of (3.10).

If λ < 1, then vj(x, λ) satisfies the equation l[V + 1 − λ]va(x, λ) = va(x, λ). Taking into
account the first estimate of (3.10) we prove the second estimate. The proof for j = b is
similar. ¤
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3.3 Characteristic function

Let us introduce the operator-valued function T (z) : H −→ C2,

T [V ](z)f :=
(

αb((H[V ]− z)−1f)(b)
−αa((H[V ]− z)−1)f(a)

)
, αa, αb > 0,

for z ∈ res(H[V ]) and f ∈ L2(Ω). Using Theorem 2.1 of [19], we find

T [V ](z)f =
1

W (z)

(
−αb

∫ b

a
dy va(y, z)f(y)

αa

∫ b

a
dy vb(y, z)f(y)

)

for f ∈ L2(Ω) where W (z) denotes the Wronskian of the solutions va(x, z) and vb(x, z),

W (z) := va(x, z)
1

2m(x)
v′b(x, z)− vb(x, z)

1
2m(x)

v′a(x, z),

which is independent from x ∈ Ω. The adjoint operator is given by

(T [V ](z)∗ξ) (x) =
1

W (z)

(
−αbva(x, z), αavb(x, z)

)
ξ (3.11)

x ∈ Ω, where

ξ =
(

ξb

ξa

)
∈ C2. (3.12)

and the right-hand side is regarded as a matrix multiplication. Similarly, we set

T∗[V ](z)f :=
(

αb((H[V ]∗ − z)−1f)(b)
−αa((H[V ]∗ − z)−1f)(a)

)

for z ∈ res(H∗) and f ∈ L2(Ω). Using again Theorem 2.1 of [19]we find

T∗[V ](z)f =
1

W∗(z)

(
−αb

∫ b

a
dy v∗a(y, z)f(y)

αb

∫ b

a
dy v∗b(y, z)f(y)

)
.

where W∗(z) is the Wronskian of the solutions v∗a(x, z) := va(x, z) and v∗b(x, z) := vb(x, z),

W∗(z) := v∗a(x, z)
1

2m(x)
v′∗b(x, z)− v∗b(x, z)

1
2m(x)

v′∗a(x, z).

which also independent from x ∈ Ω. The adjoint operator has the representation

(T∗[V ](z)∗ξ) (x) =
1

W∗(z)

(
−αbv∗a(x, z), αav∗b(x, z)

)
ξ

x ∈ Ω, ξ ∈ C2.

The operator H[V ] can be (up to unitary equivalence) characterized by its characteristic
function z → Θ[V ](z), with z ∈ res(H[V ])∩res(H[V ]∗), cf. [9]. The characteristic function
Θ[V ](·) of the maximal dissipative operator H[V ] is a two-by-two matrix-valued function
which satisfies the relation

Θ[V ](z)T [V ](z)f = T∗[V ](z)f, z ∈ res(H[V ]) ∩ res(H[V ]∗),
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f ∈ H. In terms of the adjoint elementary solutions the characteristic function can be
expressed as follows:

Θ[V ](z) = IC2 + i
1

W∗(z)

(
α2

bv∗a(b, z) −αbαa

−αbαa α2
av∗b(a, z)

)
,

which can be written as
Θ[V ](z) = IC2 − iαT [V ](z)∗,

z ∈ res(H[V ]) ∩ res(H[V ]∗), where the operator α : L2(Ω) −→ C, is defined by

αf :=
(

αbf(b)
−αaf(a)

)
, f ∈ dom(α) := C(Ω̄).

Notice that the operator α is not closed and not closable. The characteristic function
Θ[V ](λ) is a holomorphic on res(H[V ]) ∩ res(H[V ]∗) and contractive on C− ∪ R, i.e. it
satisfies

‖Θ[V ](z)‖ ≤ 1 for z ∈ C− ∪ R.

In particular, it is well-defined and continuous on R, cf. [19]. We note that by Lemma 2.2
of [26] one has limλ→−∞ ‖Θ[V ](λ)− IC2‖B(C2) = 0.

3.4 Phase shift

The phase shift ω[V ] is defined by

e2πiω[V ](λ) := det(Θ[V ](λ)), λ ∈ R,

where it is assumed that ω[V ](·) : R −→ R is continuous. Notice that the phase shift is
determined modulo Z. Since limλ→−∞ det(Θ[V ](λ)) = 1 by Lemma 2.2 of [26] we fix the
phase shift by the condition

lim
λ→−∞

ω[V ](λ) = 0.

Lemma 3.5 [26, Lemma 4.1] Let the Schrödinger assumptions Q1 and Q2 be satisfied. If
V ∈ L∞R (Ω), then the phase shift is holomorphic in a neighbourhood of R and satisfies

ω′[V ](λ) :=
d

dλ
ω[V ](λ) = − 1

2π
tr(T [V ](λ)T [V ](λ)∗) ≤ 0 (3.13)

for λ ∈ R.

Lemma 3.5 shows that the phase shift is non-increasing. Moreover, since ω[V ](−∞) = 0
the phase shift is always non-positive, i.e ω[V ](λ) ≤ 0 for λ ∈ R. Let us introduce the
counting function

Φ[V ](λ) := card{s ≤ λ : det(Θ[V ](s)) = 1}, λ ∈ R.

It turns out that the Φ[V ](·) is comparable with the counting function ND[V ](·),
ND[V ](λ) := card{s ≤ λ : s ∈ spec(HD[V ])}, λ ∈ R.

where HD[V ] denotes the Schrödinger-type operator with Dirichlet boundary conditions.
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Theorem 3.6 [26, Theorem 4.7] Let the Schrödinger assumption Q1 and Q2 be satisfied.
If V ∈ L∞R (Ω), then

ND[V ](λ) ≤ Φ[V ](λ) ≤ ND[V ](λ) + 1, λ ∈ R.

Corollary 3.7 Let the Schrödinger assumption Q1 and Q2 be satisfied. If V ∈ L∞R (Ω),
then

0 ≤ −ω[V ](λ) ≤ 2 +
1
π

√
2m|Ω|

√
(λ + ‖V−‖L∞)+ (3.14)

for λ ∈ R.

Proof. Since −ω[V ](λ) is non-decreasing by Lemma 3.5 the estimate −ω[V ](λ) ≤ 1 +
Φ[V ](λ), λ ∈ R, holds. By Remark 4.8 of [26] and Theorem 3.6 one gets

ND[V ](λ) ≤ 1
π

√
2m|Ω|

√
(λ + ‖V−‖L∞)+, λ ∈ R,

which yields (3.14). ¤

3.5 Lipschitz continuity of the phase shift

We are going to verify the Lipschitz continuity of the phase shift by giving bounds for the
derivative of ω[V ].

Proposition 3.8 Let the Schrödinger assumptions Q1 and Q2 be satisfied and let V ∈
L∞R (Ω). If m has a finite total variation, then

|ω[V ](λ)− ω[V ](λ′)| ≤ |Ω| L( ‖V ‖L∞)2 |λ− λ′|, (3.15)

λ, λ′ ∈ R where L(·) is defined by (2.14).

Proof. Since the phase shift is continuously differentiable it is sufficient to show
−ω′[V ](λ) ≤ |Ω| L( ‖V ‖L∞)2, λ ∈ R. Taking into account Lemma 3.5 we get

ω′[V ](λ) = − 1
2π

2∑

j=1

‖T [V ](λ)∗ej‖2L2 , λ ∈ R, (3.16)

where

e1 :=
(

1
0

)
and e2 :=

(
0
1

)
.

By (3.11) we find

‖T [V ](λ)∗e1‖2L2 =
α2

b

|W (λ)|2
∫ b

a

dx |va(x, λ)|2.

Let

E :=
(

0 1
1 0

)
.



16 H. Neidhardt, J. Rehberg

We note that ‖EΘ[V ](λ)‖B(C2) ≤ 1, λ ∈ R, and

tr(EΘ[V ](λ)) = −2i
αaαb

W (λ)
, λ ∈ R,

which yields
αaαb

|W (λ)| ≤ 1, λ ∈ R.

Hence

‖T [V ](λ)∗e1‖2L2 ≤ 1
α2

a

∫ b

a

dx |va(x, λ)|2, λ ∈ R.

Applying Lemma 3.4 we get the estimate

‖T [V ](λ)∗e1‖2L2 ≤ |Ω|Ra[ ‖V + 2− λ0‖L∞ ]2

α2
a

, λ ∈ [λ0 − 1,∞). (3.17)

where λ0 := −‖V ‖L∞ − γ0 and γ0 is given by (2.16). By Lemma 3.1 one immediately gets
that (−∞, λ0) ⊆ res(H[V ]). Using the resolvent formula

(H[V ]− λ)−1 = (H[V ]− λ0)−1
{
I + (λ− λ0)(H[V ]− λ)−1

}
,

λ ∈ (−∞, λ0), we find the representation

T [V ](λ) = T [V ](λ0)
{
I + (λ− λ0)(H[V ]− λ)−1

}
, (3.18)

λ ∈ (−∞, λ0). By Γ[V ] we denote the numerical range of H[V ]. One easily verifies that
Γ[V ] ⊆ {z ∈ C : <e(z) ≥ λ0}. Applying Theorem 3.1 of [18] we get the estimate

‖(H[V ]− λ)−1‖B(L2(Ω)) ≤
1

dist(Γ[V ], λ)
≤ 1
|λ− λ0| ≤ 1

for λ ∈ (−∞, λ0 − 1). Hence we find the estimate

‖I + (λ− λ0)(H[V ]− λ)−1‖B(L2(Ω)) ≤ 1 +
|λ− λ0|
|λ− λ0| = 2

for λ ∈ (−∞, λ0 − 1). Further, from (3.18) we get

T [V ](λ)∗e1 = {I + (λ− λ0)(H[V ]∗ − λ)−1}T [V ](λ0)∗e1

for λ ∈ (−∞, λ0 − 1). Using (3.17)

‖T [V ](λ)∗e1‖2L2 ≤ 4 ‖T [V ](λ0)∗e1‖2L2 ≤ 4 |Ω| Ra[ ‖V + 2− λ0‖L∞ ]2

α2
a

, (3.19)

λ ∈ (−∞, λ0 − 1). Taking into account (3.17) and (3.19) we finally get

‖T [V ](λ)∗e1‖2L2 ≤ 4 |Ω| Ra[ ‖V + 2− λ0‖L∞ ]2

α2
a

, λ ∈ R. (3.20)

Similarly, we prove

‖T [V ](λ)∗e2‖2L2 ≤ 4 |Ω| Rb[ ‖V + 2− λ0‖L∞ ]2

α2
b

, λ ∈ R. (3.21)
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From (3.16), (3.20) and (3.21) we obtain

−ω′[V ](λ) ≤ 2
π
|Ω|

{
Ra[ ‖V + 2− λ0‖L∞ ]2

α2
a

+
Rb[ ‖V + 2− λ0‖L∞ ]2

α2
b

}

for λ ∈ R. Inserting λ0 = −‖V ‖L∞ − γ0 into this formula and using the definition (2.14)
we obtain (3.15). ¤

3.6 Dilations

Since H[V ] is a maximal dissipative operator there is a larger Hilbert space K ⊇ H and a
self-adjoint operator K[V ] on K such that

PK
H (K[V ]− z)−1 ¹H = (H[V ]− z)−1, =m(z) > 0, (3.22)

see [9]. The operator K[V ] is called a self-adjoint dilation of the maximal dissipative
operator H[V ]. Obviously, from the condition (3.22) one gets

PK
H (K[V ]− z)−1 ¹H = (H[V ]∗ − z)−1, =m(z) < 0.

If the condition
clospan{z ∈ C \ R : (K[V ]− z)−1H} = K

is satisfied, then K[V ] is called a minimal self-adjoint dilation of H[V ]. Minimal self-
adjoint dilations of maximal dissipative operators are determined up to an isomorphism,
in particular, all minimal self-adjoint dilations are unitarily equivalent. The self-adjoint
operator K[V ] is absolutely continuous and its spectrum coincides with the real axis, i.e.
spec(K) = R. The multiplicity of its spectrum is two. For more details the reader is
referred to [19].

Definition 3.9 ( c.f. [22]) Let K be a selfadjoint, absolutely continuous operator on a
Hilbert space H and A be a bounded operator on H. Then A is called K-smooth if there
is a constant CA > 0 such that

∫ +∞

−∞
dt ‖Ae−itK ~f‖2H ≤ 2π C2

A‖~f‖2H (3.23)

for all ~f ∈ H. The smallest constant CA is denoted by ‖A‖K .

Let us verify that the projection PK
H is K[V ]-smooth. To this end we need the following

lemma which was proved in [26].

Lemma 3.10 [26, Lemma 5.3] Let the Schrödinger assumptions Q1 and Q2 be satisfied.
If V ∈ L∞R (Ω), then

d

dλ
(EK[V ](λ)PK

H
~f, PK

H~g)K = (T [V ](λ)PK
H

~f, T [V ](λ)PK
H~g)C2

for a.e λ ∈ R and ~f,~g ∈ K where EK[V ](·) denotes the spectral measure of the the self-
adjoint dilation K[V ].
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Proposition 3.8 and Lemma 3.10 imply the smoothness of PK
H :

Theorem 3.11 Let the Schrödinger assumptions Q1 and Q2 be satisfied and let V ∈
L∞R (Ω). If m has a finite total variation, then the projection PK

H is K[V ]-smooth and the
estimate

‖PK
H‖K[V ] ≤

√
|Ω| L( ‖V ‖L∞) (3.24)

holds where L(·) is defined by (2.14).

Proof. In accordance with [22] we set

a2 := sup
∆⊆R, ~f∈K, ~f 6=0

‖EK[V ](∆)PK
H

~f‖2
|∆| ‖~f‖2

where ∆ = (λ1, λ2) ⊆ R are bounded intervals of R and |∆| := λ2 − λ1 denotes their
length. Then Theorem 5.1 of [22] states ‖PK

H‖K[V ]) =
√

a2. Thus, the K[V ]-smoothness of
the projection PK

H including the estimate (3.24) is shown if we verify

a2 ≤ |Ω| L(‖V ‖L∞)2.

Using Lemma 3.10 we get that

‖EK[V ](∆)PK
H

~f‖2K =
1
2π

∫

∆

dλ ‖T [V ](λ)f‖2H.

We note that

‖T [V ](λ)f‖2H ≤ ‖f‖2Htr(T [V ](λ)∗T [V ](λ)) = ‖f‖2H tr(T [V ](λ)T [V ](λ)∗),

λ ∈ R. Hence

‖EK[V ](∆)PK
H

~f‖2K ≤ ‖~f‖2K
1
2π

∫

∆

dλ tr(T [V ](λ)T [V ](λ)∗).

Taking into account Lemma 3.5 we obtain the estimate

‖EK[V ](∆)PK
H

~f‖2K ≤ −‖~f‖2K
∫

∆

dλ ω′[V ](λ).

Hence we obtain
‖EK[V ](∆)PK

H
~f‖2K

‖~f‖2K
≤ (ω[V ](λ1)− ω[V ](λ2))

Using (3.15) we find the estimate

‖EK[V ](∆)PK
H

~f‖2K
|∆| ‖f‖2K

≤ |Ω| L(‖V ‖L∞)2.

¤
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3.7 Lax-Phillips scattering theory

The dilation space K admits the decomposition

K = D− ⊕ H⊕D+.

where D± = L2(R±,C2), see [19]. Since

e−itK[V ]D− ⊆ D−, t ≤ 0,

e−itK[V ]D+ ⊆ D+, t ≥ 0

as well as
⋂

t∈R
e−itK[V ]D− =

⋂

t∈R
e−itK[V ]D+ = {0},

⋃

t∈R
e−itK[V ]D− =

⋃

t∈R
e−itK[V ]D+ = K (3.25)

the subspaces D− and D+ are called incoming and outgoing subspaces with respect to
e−itK[V ], cf. [1, Ch. XII] or [24]. Further, introducing the Hilbert space K0,

K0 = L2(R,C2) = D− ⊕D+ ⊆ K = D− ⊕ H⊕D+,

and the self-adjoint differentiation operator K0,

(K0f)(x) = −i
d

dx
f(x), f ∈ dom(K0) = W 1,2(R,C2),

one easily verifies that D− and D+ are incoming and outgoing subspaces with respect to
e−itK0 . The Lax-Phillips wave operators are defined by

W±(K[V ],K0; J±) := s− lim
t→±∞

eitK[V ]J±e−itK0

where the identification operators J± : K0 −→ K are given by

~f = J−f := PK0
D−f ⊕ 0⊕ 0, f ∈ K0,

~f = J+f := 0⊕ 0⊕ PK0
D+

f, f ∈ K0.

Since
e−itK[V ]|D− = e−itK0 |D−, t ≤ 0,

e−itK[V ]|D+ = e−itK0 |D+, t ≥ 0,

the wave operators W±(K[V ],K0; J±) exist. Using (3.25) one proves the completeness of
the wave operators, i.e. ran(W±(K[V ],K0; J±)) = K. For for details see [1, Ch. XII] or
[24]. Defining the Fourier transform F : K0 −→ K̂0 = L2(R,C2) by

(Ff)(λ) :=
1√
2π

∫

R
dx e−ixλf(x), f ∈ K0, λ ∈ R.
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one defines the generalized Fourier transform Φ[V ] : K −→ K̂0 by

Φ[V ] := FW−(K[V ],K0; J−)∗, (3.26)

cf. Remark 5.2 of [20], which is an isometry. Moreover, if M is the multiplication operator
defined by

(Mf̂) = λf̂(λ), f̂ ∈ dom(M) = {f̂ ∈ K̂0 : λf̂(λ) ∈ K̂0}.
on the Hilbert space K0, then M = Φ[V ]K[V ]Φ[V ]−1.

Lemma 3.12 Let the Schrödinger assumptions Q1 and Q2 be satisfied and let V, W ∈
L∞R (Ω). If m has a finite total variation, then the estimate

‖(W−(K[W ],K[V ])− IK)‖B(K) ≤ 2π |Ω| L(‖V ‖L∞) L(‖W‖L∞) ‖V −W‖L∞ (3.27)

holds where L(·) is given by (2.14).

Proof. Similar to formula (X.3.24) of [22] one has
(
(W−(K[W ],K[V ])− IK)~f,~g

)
K

=

−i

∫ 0

−∞
dt

(
[W − V ]PK

H e−itK[V ] ~f, PK
H e−itK[W ]~g

)
,

for ~f,~g ∈ dom(K[V ]) = dom(K[W ]). Hence, we obtain the estimate
∣∣∣
(
(W−(K[W ],K[V ])− IK)~f,~g

)
K

∣∣∣ ≤

‖V −W‖L∞

(∫

R
dt ‖PK

H e−itK[V ] ~f‖2
)1/2 (∫

R
dt ‖PK

H e−itK[W ]~g‖2
)1/2

,

~f,~g ∈ K. Applying (3.23) and (3.24) we obtain
∣∣∣
(
(W−(K[W ],K[V ])− IK)~f,~g

)
K

∣∣∣ ≤
2π|Ω| L(‖V ‖L∞) L(‖W‖L∞) ‖V −W‖L∞ ‖~f‖‖~g‖

for ~f,~g ∈ K which proves (3.27). ¤

4 Carrier density operator and continuity

4.1 Carrier density operator

In the following an operator % : K −→ K is called a density operator if % is a bounded, non-
negative, self-adjoint operator. The operator % is called a steady state, if % commutes with
K[V ], see [20]. Thus any steady state % is unitarily equivalent to a multiplication operator
ρ̂ on the Hilbert space L2(R,C2) induced by a density matrix ρ(·) ∈ L∞(R,B(C2)). In the
following we assume that the function ρ(·) is fixed. This leads to a steady state of the form

%[V ] = Φ[V ]−1ρ̂ Φ[V ], (4.1)
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which depends on V . The reduced density operator %H[V ] ∈ B(H) is defined

%H[V ] := PK
H %[V ] ¹ H.

Similarly, we define the reduced density operator gH(K[V ]) ∈ B(H) by

gH(K[V ]) := PK
H g(K[V ]) ¹ H.

Notice that by the Schrödinger assumption (2.1) one has

0 ≤ %H[V ] ≤ gH(K[V ]). (4.2)

Lemma 4.1 Let the Schrödinger assumptions Q1, Q2 and Q4 be satisfied. If V ∈ L∞R (Ω),
then gH(K[V ]) is a trace class operator such that

0 ≤ tr(gH(K[V ])) ≤ G(‖V−‖L∞)2 (4.3)

where G(·) is defined by (2.18).

Proof. Let {ψk}∞k=1 be an orthonormal basis in H. By the spectral theorem

n∑

k=1

(gH(K[V ])ψk, ψk) =
n∑

k=1

(g(K[V ])ψk, ψk) =
∫

R
dλ g(λ)

n∑

k=1

d

dλ
(EK[V ](λ)ψk, ψk)

where we have used that the spectral measure EK[V ](·) of K[V ] is absolutely continuous
with respect to the Lebesgue measure. Applying Lemma 3.10 we find

∫

R
dλ g(λ)

d

dλ
(EK[V ](λ)ψk, ψk) =

1
2π

∫

R
dλ g(λ)(T [V ](λ)ψk, T [V ](λ)ψk), k ∈ N,

which yields

n∑

k=1

(g(K[V ])ψk, ψk) =
1
2π

∫

R
dλ g(λ)

n∑

k=1

(T [V ](λ)ψk, T [V ](λ)ψk).

Hence we obtain
n∑

k=1

(g(K[V ])ψk, ψk) ≤ 1
2π

∫

R
dλ g(λ) tr(T [V ](λ)∗T [V ](λ))

or
n∑

k=1

(g(K[V ])ψk, ψk) ≤ 1
2π

∫

R
dλ g(λ) trC2(T [V ](λ)T [V ](λ)∗) (4.4)

By (3.13) we get

1
2π

∫

R
dλ g(λ) trC2(T [V ](λ)T [V ](λ)∗) = −

∫
dλ g(λ)ω′[V ](λ), λ ∈ R,

which yields

1
2π

∫

R
dλ g(λ) trC2(T [V ](λ)T [V ](λ)∗) = −g(λ)ω[V ](λ)|λ=+∞

λ=−∞ +
∫

R
dλ g′(λ)ω[V ](λ).
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By Corollary 3.7 we have

−ω[V ](λ) ≤ 2 +
1
π

√
m|Ω|

√
(λ + ‖V−‖L∞)+

for λ ∈ R. We note that the conditions (2.2) and (2.3) imply

lim
λ→∞

√
λ g(λ) = 0.

Taking into account this property we obtain

1
2π

∫

R
dλ g(λ) trC2(T [V ](λ)T [V ](λ)∗) =

∫

R
dλ g′(λ)ω[V ](λ).

Since g′(λ) ≥ 0 for λ ≤ 0 and g′(λ) ≤ 0 for λ ≥ 0 as well as ω[V ](λ) ≤ 0, λ ∈ R, we get

1
2π

∫

R
dλ g(λ) trC2(T [V ](λ)T [V ](λ)∗) ≤

∫ +∞

0

dλ g′(λ)ω[V ](λ) ≤ −
∫ ∞

0

dλ g′(λ)
(

2 +
1
π

√
m|Ω|

√
λ + ‖V−‖L∞

)
.

Integrating by parts we find

1
2π

∫

R
dλ g(λ) trC2(T [V ](λ)T [V ](λ)∗) ≤

g(0)
(

2 +
1
π

√
m|Ω|

√
‖V−‖L∞

)
+

1
2π

√
m|Ω|

∫ ∞

0

dλ
g(λ)√

λ + ‖V−‖L∞

which yields the estimate

1
2π

∫

R
dλ g(λ) trC2(T [V ](λ)T [V ](λ)∗) ≤

(
2g(0) +

1
2π

√
m|Ω|

∫ ∞

0

dλ
g(λ)√

λ

)
+

1
π

g(0)
√

m|Ω|
√
‖V−‖L∞ .

From (4.4) we get the estimate

n∑

k=1

(g(K[V ])ψk, ψk) ≤
(

2g(0) +
1
2π

√
m|Ω|

∫ ∞

0

dλ
g(λ)√

λ

)
+

1
π

g(0)
√

m|Ω|
√
‖V−‖L∞ .

for n ∈ N which shows that
∑∞

k=1(g(K[V ])ψk, ψk) is finite for any orthonormal basis of H.
Hence, the restriction gH(K[V ]) is a trace class operator. Using the notation (2.5), (2.6)
and (2.18) we obtain (4.3). ¤
In the Hilbert space H let us introduce the multiplication operator

(M(h)f)(x) := h(x)f(x), f ∈ dom(M(h)) = H,

for functions h ∈ L∞(Ω). Since %H[V ] is a trace class operator the functional Ξρ given
by h −→ tr(%H[V ]M(h)) is well-defined on L∞(Ω). Moreover, setting νρ(∆) := Ξ(χ∆) for
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Borel subsets ∆ of Ω one defines a Borel measure on Ω which is absolutely continuous with
respect to the Lebesgue measure, cf. [20]. Its Radon-Nikodym derivative uρ[V ] ∈ L1(Ω)
obeys the relation

tr(%[V ]M(h)) =
∫ b

a

dx uρ[V ](x)h(x), h ∈ L∞(Ω). (4.5)

The function uρ[V ](·) is not negative and is called the carrier density for a given potential
V ∈ L∞. The operator Nρ(V ) : L∞R (Ω) −→ L1

R(Ω) defined by

Nρ(V ) := uρ[V ], V ∈ dom(Nρ) := L∞R (Ω),

is called the carrier density operator.

Proposition 4.2 Let the Schrödinger assumptions Q1, Q2 and Q4 be satisfied. If V ∈
L∞R (Ω), then

‖Nρ(V )‖L1 ≤ G(‖V−‖L∞)2 (4.6)

where G(·) is defined by (2.18).

Proof. From (4.5) one gets the estimate

‖uρ[V ]‖L1 ≤ ‖%H[V ]‖B1(H) = tr(%H[V ]).

Using (4.2) we obtain the estimate

‖uρ[V ]‖L1 ≤ tr(gH(K[V ])).

Finally, taking into account Lemma 4.1 we verify (4.6). ¤

4.2 Lipschitz continuity

Further, it was shown that the carrier density operator is continuous, i.e., if Vn
L∞−→ V ,

then Nρ(Vn) L1

−→ Nρ(V ). We are going to show that the continuity of the carrier density
operator can be improved to bounded Lipschitz continuity, cf. Definition III.1.2 of [12].

At first let us prove the following lemma.

Lemma 4.3 Let g(·) be non-negative, continuously differentiable even functions obeying
(2.2). The condition (2.4) is satisfied if and only if

|g(λ)− g(µ)| ≤ c max{g(λ), g(µ)}|λ− µ| (4.7)

holds for λ, µ ∈ R.

Proof. We assume λ ≤ µ. Obviously, we have

g(µ)− g(λ) =
∫ µ

λ

g′(t) dt, λ, µ ∈ R,
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which yields

|g(µ)− g(λ)| ≤ c

∫ µ

λ

g(t) dt

where we have used (2.4). Let λ ∈ R+. Since g(λ), λ ∈ R+, is decreasing by (2.2) we find

|g(µ)− g(λ)| ≤ cg(λ)(µ− λ), 0 ≤ λ ≤ µ,

which yields (4.7). If λ ≤ 0 ≤ µ, then

|g(µ)− g(λ)| = |g(µ)− g(−λ)| ≤ c max{g(µ), g(−λ)}|µ + λ| ≤ c max{g(µ), g(λ)}|µ− λ|
which also yields (4.7). The case λ ≤ µ ≤ 0 follows from the case 0 ≤ λ ≤ µ.

Conversely, if (4.7) is satisfied, then tending µ to λ we obtain

|g′(λ)| ≤ c max{g(λ), g(λ)} = c g(λ), λ ∈ R,

which proves (2.4). ¤
Next we consider the operator G[V ] :=

√
g(K[V ]) ¹ H acting from H into K.

Lemma 4.4 Let the Schrödinger assumptions Q1, Q2 and Q4 be satisfied. If V ∈ L∞R (Ω),
then G[V ] ∈ B2(H, K) and

‖G[V ]‖B2(H,K) ≤ G(‖V−‖L∞) (4.8)

where G(·) is defined by (2.18). If V, W ∈ L∞R (Ω), then

‖G[V ]−G[W ]‖B2(H,K) ≤ c (G(‖V−‖L∞) + G(‖W−‖L∞)) ‖V −W‖L∞ . (4.9)

Proof. By
‖G[V ]‖2B2(H,K) = tr(G[V ]∗G[V ]) = tr(gH(K[V ]))

and Lemma 4.1 one gets (4.8). Further, from (2.4) and Lemma 4.3 we obtain that

|g(λ)− g(µ)| ≤ c max{g(λ), g(µ)}|λ− µ| ≤ c (g(λ) + g(µ)) |λ− µ|, λ, µ ∈ R,

which yields
∣∣∣
√

g(λ)−
√

g(µ)
∣∣∣
(√

g(λ) +
√

g(µ)
)
≤ c

(√
g(λ) +

√
g(µ)

)2

|λ− µ|. λ, µ ∈ R,

Therefore we get
∣∣∣
√

g(λ)−
√

g(µ)
∣∣∣ ≤ c

(√
g(λ) +

√
g(µ)

)
|λ− µ|, λ, µ ∈ R.

Hence, if we put

h(λ, µ) :=

√
g(λ)−

√
g(µ)

(λ− µ)
(√

g(λ) +
√

g(µ)
) , λ, µ ∈ R,

then |h(λ, µ)| ≤ c, λ, µ ∈ R. Since the operators V and W act only on the subspace H we
get

√
G[V ](V −W )+(V −W )

√
G[W ] ∈ B2(K). Applying the technique of double operator

spectral integrals [5, 6, 7] we find the representation
√

g(K[V ])−
√

g(K[W ]) =∫

R

∫

R
h(λ, µ) dEK[V ](λ) {G[V ](V −W ) + (V −W )G[W ]∗} dEK[W ](µ).
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which yields
√

g(K[V ])−
√

g(K[W ]) ∈ B2(K). Moreover, we find the estimate
∥∥∥
√

g(K[V ])−
√

g(K[W ])
∥∥∥
B2(K)

≤
c
{‖G[V ]‖B2(H,K) + ‖G[W ]‖B2(H,K)

} ‖V −W‖B(H).

Since G[V ] :=
√

g(K[V ]) ¹ H and G[W ] :=
√

g(K[W ]) ¹ H we obtain

‖G[V ]−G[W ]‖B2(H,K) ≤ c
{‖G[V ]‖B2(H,K) + ‖G[W ]‖B2(H,K)

} ‖V −W‖B(H).

Using (4.8) we finally get (4.9). ¤

Proposition 4.5 Let the Schrödinger assumptions Q1, Q2 and Q4 be satisfied. If m has
a finite total variation and V,W ∈ L∞R (Ω), then

‖Nρ(V )−Nρ(W )‖L1 ≤ L(‖V ‖L∞ , ‖W‖L∞) ‖V −W‖L∞ (4.10)

where L(·, ·) is given by (2.19).

Proof. By (4.5) we get

∫ b

a

dx (uρ[V ](x)− uρ[W ](x))h(x) = tr((%H[V ]− %H[W ])M(h))

for any h ∈ L∞(Ω) where %[V ] and %[W ] are defined in accordance with (4.1). By (3.26)
we have

%[V ] = W−(K[V ],K0) F ∗ ρ̂ F W−(K[V ], K0)∗

and
%[W ] = W−(K[W ],K0) F ∗ ρ̂ F W−(K[W ], K0)∗

The wave operators W−(K[V ],K0) and W−(K[W ],K0) exist and are complete; conse-
quently, the wave operator W−(K[W ],K[V ]) exists and is complete. Moreover, the repre-
sentation

W−(K[W ],K0) = W−(K[W ],K[V ])W−(K[V ],K0)

holds. For brevity we set W−[W,V ] := W−(K[W ],K[V ]) as well as W−[W ] :=
W−(K[W ],K0) and W−[V ] := W−(K[V ],K0). Let us introduce the matrix valued function

ρ0(λ) := g(λ)−1ρ(λ), λ ∈ R.

By assumption Q4 one has
0 ≤ ρ0(λ) ≤ IC2 , λ ∈ R.

Using this notation we find the representation

%H[V ]− %H[W ] = G[V ]∗%0[V ]G[V ]−G[W ]∗%0[W ]G[W ] =
(G[V ]∗ −G[W ]∗) %0[V ]G[V ] + G[W ]∗%0[V ] (G[V ]−G[W ]) +
G[W ] (%0[V ]− %0[W ]) G[W ].
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Hence, we get the estimate

‖%H[V ]− %H[W ]‖B1(H,K) ≤{‖G[V ]‖B2(H,K) + ‖G[W ]‖B2(H,K)

} ‖G[V ]−G[W ]‖B2(H,K) +
‖G[W ]‖B2(H,K) ‖G[W ]‖B2(H,K) ‖%0[V ]− %0[W ]‖B(H).

By the representation

%0[V ]− %0[W ] = %0[V ]−W−[W,V ]%0[V ]W−[W,V ]∗ =
(IK −W−[W,V ])%0[V ]W−[W,V ]∗ + %0[V ](IK −W−[W,V ]∗)

and Lemma 3.12 we obtain the estimate

‖%0[V ]− %0[W ]‖B(K) ≤ 4π |Ω| L[V ] L[W ] ‖V −W‖L∞ .

By Lemma 4.4 we get

‖%H[V ]− %H[W ]‖B1(H,K) ≤
(
c

(
G(‖V ‖L∞) + G(‖W‖L∞)

)2+

4π |Ω| L(‖V ‖L∞) L(‖W‖L∞) G(‖V ‖L∞) G(‖W‖L∞)
)
‖V −W‖L∞

which proves (4.10). Taking into account the definition (2.19) we verify(4.10). ¤

5 Dissipative Schrödinger-Poisson system

5.1 Rigorous definition

By W 1,2
0 (Ω) we denote the subspace of W 1,2(Ω) given by W 1,2

0 (Ω) := {f ∈ W 1,2(Ω) :
f(a) = f(b) = 0}. Its dual space with respect to the scalar product < ·, · > of L2(Ω) is
denoted by W−1,2

0 (Ω).

At first we will give a rigorous definition of Poisson’s equation and afterwards define what
we will call a solution of the dissipative Schrödinger Poisson system. We define the Poisson
operator P : W 1,2

R (Ω) −→ W−1,2
0,R (Ω) as usual by

< Pυ, ς >=
∫ b

a

dx ε
dυ

dx

dς

dx
, υ ∈ W 1,2

R (Ω), ς ∈ W 1,2
0,R(Ω).

Further, we set P0 := P ¹W 1,2
0,R(Ω). The operators P and P0 are linear and bounded. We

have
| < Pυ, ς > | ≤ ‖ε‖L∞‖υ‖W 1,2‖ς‖W 1,2

0
.

Hence P is continuous. Furthermore, one has the estimate

‖ϕ‖W 1,2
0
≤

√
1 + |Ω| ‖ϕ′‖L2 , ϕ ∈ W 1,2

0 (Ω).

Thus, we get by (5.1)

‖ϕ‖2
W 1,2

0
≤ ‖1/ε‖L∞

√
1 + |Ω| < P0ϕ,ϕ >, ϕ ∈ W 1,2

0 (Ω).
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By the Lax-Milgram lemma the inverse operator P−1
0 exists and its norm does not exceed

‖1/ε‖L∞
√

1 + |Ω|, i.e.

‖P−1
0 ‖B(W−1,2

0 ,W 1,2
0 ) ≤ ‖1/ε‖L∞

√
1 + |Ω| . (5.1)

Definition 5.1 Let u± ∈ L1. We say that ϕ ∈ W 1,2
R satisfies Poisson’s equation with

boundary conditions ϕ(a) = ϕa and ϕ(b) = ϕb if ζ := ϕ− ϕ̂ ∈ W 1,2
0 (Ω) and the equation

P0ζ = C + E1u
+ − E1u

−.

is fulfilled, where ϕ̂ is defined by (2.7).

Definition 5.2 We say that ϕ ∈ W 1,2
R (Ω) is a solution of the dissipative Schrödinger-

Poisson system if

1. the carrier densities u± ∈ L1(Ω) are given by u± = N±
ρ±(V ±

0 ± ϕ̂±E∞ζ), ζ := ϕ− ϕ̂,
and

2. ϕ satisfies the Poisson equation.

5.2 Existence of solutions and estimates

Let us introduce the non-linear mappings Q : L∞R (Ω) −→ W 1,2
0,R(Ω),

Q(ψ) := P−1
0

(
C + E1N+

ρ+(V +
0 + ϕ̂ + ψ)− E1N−

ρ−(V −
0 − ϕ̂− ψ)

)
, (5.2)

ψ ∈ dom(Q) = L∞R (Ω), and Q∞ : L∞R (Ω) −→ L∞R (Ω),

Q∞(ψ) = E∞Q(ψ),

ψ ∈ dom(Q∞) = L∞R (Ω). It was shown in [2] that the dissipative Schrödinger-Poisson
system admits a solution if and only if Q∞ admits a fixed point. Moreover, if ζ∞ ∈ L∞R (Ω)
is a fixed point, i.e., Q∞(ζ∞) = ζ∞, then ϕ := ϕ̂ +Q(ζ∞) is a solution of the dissipative
Schrödinger-Poisson system. If ζ∞ ∈ L∞R (Ω) is a fixed point, i.e. ζ∞ = Q∞(ζ∞), then one
has the estimate

‖ζ∞‖L∞ = ‖Q∞(ζ∞)‖L∞(Ω) ≤ ε1‖P−1
0 ‖B(W−1,2

0 ,W 1,2
0 ) ×

(
‖C‖W−1,2

0
+

ε1‖N+
ρ+(V +

0 + ϕ̂ + ζ∞)‖L1 + ε1‖N−
ρ−(V −

0 − ϕ̂− ζ∞)‖L1

)
.

Taking into account (5.1) we obtain

‖ζ∞‖L∞ = ‖Q∞(ζ∞)‖L∞(Ω) ≤ ε1‖1/ε‖L∞
√

1 + |Ω| ×
(
‖C‖W−1,2

0
+ (5.3)

+ε1‖N+
ρ+(V +

0 + ϕ̂ + ζ∞)‖L1 + ε1‖N−
ρ−(V −

0 − ϕ̂− ζ∞)‖L1

)
.

Applying Proposition 4.2 we find

‖N+
ρ+(V +

0 + ϕ̂ + ζ∞)‖L1 ≤ B+
0 + B+

1

√
‖(V +

0 + ϕ̂ + ζ∞)−‖L∞
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which yields

‖N+
ρ+(V +

0 + ϕ̂ + ζ∞)‖L1 ≤ B+
0 + B+

1

√
‖V +

0 + ϕ̂‖L∞ + B+
1

√
‖ζ∞‖L∞ .

Similarly, we obtain

‖N−
ρ−(V −

0 − ϕ̂− ζ∞)‖L1 ≤ B−
0 + B−

1

√
‖V −

0 − ϕ̂‖L∞ + B−
1

√
‖ζ∞‖L∞ .

Inserting these estimates into (5.3) we find

‖ζ∞‖L∞ ≤ D0 + D1

√
‖ζ∞‖L∞ (5.4)

where D0 and D1 are given by (2.8) and (2.9). From (5.4) we obtain the estimate

‖ζ∞‖L∞ ≤ r0 (5.5)

for any fixed point of the map Q∞ where r0 is defined by (2.10). So the following theorem
is proven:

Theorem 5.3 [3, Theorem 4.8] If the Schrödinger and Poisson assumptions are satisfied,
then the dissipative Schrödinger-Poisson system always admits a solution. Moreover, for
any solution ϕ ∈ W 1,2

R (Ω) the estimate ‖ϕ∞ − ϕ̂‖L∞ ≤ r0 holds.

We note that the radius r0 depends only on the Schrödinger and Poisson data. Therefore,
if the Schrödinger and Poisson data are fixed, then the radius r0 is fixed.

However, Theorem (5.3) does not answer the question whether this solution is unique.

5.3 Uniqueness

Now we are going to give conditions under which the solution of the dissipative Schrödinger-
Poisson system is unique.

Theorem 5.4 Let the Schrödinger and Poisson assumptions be satisfied. If m± have
finite total variations and the condition U < 1 is valid, where U is given by (2.21), then the
dissipative Schrödinger-Poisson system admits only one solution.

Proof. Let ζ∞ and ζ ′∞ two fixed points of Q∞. From (5.2) we get the representation

ζ∞ − ζ ′∞ = E∞P−1
0 E1

{(
N+

ρ+(V +)−N+
ρ+(W+)

)
−

(
N−

ρ−(V −)−N−
ρ−(W−)

)}

where
V + := V +

0 + ϕ̂ + ζ∞ and W+ := V +
0 + ϕ̂ + ζ ′∞

and
V − := V −

0 + ϕ̂ + ζ∞ and W− := V −
0 + ϕ̂ + ζ ′∞.

Hence we find

‖ζ∞ − ζ ′∞‖L∞ ≤ ε2
1‖P−1

0 ‖B(W−1,2
0 ,W 1,2

0 ) ×
×

{∥∥∥N+
ρ+(V +)−N+

ρ+(W+)
∥∥∥

L1
+

∥∥∥N−
ρ−(V −)−N−

ρ−(W−)
∥∥∥

L1

}
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Using (5.1) we obtain

‖ζ∞ − ζ ′∞‖L∞ ≤ ε2
1‖1/ε‖L∞

√
1 + |Ω| ×

×
{∥∥∥N+

ρ+(V +)−N+
ρ+(W+)

∥∥∥
L1

+
∥∥∥N−

ρ−(V −)−N−
ρ−(W−)

∥∥∥
L1

}

Applying Proposition 4.5 we get

‖ζ∞ − ζ ′∞‖L∞ ≤ ε2
1‖1/ε‖L∞

√
1 + |Ω| ×

×{
L+(‖V +‖L∞ , ‖W+‖L∞) + L−(‖V −‖L∞ , ‖W−‖L∞)

} ‖ζ∞ − ζ ′∞‖L∞

We have
‖V +‖L∞ ≤ ‖V +

0 + ϕ̂‖L∞ + ‖ζ∞‖L∞ ≤ r+
1

where we have used the estimate (5.5) and r+
1 is defined by (2.11). Similarly we prove that

‖W+‖L∞ ≤ r+
1

and
‖V −‖L∞ ≤ r−1 and ‖W−‖L∞ ≤ r−1

where we have used the definitions (2.11). Since

L±(‖V ±‖L∞ , ‖W±‖L∞) ≤ L±(r±1 , r±1 )

we obtain
‖ζ∞ − ζ ′∞‖L∞ ≤ ε2

1‖1/ε‖L∞
√

1 + |Ω| L ‖ζ∞ − ζ ′∞‖L∞

where L is given by (2.20). Hence, if condition (2.21) is satisfied, then ‖ζ∞ − ζ ′∞‖L∞ has
to be zero which proves the uniqueness. ¤

5.4 Uniqueness and shrinking

Our next aim is to show that a dissipative Schrödinger-Poisson system admits always a
solution if |Ω| is small. To this end we introduce the following

Definition 5.5 Let Ω′ ⊆ Ω and let D = Q∩P be Schrödinger-Poisson data of the device
Ω. We say D′ := Q′ ∩P′ are shrunken Schrödinger-Poisson data of D if

Q′ := {m± ¹ Ω′, κ±a , κ±b , V ±
0 ¹ Ω′, ρ±} and P′ := {C ¹ Ω′, ε¹ Ω′, ϕa, ϕb}.

The corresponding dissipative Schrödinger-Poisson system is called a shrunken dissipative
Schrödinger-Poisson system.

Definition 5.5 means that we leave unchanged the boundary coefficients κ±a , κ±b of the
dissipative Schrödinger operators and the density matrices as well as the boundary values
of the inhomogeneous Poisson equation but we restrict the effective masses m±, the external
potentials V ±

0 , the doping profile C and dielectric permittivity ε to the subinterval Ω′.

We note that the quantities (2.5)-(2.21) except (2.15) in fact depend on the interval Ω.
We express this fact by adding in notation the term [Ω], for instance, B±

0 [Ω], B±
1 [Ω],

ϕ̂[Ω](x), . . . , U[Ω].
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Theorem 5.6 Let the Schrödinger and Poisson assumptions be satisfied and let m± have
finite total variations. A shrunken dissipative Schrödinger-Poisson system admits a unique
solution if |Ω′|, Ω′ ⊆ Ω, is sufficiently small.

Proof. By Theorem 5.4 it is sufficiently to show that lim sup|Ω′|→0 U[Ω′] = 0. Since

m± ≤ m±(x) ≤ m±, x ∈ Ω′,

we obtain from (2.5) and (2.6) that

lim
|Ω′|→0

B±
0 [Ω′] = 2g±(0) and lim

|Ω′|→0
B±

1 [Ω′] = 0.

Since
‖ϕ̂[Ω′]‖L∞(Ω′) ≤ max{|ϕa|, |ϕb|}

we find
‖V ±

0 ¹ Ω′ + ϕ̂[Ω′]‖L∞(Ω′) ≤ ‖V ±
0 ‖L∞(Ω) + max{|ϕa|, |ϕb|}.

Taking into account this estimate and using ‖C ¹ Ω′‖W−1,2 ≤ ‖C‖W−1,2 , ε1[Ω′] ≤
√
|Ω′| we

obtain
lim
|Ω′|→0

D±
0 [Ω′] = 0 and lim

|Ω′|→0
D±

1 [Ω′] = 0

which yields
lim
|Ω′|→0

r±0 [Ω′] = 0

and
lim sup

|Ω′|→0

r±1 [Ω′] ≤ ‖V ±
0 ‖L∞(Ω) + max{|ϕa|, |ϕb|}. (5.6)

Since
∨b′

a′
(

1
m± ¹ Ω′

) ≤ ∨b
a

1
m± , Ω′ = (a′, b′), we get

lim sup
|Ω′|→0

M±[Ω′] ≤ M±[Ω].

Further, we have

lim sup
|Ω′|→0

R±j (r±1 [Ω′]) ≤ M±[Ω]
(

1 + |κ±j |
√

2
m±

)
, j = a, b.

using Lemma 3.1, (2.16) and (5.6) one gets

lim
|Ω′|→0

{2r±1 [Ω′] + 2γ0[Ω′]}|Ω| = 4q±m±

which yields

lim sup
|Ω′|→0

R±j (2r±1 [Ω′] + 2γ0[Ω′]) ≤

M±[Ω]
(

1 + |κ±j |
√

2
m±

)
exp

{
4q±m±(M±[Ω])2

√
2

m±

}
, j = a, b.
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Using that we obtain

lim sup
|Ω′|→0

L±(r±[Ω′]) ≤ M±[Ω] exp
{

4q±m±(M±[Ω])2
√

2
m±

}
×

×
{

1
(α±a )2

(
1 + |κ±a |

√
2

m±

)
+

1
(α±b )2

(
1 + |κ±b |

√
2

m±

)}
.

By
lim
|Ω′|→0

G±(r±1 [Ω′]) =
√

2g±(0).

we have
lim
|Ω′|→0

L±(r±[Ω′], r±[Ω′]) = 8c±g±(0).

Therefore, we finally obtain

lim
|Ω′|→0

L[Ω′] = 8(c+g+(0) + c−g−(0))

where
L[Ω′] := L+(r+

1 [Ω′], r+
1 [Ω′]) + L−(r−1 [Ω′], r−1 [Ω′]).

Since lim|Ω′|→0 ε1[Ω′] = 0 we find lim|Ω′|→0 U[Ω′] = 0 where

U[Ω′] := ε2
1[Ω

′]
√

1 + |Ω′|L[Ω′].

Applying Theorem 5.4 we see that for sufficiently small domains Ω′ ⊆ Ω the solution of
the dissipative Schrödinger-Poisson system is unique. ¤

6 Remarks

Let us comment the results.

1. Comparing the existence Theorem 5.3 with Theorem 4.8 of [2] one observes that
Theorem 5.3 proves the existence under weaker assumptions. In particular, the
Schrödinger assumption Q4 is weaker than Assumption 4.2 A±4 of [2]. The assump-
tion Q4 is close to a necessary condition. However, both proofs use the Schauder
fixed point theorem.

2. In contrast to [2] the proof of the crucial estimate (4.6) of Proposition 4.2, cf. Theorem
3.1 of [2], is now based on the phase shift and its asymptotic behaviour at −∞ and
+∞.

3. The asymptotic properties of the phase shift are established by a detailed investiga-
tion in [26].

4. The uniqueness proof is essentially based on the Lipschitz continuity of the carrier
density operator, cf. Proposition 4.5 which heavily rests on the Lipschitz continuity
of the Lax-Phillips wave operators, cf. Section 3.7. This continuity relies on Kato’s
theory of smooth operators, cf. [22, 23].

5. The results of the paper, in particular the results of Section 5.4, suggest the possibility
that the solution of the dissipative hybrid model, cf. [4], is also unique provided the
quantum zone is sufficiently small.
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