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The problem of the computational time reversal is posed as the inverse problem of the determination
of an unknown initial condition with a finite support in a hyperboilc equation, given the Cauchy data at
the lateral surface. A stability estimate for this ill-posed problem implies refocusing of the time reversed
wave field. Two such two-dimensional inverse problems are solved numerically in the case when the
domain is a quadrant and the Cauchy data are given at finite parts of coordinate axis. The previously
obtained Lipschitz stability estimate (if proven) rigorously explains and numerical results confirm the
experimentally observed phenomenon of refocusing of time reversed wave fields.

1 Introduction

1.1 Statement of the inverse problem

This is the first publication in which the problem of computational time reversal is solved numerically via
the solution of an inverse problem for a hyperbolic equation with the Cauchy data at a lateral surface.
Consider the standard Cauchy problem for the hyperbolic equation

utt = Lu (r, t) ∈ Rn × (0, T ), (1.1)

u
∣∣
t=0

= ϕ, ut
∣∣
t=0

= ψ, (1.2)

where L is the elliptic operator of the second order in Rn with coefficients independent on t, the function
ϕ ∈ H2(Rn) and the function ψ ∈ H1(Rn). Hence, the Cauchy problem (1), (2) has unique solution
u ∈ H2(Rn × (0, T )). The initial conditions ϕ and ψ are assumed to have a finite support D ⊂ Rn,

supϕ ⊂ D, supψ ⊂ D. (1.3)

We are interested in the following
Inverse Problem 1. Let Γ ⊂ Rn be a hypersurface and ΓT = Γ × (0, T ). Assume that one of initial

conditions ϕ or ψ is known and another one is unknown. Determine that unknown initial condition assuming
that the following functions h and g are given

u
∣∣
ΓT

= h,
∂u

∂n

∣∣∣
ΓT

= g. (1.4)

Below we call the problem of recovering of the function ϕ “the ϕ-problem”, and the problem of recovering
of the function ψ “the ψ-problem”. Since (1.4) is the Cauchy data, then the Inverse Problem 1 is a particular
case of the so-called Cauchy problem for the hyperbolic equation with the lateral data. Uniqueness and
stability results for this problem are obtained via Carleman estimates and can be found in, e.g., books of
Klibanov and Timonov [9] and Lavrentiev, Romanov and Shishatskii [12], as well as in papers of Klibanov and
Malinsky [7], Kazemi and Klibanov [5] and Klibanov [6]. The Hölder stability estimate was established in [12]
and the stronger Lipschitz stability estimate for bounded domains was proven in [9, 7, 5]. Klibanov [6] has
studied both ϕ- and ψ-problems for a general hyperbolic equation (1.1) with variable coefficients (including
hyperbolic inequalities) for n = 2, 3, assuming that the domain D is either a quadrant in the 2-D case or an
octant in the 3-D case. In the case of the quadrant the data (1.4) were given on finite parts of coordinate
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axis, and they were given on finite parts of coordinate planes in the case of the octant. Using previous
results of [9, 7, 5], he has proven the Lipschitz stability estimate for this problem, has shown its connection
with the refocusing of time reversed wave fields and has proposed a convergent numerical method. Note
that the Lipschitz stability in an unbounded domain such as quadrant or octant is rather surprising, since,
unlike the bounded domain case, a large part of the energy never reaches the surface (curve in 2-D) where
measurements of the wave field and its normal derivative are taken.

The authors are aware only about two publications in which numerical solutions of similar problems were
presented. The first one is of Klibanov and Rakesh [10], in which the method of quasi-reversibility of Lattes
and Lions [11] was adapted for the solution of the Cauchy problem (1.1), (1.4) with L = ∆ = ∂2

x + ∂2
y in the

square with the lateral Cauchy data at the boundary of this square (it was shown in the recent book [9] that
the quasi-reversibility is a particular case of the Tikhonov regularization method, and convergence rates
were established, also, see [6]). A quite good robustness of this method was demonstrated computationally
in [10]. This, observation goes along well with computational results of the current publication and might
likely be atributed to the existence of a priori Lipschitz stability estimate, which is the best possible one,
also see Section 6. The second publication is of Kabanikhin, Bektemesov and Nechaev [4]. They have
considered the inverse ϕ-problem in the 2-D case assuming that L = ∆ = ∂2

x + ∂2
y ,

D = {(x, y) | x ∈ (0, a), y ∈ (−b, b)},

T = a and Γ is a part of the y−axis,

Γ = {(x, y) | x = 0, y ∈ (−b− T, b+ T )}.

A uniqueness result for this problem was established and numerical simulations were conducted in this
reference.

The present paper is motivated by [6]. We consider the numerical solution of the problem of [6] in the
quadrant. To do this, we specify the Inverse Problem 1 as follows.

Inverse Problem 2. Let the function u(x, y, t) be the solution of the standard Cauchy problem (1.1),
(1.2) in R2 × (0, T ) with L = ∆ = ∂2

x + ∂2
y . Suppose that in (1.3) the domain D is the rectangle located in

the first quadrant,
D = {(x, y) | x ∈ (0, a), y ∈ (0, b)}.

Let Γ = Γ1 ∪ Γ2, where Γ1 and Γ2 are parts of coordinate axis (see Figure 1):

Γ1 = {x = 0, y ∈ (0, b+ T )}, Γ2 = {y = 0, x ∈ (0, a+ T )}.

Given functions h and g in (1.4), determine either the function ϕ assuming that ψ ≡ 0 or the function ψ
assuming that ϕ ≡ 0.

Using (1.3) and the finite speed of propagation of the wave field, we arrive at

u
∣∣
∂Ω

= 0, t ∈ (0, T ), (1.5)

where the domain Ω is

Ω = {(x, y) | x ∈ (−a− T, a+ T ), y ∈ (−b− T, b+ T )}.

For i = 1, 2 let
ΓiT = Γi × (0, T ), hi = h

∣∣
ΓiT

, gi = g
∣∣
ΓiT

.

We specify conditions (1.4) as follows

u
∣∣
Γ1T

= h1, ux
∣∣
Γ1T

= g1, (1.6)

u
∣∣
Γ2T

= h2, uy
∣∣
Γ2T

= g2, (1.7)
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Figure 1: The geometry of the problem

1.2 Connection with time reversal

Borcea, Papanicolaou, Tsogka and Berriman [2] were the first ones who draw the attention of the mathe-
matical community to the issue of the computational time reversal (the mathematical model of [2] is quite
different from ours). Bardos and Fink [1] were the first ones who have noticed the direct connection between
the problem of the computational time reversal and the Inverse Problem 1. Later this was also observed by
Klibanov and Timonov in [9, 8]. The direct linkage between stability results for the Inverse Problem 1 and
refocusing in time reversal was first observed in [6].

The set up for the time reversal experiment is well described in the review paper of Fink and Prada [3].
A point source at the moment of time t = 0 causes a wave pulse. As a result, waves propagate in R3. At
a surface S, both the wave field and its normal derivative are recorded by many transducers for the time
period t ∈ (0, T ) (see p. R3 in [3]). Next, the wave field is “send back” from those transducers by the
principle “first in-last out”. Actually, therefore, “sending back” the wave field means that experimentalists
solve experimentally the problem of finding the solution of a hyperbolic equation, given the Cauchy data
at S, i. e., given the wave field and its normal derivative at S. However, the initial condition at {t = 0} is
unknown in this case. Furthermore, the determination of this initial condition via refocusing of the time
reversed wave field is actually the main “goal” of the time reversal experiment. Consequently, a direct
3-D analog of the Inverse Problem 1 is solved experimentally. In doing so, an experimental device actually
“constructs” the function v(X, τ) = ũ(X,T − τ), τ ∈ (0, T ), X ∈ R3 where ũ(X, t) is an approximation for
the function u(X, t). The major practically interesting phenomenon observed in these experiments is that
the time reversed wave field refocuses at the location of the original source. In other words, it replicates the
δ−like function, which represents the source of the original pulse.

It is an interesting mathematical problem to explain the refocusing phenomenon rigorously and to confirm
it numerically. The phenomenon of refocusing in the quadrant is demonstrated numerically in this paper.
In terms of the function v(X, τ), refocusing means that this function at τ ≈ T is close to the δ-function,
which represents the original point source. Therefore, to rigorously prove refocusing, one should establish a
stability estimate for the Inverse Problem 1. Indeed, a stability estimate guarantees that the approximate
solution ũ(X,T − τ) should be close to the exact one u(X,T − τ), as long as the measurement error in the
data at the surface S is sufficiently small. Hence, the function v(X, τ) = ũ(X,T − τ) ≈ u(X,T − τ) should
be close to the original δ-function at τ ≈ T . Consequently, the Lipschitz stability estimate of the paper [6]
in the quadrant ensures both a high degree of refocusing in the quadrant and a good stability property of
the numerical solution of the Inverse Problem 2. We observe the latter in numerical experiments (Sections 5
and 6). We also mention that previous Lipschitz stability estimates of [9, 7, 5] were obtained for the case
when the lateral Cauchy data are given at the boundary of a bounded domain and solution is sought for
inside this domain. Thus, they imply a high degree of refocusing of time reversed wave fields propagating
in bounded domains.
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1.3 The Cauchy problem with the lateral data is not equivalent
with the Inverse Problem 1

Although the Inverse Problem 1 is a particular case of the above mentioned Cauchy problem (1.1), (1.4) for
the hyperbolic equation with the Cauchy data at a lateral surface, but these problems are not equivalent.
Indeed, consider, for example the 1-D case. Let the function w(x, t) be the solution of the standard Cauchy
problem

wtt = wxx, (x, t) ∈ R× (0, T ),

w(x, 0) = α(x), wt(x, 0) = β(x),

where α ∈ H2(R) and β ∈ H1(R). Suppose that the following two functions f1(t) and f2(t) represent the
lateral Cauchy data at {x = 0}

w(0, t) = f1(t), wx(0, t) = f2(t), t ∈ (0, T ).

By the D’Alembert formula,

w(x, t) =
α(x− t) + α(x+ t)

2
+

1
2

x+t∫
x−t

β(ξ) dξ.

Let α(x) = β(x) = 0 for x < 0. Then we obtain

f1(t) =
α(t)
2

+
1
2

t∫
0

β(ξ)dξ, f2(t) =
α′(t) + β(t)

2
.

These two equations are not independent ones, since the second equation can be obtained from the first via
the differentiation. Therefore, because of the presence of two unknown functions α and β, the latter system
has infinitely many solutions if f ′1(t) = f2(t) and has no solutions if f ′1(t) 6= f2(t).

The fact that functions f1(t) and f2(t) are actually not independent from each other has the following
explanation. Suppose that the hypersurface Γ in the Inverse Problem 1 is the boundary of a certain domain
G ⊂ Rn and D ⊂ G (G can be both bounded or unbounded, in the case of the above example G = {x > 0}).
One can uniquely solve the boundary value problem for the equation (1.1) with the zero initial condition at
{t = 0} and with the Dirichlet boundary condition u|ΓT

= h in the domain (Rn \ G) × (0, T ). Solution of
this problem uniquely determines the function g in (1.4).

Another explanation of this example of the non-uniqueness is that being given for t ∈ (0, T ), functions
f1(t) and f1(t) determine the function w(x, t) uniquely only in characteristic triangles {x > 0, x < t < T−x}
and {x < 0, −x < t < x+ T} in the (x, t)-plane, and the axis {t = 0} intersects with these triangles only at
the origin. On the other hand, assume, for example that the function α(x) ≡ 0. Then the function w(x, t)
has the odd extension w̃ ∈ H2(R × (0, T )) in {t < 0}, so as functions f1(t) and f2(t). In both cases
characteristic triangles become {x > 0, x− T < t < −x+ T} and {x < 0, −x− T < t < x+ T}. Since the
interval {t = 0, 0 < x < T} is the median of the first triangle and the interval {t = 0 − T < x < 0} is the
median of the second, then the function β(x) can be determined uniquely in this case. In the case β(x) ≡ 0
we obtain the even extension and repeat these arguments.

Thus, the uniqueness of the Cauchy problem with the lateral data does not necessarily imply uniqueness
of the inverse problem of the determination of initial conditions. This means that the title of this subsection
is true. This discussion also demonstrates that it is unlikely that both initial conditions ϕ and ψ can be
determined simultaneously in Inverse Problem 1 and 2, at least in the case when Γ is the boundary of an
unbounded domain. This justifies statements of Inverse Problems 1 and 2. Note, however that this issue is
a subtle one. Indeed, if, for example Γ is the boundary of a bounded domain and both initial conditions ϕ
and ψ are sought for in this domain, then results of [9, 7, 5] imply that both these initial conditions can be
determined uniquely and simultaneously.
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2 Numerical method for the direct problem

To solve the direct problem (1.1), (1.2), (1.5), we use the method proposed in [4]. The zero boundary
conditions (1.5) allows us to represent the solution in the form of the Fourier sinus-series

u(x, y, t) =
∑
nm

unm(t)Xn(x)Ym(y), (2.1)

Xn(x) = sin
πn(x+ a+ T )

2(a+ T )
, Ym(y) = sin

πm(y + b+ T )
2(b+ T )

. (2.2)

Substituting (2.1) in (1.1), (1.2), for unm(t) we obtain the following problem

u′′nm = ω2
nmunm, ω2

nm =
π2n2

4(a+ T )2
+

π2m2

4(b+ T )2
, (2.3)

unm(0) = ϕnm, u′nm(0) = ψnm, (2.4)

where ϕnm, ψnm are respectively the Fourier coefficients of the functions ϕ(x, y) and ψ(x, y),

ϕnm =
1

(a+ T )(b+ T )

∫
Ω
ϕ(x, y)Xn(x)Ym(y) dx dy, (2.5)

ψnm =
1

(a+ T )(b+ T )

∫
Ω
ψ(x, y)Xn(x)Ym(y) dx dy. (2.6)

The solution to the problem (2.3), (2.4) is

unm(t) = ϕnm cos (ωnmt) +
ψnm
ωnm

sin (ωnmt). (2.7)

Taking into account (2.1), we obtain the following formula for solution to the direct problem

u(x, y, t) =
∑
nm

(
ϕnm cos (ωnmt) +

ψnm
ωnm

sin (ωnmt)
)
Xn(x)Ym(y). (2.8)

This formula can be written in the operator’s form

u = Aq, (2.9)

where A is a linear operator, q is the vector of Fourier coefficients of the function ϕ in the ϕ-problem and
of the function ψ in the ψ-problem.

3 Numerical method for the inverse problem

Let f = (h, g) be the vector function representing the data (1.4) for the inverse problem. The Inverse
Problem 2 is a linear inverse problem. Hence, it is natural to solve it via the minimization of an objective
functional J [q, f ] with respect to q. In our case the functional J [q, f ] consists of two functionals,

J = Jf + Js, (3.1)

where Jf estimates the fulfillment of the conditions (1.6) and (1.7) and Js estimates fulfillment of condition
sup q ∈ D.

The functional Jf consists of four functionals

Jf = Jh1 + Jg1 + Jh2 + Jg2 , (3.2)

where functionals Jh1 , Jg1 , Jh2 , Jg2 respectively estimate fulfillments of conditions u|Γ1T
= h1, ux|Γ1T

= g1,
u|Γ2T

= h2, uy|Γ2T
= g2.
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The functional Js has the form

Js[q] = (‖q‖2
Ω − ‖q‖2

D)/2 = (q, Ssq)/2, (3.3)

where Ss is a symmetric non-negative matrix with elements

Ss,nmlk = (a+ T )(b+ T )δnlδmk −Xa
nlY

b
mk. (3.4)

Introduce operators Ah1 , Ag1 , Ah2 , Ag2 such that

Ah1q = (Aq)
∣∣
Γ1T

, Ag1q = (Aq)x
∣∣
Γ1T

,

Ah2q = (Aq)
∣∣
Γ2T

, Ag2q = (Aq)y
∣∣
Γ2T

.
(3.5)

Let ‖ · ‖ denotes the L2-norm. We can write the expression for Jh1 as follows

Jh1 [q, f ] = ‖Ah1q − h1‖2/2 = ‖Ah1q‖2/2− 〈Ah1q, h1〉+ ‖h1‖2/2 = (q, Sh1q)/2− (q,h1) + ‖h1‖2/2, (3.6)

where Sh1 = A∗
h1
Ah1 is the symmetric non-negative matrix; h1 = A∗

h1
h1 is the vector, and (v,w) denotes

the scalar product,
(v,w) =

∑
nm

vnmwnm.

The expressions for elements of the matrix Sh1 and the vector h1 depend on the problem we consider,
i.e., the ϕ-problem or the ψ-problem. We mark the elements for the ϕ-problem by the superscript ϕ and
the elements for the ψ-problem by the superscript ψ. Then

Sϕh1,nmlk
= snslY

b+T
mk Φcc

nmlk, (3.7)

Sψh1,nmlk
= snslY

b+T
mk

Φss
nmlk

ωnmωlk
, (3.8)

hϕ1,nm = sn

∫ b+T

0
Ym(y)

∫ T

0
cos (ωnmt)h1(y, t) dt dy, (3.9)

hψ1,nm =
sn
ωnm

∫ b+T

0
Ym(y)

∫ T

0
sin (ωnmt)h1(y, t) dt dy, (3.10)

where
sn = Xn(0) = sin (πn/2); (3.11)

Y z
mk =

∫ z

0
Ym(y)Yk(y) dy; (3.12)

Φcc
nmlk =

∫ T

0
cos (ωnmt) cos (ωlkt) dt; (3.13)

Φss
nmlk =

∫ T

0
sin (ωnmt) sin (ωlkt) dt. (3.14)

We obtain analogous expressions for other functionals. We get for Jg1

Jg1 [q, f ] = ‖Ag1q − g1‖/2 = (q, Sg1q)/2− (q, g1) + ‖g1‖2/2, (3.15)

where Sg1 = A∗
g1Ag1 is the matrix with elements

Sϕg1,nmlk = cnclY
b+T
mk Φcc

nmlk

π2nl

4(a+ T )2
, (3.16)

Sψg1,nmlk = cnclY
b+T
mk

Φss
nmlk

ωnmωlk

π2nl

4(a+ T )2
, (3.17)
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cn = X ′
n(0) = cos (πn/2); (3.18)

g1 = A∗
g1g1 is the vector with components

gϕ1,nm =
πcnn

2(a+ T )

∫ b+T

0
Ym(y)

∫ T

0
cos (ωnmt)g1(y, t) dt dy, (3.19)

gψ1,nm =
πcnn

2(a+ T )ωnm

∫ b+T

0
Ym(y)

∫ T

0
sin (ωnmt)g1(y, t) dt dy. (3.20)

We obtain for Jh2

Jh2 [q] = ‖Ah2q − h2‖2/2 = (q, Sh2q)/2− (q,h2) + ‖h2‖2/2, (3.21)

where entries of the matrix Sh = A∗
h2
Ah2 are

Sϕh2,nmlk
= smskX

a+T
nl Φcc

nmlk, (3.22)

Sψh2,nmlk
= smskX

a+T
nl

Φss
nmlk

ωnmωlk
, (3.23)

Xnl =
∫ a+T

0
Xn(x)Xl(x) dx; (3.24)

h2 = A∗
h2
h2 is the vector with components

hϕ2,nm = sm

∫ a+T

0
Xn(x)

∫ T

0
cos (ωnmt)h2(x, t) dt dx, (3.25)

hψ2,nm = sm

∫ a+T

0
Xn(x)

∫ T

0
sin (ωnmt)h2(y, t) dt dy. (3.26)

We obtain for Jg2

Jg2 [q, f ] = ‖Ag2q − g2‖2/2 = (q, Sg2q)/2− (q, g2) + ‖g2‖2/2, (3.27)

where Sg2 = A∗
g2Ag2 is the matrix with entries

Sϕg2,nmlk = cmckX
a+T
nl Φcc

nmlk

π2mk

4(b+ T )2
, (3.28)

Sψg2,nmlk = cmckX
a+T
nl

Φss
nmlk

ωnmωlk

π2mk

4(b+ T )2
; (3.29)

g2 = A∗
g2g2 is the vector with components

gϕ2,nm =
πcmm

2(b+ T )

∫ a+T

0
Xn(x)

∫ T

0
cos (ωnmt)g2(y, t) dt dy, (3.30)

gψ2,nm =
πcmm

2(b+ T )ωnm

∫ a+T

0
Xn(x)

∫ T

0
sin (ωnmt)g2(y, t) dt dy. (3.31)

Using (3.6), (3.15), (3.21), (3.27), we obtain the following expression for Jf :

Jf = ‖AΓq − f‖2/2 = (q, Sfq)/2− (q,f) + ‖f‖2/2, (3.32)

where AΓ is the linear operator: AΓq = {Ah1q, Ag1q, Ah2q, Ag2q}, f = {h1, g1, h2, g2} is a vector function.
Sf = A∗

ΓAΓ is a symmetric non-negative matrix

Sf = Sh1 + Sg1 + Sh2 + Sg2 ; (3.33)
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and f = A∗
Γf denotes the vector

f = h1 + g1 + h2 + g2. (3.34)

Combining (3.32) and (3.3), we obtain

J [q, f ] = Jf [q] + Js[q] = (q, Sq)/2− (q,f) + ‖f‖/2, (3.35)

where S is a symmetric non-negative matrix with elements

S = Sf + Ss. (3.36)

It follows from (3.35) that J is a quadratic functional. It is well known that one of the most effective
methods of minimization of quadratic functionals is the conjugate gradient method. Thus, we will use it.
This method can be schematically described as follows.

1. On the k-th iteration we compute the gradient of J with respect to q

gk = ∇qJk = Sqk − f . (3.37)

Suppose that |gk| < ε, where ε is an a priori chosen small number. Then we stop the iterative
process and consider the vector qk as the solution. Otherwise, we go to the next step.

2. Compute the conjugate gradient

pk = gk − βkpk−1, βk = (Spk−1, gk)/(Spk−1,pk−1). (3.38)

For k = 0 set p0 = g0.

3. Calculate the step of descent
αk = (pk, gk)/(Spk,pk). (3.39)

4. Compute the new vector
qk+1 = qk − αkpk (3.40)

and return to the first step.

It well known that the number of iterations, which is required to reach the minimum of the quadratic
functional equals to the dimension of the vector q [14].

To estimate the accuracy of our solution, we refer to the Tikhonov concept of solutions of ill-posed
problems, see Tikhonov and Arsenin [13]. By this concept one needs to assume the existence of an ”ideal”
exact solution with an ideal exact data. Then one should assume that a certain error is perturbing the
ideal data, which leads to a non-ideal data, and estimate the difference between the computed solution
corresponding that non-ideal data and the exact solution. Thus, we arrive at the following lemma

Lemma 1. Let q∗ be the exact solution of the inverse problem with the exact data f∗ = (h?, g∗) and q
be the minimizer of the functional J [q, f ] with the data f = (h, g). Then

‖q − q∗‖ ≤
(sf,max)1/2 ‖f − f∗‖+ ‖∇qJ [q, f ]‖

smin
, (3.41)

‖q − q∗‖ ≤
‖f − f∗‖+

√
2J [q, f ]

√
smin

, (3.42)

where sf,max is the maximal eigenvalue of the matrix Sf and smin is the minimal eigenvalue of the matrix S.
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Proof. Since q∗ is the exact solution with the exact data we have J [q∗, f∗] = 0 and ∇qJ [q∗, fast] =
Sq∗ − f∗ = 0. Therefore

∇qJ [q, f ] = (Sq − f)− (Sq∗ − f∗) = S(q − q∗)− (f − f∗).

Using the triangle inequality, we obtain

‖S(q − q∗)‖ ≤ ‖f − f∗‖+ ‖∇qJ [q, f ]‖.

Taking into account the inequalities

‖f − f∗‖ = ‖A∗
Γ(f − f∗)‖ ≤

√
sf,max ‖f − f∗‖,

‖S(q − q∗)‖ ≥ smin‖q − q∗‖,

we obtain (3.41).
To prove (3.42), consider the gradient of J with respect to f ,

∇fJ [q, f ] = f −AΓq.

Since f∗ = AΓq∗, we have

∇fJ [q, f ] = (f −AΓq)− (f∗ −AΓq∗) = (f − f∗)−AΓ(q1 − q2).

Using the triangle inequality, we obtain

‖AΓ(q − q∗)‖ ≤ ‖f − f∗‖+ ‖∇fJ [q, f ]‖,

which with relations
‖AΓ(q − q∗)‖ ≥

√
smin ‖q − q∗‖,

‖∇fJ [q]‖ = ‖f −AΓq‖ =
√

2J [q, f ],

yields (3.42).

Remark 1. Note that the gradient of the objective functional with respect to the data is used in the
proof of this lemma. The authors are not aware about other publications which would employ this idea.

4 Numerical results

We solve numerically both ϕ- and ψ-problems for the test function q∗(x, y) given by

q∗(x, y) =

{
sin (2πx/a) sin (2πy/b), (x, y) ∈ D;

0, (x, y) 6∈ D.

The following values of parameters are taken: a = 1, b = 1, T = 1.5, i. e. D = (0, 1) × (0, 1), Ω =
(−2.5, 2.5) × (−2.5, 2.5) (see Figure 2). The domain Ω is partitioned in M = 26 = 64 equal parts with
respect to the variable y and in N = 26 = 64 equal parts with respect to x. The time interval (0, T ) is
partitioned in K = 100 equal parts.

First, we solve the direct problem and compute the functions {h1∗, g1∗, h2∗, g2∗} = f∗. Figure 3 illustrates
the functions h2∗, g2∗ (h1∗ = h2∗, g1∗ = g2∗ due to the symmetry) for ϕ- and ψ-problems respectively.

Next, we solve the inverse problem with the data f = f∗. Each of the integrals entering the expressions
for entries of the matrices Sh1 , Sg1 , Sh2 , Sg2 , Ss and vectors h1, g1, h2, g2 (see the previous section) is
approximated by the sum ∫

u(x) dx ≈ ∆x
∑

u(n∆x),
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Figure 2: The test function q∗(x, y)
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Figure 3: Solution of the direct problem: h2∗(x, t) (left); g2∗(x, t) (right)

where ∆x is the discretization step. Using q = 0 as the initial guess, we proceed with the conjugate gradient
method as long as either the number of iterations is less than 300 or the norm of the gradient of the functional
is exceeds 10−10.

The results of the numerical solution of ϕ- and ψ-problem are presented on Figures 4, 5 respectively.
One can see that in order to solve the ψ-problem, only 30 iterations are required to reach ‖∇qJ‖ < 10−10.
Whereas the norm of the gradient of the functional for the ϕ-problem ‖∇Jq‖ ≈ 2 · 10−2 after 300 iterations.
To explain this difference, we consider the eigenvalues of matrices. The results of numerical computations
of the eigenvalues are presented in Table 1. It follows that the condition number (χ = smax/smin) of the
matrix Sf +Ss for the ϕ-problem is χϕ = 8903/6.536 ≈ 1362, while the condition number for the ψ-problem
is χψ = 9.605/0.832 ≈ 11.5. Therefore, χϕ almost 100 times greater than χψ, which explains why the
convergence rate for the ψ-problem is much better than for the ϕ-problem.

Remark 2. As it was mentioned above in the description of the algorithm for the inverse problem, to
achieve the minimum it is required dim q iterations. In our case dim q = NM = 64 ·64 = 4096. However, we
achieve the minimum after about 100 iterations, which is a very good number. We cannot yet fully explain
this.
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Table 1: The eigenvalues of matrices

S smin smax

Ss 0 6.25
Sϕf 1.861 · 10−4 8900
Sψf 7.988 · 10−7 3.455

Sϕf + Ss 6.536 8903
Sψf + Ss 0.832 9.605
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Table 2: The eigenvalues and condition
number of the matrix Sϕ(γ)

γ smin smax χ

0 1.861 · 10−4 8900 4.78 · 107

1 6.536 8903 1360
5 16.034 8914 556
10 21.104 8928 423
30 27.569 8984 326
50 29.782 9041 304
100 32.032 9191 287
200 33.567 9518 284
300 34.206 9886 289
1000 35.320 13563 384
10000 35.881 69547 1940
100000 35.945 628557 17500

Table 3: The eigenvalues and condition
number of the matrix Sψ(γ)

γ smin smax χ

0 7.988 · 10−7 3.455 4.325 · 107

0.1 0.281 4.023 14.27
0.2 0.498 4.638 9.304
0.3 0.628 5.257 8.360
0.4 0.692 5.879 8.496
0.5 0.734 6.501 8.853
0.6 0.764 7.123 9.312
0.7 0.787 7.745 9.828
1 0.832 9.605 11.53
5 0.931 34.24 36.75
10 0.946 65.77 69.52
100 0.959 627.8 654.4
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To decrease the condition number χ, we consider the following functional

J(γ) = Jf + γJs, (4.1)

where γ is a parameter. Dependencies of eigenvalues and the condition number of the matrix S(γ) = Sf+γSs
on the parameter γ for ϕ- and ψ-problems are presented in Tables 2 and 3 respectively. One can see that
the minimal condition number χϕmin = 284 for the ϕ-problem is reached when γϕmin = 200, while for the
ψ-problem χψmin = 8.36 is reached when γψmin = 0.3.

Figure 6 illustrates the numerical solution of the ϕ-problem with γ = 200, and Figure 7 illustrates
the numerical solution of the ψ-problem with γ = 0.3. The convergence rate of the ϕ-problem is notably
improved, since only 106 iterations is required now to reach ‖∇qJ [q, f ]‖ < 10−10. The convergence rate of
the ψ-problem did not change, because the condition number for γ = 1 does not differ significantly from the
condition number for γ = 0.3 (see Table 3).

5 The case of a random noise in the data

To estimate the influence of the random noise in the data f on the solution of the inverse problem, we
introduce this noise in the data and solve the resulting inverse problem. So, the precise data f∗ is replaced
with the noisy data fε as

fε,kn = (1 + ε rnd ())f∗,kn,

where ε is the noise level and rnd () is the result of the random number generator with the normal distribution
in [−1, 1].

Tables 4, 5 illustrate the results of numerical solutions of both ϕ- and ψ-problems for various levels ε of
the noise. Since ‖ϕ?‖ = ‖ψ?‖ = 1/2, then the relative differences can be obtained from norms ‖ϕ − ϕ?‖,
‖ψ − ψ?‖ given in these tables via the multiplication by 5. In addition to the norm of the deviation of the
computed solution from the exact one ‖q−q∗‖, we present the norm of the deviation of the noisy data from
the exact one ‖fε − f∗‖, the value of the functional J [q] and estimates (3.41) and (3.42). The norm of the
gradient ‖∇qJ‖ < 10−10 at the last iteration for all ε and, therefore is not presented. The values of sf,max,
smin entering estimates (3.41), (3.42) are taken from Table 1 and Tables 2, 3 (γϕ = 200, γψ = 0.3). An
interesting feature of these results is that even at ε = 0.5, which corresponds to the 50% random noise in the
data the relative difference between computed and exact solutions does not exceed 4% for the ϕ−problem
and 10% for the ψ− problem.

One can see that the estimate (3.42) is more accurate than (3.41). To explain this, consider the case when
the number of iterations is not limited. In this case we would obtain such a solution q that ‖∇qJ [q, fε]‖ = 0

Table 4: Deviation of numerical solution for ϕ-problem with ϕ∗ = sin (2πx/a) sin (2πy/b)
ε ‖fε − f∗‖ J [ϕ] ‖ϕ−ϕ∗‖ Estimate (3.41) Estimate (3.42)

0 0 3.55 · 10−15 1.24 · 10−13 2.38 · 10−12 1.45 · 10−8

0.001 0.001 8.27 · 10−7 1.29 · 10−5 0.003 4.55 · 10−4

0.005 0.006 2.09 · 10−5 6.35 · 10−5 0.018 0.002
0.01 0.013 8.39 · 10−5 1.88 · 10−4 0.038 0.004
0.05 0.066 2.01 · 10−3 6.87 · 10−4 0.187 0.022
0.1 0.134 8.17 · 10−3 1.53 · 10−3 0.377 0.045
0.5 0.682 0.210 7.99 · 10−3 1.918 0.229

Table 5: Deviation of numerical solution for ψ-problem with ψ∗ = sin (2πx/a) sin (2πy/b)
ε ‖fε − f∗‖ J [ψ] ‖ψ −ψ∗‖ Estimate (3.41) Estimate (3.42)

0 0 5.551 · 10−17 3.865 · 10−11 7.45 · 10−11 1.32 · 10−8

0.001 1.57 · 10−4 1.129 · 10−8 3.408 · 10−5 4.64 · 10−4 3.87 · 10−4

0.005 7.56 · 10−4 2.595 · 10−7 1.672 · 10−4 2.23 · 10−3 1.86 · 10−3

0.01 1.51 · 10−3 1.047 · 10−6 3.215 · 10−4 4.48 · 10−3 3.73 · 10−3

0.05 7.76 · 10−3 2.709 · 10−5 1.854 · 10−3 0.022 0.019
0.1 0.015 1.111 · 10−4 3.136 · 10−3 0.046 0.038
0.5 0.076 2.591 · 10−3 0.019 0.225 0.187
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and J [q, fε] ≈ ‖fε − f‖2/2. Then
‖q − q∗‖(3.41)

‖q − q∗‖(3.42)
≈ 1

2

√
sf,max

smin
.

Therefore, if sf,max/smin > 4, then the estimate (3.42) is more accurate than (3.41). However, if sf,max/smin <
4, then the estimate (3.41) is more accurate than (3.42). Since sf,max/smin > 4 for both ϕ- and ψ-problems,
then the estimate (3.42) should give lesser values than (3.41). It follows from Tables 4, 5 that the computed
deviation of the solution is almost 10 times less than one predicted by the estimate (3.42). This may be
explained by the smoothness of the exact solution q∗.

We now consider the ϕ-problem for the δ-like test function ϕ∗(x, y) = δ(x−0.9)δ(y−0.9). This is an exact
analog of the problem of time reversal. The discrete analog of δ(x−0.9)δ(y−0.9) is ϕ∗,nm = δnn′δmm′/

√
hxhy,

where δnn′ = 0 if n = n′ and δnn′ = 0 otherwise; n′ is the index of the grid point close to x = 0.9; m′ is
the index of the grid point close to y = 0.9; hx and hy are discretization steps along the x- and y-axis
respectively. Figure 8 illustrates the solution of the problem with the quite high noise level ε = 0.5. The
norm of the deviation ‖ϕ − ϕ∗‖ = 2.78 · 10−2, while the estimate (3.42) gives 2.31 · 10−1. Hence, we have
now ≈ 7% of the relative error in the solution at 50% of the random noise in the data. Thus, the high
accuracy of numerical solutions cannot be attributed only to the smoothness of the exact solutions. So, we
provide some insights of this phenomenon in the next section. We note that Figure 8 demonstrates a quite
good refocusing of the time reversed wave field in the presence of a large amount of random noise in the
data.

6 Summary

We are motivated by an interesting experimentally observed phenomenon of refocusing of time reversed
wave fields [3]. Using a mathematical model of time reversal proposed in [6], we have developed method
for the numerical solution of the inverse problem of determining an unknown initial condition in the 2-D
wave equation utt = uxx + uyy. The support of the unknown initial condition is in the first quadrant of the
(x, y)−plane and the lateral Cauchy data are given at finite parts of coordinate axis. A number of numerical
results is presented, including the one (Figure 8), which directly models the phenomenon of refocusing in the
time reversal experiment. We have estimated convergence rates and accuracy of solutions of our algorithm
for both ϕ- and ψ−problems both analytically and numerically. An interesting feature of our computational
results is their surprisingly high accuracy even in the presence of a large amount of random noise in the
data. Indeed, at 50% noise in the data the relative error of our solutions repeatedly did not exceed a few

14



0

5

10

phi

0

1

2

x

0

1

2

y

-10

-5

0

5

10

15

phi

0

1

2

x

0

1

2

y

Figure 9: Solution of the ϕ-problem with ε = 0.3 (left) and ε = 0.5 (right)

per cent. In our opinion, this can be explained by the existence of a priori Lipschitz stability estimate [6]
for this inverse problem. We recall that the Lipschitz stability estimate is the best possible. Observe that
a similar high accuracy in the presence of a large amount of noise in the data was also demonstrated in
the much earlier work [10], where the 2-D wave equation was solved with the lateral Cauchy data at the
boundary of a square. Because this square is a bounded domain, then the Lipschitz stability of the problem
of [10] takes place [9, 7, 5], which is similar with the case of the above Inverse Problem 2.

Results of this paper provide a certain computational confirmation of the high degree of refocusing of
time reversed wave fields in the presence of “reflecting boundaries as waveguides or reverberating cavities”
(p. R2 in [3]), while Lipschitz stability estimates of [6, 9, 7, 5] might be viewed as ones providing a theoretical
foundation of this experimental observation. On the other hand, Figure 9 displays solution of the ϕ-problem
for ϕ∗(x, y) = δ(x − 0.9)δ(y − 0.9) (i.e., for the same ϕ∗ as above) and for the case when the Cauchy data
are given only at the y-axis, i. e. at the line Γ1 (see Figure 1). We have taken ε = 0.3 and 0.5, which is 30%
and 50% the random noise in the data. We got ‖ϕ − ϕ∗‖ = 0.36 and 1.02, or 90% and 250% of relative
error. It is clear that this result is much worse than one of Figure 8, although the noise level is less than in
the previous case. Although an analog of the stability estimate of [6] (i.e., in the “continuous case”) is not
yet proven for the geometry corresponding to Figure 9, but numerical tests of Figure 9 indicate that such
an estimate is likely much weaker than the Lipschitz estimate, because of different geometries
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