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Abstract

The differential equation ẍ+γẋ+xµ = f(t) with f(t) positive, periodic and continuous
is studied. After describing some physical applications of this equation, we construct a
variety of invariant sets for it, thereby partitioning the phase plane into regions in which
solutions grow without bound and also those in which bounded periodic solutions exist.

1 Introduction

We construct invariant sets for the differential equation

ẍ + γẋ + xµ = f(t) (1)

where γ > 0, µ > 1 and f(t) is a continuous, bounded, positive, non-constant, periodic
function with finite period τ and mean 〈f〉 = τ−1

∫ τ
0 f(t)dt. In order that solutions remain

real, when µ is not an integer we assume that equation (1) only applies for x ≥ 0. It will
be convenient to write the bounds on f(t) as maxt∈R f(t) = F µ and mint∈R f(t) = fµ with
F > f > 0. Since f(t) is non-constant and continuous, 〈f〉 < F µ. We re-write the differential
equation as

{

ẋ = y
ẏ = f(t) − γy − xµ (2)

This equation with constant f(t) is relatively trivial. The case of non-constant f(t) arises in
at least three different contexts:

1. A simple electronic circuit, shown in figure 1 and known as the resistor-inductor-varactor
circuit, is described, after linear rescaling [1], [2], by equation (1) provided that x >
0, ∀t. The varactor is a particular type of diode, which is a nonlinear electronic device
analogous to a nonlinear spring — one for which Hooke’s law is modified to read “applied
force ∝ xµ”, where x is the extension and typically µ ∈ [1.5, 2.5]. We present results
for the representative value µ = 2 and also for the more general case µ > 1. The
mechanical analogies of the resistor and the inductor are, respectively, a source of linear
damping and a constant mass. The full model for this circuit, i.e. one in which the
restriction x > 0 is removed, possesses a nonlinearity of a different form, c1 exp(c2|x|),
c1, c2 constants, for x ≤ 0, and has been extensively studied — see for instance [3], [4].

2. Studies of ship roll and capsize have led to investigations of the behaviour of the ODE
ü+γu̇+u−u2 = F sinωt [5]. Substituting u = −x+ 1

2 gives ẍ+γẋ+x2 = 1
4 −F sinωt,

which is equation (1) with f(t) = 1
4 − F sinωt and µ = 2.
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3. Stationary wave solutions of a perturbed Korteweg-de Vries (KdV) equation are de-
scribed by a special case of equation (1) with γ = 0 and µ = 2. Following [6], we
start with a perturbed KdV equation uτ + cuξ + uuξ + βuξξξ = f(u, ξ − V τ)ξ, where
f(u, ξ − V τ) is taken to be f0 cosω(ξ − V τ), and subscripts refer to partial differentia-
tion. The standard transformation to a moving frame, ξ ′ 7→ ξ − V τ, τ ′ 7→ τ , results in
βuξ′ξ′ − vu + u2/2 = f0 cos ωξ′ + C in the steady state (uτ ′ = 0), with v = V ± c and C
a constant of integration. Finally, letting u = 2βx + v and re-naming ξ ′ as t, we again
obtain equation (1) with f(t) = (v2 + 2C + 2f0 cos ωt)/(4β2), γ = 0 and µ = 2.

<

R L

V

i(t)

v(t)f(t)

Figure 1: The resistor-inductor-varactor (R,L, V respectively) circuit whose dynamics are
described by equation (1). The state variables are the varactor voltage, v(t), and the current,
i(t), which can be transformed into x(t) and ẋ(t) respectively.

2 Invariant sets, µ = 2

We define an invariant set, S ⊂ R
2, as a subset of the phase plane such that solutions starting

from an initial condition in S remain in S for all time. We use the term ‘absorbing set’
for an invariant set of finite area, with the intention that any bounded limit cycle solutions
of equation (1) can be shown to lie within such a set, and two such sets, A1 and A2, are
constructed.
In order to construct invariant sets for equation (1) we need to prove certain inequalities. To
this end, we first assume that γ = 0, µ = 2 and f(t) = A, a constant. Then, with y = ẋ,
equation (1) becomes

y
dy

dx
+ x2 = A (3)

which can be integrated to give

y2 = y2
0 +

2

3
(x0 − x)

[

(

x +
1

2
x0

)2

+
3

4
x2

0 − 3A

]

(4)

where x0, y0 are the initial conditions. This elliptic curve plays an important role in the
construction of an invariant set, B, of initial conditions for solutions all of which eventually
grow without bound.
Depending on the parameters appearing in equation (4), the expression for y2 can have one,
two or three real roots; when there are two, one of these must be a pair of repeated roots, and
the condition for this is easily seen from equation (4) to be x0 = ±2

√
A, y0 = 0. When this

is satisfied, the curve y(x) is known as the separatrix since it separates the two qualitatively
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different types of behaviour (solutions that grow without bound, and those that are bounded
and periodic) displayed by equation (3).

2.1 Construction of set B
We now construct B, shown in figure 2, whose boundary consists of three curves, AB, BC and
CD, where points A and D are at infinity. The technique used for all boundaries is essentially
as follows. We define the two-dimensional vector fields:

φ(t) = (y, f(t) − x2 − γy), φF = (y, F 2 − x2 − γy) and φf = (y, f2 − x2 − γy)

The importance of the second and third fields is that, for any initial condition (x, y) =
(x(t0), y(t0)), the direction of φ(t) is such that φ(t) = µ1φF + µ2φf , where µ1, µ2 are non-
negative scalars which sum to one. (Put loosely, φ(t) ‘lies between’ φf and φF ). This simple
observation allows us to project the 3-dimensional system (2) onto the x, y phase plane.

y

xC

D

B

A

-F x
C

Bc

Figure 2: The invariant set B, whose complement, Bc, is inside the thick curve ABCD, where
B is (−F, 0), C is (xC , 0) and A and D are at infinity. Points on the boundary ABCD belong
to B. The thin curves are various numerical solutions to equation (1), with γ = 0.01, µ = 2,
and f(t) = (5 + 3 sin t)/2 so F = 2, f = 1. As expected, all the solutions that start in B
remain in B.

If a given curve in the plane is defined by G(x, y) = 0, then two normals to it are n =
±(∂G/∂x, ∂G/∂y). The choice of sign determines whether the normal is inward or outward
pointing. To prove that the flow is always in a particular direction across a curve defined by
G, we then only have to show that n · φ, which is proportional to the cosine of the angle
between the normal to the curve and the vector field, φ, is of a given sign at all points on the
curve. Hence it will be unnecessary to normalise either n or φ, as only the sign of the dot
product is important.
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2.1.1 Boundary AB

Lemma 1 Let curve AB be defined by GAB(x, y) = y2 − λ2(2F − x)(x + F )2 = 0 for x ∈
(−∞,−F ] with y ≥ 0. Then φ(t) is into AB in the direction of decreasing y, along its entire
length and for all time, provided that λ2 ≤ 2/3.

Proof. Since y ≥ 0, curve AB is y = −λ(x + F )
√

2F − x ≥ 0 for x ∈ (−∞,−F ]. The
required normal to AB, pointing in the direction of negative y, is n = (−3λ2(x2 −F 2),−2y).
At any point (x, y), the y-component of φF is greater than that of φf , so to show that for all
time the flow is through AB in the direction of negative y, we should prove that n · φF ≥ 0
for x ∈ (−∞,−F ]. The fact that n · φf ≥ 0 then automatically follows, and hence positivity
of the dot product for all time. Now,

n · φF = y
[

(2 − 3λ2)(x2 − F 2) + 2γy
]

≥ 0 for x ∈ (−∞,−F ]

since y ≥ 0, provided that (2 − 3λ2) ≥ 0. 2

In order to make B as large as possible we should maximise the area between AB and the
x-axis and hence take λ =

√

2/3.

2.1.2 Boundary BC

Lemma 2 Let curve BC be defined by GBC(x, y) = y2 − (2/3)(xC − x)(x + F )2 = 0 for
x ∈ [−F, xC ] with y ≤ 0. Then φ(t) is into BC in the direction of decreasing y, along its
entire length and for all time, provided that

xC ≥ 2F +
3

4
γ2

[

1 +

√

1 +
8F

γ2

]

.

Proof. The required normal must be directed towards negative y and is therefore n = ( 2
3 (x+

F )(3x+F−2xC), 2y). For the same reason used in the construction of AB, we need only prove

that n ·φF ≥ 0 for x ∈ [−F, xC ]. This dot product is − 2
3y(x+F )

[

2xC − 4F − γ
√

6(xC − x)
]

and since y ≤ 0, it is non-negative provided that 2xC − 4F ≥ γ
√

6(xC − x) for x ∈ [−F, xC ].
Furthermore, since γ > 0, the inequality can only make sense if xC > 2F . Squaring both
sides of the inequality and solving for xC we find that

xC ≥ 2F +
3

4
γ2

[

1 +

√

1 +
8F

γ2

]

or xC ≤ 2F +
3

4
γ2

[

1 −
√

1 +
8F

γ2

]

.

Since F > 0, the square root is greater than unity, so the second solution has xC < 2F and
can therefore be rejected. 2

Since our objective is to make B as large as possible, we should choose the xC that minimises
∫ xC

−F
|y| dx =

4
√

6

45
(xC + F )5/2

and as this is monotonically increasing with xC > −F , we take the minimal value

xC = 2F +
3

4
γ2

[

1 +

√

1 +
8F

γ2

]

(5)
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2.1.3 Boundary CD

Lemma 3 Let curve CD be defined by GCD(x, y) = y2 − (xC − x)
[

(xC − x)2 + b2
]

= 0 for
x ∈ (−∞, xC ] with y ≥ 0. Then φ(t) is into CD in the direction of increasing y, along its
entire length and for all time, provided that

b2(2xC − γ2) ≥ 4xC(x2
C − f2)

where xC is defined in Lemma 2. There always exist real values of b such that this inequality
holds.

Proof. For this curve, the normal we require is in the direction of increasing y and so
n = (3(xC−x)2+b2, 2y). We need to consider φf this time since n·φf ≥ 0 implies n·φF ≥ 0.
The dot product is y

[

u2 + 4xCu + 2(f2 − x2
C) + b2 − 2γy

]

where u = (xC−x) ∈ [0,∞). Since
y ≥ 0, for the dot product to be non-negative we need

u2 + 4xCu + 2(f2 − x2
C) + b2 ≥ 2γy for u ≥ 0 (6)

and since γ is also positive, this inequality is only feasible over the required range of u if
(i) 2(f 2 − x2

C) + b2 ≥ 0. With this assumed, we can square both sides of inequality (6),
substitute for y in terms of x, and simplify to obtain

u4 + 4(2xC − γ2)u3 + 2(6x2
C + 2f2 + b2)u2 + 4

[

b2(2xC − γ2) + 4xC(f2 − x2
C)
]

u

+
[

2(f2 − x2
C) + b2

]2 ≥ 0 for u ≥ 0 (7)

Now, as well as (i), we need all the coefficients of the powers of u in this inequality to be
non-negative; the coefficients of u4, u2 u0 are obviously so, and those of u3 and u are so too,
provided (ii) 2xC − γ2 ≥ 0 and (iii) b2(2xC − γ2) + 4xC(f2 − x2

C) ≥ 0. We now show that
the definition of xC in equation (5) implies (ii), and that (i) is implied by (iii).
From the definition of xC in equation (5), we have 2xC = 4F + 3

2γ2q with q = 1 + (1 +

8F/γ2)1/2 > 2; hence, 2xC > 3γ2, so (ii) is automatically satisfied.
Dividing (iii) by 2xC > 0 gives 2(f 2 − x2

C) + b2 ≥ (bγ)2/(2xC ) and since the right-hand side
is positive, (iii) implies (i).
In the light of (ii), it now becomes clear that there always exists b large enough that inequal-
ity (7) is true; and so the lemma is proved. 2

In order to maximise the area of B, we should choose the minimal value of b, which, from
(iii), is given by

b2 =
4xC(x2

C − f2)

2xC − γ2
. (8)

We have therefore proved

Theorem 1 Define B = BAB ∪ BBC ∪ BCD ∪ {(x, y)|x ≥ xC} with

BAB = {(x, y) | y ≤ −(x + F )
√

2(2F − x)/3, x ≤ −F}

BBC = {(x, y) | y ≤ −(x + F )
√

2(xC − x)/3, −F ≤ x ≤ xC}
BCD = {(x, y) | y ≥

√

(xC − x) [(xC − x)2 + b2], x ≤ xC}
where xC is given by equation (5) and b by equation (8). Then B is an invariant set such that
all solutions to equation (1) starting within B remain in B for all time.
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2.2 Dynamics within B
In fact, we can say more about solutions to the differential equation which are confined to B:
all solutions in B eventually enter a subset, B7, which is itself invariant, and once here, grow
without limit. The proof, which is somewhat lengthy, is contained in lemmas 4–12.
It is first necessary to split B into seven subsets and these are illustrated in figure 3. Also
shown there are the two parabolas Pf : y = (f2 − x2)/γ and PF : y = (F 2 − x2)/γ, the
importance of these being that for y > PF , ẏ < 0; for y < Pf , ẏ > 0; with ẏ being either
positive, negative or zero only in the region between PF and Pf .

B1

B2

B3

B4

B5

B6

B7

Bc

Figure 3: The subsets of B used in the proof of Theorem 2. Thick, continuous lines are the
boundaries between the named subsets of B; the dashed straight lines are the x and y axes;
and the upper/lower dotted curves are the parabolas PF /Pf respectively.

We first define B7 and show that it is invariant.

Lemma 4 Define
B7 = {(x, y)|x ≤ ξ,

(

F 2 − x2
)

/γ ≤ y ≤ 0}
where ξ < −F is the least real root of h(x) = 2x

(

F 2 − x2
)

+ γ2
(

f2 − F 2
)

= 0. Then B7 is
invariant.

Proof. First, note that h′(±F/
√

3) = 0 and that h′′(±F/
√

3) = ∓4
√

3F ; hence, x = −F/
√

3
is a local minimum of h(x) and so h(x) decreases monotonically from +∞, for increasing
x ∈ (−∞,−F/

√
3]. Furthermore, h(−F ) = γ2

(

f2 − F 2
)

< 0 and so there is exactly one real
root of h(x), ξ ∈ (−∞,−F ).
We now consider the three boundaries of B7 separately. The boundary PF for x ≤ ξ can
be treated by the same technique used for constructing B. The required normal to PF is

6



O
P

Q

R

S

y = 0

y = Y
1

B C

x 
=

 3
F

/2

D

T

U V

W

x 
=

 ξ

B1

B2

B3 ∪ B4

Figure 4: Definitions of the subsets of B and the points and lines used in the proof of Lemma 5.
The parabolas PF and Pf are shown as well as a typical solution (OPQRS) to equation (1)
with f(t) = (5 + 3 sin t)/2. Boundaries between subsets of B are shown as thick lines.

y = 0

y = Y
0

y = 2Y
0

x 
=

 X
0

B

X
1

x 
=

 ξ

B3

B4

B5

B6

B7

Bc

Figure 5: Magnification of B3 and its surroundings, including part of Bc. The point B is
x = (−F, 0). The x-axis and two horizontal lines at y = Y0, 2Y0 are also shown, where Y0 < 0.
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n = (2x/γ, 1) and the appropriate choice for φ is φf , giving n·φf = h(x) ≥ 0 for x ∈ (−∞, ξ].
Hence, the flow is through this part of PF and is towards negative x, for all time.
Along the boundary x = ξ, 0 ≥ y ≥ (F 2 − ξ2)/γ, and so ẋ ≤ 0; thus, the flow is through this
boundary towards negative x for all time here also.
The remaining boundary is y = 0, x ≤ ξ, along which ẏ < 0 since ξ < −F , and so the flow is
through this boundary in the negative y direction for all time. Therefore, B7 is an invariant
set. 2

We now prove several lemmas that, in combination, enable us to show that all solutions
starting in B end up in B7.

Lemma 5 All solutions x(t) = (x(t), y(t)) initially in B1 or B2 enter B4 in finite time.

Proof. The points O–W are shown in figure 4, which is referred to throughout this proof.
The curve OPQRS is a typical orbit starting in B1 and entering B4 in finite time and we now
prove that all solutions starting in B1 or B2 behave in this way.
Consider first any initial point (x(t0), y(t0)) in the subset of B1 with x ≤ 3F/2. The line
x = 3F/2 lies to the left of point C, whose x-co-ordinate xC > 2F . Hence, for all x in this
region, y ≥ yT , the (strictly positive) y-co-ordinate of point T, since solutions cannot cross
CD, and so x(t) ≥ x(t0) + (t − t0)yT . Thus, any solution crosses the line x = 3F/2 in finite
time.
Consider now a solution starting at point P on the line x = 3F/2; ẏ = f(t) − γy − x2 ≤
−γy − 5F 2/4 since, while the solution remains in B1, y ≥ 0 and so x ≥ 3F/2. Solving
this linear differential inequality, we obtain y(t) ≤ e−γt[yP + 5F 2/4γ] − 5F 2/(4γ) and so the
solution reaches point Q on the x-axis in finite time.
The x-co-ordinate of Q > xC > 2F and so starting from Q, we have ẏ ≤ −γy − 3F 2, and so
y(t) ≤ 3F 2(e−γt − 1)/γ. Hence, the solution must cross the line y = Y1 < 0 in finite time,
provided that Y1 satisfies the condition (a) that Y1 > −3F 2/γ, so that limt→∞ y(t) < Y1.
Three additional conditions on Y1 are required, these being that (b) Y1 is sufficiently small
that the x-co-ordinate of R ≥ 2F , so that ẏ ≤ −γy − 3F 2 remains true while the solution
moves from Q to R; (c) the line y = Y1 does not intersect the parabola PF : y = (F 2 − x2)/γ
for x > 0 in B2, so ensuring that ẏ < 0 everywhere in the subset of B2 in which y ≥ Y1;
and (d) Y1 > YU , the y-co-ordinate of U, the point at which curve BC and the parabola Pf

intersect for x < 0. Such a Y1 can always be chosen because Q and C are both to the right
of the point x = F where PF intersects the x-axis. With these conditions on Y1, point R is
reached in finite time. By the definition of Y1, once R has been reached, then line VW must
also be crossed in finite time, this being the vertical line from the point of intersection of BC
with y = Y1. This is because ẋ = y ≤ Y1 so x(t) decreases at least linearly with time; and,
by the definition of Y1, ẏ < 0 all along VR — so VR cannot be re-crossed.
From the crossing of VW, ẋ ≤ Y1 still applies and so x decreases at least linearly with time
until S is reached. The part of B2 in the vicinity of S is below Pf and so ẋ < 0 and ẏ ≥ 0;
hence the solution must cross Pf at some point S and hence enter B4. Since each of the steps
described takes finite time, we conclude that point S is reached from any point in B1 or B2

in finite time. 2

We now consider the fate of solutions starting in the rest of B.

Lemma 6 A solution initially at point B, (−F, 0) eventually moves further into B3.
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Proof. Consider the case that x(t0) is point B = (−F, 0) ∈ B3 at some time t0; then either
(i) f(t0) < F 2 or (ii) f(t0) ≡ F 2. From the differential equation, we have in case (i) that
ẋ(t0) = 0 but ẏ(t0) < 0 and so the solution moves vertically away from B in the direction
of decreasing y, and so further into B3. In case (ii), we have ẋ(t) = 0 and ẏ(t) = 0 for
t ∈ [t0, t1) where t1 is the time at which f(t1) is first less than F 2; t1 is necessarily finite by
the conditions imposed on f(t). Hence, the solution remains at point B only until t = t1, at
which time ẏ < 0 and the subsequent behaviour is the same as in case (i). 2

To proceed further, we need the following definition:

Definition 1 A double crossing is said to occur when the solution x(t) crosses both the lines
y = Y0 and y = 2Y0, in either order. Here, Y0 < 0 and is sufficiently small that (1) the
intersection of y = 2Y0 with Pf for x < 0 takes place within Bc, and that (2) X0 > ξ, with
X0 the negative root of F 2 − X2

0 = 2γY0 (see figure 5).
The existence of the k-th double crossing implies that ∃ ak, bk ∈ R with bk > ak such that
either y(ak) = Y0 and y(bk) = 2Y0 (falling) or y(ak) = 2Y0 and y(bk) = Y0 (rising).

Now, by continuity, any pair of successive double crossings must consist either of a falling
double crossing followed by a rising one, or vice versa. Then we have the following lemma.

Lemma 7 An infinite sequence of double crossings confined to B3 ∪ B4 cannot occur, either
in (i) finite or (ii) infinite time.

Proof. First, we consider the sets that solutions leaving B3 can enter: by continuity, these
must be Bc, B5, B4 or B6. The first two are impossible, Bc by definition and B5 because
B3 and B5 only meet at point B, and passing through this in the direction of increasing y is
impossible by lemma 6.
The other two transitions can take place; B3 to B6 because ẋ < 0, ẏ ≤ 0 along their common
boundary, and B3 to B4 because ẏ can have any sign along the common boundary.
To prove the lemma, first observe that ∀ x = (x, y) ∈ B3∪B4 we have f 2−x2 ≤ γy ≤ F 2−x2

so −f2 ≥ −γy − x2 ≥ −F 2. Now, ẏ = f(t) − γy − x2 so

F 2 − f2 ≥ ẏ ≥ f2 − F 2 (9)

By hypothesis, x(t) ∈ B3 ∪ B4 for all t ≥ 0, so, by (9), |ẏ| ≤ F 2 − f2 ≡ v with v > 0.
Consider first case (i), in which infinitely many double crossings occur within B3 ∪B4 during
the time interval [0, T ] with T > 0 finite. Define the sequence of crossing times {Ik}k∈N where
Ik = [ak, bk] with ak ≥ bk−1, so that

⋃

k∈N
Ik ⊆ [0, T ]; then y(t) ∈ [2Y0, Y0] if t ∈ ⋃k∈N

Ik.
Hence,

vT ≥
∫ T

0
|ẏ(t)| dt ≥

∑

k∈N

∫

Ik

|ẏ(t)| dt ≥
∑

k∈N

∣

∣

∣

∣

∫

Ik

ẏ(t)dt

∣

∣

∣

∣

=
∑

k∈N

|y(bk) − y(ak)| =
∑

k∈N

|Y0| = ∞

and since v and T are both finite, the latter by hypothesis, this leads to a contradiction and
so an infinite sequence of double crossings within B3 ∪ B4 cannot occur in finite time.
Now consider case (ii), in which infinitely many double crossings occur during infinite time.
We introduce the sequence {Ik}k∈N as before but now limk→∞ bk = ∞. In order that x(t)
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remains in B3 ∪ B4, we must have limk→∞ x(bk) > X0 (see figure 5). From the differential
equation we have

∫ bk

b1

ẏ(t)dt = y(bk) − y(b1) =

∫ bk

b1

(

f(t) − γy − x2
)

dt (10)

Now, ∀k ∈ N, ∃N = N(k) such that Nτ ≤ bk ≤ (N +1)τ and, by hypothesis, limk→∞ N(k) =
∞. Furthermore, given positive real constants c and c′, we have, by the continuity of curve
BC, that x(t) < −F + c |Y0| < 0 and so

−x(t)2 < −F 2 + c′ |Y0| . (11)

Using this in equation (10) results in

y(bk) − y(b1) ≤ Nτ〈f〉 +

∫ bk

Nτ
f(t)dt − γ

∫ bk

b1

y(t)dt + Nτ
(

−F 2 + c′ |Y0|
)

−
∫ bk

Nτ
x(t)2dt.

Also, from ẋ = y we have that
∫ bk

b1
y(t)dt = x(bk)−x(b1) is bounded, as is

∫ bk

Nτ (f(t)−x(t)2)dt,
since x(bk) ≥ X0, and so

y(bk) − y(b1) ≤ Nτ
(

〈f〉 − F 2 + c′ |Y0|
)

+ K

where K is a finite constant. Remembering that f(t) is continuous and periodic and that
f(t) ≤ F 2, ∀t, the coefficient of Nτ in the above can be made negative by choosing |Y0|
sufficiently small. Hence, finally, we have proved that lim supk→∞ y(bk) < K ′ − ∞ for a
constant K ′, which is in contradiction with our initial hypothesis that y(bk) = Y0 or 2Y0.
Hence, an infinite number of double crossings, confined to B3 ∪ B4, cannot occur either in
finite or infinite time. 2

Lemma 8 No solution can remain in B3 indefinitely.

Proof. From lemma 7 we now have the result that an infinite number of double crossings
cannot occur, and so ∃t0 < ∞ such that ∀t > t0, while x(t) ∈ B3, either (i) y(t) < Y0 or (ii)
y(t) > 2Y0 — there are no further double crossings after t = t0. We can now prove the lemma
as follows.
We consider case (i) first. Here, ẋ(t) < Y0 for all t > t0, and since Y0 < 0, limt→∞ x(t) = −∞.
Hence, in case (i), no solution can remain in B3 indefinitely.
Turning now to case (ii), we have ẏ = f(t) − γy − x2 and so, with N ∈ N,
∫ t0+Nτ

t0

ẏ(t)dt = y(Nτ + t0) − y(t0) ≤ Nτ〈f〉 − γ

∫ t0+Nτ

t0

y(t)dt + Nτ
(

−F 2 + c′ |Y0|
)

where the last term on the RHS is obtained from equation (11). Since y(t) < 0 for all t > t0,
we have

0 < −γ

∫ t0+Nτ

t0

y(t)dt = γ

∣

∣

∣

∣

∫ t0+Nτ

t0

y(t)dt

∣

∣

∣

∣

= γ |x(t0 + Nτ) − x(t0)| ≤ γX1

where X1 is shown in figure 5. Thus,

y(Nτ + t0) ≤ y(t0) + Nτ
(

〈f〉 − F 2 + c′ |Y0|
)

+ γX1

and, since |Y0| can be made as small as desired, we have limN→∞ y(Nτ + t0) = −∞. Hence,
in case (ii) too, no solution can remain in B3 indefinitely. 2
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Lemma 9 All solutions initially in B3, B4 with x > ξ, or B6, cross the line x = ξ in the
direction of decreasing x, in finite time.

Proof. Consider first solutions initially in B3. By lemma 8, solutions here must eventually
leave B3. As shown in the proof of lemma 7, solutions leaving B3 can only enter B4 or B6.
To show that all solutions cross the line x = ξ in the direction of decreasing x, consider first a
solution that leaves B3 and enters B6 at a point (x0, y0) at a time t0. Then we need to prove
two facts: (i) y < y0 for all t > t0, and (ii) y0 < 0.
We prove (i) as follows. While the solution remains in B6, ẏ < 0, so ẋ = y < y0, and so
the lemma is plainly true for a solution that remains in B6. The solution may, however,
re-cross PF and enter B3 or B4, in both of which ẏ can have either sign. If the point at which
the solution re-crossed PF is (x1, y1) then clearly y1 < y0. Suppose now a further crossing
occurs, from B3 ∪B4 back into B6, this time at a point (x2, y2); then y2 < y1 < y0 despite the
ambiguity of the sign of ẏ in B3 ∪ B4. This is because y < 0 always, so x decreases at least
linearly in time, so x2 < x1 < x0; but the crossing points are all on PF and so y2 < y1 < y0.
Hence, we conclude that y < y0 for all t > t0.
The proof of (ii) relies on lemma 6. A solution at point B can initially only move vertically
downwards away from B, and hence cannot enter B6 from point B. Hence, any solution that
enters B6 from B3 does so at y = y0 < 0. Thereafter, the argument used in case (i) applies.
Consider now a solution that leaves B3 and enters B4. According to lemma 8, although
solutions may oscillate between B3 and B4, they cannot do so indefinitely and so there must
be a last crossing into B4, let us say at time t0. Thereafter, as before, y < y0 = 2Y0, whether
or not the solution subsequently remains in B4 or moves into B6.
Hence, we conclude that in all cases, ẋ = y < y0 < 0 for all t > t0, and so all solutions
eventually cross the line x = ξ. 2

The previous lemma shows that solutions with x > ξ eventually cross the line x = ξ. Hence,
solutions eventually enter B7 (invariant), or B4 with x < ξ, and we now deal with the fate of
solutions in the latter case.

Lemma 10 All solutions initially in B4 with x ≤ ξ enter B7 in finite time and remain there.

Proof. We prove this lemma by contradiction: we assume that x ∈ B4 with x < ξ for all t
and find an inconsistency. Set t = 0 when x = ξ to simplify notation, and write y(0) = y0.
Then ẋ(t) ≤ (F 2 − ξ2)/γ by the assumption that x(t) is between PF and Pf . Integrating
gives

x(t) ≤ at + ξ (12)

with a = (F 2 − ξ2)/γ a negative constant. Also, by equation (9) we have |ẏ| ≤ F 2 − f2 = v
and so integrating from 0 to t gives

−vt + y0 ≤ y(t) ≤ vt + y0. (13)

Now, as long as x(t) remains in B4, we must have (f 2 − x2)/γ ≤ y ≤ (F 2 − x2)/γ, but,
by equation (12), y ≤ (F 2 − x2)/γ ≤ [F 2 − (at + ξ)2]/γ. Hence, in order to remain in B4

for all t > 0, y(t) has to be bounded above by a function that decreases as −t2, and, from
equation (13), bounded below by one that goes as −t. These two requirements are mutually
incompatible, and so no solutions can remain in B4 indefinitely. 2
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Lemma 11 All solutions initially in B5 enter B7 in finite time.

Proof. For all x ∈ B5, x < −F and y ≥ 0. Solving the differential equation from initial
condition x(0) < −F, y(0) ≥ 0, we have

∫ nτ

0
ẏdt = y(nτ) − y(0) = nτ〈f〉 − γ

∫ nτ

0
y(t)dt −

∫ nτ

0
x2dt

and, while the solution is in B5, −x2 < −F 2, so

y(nτ) < y(0) + nτ
(

〈f〉 − F 2
)

+ γ(F + x(0)),

where we have used x(nτ) < −F . Since, as before, 〈f〉 − F 2 < 0, the second term above
ensures that y decreases with time and so the solution eventually crosses the x-axis at x < −F ,
and so enters B6 or B7; if B6, then lemmas 9 and 10 apply, and in either case B7 is entered in
finite time. 2

Lemma 12 All solutions in B7 grow without limit as t → ∞.

Proof. For all x ∈ B7, ẋ < 0 and ẏ < 0. Furthermore, by lemma 4, B7 is invariant, and so
both x and y tend to −∞ in B7. 2

Theorem 2 All solutions initially in B remain in B, eventually entering B7, where they
remain and grow without limit.

Proof. The invariance of B is proved in Theorem 1. The rest of the theorem is a direct
consequence of lemmas 4–12. 2

2.3 Set C

As an easy corollary to Theorems 1 and 2, we can now construct a set C which is such that
any finite area absorbing set A ⊂ C.

Corollary 1 Any finite area absorbing set A ⊂ C where

C = Bc ∩ {(x, y) |x ≥ −F}.

Proof. The boundaries of set C consist of curve BC, the part of curve CD with x ≥ −F and
the line x = −F between y = 0 and y =

√

(xC + F )[(xC + F )2 + b2], the latter being the
intersection of this line with CD. Since this line has y = ẋ ≥ 0 along its entire length, flow
must be into C along this boundary. Furthermore, if A is any absorbing set, then A∩ B = ∅
since, by Theorem 2, any initial conditions in B lead to solutions that grow without bound.2

We can now visualise how good an approximation set Bc is to the set of initial conditions
which lead to solutions that do not blow up. We make the following definition:
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Definition 2 Let X(x0, y0, t0; t) be the solution of equation (1) for given t0, with initial
conditions x(t0) = x0, y(t0) = y0, and define

Ft0 =
{

(x0, y0)
∣

∣

∣
lim
t→∞

X(x0, y0, t0; t) ∈ Bc
}

.

Then
F =

⋃

t0∈[0,τ)

Ft0 .

Clearly, F ⊆ Bc. For an illustration of a numerical approximation to this set, see figure 6.

-2.0 0.0 2.0 4.0
x

-4.0

-2.0

0.0

2.0

4.0

6.0

y

-2.0 0.0 2.0 4.0

-4.0

-2.0

0.0

2.0

4.0

6.0 B
c

Figure 6: A numerical approximation to set F (black) — see definition 2 — for x ≥ −F = −2,
showing how it fits within Bc, part whose boundary is shown as a thick dashed line. Here,
γ = 0.01, µ = 2 and f(t) = (5 + 3 sin t)/2.

2.4 Absorbing set A1

We now construct a polygonal absorbing set. The underlying method for this construction is
the same as for B, but by contrast to that case, there are now constraints on the parameters
F , f and γ additional to F > f > 0 and γ > 0.
Three preliminary observations are in order. First, any absorbing set must lie partly above
and partly below the x-axis: a set entirely above the x-axis would always have ẋ = y > 0 and
no such set whose boundary is a closed curve could be absorbing over its whole boundary.
Second, where possible, we choose the sides of the absorbing sets to be parallel to either the
x or the y axis, since this simplifies the proof that the flow is into that side. On the other
hand, a rectangular set is not possible: for instance, the right-hand vertical boundary above
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the x-axis would necessarily entail flow out of the set, since y = ẋ > 0. The same applies
to the left-hand vertical boundary below the x-axis. Hence, there must be boundaries not
parallel to either axis.
Third, as pointed out previously, ẏ can only be zero if x = (x, y) ∈ I where I is the re-
gion between Pf and PF . This suggests the possibility of basing the non-vertical/horizontal
boundaries on scaled versions of these parabolas, and this is the case for A1.

G H

I

JK

L

f F

y = (f
2
 - F

2
)/γ

y = (F
2
 - f

2
)/γ

y > 0
.

.
y < 0

x

P

y P
F

P
f

A1

Figure 7: The invariant set A1, whose vertices are GHIJKL. The dashed lines are the parabolas
between which lies region I in which the sign of ẏ is indeterminate; above PF , ẏ < 0 and below
Pf , ẏ > 0. The continuous line starting at point P is a numerical solution to equation (1),
with F = 2, f = 1, γ = 4.01, which can be seen to lie within A1.

Theorem 3 Let γ2 ≥ 8F and define the set A1 as the closed hexagon GHIJKL, whose vertices
are

G = (f, (F 2 − f2)/γ)

H = (
√

F 2 + (f2 − F 2)/λ1, (F 2 − f2)/γ)

I = (F, 0)

J = (F, (f 2 − F 2)/γ)

K = (
√

f2 + (F 2 − f2)/λ2, (f2 − F 2)/γ)

L = (f, 0)

and whose edges are straight lines except that

HI : y = λ1(F
2 − x2)/γ and KL : y = λ2(f

2 − x2)/γ.

Here

λ1 =
γ2

4F

(

1 −
√

1 − 8F

γ2

)
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and λ2 is such that

h(λ2) = 4f2λ4
2 + 4(F 2 − f2)λ3

2 − γ4(λ2 − 1)2 = 0.

Then at least one λ2 ∈ (1, 2) exists and the set A1 as defined is an absorbing set for all t.

Proof. To show that A1, illustrated in figure 7, is an absorbing set, we need to prove that
n · φ(t) ≥ 0 over the entire boundary of A1 and for all t, with the appropriate choice for φ,
and where n is the inward normal to the boundary.
This is trivial for the horizontal and vertical portions of the boundary, i.e. GH, IJ, JK and LG.
Taking GH as a horizontal example, we have x ≥ f and n = (0,−1) is an inward-pointing
normal. By the same reasoning as used in the construction of B, we need to prove that
n · φF = x2 − f2 ≥ 0 for x ≥ f , which is clearly true. Taking IJ as a vertical example, we
have y ≤ 0 and an inward-pointing normal is n = (−1, 0). Then n · φf = n · φF = −y ≥ 0,
also obviously true.
We define HI as the curve GHI(x, y) = y−λ1(F

2 −x2)/γ = 0, from which the inward normal
n = (−2λ1x/γ,−1). Here, real λ1 > 1 is to be found. The appropriate choice for φ is φF

and so we need

n · φF = (F 2 − x2)(−2λ2
1x/γ2 + λ1 − 1) ≥ 0 for x ∈ [xH , F ] (14)

where xH is the x-co-ordinate of H. Now, F 2 − x2 ≥ 0 so we require −2λ2
1x/γ2 + λ1 − 1 ≥ 0.

This is guaranteed for all x ∈ [xH , F ] if −2λ2
1F/γ2 + λ1 − 1 ≥ 0, which is a quadratic in λ1

in which λ2
1 has a negative coefficient; hence inequality (14) is satisfied for λ1 ∈ [Λ−

1 ,Λ+
1 ],

where Λ±
1 = γ2(1 ±

√

1 − 8F/γ2)/4F . Letting r = 8F/γ2 > 0, so for λ1 to be real, r ∈ (0, 1],
we have Λ−

1 = 2(1 −
√

1 − r)/r = 2/(1 +
√

1 − r), which is clearly monotonically increasing
from 1, at r = 0, to 2, at r = 1. Hence, for the smallest possible A1 we choose λ1 =
γ2(1−

√

1 − 8F/γ2)/4F , which is guaranteed to be positive, as, by construction, it must be.
Similarly, we define KL by GKL(x, y) = y − λ2(f

2 − x2)/γ = 0 and so n = (2λ2x/γ, 1) is
the required normal, where λ2 > 1 is to be found. The inequality to be satisfied this time is
n ·φf = (f2 − x2)(2λ2

2x/γ2 − λ2 + 1) ≥ 0 for x ∈ [f, xK ], where xK is the x-co-ordinate of K.
The first bracket is clearly non-positive, so

2λ2
2xK − λ2γ

2 + γ2 ≤ 0 (15)

guarantees flow through KL in the direction of increasing y. Additionally, we have yK = yJ =
(f2 − F 2)/γ and so λ2(f

2 − x2
K) = f2 − F 2. Eliminating xK between this and equation (15)

results in
h(λ2) = 4f2λ4

2 + 4(F 2 − f2)λ3
2 − γ4(λ2 − 1)2 = 0 (16)

Now, h(1) = 4F 2 > 0 and h(2) = 32(F 2 + f2) − γ4; but γ2 ≥ 8F so h(2) ≤ 32(f 2 − F 2) < 0,
and so, by the Intermediate Value Theorem, there is at least one real root of h(λ2) such that
λ2 ∈ (1, 2).

3 Absorbing set A2, µ > 1

We now construct an absorbing set, A2 for all µ > 1. The condition µ > 1 is required for
the nonlinear function in the differential equation, xµ, to be Lipschitz, thereby guaranteeing
uniqueness of solutions [7]. We redefine the vector field and its bounds as

φ(t) = (y, f(t) − xµ − γy), φF = (y, F µ − xµ − γy) and φf = (y, fµ − xµ − γy).
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By analogy with the construction of A1, we observe that the set I in which ẏ has indefinite sign
is now I = {(x, y)|(fµ−xµ) ≤ γy ≤ (F µ−xµ)}. We can then construct a hexagonal absorbing
set A2 whose vertices are MNOPQR — see figure 8. In the course of the construction, we
make several assumptions whose purpose is to make the problem tractable, these being (i)
MN, QP are horizontal, MR and OP are vertical; (ii) the x-co-ordinates of N and Q are
xN = F and xQ = f respectively; (iii) the gradients of lines NO and RQ are both −γ; and
(iv) M lies on PF : y = (F µ − xµ)/γ and P lies on Pf : y = (fµ − xµ)/γ. Constraint (iv)
arises in an attempt to make A2 as small as possible: for instance, M cannot be below PF

because ẏ could then be positive, which would allow flow out of MN. With these assumptions
in place, the co-ordinates of all the vertices of A2 can be expressed in terms of xM , as will be
seen from the following:

Theorem 4 Let µ > 1, fµ +fγ2 ≥ (F +F µ/γ2)µ and define the set A2 as the closed hexagon
MNOPQR whose edges are straight lines and whose vertices are

M = (xM , γ∆)

N = (F, γ∆)

O = (F + ∆, 0)

P = (F + ∆, [fµ − (F + ∆)µ] /γ)

Q = (f, [fµ − (F + ∆)µ] /γ)

R = (xM , 0)

where ∆ = (F µ − xµ
M )/γ2 and xM is the smallest real root of

(

F µ − xM
µ

γ2
+ F

)µ

+ γ2(xM − f) − fµ = 0, (17)

such that 0 ≤ xM < f . Then at least one such xM exists and the set A2 is an absorbing set
for all t and all µ > 1.

Proof. To show that A2, see figure 8, is an absorbing set, as before, we need to prove that
n · φ(t) ≥ 0 over the entire boundary of A2 for all t, with the appropriate choice for φ and
where n is the inward normal to the boundary. This is trivial for the horizontal and vertical
portions of the boundary, i.e. MN, OP, PQ and RM (see the proof of Theorem 3).
We define NO as the straight line GNO(x, y) = y − λ3(xO − x) where xO is the x-coordinate
of point O and λ3 > 0, from which the inward normal n = (−λ3,−1). The appropriate choice
for φ is φF here, so we need

n · φF = λ3(xO − x)(−λ3 + γ) + (xµ − F µ) ≥ 0 for x ∈ [F, xO], (18)

where xN has been set equal to F : with hindsight, we shall see that this choice greatly
simplifies the construction. Here λ3(xO − x) ≥ 0 and (xµ − F µ) ≥ 0 if and only if µ ≥ 0, so
we require (−λ3 + γ) ≥ 0, and therefore choose λ3 = γ, which guarantees the boundary NO
has n · φ(t) ≥ 0. This choice for λ3 also simplifies the construction.
Similarly, we define QR by GQR(x, y) = y − λ4(xR − x), where xR is the x-coordinate of R
and λ4 > 0, and so n = (λ4, 1) is the required normal. The inequality to be obeyed is now
n · φf = λ4(xR − x)(λ4 − γ) + (fµ − xµ) ≥ 0 for x ∈ [xR, f ], where xQ has been set equal

16



M N

O

PQ

R

P
F

P
f

S
1

S
2

S
3

x 
=

 0

A2

Figure 8: The invariant set A2, whose vertices are MNOPQR. The continuous lines starting
at points S1, S2 and S3 are numerical solutions to equation (1), with µ = 1.67 and f(t) =
(5 + 3 sin t)/2 (so F µ = 4, fµ = 1), γ = 3. All the solutions can be seen to be attracted to
the same period-1 limit cycle and both the transients and this limit cycle lie within A2. The
curves PF : y = (F µ − xµ)/γ and Pf : y = (fµ − xµ)/γ are also shown as dashed lines.

to f , again for simplicity. Here (f µ − xµ) ≥ 0 if µ ≥ 0 but λ4(xR − x) is non-positive, so we
need (λ4 − γ) ≤ 0. In choosing λ4 = γ we guarantee that the boundary QR has n · φ(t) ≥ 0.
Having determined the constants λ3 and λ4 which guarantee that n ·φ(t) ≥ 0 over the entire
boundary of A2, we now need to find its vertices. In addition to xN = F, xQ = f and
yO = yR = 0, we know the following:























yM = (F µ − xM
µ)/γ = yN = γ(xO − F )

yP = (fµ − xP
µ)/γ = yQ = γ(xR − f)

xM = xR

xO = xP

which results in the simultaneous equations

F µ − xM
µ = γ2(xO − F ) and fµ − xO

µ = γ2(xM − f) (19)

between which xO can be eliminated to give equation (17). When this can be solved, it gives
all the vertices of MNOPQR in terms of γ, µ, F , f and xM . The conditions under which a
solution xM of (17) exists satisfying 0 ≤ xM < f and xO > F are easily derived. Consider
equations (19), solved for xO in terms of xM , giving

xO = F + (F µ − xM
µ)/γ2 . . . curve (a)

xO =
[

fµ + γ2(f − xM )
]1/µ

. . . curve (b)
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respectively. At xM = f , we have xO = F + (F µ − fµ)/γ2 for curve (a) and xO = f for
curve (b), and so (a) is above (b) at xM = f , provided µ > 1. Therefore, to guarantee at
least one solution of (19), we need (b) to be above (a) at xM = 0, and so we must have

fµ + γ2f ≥
(

F + F µ/γ2
)µ

which is the condition given in the theorem. 2

3.1 Comparison of A1 and A2

We can now compare the restrictions on the parameters imposed in theorems 3 and 4 when
µ = 2. These are that γ2 ≥ 8F (set A1) and that fγ4(γ2 + f) ≥ F 2(γ2 + F )2 (set A2). Let
γ2 = 8F so that the second inequality becomes 64F 2f(8F +f) = 81F 4. Solving for f in terms
of F gives f = (

√
1105/8 − 4)F ≈ 0.1552F . Hence we conclude that, subject to F > f > 0,

if f < (
√

1105/8− 4)F , the constraint on γ is weaker for set A1; otherwise, the constraint on
γ is weaker for set A2.

4 Conclusions

We have constructed a variety of invariant sets for the differential equation (1), the sets being
one for which solutions grow without bound; one which must contain any bounded limit cycles,
both of these sets requiring no constraints other than those given in the first paragraph of
the paper. We have additionally found two absorbing sets, both of which require additional
parameter constraints (effectively, large dissipation), one of which is valid for all µ > 1. We
have also described three areas of physical interest in which the differential equation arises.
We have had little to say here about the dynamics of this equation, since our aim was to
construct some important invariant sets. Numerical results presented in [1] and [2] indicate
the presence of co-existing periodic attractors but not chaos. There are also some results on
dynamics for large γ and µ = 2 in [8], in particular a study of the analyticity properties of the
orbit with the same period as f(t) that, numerically at least, appears to be the only bounded
periodic solution to equation (1) in this case. Additionally, there are in principle ways to
understand which periodic orbits should occur [9], in particular when the dissipation and the
oscillatory part of f(t) are both small.
At least two interesting open questions remain. The first concerns the basin of attraction
of periodic solutions, which clearly must lie in Bc, but the construction of this set does not
exclude the possibility that this basin has an infinite ‘tail’ lying between curves AB and CD
as x → −∞. The second concerns the rate at which solutions that grow without bound
approach infinity: do they do so in finite or infinite time? In the unperturbed version of
the differential equation (γ = 0, µ = 2, f(t) constant), exact solutions exist and these can be
expressed in terms of Weierstrass elliptic functions, which do indeed blow up in finite time,
but it is not clear whether this property is inherited by solutions to (1).
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