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Abstract

A parabolic equation and, more generally, parabolic inequality is considered in
the cylinder QT = Ω × (0, T ) , where Ω ⊂ Rn is a bounded domain. Cauchy data,
i.e., both Dirichlet and Neumann data are given at the lateral surface ST = ∂Ω ×
(0, T ). Logarithmic stability estimates are obtained for the unknown initial condition
at {t = 0}. These estimates enable one to establish convergence rate of a numerical
method for the inverse problem of the determination of that initial condition.

1 Introduction

Let Ω ⊂ Rn be a bounded domain with the piecewise smooth boundary ∂Ω and T = const. >
0. Denote QT = Ω× (0, T ) . Let L = L(x, t,D) be an elliptic operator of the second order in
QT ,

Lu := L(x, t,D)u =
n∑

i,j=1

aij(x, t)uij +
n∑

i,j=1

bj(x, t)uj + b0(x, t)u,

where uj = ∂u/∂xj. Here functions

aij ∈ C1
(
QT

)
, bj, b0 ∈ B

(
QT

)
,

where B
(
QT

)
is the space of functions bounded in QT . Naturally, we assume the existence

of a positive number σ such that

σ |ξ|2 ≤
n∑

i,j=1

aij(x, t)ξiξj, ∀ (x, t) ∈ QT ,∀ξ ∈ Rn. (1.1)
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Let the function u ∈ H2,1
(
QT

)
be a solution of the parabolic equation

ut = Lu+ f(x, t) in QT , (1.2)

where the function f ∈ L2 (QT ) with the unknown initial condition

u(x, 0) = g(x). (1.3)

Consider the Dirichlet and Neumann boundary data for this function at the cylindrical
surface ST = ∂Ω× (0, T ) ,

u |ST
= h1 (x, t) ,

∂u

∂n
|ST

= h2(x, t). (1.4)

We study the topic of stability of the following
Inverse Problem. Suppose that the initial condition g in (1.3) is unknown, but functions

h1 and h2 in (1.4) are known. Determine the function g(x).
This is an inverse problem of the determination of the initial condition in the parabolic

equation using lateral measurements. Applications are in such diffusion and heat conduction
processes in which one is required to determine the initial state using boundary time depen-
dent measurements. Uniqueness of this problem is well known and, therefore is not discussed
here, although it follows from the stability result of Theorem 1. We shall also consider a
more general

Stability Problem. Suppose that the function u ∈ H2,1 (QT ) satisfies the parabolic
inequality

|ut − L0u| ≤ A [|∇u|+ |u|+ |f |] , a.e. in QT , (1.5)

where A = const. > 0, ∇u = (u1, ..., un) and L0(x, t,D) is the principal part of the operator
L(x, t,D),

L0u := L0(x, t,D)u =
n∑

i,j=1

aij(x, t)uij.

Suppose that the initial condition g(x) in (1.3) is unknown. Estimate the function g(x) via
functions h1, h2 and f .

The main results of this paper are Theorems 1 and 2.
Theorem 1. Assume that above conditions imposed on the coefficients of the operator

L(x, t,D) are fulfilled. Denote F = (h1, h2, f) and

‖F‖ =
[
‖h1‖2

H1(ST ) + ‖h2‖2
L2(ST ) + ‖f‖2

L2(QT )

]1/2

. (1.6)

Suppose that ‖F‖ ≤ B, where B is a positive number. Assume also that in (1.3) the function
g ∈ H1 (Ω) . Then there exists a positive constant C such that for every number β ∈ (0, 2)
there exists a number ε0 ∈ (0, 1) such that for any function u ∈ H2,1 (QT ) satisfying (1.3)-
(1.5) the following stability estimate holds

‖g‖2
L2(Ω) ≤

C

β ln
[

B
ε0‖F‖

] · ‖|∇g|‖2
L2(Ω) + C

(
B

ε0

)β

‖F‖2−β . (1.7)
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The constant C depends only on the domain Ω, the number T , C1
(
QT

)
− norms of coeffi-

cients aij, the number σ in (1.1) and the number A in (1.5). The number ε0 depends on
these parameters, as well as on the parameter β.

To establish convergence rate for our numerical method (section 4), we need a more
general

Theorem 2. Assume that the function u ∈ H2,1 (QT ) satisfies boundary conditions (1.4)
and the integral inequality ∫

QT

(ut − Lu)2 dxdt ≤ K2, (1.8)

where K = const. > 0 and L = L(x, t,D) is the above elliptic operator. Let f(x, t) =
const. = K and the notation (1.6) holds. Suppose that ‖F‖ ≤ B, where B is a positive
number. Assume also that in (1.3) the function g ∈ H1 (Ω) . Then there exists a positive
constant C1 such that for every number β ∈ (0, 2) there exists a number ε1 ∈ (0, 1) such
that the following stability estimates hold

‖g‖2
L2(Ω) ≤

C1

β ln
[

B
ε1‖F‖

] · ‖|∇g|‖2
L2(Ω) + C1

(
B

ε1

)β

‖F‖2−β , (1.9)

‖u‖2
H1,0(QT ) ≤

C1

β ln
[

B
ε1‖F‖

] · ‖|∇g|‖2
L2(Ω) + C1

(
B

ε1

)β

‖F‖2−β . (1.10)

The constant C1 depends only on the domain Ω, the number T , C1
(
QT

)
− norms of coef-

ficients aij, the number σ in (1.1) and B
(
QT

)
−norms of coefficients bj(x, t) (j = 0, ..., n)

of the operator L. The number ε1 depends on these parameters, as well as on the parameter
β.

It follows from (1.7), (1.9) and (1.10) that if ‖F‖ → 0, then the first term in the right
hand sides of these inequalities approaches zero with a “logarithmic speed”, and the second
one as a power. If the first term would be absent, we would obtain the Hölder stability.
But because of the presence of this term, (1.7), (1.9) and (1.10) are logarithmic stability
estimates. Throughout the paper we assume that conditions of Theorem 1 are satisfied,
unless stated otherwise in proofs of theorems 2, 4, and 5. Notations of Theorem 1 are kept
below. Also, throughout the paper C and C1 denote different positive constants depending
on parameters listed in Theorem 1 and Theorem 2 respectively.

Remarks. 1. To prove these theorems, we use Carleman estimates. It is well known
that constants appearing in such estimates can be explicitly estimated via C1

(
QT

)
− norms

of coefficients aij, the number σ in (1.1) and numbers A and K. This means that one can
derive explicit estimates for constants C and ε0. However, we are not doing this here for
brevity.

2. Estimates (1.7), (1.9) and (1.10) are the so-called conditional stability estimates, see,
e.g., the book of Lavrent’ev, Romanov and Shishatskii [12] for the definition of conditional
stability estimates. This is because the stronger norm ‖|∇g|‖L2(Ω) is involved. Conditional
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stability estimates are typical ones for ill-posed problems such as, e.g., two problems formu-
lated above. One of basic facts of the theory of ill-posed problems, which follows from the
fundamental Tikhonov theorem [16] (the one about the continuity of the inverse operator on
a compact set) is that a conditional stability estimate for an ill-posed problem enables one to
obtain a priori estimate of the difference between the approximate and the exact solutions
of this problem, provided that the exact solution belongs to a priori chosen compact set,
see, e.g., (2.6) in §1 of Chapter 2 of [12]. This is quite helpful for establishing convergence
rate of a corresponding numerical method, see, e.g., Theorem 5 in section 4.

3. A stability estimate for an ill-posed problem usually relies on the assumption that
norms of certain input data are sufficiently small. For this reason, it is often assumed so
without considering the case when those norms are not small, see, e.g., Chapter 4 in [12]. In
order to avoid such a “smallness” assumption, we introduce constants B, ε0 and ε1. In the
course of our proofs we first somewhat “normalize” the data making their respective norms
less than ε0 (or ε1) and obtain a stability estimate this way. Next, we return to the original
data. Also, see Chapter 2 of the book of Klibanov and Timonov [7] for a systematic use of
this approach. While constants like B, ε0 and ε1 do not appear in well-posed problems (at
least, in linear problems), their appearance is quite natural in ill-posed problems.

The idea of proofs of Theorems 1 and 2 is to combine two Carleman estimates. The
first one is for the backwards parabolic equation/inequality, i.e., for the case when the data
are given at {t = t0} , where t0 ∈ (0, T ) , and one wants to estimate the solution u(x, t) for
t ∈ (0, t0) . And the second one is for the parabolic inequality (1.5) with the lateral Cauchy
data. Both these estimates can be found in the book [12], and the second one can also be
found in the book [7]. We note that, unlike (1.10), the second Carleman estimate does not
estimate the function u(x, t) in the entire cylinder QT via the lateral boundary data (1.4)
and the function f. Instead, it estimates u(x, t) only in a subdomain G ⊂ QT bounded by the
lateral side ST and the level surface of the Carleman Weight Function e2µϕ, see section 3 for
the definition of the function ϕ. The domain Gω defined in (3.4) is a typical example of such
a subdomain G. The single known estimate of the solution of the parabolic equation in the
entire cylinder QT via the lateral Cauchy data (1.4) is one of Fursikov and Imanuvilov [4].
However, this is a weighted estimate, and the weight function of [4] vanishes at {t = 0, T} .
Hence, Theorems 1 and 2 do not follow from [4].

The first Carleman estimate mentioned above traditionally enables one to obtain both
the Hölder stability and uniqueness for backwards parabolic equations and inequalities in
a sub-cylinder Q (τ , t0) = Ω × (τ , t0) via ‖u(x, t0)‖L2(Ω), where t0 ∈ (0, T ] , assuming that
either Dirichlet or Neumann zero boundary condition is given at the lateral surface ST , see
[12], as well as Lees and Protter [13]. However, estimates of [12] and [13] break down when
τ → 0+. Thus, an estimate of ‖u(x, 0)‖L2(Ω) in the backwards parabolic problem is a more
delicate matter. We obtain this estimate in Theorems 3 and 4 (section 2), which are new
results. The main new observation enabling us to estimate ‖u(x, 0)‖L2(Ω) is that a certain
boundary integral over {t = 0} occuring in the first Carleman estimate is non-negative, see
the third term in the right hand side of (2.6).

It was shown in Exercise 3.1.2 of the book of Isakov [5] that in the backwards parabolic
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problem, the logarithmic convexity method leads to a logarithmic stability estimate of
‖u(x, 0)‖L2(Ω) via ‖u(x, t0)‖L2(Ω) , D0 = supt∈(0,T ) ‖u(x, t)‖L2(Ω) and

D1 = supt∈(0,T ) ‖ut(x, t)‖L2(Ω) , see, e.g., books of Ames and Straugan [1], Isakov [5]
and Payne [15] for this method. Note that in our Theorems 3 and 4 numbers D0 and
D1 are not involved. The logarithmic convexity method can be applied only for the case
of the equation ut = L̃(x,D)u, where L̃(x,D) is a self-adjoint elliptic operator with t-
independent coefficients. Although there is a certain extension of this method on some
inequalities including parabolic ones (see pp. 42-47 in [5]), but it does not include the case
when |∇u| is involved in the right hand side of such an inequality (compare with (1.5)),
and it also needs some additional assumptions about t-dependencies of coefficients of the
operator L0, see example 3.1.8 in [5]. However, we consider a quite general case of the
parabolic inequality (1.5), in which the principal part L0(x, t,D) of the elliptic operator is
non self-adjoint, and we do not impose extra conditions on t−dependencies of coefficients.
Finally, another important observation is that our proof of convergence of the numerical
method (section 4) would not work if Theorem 1 would be valid only for the equation (1.2),
rather than for the inequality (1.5). Actually, we need for this proof a more general result
of Theorem 2.

The author is aware about three previously published similar results. Isakov and Kin-
dermann [6] have proven an analog of the estimate (1.7) for the function v(y, 0), where
the function v(y, t) satisfies the equation vt = vyy, y ∈ R,t > 0. The lateral Cauchy data
v(0, t) and vy(0, t) were used. Their proof is using the analyticity of the function v(y, t)
with respect to t. Note that the analyticity is not guaranteed in our case. Xu and Ya-
mamoto [17] have proven an analog of Theorem 1 for the heat equation ut = ∆u assuming
the zero Dirichlet boundary condition u |ST

= 0 and that the function u(x, t) is known for
(x, t) ∈ ω × (0, T ) ,where ω ⊂ Ω is a subdomian. They have used a combination of the
Carleman estimate of [4] with the logarithmic convexity method. It is assumed in [17] that
u ∈ C2,1

(
QT

)
. In terms of Sobolev spaces, the proof of [17] is valid if u ∈ H4,2 (QT ) , since

it actually requires that ut(x, 0) ∈ L2 (Ω). This is because the logarithmic convexity method

implies that in [17] the positive constant C4 ≤ C̃4 ‖ut(x, 0)‖L2(Ω) , where the positive con-

stant C̃4 depends on the domain Ω. Note that we use a more relaxed smoothness condition
u ∈ H2,1 (QT ) . Also, Yamamoto and Zou [18] have extended the result of [17] to the case
when the function u(x, t) is known for (x, t) ∈ ω × (δ, T ), where δ = const. ∈ (0, T ) . Be-
cause δ 6= 0, a pirori upper estimate for ‖g‖H2ε(Ω) with an ε > 0 is imposed in [18]. Also,{
ln
(
‖F‖−1)}−κ

, where κ ∈ (0, 1) , stands in [18] instead of our
{
ln
(
‖F‖−1 ·B/ε0

)}−1
. The

technique of [18] is similar with one of [17].
Our numerical method for the above Inverse Problem is a version of the quasi-reversibility

method (QRM) of Lattes and Lions [11]. In the parabolic case, convergence of the QRM
was proven in [11] only for the case when the function g(x) is given and the lateral data (1.4)
are given at a part Γ× (0, T ) of the surface ST , where Γ ⊂ ∂Ω. One of goals of section 4 is
to rigorously explain the robustness of previously published numerical results of the QRM
for the parabolic case, see the book of Danilaev [3] and papers of Klibanov and Danilaev [8]
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and Tadi, Klibanov and Cai [16] for these numerical results. Computational studies of the
QRM for the elliptic case were conducted in Bourgeois [2] and Klibanov and Santosa [9],
and for the hyperbolic case in Klibanov and Rakesh [10]. All these numerical studies have
consistently demonstrated a quite good robustness of the QRM.

It was shown in [7] that the QRM is a particular case of the Tikhonov regularization
functional, and, therefore smoothness conditions imposed on the solution in [11] can be
significantly relaxed. In addition, it was also shown in [7] how the convergence rates of
the QRM for different equations are connected with both Carleman estimates and stability
estimates. However, convergence of the QRM for the parabolic case was established in [7] only
in the above indicated subdomain G of the cylinder QT , which is not completely satisfactory
for the above Inverse Problem of the determination of the initial condition. Unlike this, we
establish here the logarithmic convergence rate in the entire cylinder QT .

In section 2 obtain the logarithmic stability estimate of the initial condition u(x, 0) in the
backwards parabolic inequalities (1.5) and (1.8). These results are used in section 3, where
we prove Theorems 1 and 2. In section 4 we formulate a numerical method for the above
Inverse Problem and establish its convergence rate.

2 An enhanced stability estimate for the backwards

parabolic inequality

Although lemmata 1 and 2 of this section are analogs of lemmata 1 and 2 of §2 of Chapter
4 of [12] (and of similar results of [13]), but we need detailed proofs of these results here,
because we need to obtain an estimate of ‖u(x, 0)‖L2(Ω), which is a new result (theorems 3
and 4). Compared with Lemma 3 of §2 of Chapter 4 of [12], the main new element of Lemma
3 of this section is the positive third term in the right hand side of (2.6). This term enables
us to estimate ‖g‖L2(Ω) , see (2.11).

Lemma 1. Let k be a positive constant. Then there exists a number λ0 > 1 depending
only on the number σ in (1.1) and C1

(
QT

)
-norms of functions aij such that for all λ ≥ λ0

and for all functions v ∈ C2,1
(
Qt0

)
the following estimate is valid in Qt0

(vt − L0v) v (k + t0 − t)−2λ ≥ σ

2
|∇v|2 (k + t0 − t)−2λ − Cλv2 (k + t0 − t)−2λ

+
n∑

i=1

(
−

n∑
j=1

aijvjv (k + t0 − t)−2λ

)
i

+

(
v2

2
(k + t0 − t)−2λ

)
t

.

Proof. We have

(vt − L0v) v (k + t0 − t)−2λ = vtv (k + t0 − t)−2λ −
n∑

i,j=1

aijvijv (k + t0 − t)−2λ

=

(
v2

2
(k + t0 − t)−2λ

)
t

− λv2 (k + t0 − t)−2λ−1 (2.1)
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+
n∑

i=1

(
−

n∑
j=1

aijvjv (k + t0 − t)−2λ

)
i

+
n∑

i,j=1

aijvivj (k + t0 − t)−2λ −
n∑

i,j=1

aij
i vjv (k + t0 − t)−2λ .

Estimate from below the last two terms in the right hand side of (2.1),

n∑
i,j=1

aijvivj (k + t0 − t)−2λ −
n∑

i,j=1

aij
i vjv (k + t0 − t)−2λ

≥ σ |∇v|2 (k + t0 − t)−2λ − C |∇v| |v| (k + t0 − t)−2λ (2.2)

≥
(
σ − Cε

2

)
|∇v|2 (k + t0 − t)−2λ − C

2ε
v2 (k + t0 − t)−2λ ,∀ε > 0.

We have used here the Cauchy-Schwarz inequality “with ε”, i.e.,
ab ≥ −εa2/2 − b2/2ε, ∀a, b ∈ R,∀ε > 0. Let ε = σ/C. Given this ε, choose λ0 > 1 such

that λ0 > C/ε = C2/σ. Then substituting the last line of (2.2) in (2.1), we obtain

(vt − L0v) v (k + t0 − t)−2λ ≥ σ

2
|∇v|2 (k + t0 − t)−2λ − 3λ

2
v2 (k + t0 − t)−2λ

+
n∑

i=1

(
−

n∑
j=1

aijvjv (k + t0 − t)−2λ

)
i

+

(
v2

2
(k + t0 − t)−2λ

)
t

,∀λ ≥ λ0.

�
Lemma 2. Let k be a positive constant and t0 ∈ (0, T ). Then for every λ > 0 and for

all functions v ∈ C2
(
Qt0

)
the following estimate is valid in Qt0

(vt − L0v)
2 (k + t0 − t)−2λ ≥ −C |∇v|2 (k + t0 − t)−2λ + λv2 (k + t0 − t)−2λ−2

+
n∑

i=1

(
−2

n∑
j=1

aijvjvt (k + t0 − t)−2λ

)
i

+

(
−λv2 · (k + t0 − t)−2λ−1 +

n∑
i,j=1

aijvivj (k + t0 − t)−2λ

)
t

.

Proof. Denote w = v (k + t0 − t)−λ . Then v = w (k + t0 − t)λ . Hence,

vt =
[
wt − λ (k + t0 − t)−1w

]
(k + t0 − t)λ , vi = wi (k + t0 − t)λ .

Hence,

(vt − L0v)
2 (k + t0 − t)−2λ =

(
wt − λ (k + t0 − t)−1w −

n∑
i,j=1

aijwij

)2
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≥ w2
t − 2λwtw (k + t0 − t)−1 − 2

n∑
i,j=1

aijwijwt

= w2
t +

(
−λw2 (k + t0 − t)−1)

t
+ λw2 (k + t0 − t)−2

+
n∑

i=1

(
−2

n∑
j=1

aijwjwt

)
i

+ 2
n∑

i,j=1

aijwjwti + 2
n∑

i,j=1

aij
i wjwt.

Hence,
(vt − L0v)

2 (k + t0 − t)−2λ

≥ w2
t + λw2 (k + t0 − t)−2 − C |∇w| |wt|

+

(
−λw2 (k + t0 − t)−1 +

n∑
i,j=1

aijwiwj

)
t

(2.3)

+
n∑

i=1

(
−2

n∑
j=1

aijwjwt

)
i

−
n∑

i,j=1

aij
t wiwj.

By the Cauchy-Schwarz inequality −C |∇w| |wt| ≥ −w2
t /2− 2C2 |∇w|2 . Hence, with a new

constant C
w2

t + λw2 (k + t0 − t)−2 − 2C |∇w| |wt|

≥ 1

2
w2

t − C |∇w|2 + λw2 (k + t0 − t)−2

≥ −C |∇w|2 + λw2 (k + t0 − t)−2 .

This and (2.3) lead to

(vt − L0v)
2 (k + t0 − t)−2λ ≥ −C |∇w|2 + λw2 (k + t0 − t)−2

+
n∑

i=1

(
−2

n∑
j=1

aijwjwt

)
i

+

(
−λw2 (k + t0 − t)−1 +

n∑
i,j=1

aijwiwj

)
t

.

Replacing here w with v = w (k + t0 − t)λ , we obtain the target inequality of this lemma. �
Lemma 3. Choose numbers t0 ∈ (0, T ) and k > 0 so small that k + t0 < 1 and

(k + t0)
−2 > 8C

{
min

[
1√
6A

,
σ

4 (C + 6A2)

]}−1

. (2.4)

Choose a number θ such that

1

2
min

[
1√
6A

,
σ

4 (C + 6A2)

]
≤ θ ≤ min

[
1√
6A

,
σ

4 (C + 6A2)

]
. (2.5)

Then there exists a constant λ1 ≥ λ0 > 1 depending only on the number σ in (1.1), C1
(
QT

)
-

norms of functions aij and the constant A such that if a function v ∈ H2,1 (Qt0) satisfies
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the parabolic inequality (1.5) in QT , then for all λ ≥ λ1 the following estimate is valid in
Qt0

6θA2

∫
Qt0

f 2 (k + t0 − t)−2λ dxdt

≥ σ

4

∫
Qt0

|∇v|2 (k + t0 − t)−2λ dxdt+
λθ

2

∫
Qt0

v2 (k + t0 − t)−2λ dxdt

+λ

(
θ − k + t0

2λ

)
(k + t0)

−2λ−1

∫
Ω

v2(x, 0)dx (2.6)

−θ (k + t0)
−2λ

n∑
i,j=1

∫
Ω

(
aijvivj

)
(x, 0)dx

−λ
(
θ − k

2λ

)
k−2λ−1

∫
Ω

v2(x, t0)dx+ θk−2λ

n∑
i,j=1

∫
Ω

(
aijvivj

)
(x, t0)dx

−
n∑

i=1

∫
St0

(
n∑

j=1

(2θvt + v) aijvj (k + t0 − t)−2λ

)
cos (n, xi) dS,

where n in cos (n, xi) is the outward normal vector at ST . The constant λ1 is independent
on a specific choice of positive numbers t0 and k, as long as t0 + k < 1 and the inequality
(2.4) holds.

Proof. Assume first that the function v ∈ C2
(
Qt0

)
. Multiply both sides of the inequality

of Lemma 2 by θ, sum up with the inequality of Lemma 1 and integrate over Qt0 . Noting
that (k + t0 − t)−2 ≥ (k + t0)

−2 for t ∈ (0, t0) , we obtain for all functions v ∈ C2
(
Qt0

)
∫

Qt0

[
θ (vt − L0v)

2 + (vt − L0v) v
]
(k + t0 − t)−2λ dxdt

≥
(σ

2
− Cθ

) ∫
Qt0

|∇v|2 (k + t0 − t)−2λ dxdt

+λθ

[
(k + t0)

−2 − C

θ

] ∫
Qt0

v2 (k + t0 − t)−2λ dxdt

+λ

(
θ − k + t0

2λ

)
(k + t0)

−2λ−1

∫
Ω

v2(x, 0)dx (2.7)

−θ (k + t0)
−2λ

n∑
i,j=1

∫
Ω

(
aijvivj

)
(x, 0)dx
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−λ
(
θ − k

2λ

)
k−2λ−1

∫
Ω

v2(x, t0)dx+ θk−2λ

n∑
i,j=1

∫
Ω

(
aijvivj

)
(x, t0)dx

−
n∑

i=1

∫
St0

(
n∑

j=1

(2θvt + v) aijvj (k + t0 − t)−2λ

)
cos (n, xi) dS, ∀λ > λ0,∀θ > 0.

Since (2.7) is valid for all functions v ∈ C2
(
Qt0

)
and the set C2

(
Qt0

)
is dense in the space

H2,1 (Qt0) , then (2.7) is also valid for all functions v ∈ H2,1 (Qt0) .
Suppose now that the function v ∈ H2,1 (Qt0) in (2.7) satisfies the inequality (1.5). Using

(1.5), (2.5) and the Cauchy-Schwarz inequality, we obtain that[
θ (vt − L0v)

2 + (vt − L0v) v
]
(k + t0 − t)−2λ

≤
[
2θ (vt − L0v)

2 +
1

2θ
v2

]
(k + t0 − t)−2λ

≤
[
6θA2 |∇v|2 +

(
1

2θ
+ 6θA2

)
v2 + 6θA2f 2

]
(k + t0 − t)−2λ

≤
[
6θA2 |∇v|2 +

2

θ
v2 + 6θA2f 2

]
(k + t0 − t)−2λ , a.e. in Qt0 .

Integrating this inequality over Qt0 and substituting then in (2.7), we obtain

6θA2

∫
Qt0

f 2 (k + t0 − t)−2λ dxdt ≥
[σ
2
− θ

(
C + 6A2

)] ∫
Qt0

|∇v|2 (k + t0 − t)−2λ dxdt

+λθ

[
(k + t0)

−2 − C

θ
− 2

λθ2

] ∫
Qt0

v2 (k + t0 − t)−2λ dxdt

+λ

(
θ − k + t0

2λ

)
(k + t0)

−2λ−1

∫
Ω

v2(x, 0)dx (2.8)

−θ (k + t0)
−2λ

n∑
i,j=1

∫
Ω

(
aijvivj

)
(x, 0)dx

−λ
(
θ − k

2λ

)
k−2λ−1

∫
Ω

v2(x, t0)dx+ θk−2λ

n∑
i,j=1

∫
Ω

(
aijvivj

)
(x, t0)dx

−
n∑

i=1

∫
St0

(
n∑

j=1

(2θvt + v) aijvj (k + t0 − t)−2λ

)
cos (n, xi) dS.
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Choose the number λ1 such that λ1 ≥ 2/ (Cθ) . Because of (2.5), it is sufficient to set

λ1 ≥
4

C
min

[
1√
6A

,
σ

4 (C + 6A2)

]−1

.

Since k + t0 ∈ (0, 1) ,hen (2.4) implies that in (2.8)

(k + t0)
−2 − C

θ
− 2

λθ2 >
(k + t0)

−2

2
>

1

2
, ∀λ ≥ λ1 (2.9a)

Also, by (2.4) and (2.5)
σ

2
− θ

(
C + 6A2

)
≥ σ

2
− σ

4
=
σ

4
. (2.9b)

Estimates (2.8) and (2.9a,b) imply (2.6). �
Theorem 3. Let the function u ∈ H2,1 (QT ) satisfies the parabolic inequality (1.5) and

boundary conditions (1.4). Consider the vector function W = (u, h1, h2, f) . For r ∈ (0, T )
denote

‖W‖r =
[
‖u(x, r)‖2

L2(Ω) + ‖h1‖2
H1(Sr) + ‖h2‖2

L2(Sr) + ‖f‖2
L2(Qr)

]1/2

Then there exist constants C > 0 and t ∈ (0, T ) such that for every β ∈ (0, 2) there exists a
constant δ0 ∈ (0, 1) such that if t0 ∈

[
t/2, t

]
and ‖W‖t0

≤ B, then the following logarithmic
stability estimate is valid

‖g‖2
L2(Ω) ≤

C

β ln
[

B
δ0‖W‖t0

] ‖|∇g|‖2
L2(Ω) + C

(
B

δ0

)β

‖W‖2−β
t0

,

where g(x) = u(x, 0) and the constant B is a given upper estimate of ‖W‖t0
. Constants

C and t depend only on C1
(
QT

)
-norms of coefficients aij and numbers σ, T and A. The

constant δ0 depends on the same parameters, as well as on β. Neither of these numbers
depends on t0, as long as t0 ∈

[
t/2, t

]
.

Proof. Choose a number t ∈ (0, T ) ∩ (0, 1) such that(
2

3t

)2

> 8C

{
min

[
1√
6A

,
σ

4 (C + 6A2)

]}−1

, (2.10)

where C is the constant of Lemma 3. Let k := t/2. Because of (2.10), (2.4) is satisfied for
every t0 ∈

[
t/2, t

]
. Choose an arbitrary t0 ∈

[
t/2, t

]
. Since(

t+ 2t0
2

)−2λ

= (k + t0)
−2λ ≤ (k + t0 − t)−2λ ≤

(
2

t

)2λ

,∀t ∈ [0, t0] ,

then (2.6) implies that(
t+ 2t0

2

)−2λ [
σ

4
‖|∇u|‖2

L2(Qt0)
+
λθ

2
‖u‖2

L2(Qt0)
+ λ

(
θ − t+ 2t0

4λ

)
2

t+ 2t0
‖g‖2

L2(Ω)

]
11



≤ C

(
2

t

)2λ

λ ‖W‖2
Qt0

+ C

(
t+ 2t0

2

)−2λ−1

‖|∇g|‖2
L2(Ω) , ∀λ ≥ λ1, (2.11)

where λ1 and θ are the same as in Lemma 3. Choose λ2 ≥ λ1 depending on C1
(
QT

)
-norms

of coefficients aij and numbers σ, T and A such that

t

λ2

≤ 1

4
min

[
1√
6A

,
σ

4 (C + 6A2)

]
.

Since t0 ∈
[
t/2, t

]
, then (2.4) and (2.5) imply that

θ − t+ 2t0
2λ

≥ θ

2
≥ 1

4
min

[
1√
6A

,
σ

4 (C + 6A2)

]
,∀λ ≥ λ2.

Multiplying both sides of (2.11) by λ−1·
[(
t+ 2t0

)
/2
]2λ

and keeping in mind that
(
t+ 2t0

)
/t ≤

3, we obtain

‖g‖2
L2(Ω) + ‖u‖2

L2(Qt0)
≤ C · 32λ ‖W‖2

t0
+
C

λ
‖|∇g|‖2

L2(Ω) ,∀λ ≥ λ2. (2.12)

Denote

ũ =
δ0

B
u, g̃ =

δ0

B
g, W̃ =

δ0

B
W, (2.13)

where the positive number δ0 will be chosen later. Then (2.12) becomes

‖g̃‖2
L2(Ω) + ‖ũ‖2

L2(Qt0)
≤ C · 32λ

∥∥∥W̃∥∥∥2

t0
+
C

λ
‖|∇g̃|‖2

L2(Ω) ,∀λ ≥ λ1. (2.14)

Note that by (2.13) ∥∥∥W̃∥∥∥
t0
≤ δ0. (2.15)

Choose an arbitrary constant β ∈ (0, 2) . Choose λ such that

32λ
∥∥∥W̃∥∥∥2

t0
=
∥∥∥W̃∥∥∥2−β

t0
.

Hence,

λ =
β

ln 9
· ln

 1∥∥∥W̃∥∥∥
t0

 . (2.16)

Since we should have λ ≥ λ2, then (2.15) and (2.16) lead to the following choice for δ0

0 < δ0 ≤ exp

[
−λ2 ln 9

β

]
.
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Replacing in (2.14) the vector
(
ũ, g̃, W̃

)
with the vector (u, g,W ) , we obtain the target

estimate of this theorem. �
To prove Theorem 2, we also need to prove
Theorem 4. Let the function u ∈ H2,1 (QT ) satisfies the parabolic inequality (1.8) and

boundary conditions (1.4). Let

max
0≤j≤n

‖bj‖B(QT ) ≤ A1,

where A = const. > 0. Denote f = const. ≡ K. Consider the vector function W =
(u, h1, h2, f) and denote r ∈ (0, T )

‖W‖r =
[
‖u(x, r)‖2

L2(Ω) + ‖h1‖2
H1(Sr) + ‖h2‖2

L2(Sr) +K2
]1/2

Then there exist constants C1 > 0 and t ∈ (0, T ) such that for every β ∈ (0, 2) there exists a
constant δ1 ∈ (0, 1) such that if t0 ∈

[
t/2, t

]
and ‖W‖t0

≤ B, then the following logarithmic
stability estimate is valid

‖g‖2
L2(Ω) ≤

C1

β ln
[

B
δ1‖W‖t0

] ‖|∇g|‖2
L2(Ω) + C1

(
B

δ1

)β

‖W‖2−β
t0

,

where g(x) = u(x, 0) and the constant B is a known upper estimate of ‖W‖t0
. Constants

C1 and t depend only on C1
(
QT

)
-norms of coefficients aij the numbers σ, T,K and A1.

The constant δ1 depends on the same parameters, as well as on β. Neither of these numbers
depends on t0, as long as t0 ∈

[
t/2, t

]
.

Proof. Let t ∈ (0, T ) ∩ (0, 1) and k = t/2. We will specify the number t later. Choose
and arbitrary t0 ∈

[
t/2, t

]
. We have for all λ > 0∫

QT

(ut − Lu)2 dxdt ≥
∫

Qt1

(ut − Lu)2 (k + t0 − t)−2λ (k + t0 − t)2λ dxdt

≥ k2λ

∫
Qt1

(ut − Lu)2 (k + t0 − t)−2λ dxdt.

Hence, by (1.8) ∫
Qt0

(ut − Lu)2 (k + t0 − t)−2λ dxdt ≤
(

2

t

)2λ

C1 ‖f‖2
L2(QT ) . (2.17)

Since

(ut − Lu)2 ≥ 1

2
(ut − L0u)

2 − 3 [(L− L0)u]
2 ≥ 1

2
(ut − L0u)

2 − C1

(
|∇u|2 + u2

)
,

13



then we obtain from (2.17) ∫
Qt0

(ut − L0u)
2 (k + t0 − t)−2λ dxdt (2.18)

≤ C1

∫
Qt0

(
|∇u|2 + u2

)
(k + t0 − t)−2λ dxdt+

(
2

t

)2λ

C1 ‖f‖2
L2(QT ) .

Since (2.7) holds for all functions v ∈ H2,1(Qt0), for all λ > λ0 > 1 and for all θ > 0, then
(2.7) also holds for the function u. Hence, it follows from the proof of Lemma 3 that one

can choose numbers θ1, θ2 > 0, θ1 < θ2, as well as numbers t ∈ (0, T ) ∩ (0, 1) and λ̂1 ≥ λ0,

all depending only on C1 and σ such that ∀θ ∈ [θ1, θ2] ,∀λ ≥ λ̂1,∀t0 ∈
[
t/2, t

]
the inequality

(2.6) is valid with the replacement (6θA2, v) → (C1, u) . Thus, the rest of the proof is the
same as in Theorem 3. �

3 Proofs of Theorems 1 and 2

3.1 Proof of Theorem 1

Denote y = (x2, ..., xn) . Without loss of generality we can assume that

Ω ⊂
{
x1 > x10 = const. > 0, x1 + |y|2 < 1

2

}
. (3.1)

Consider the function ψ(x, t) defined as

ψ(x, t) = x1 + |y|2 +

(
t− t

)2
b2

, (3.2)

where the number t ∈ (0, T ) was chosen in the proof of Theorem 3 (see (2.10)). By (2.10)
we can assume without loss of generality that t < T/2. Let s = maxΩ

(
x1 + |y|2

)
. We choose

the number b such that

3

4
· t
(

1

2
− s

)−1/2

< b < t

(
1

2
− s

)−1/2

. (3.3)

For ω ∈ (0, 1/2) denote

Gω =

{
(x, t) : x ∈ Ω, ψ(x, t) <

1

2
− ω.

}
(3.4)

It follows from (3.1)-(3.4) that

if 0 < ω1 < ω2 < 1/2, then Gω2 ⊂ Gω1 ⊂ G0 ⊂ QT . (3.5)
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Also, by (3.3) one can choose a number ω0 ∈ (0, 1/6) so small that

Ω×
[
t

2
, t

]
⊂ G3ω0 ⊂ G0 ⊂ QT . (3.6)

The boundary ∂Gω of the domain Gω consists of two parts,

∂Gω = ∂1Gω ∪ ∂2Gω, (3.7)

where

∂1Gω = Gω ∩ ST , ∂2Gω = Gω ∩
{
ψ(x, t) =

1

2
− ω

}
. (3.8)

For a positive parameter ν denote

ϕ(x, t) = [ψ(x, t)]−ν .

It follows from Lemma 3 of §1 of Chapter 4 of [12] that the following pointwise Carleman
estimate is valid for any function w ∈ C2.1

(
G0

)
(wt − L0w)2 exp(2µϕ) ≥M

[
µν |∇w|2 + µ3ν4ψ−2ν−2w2

]
exp(2µϕ)

+∇ · U + Vt, ∀ (x, t) ∈ G0,∀ν ≥ ν0,∀µ ≥ λ2,

where constants ν0, λ2 > 1 and M depend only on the domain Ω, the number b in (3.2) and
(3.3) and C1

(
G0

)
-norms of coefficients aij. The vector function (U, V ) satisfies the following

estimate
|(U, V )| ≤Mµ3ν3ψ−2ν−2

(
|∇w|2 + w2

)
exp(2µϕ).

Setting here ν = ν0, we obtain with a different constantM depending on the same parameters

(wt − L0w)2 exp(2µϕ) ≥M
(
µ |∇w|2 + µ3w2

)
exp(2µϕ) +∇ · U + Vt, (3.9)

∀ (x, t) ∈ G0,∀µ ≥ λ2,∀w ∈ C2.1
(
G0

)
,

|(U, V )| ≤Mµ3
(
|∇w|2 + w2

)
exp(2µϕ). (3.10)

Choose a function χ(x, t) ∈ C2
(
G0

)
such that

χ(x, t) =


1, for (x, t) ∈ G2ω0 ,

0, for (x, t) ∈ G0�Gω0 ,
between 0 and 1 for all other (x, t) ∈ G0.

 . (3.11)

Denote p(x, t) = u(x, t)χ(x, t), where the function u(x, t) satisfies conditions (1.4), (1.5).
Hence, the function p ∈ H2,1 (G0) and (1.4), (1.5), (3.7), (3.8) and (3.11) lead to

|pt − L0p| ≤ A [|∇p|+ |p|+ |f |] + Ã (1− χ) [|∇u|+ |u|] , a.e. in G0, (3.12)
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p |∂1G0= h1χ,
∂p

∂n
|∂1G0= h2χ+

∂χ

∂n
· h1, (3.13)

p |∂2G0= ∇p |∂2G0= 0, (3.14)

where the positive constant Ã ≥ A depends on the constant A and the number ω0.
Integrate the inequality (3.9) over G0 using (3.10) and the Gauss’ formula. Since in (3.10)

w ∈ C2,1
(
G0

)
is an arbitrary function and the set C2,1

(
G0

)
is dense in H2,1 (G0), then we

can pass to the limit as w → p ∈ H2,1 (G0) . Hence, (3.13) and (3.14) imply that∫
G0

(pt − L0p)
2 exp (2µϕ) dxdt ≥ Cµ

∫
G0

[
|∇p|2 + µ2p2

]
exp (2µϕ) dxdt (3.15)

−Cµ3 exp(2µc)
[
‖h1‖2

H1(ST ) + ‖h2‖2
L2(ST )

]
,∀µ ≥ λ2.

where
c = max

QT

ϕ(x, t).

Since by (3.11) and (3.12)∫
G0

(pt − L0p)
2 exp (2µϕ) dxdt ≤ 6A2

∫
G0

[
|∇p|2 + |p|2 + |f |2

]
exp (2µϕ) dxdt

+4A2
1

∫
G0

(1− χ)
[
|∇u|2 + u2

]
exp (2µϕ) dxdt,

and by (3.15) 1− χ = 0 in G2ω0 , then (3.11) implies that for all µ ≥ λ2

4A2
1

∫
G0�G2ω0

[
|∇u|2 + u2

]
exp (2µϕ) dxdt+ 6A2

∫
G0

[
|∇p|2 + |p|2 + |f |2

]
exp (2µϕ) dxdt

≥Mµ

∫
G0

[
|∇p|2 + µ2p2

]
exp (2µϕ) dxdt (3.16)

−Mµ3 exp(2µc)
[
‖h1‖2

H1(ST ) + ‖h2‖2
L2(ST )

]
.

Let λ1 > 1 be the number which was chosen in the proof of Theorem 3. Choose λ3 ≥
max (λ1, λ2) such that

6A2 ≤ Mµ

2
, ∀µ ≥ λ3

and
µ3 exp(2µc) < exp(3µc),∀µ ≥ λ3. (3.17)
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Hence, by (3.16)

4A2
1

∫
G0�G2ω0

[
|∇u|2 + u2

]
exp (2µϕ) dxdt+Mµ3 exp(2µc)

[
‖h1‖2

H1(ST ) + ‖h2‖2
L2(ST )

]
(3.18)

≥ Mµ

2

∫
G0

[
|∇p|2 + µ2p2

]
exp (2µϕ) dxdt.

Note that

exp (2µϕ) ≤ exp

[
2µ

(
1

2
− 2ω0

)−ν0
]

in G0�G2ω0 . (3.19)

Also,

exp

[
2µ

(
1

2
− 2ω0

)−ν0
]
< exp(2µc). (3.20)

The standard energy estimate for the parabolic equation, whose proof can be easily extended
to the parabolic inequality (1.5) leads to

‖u‖2
L2(QT ) + ‖|∇u|‖2

L2(QT ) ≤ C
[
‖g‖2

L2(Ω) + ‖h1‖2
L2(ST ) + ‖h2‖2

L2(ST )

]
.

Hence, (3.19) leads to ∫
G0�G2ω0

[
|∇u|2 + u2

]
exp (2µϕ) dxdt

≤ exp

[
2µ

(
1

2
− 2ω0

)−ν0
] ∫

G0�G2ω0

[
|∇u|2 + u2

]
dxdt (3.21)

≤ C
[
‖g‖2

L2(Ω) + ‖h1‖2
L2(ST ) + ‖h2‖2

L2(ST ) + ‖f‖2
L2(QT )

]
· exp

[
2µ

(
1

2
− 2ω0

)−ν0
]
.

Recall that
‖F‖2 = ‖h1‖2

H1(ST ) + ‖h2‖2
L2(ST ) + ‖f‖2

L2(QT ) .

Hence, (3.17)-(3.21) imply that

C exp

[
2µ

(
1

2
− 2ω0

)−ν0
]
‖g‖2

L2(Ω) + C ‖F‖2 · exp(3µc) (3.22)

≥ µ

∫
G0

[
|∇p|2 + µ2p2

]
exp (2µϕ) dxdt,∀µ ≥ λ3.
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Note that by (3.5) and (3.11) u = p in G3ω0 . Also,

exp (2µϕ) ≥ exp

[
2µ

(
1

2
− 3ω0

)−ν0
]

in G3ω0 .

Hence, (3.5) and (3.22) imply that

C exp

[
2µ

(
1

2
− 2ω0

)−ν0
]
‖g‖2

L2(Ω) + C ‖F‖2 exp(3µc)

≥ µ

∫
G3ω0

[
|∇p|2 + µ2p2

]
exp (2µϕ) dxdt

≥ exp

[
2µ

(
1

2
− 3ω0

)−ν0
] ∫

G3ω0

[
|∇u|2 + u2

]
dxdt, ∀µ ≥ λ3.

Dividing both sides by

exp

[
2µ

(
1

2
− 3ω0

)−ν0
]
,

we obtain

C exp (−2µρ) ‖g‖2
L2(Ω) + C ‖F‖2 exp(3µc) ≥

∫
G3ω0

[
|∇u|2 + u2

]
dxdt, ∀µ ≥ λ3, (3.23)

where

ρ =

(
1

2
− 3ω0

)−ν0

−
(

1

2
− 2ω0

)−ν0

> 0.

By (3.6) and the mean value theorem there exists a number t0 ∈
(
t/2, t

)
such that∫

Ω

u2(x, t0)dx ≤
2

t

∫
G3ω0

u2dxdt.

This and (3.23) lead to∫
Ω

u2(x, t0)dx ≤ C exp (−2µρ) ‖g‖2
L2(Ω) + C ‖F‖2 exp(3µc),∀µ ≥ λ3. (3.24)

We now recall the notation ‖W‖t0
of Theorem 3. Since ‖F‖ ≥ ‖W‖t0

, then substituting
(3.24) in (2.12), we obtain for all λ, µ ≥ λ3

‖g‖2
L2(Ω) ≤ C · 32λ exp (−2µρ) ‖g‖2

L2(Ω) + C · 32λ exp(3µc) ‖F‖2 +
C

λ
‖|∇g|‖2

L2(Ω) , (3.25)
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Choose µ = µ (λ) as follows

µ = µ (λ) =
2λ

ρ
ln 3.

Then there exists a number λ4 ≥ λ3 such that µ (λ) ≥ λ3,∀λ ≥ λ4. Furthermore with such
a choice of µ we have

32λ exp (−2µρ) = 3−2λ

and

32λ exp(3µc) = exp (λρ1) , ρ1 =
6c

ρ
+ ln 9.

Hence, (3.25) leads to

‖g‖2
L2(Ω) ≤ C · 3−2λ ‖g‖2

L2(Ω) + C exp(λρ1) ‖F‖
2 +

C

λ
‖|∇g|‖2

L2(Ω) ,∀λ ≥ λ4.

Choose a number λ5 ≥ λ4 such that C · 3−2λ ≤ 1/2. Then

‖g‖2
L2(Ω) ≤ C exp(λρ1) ‖F‖

2 +
C

λ
‖|∇g|‖2

L2(Ω) , ∀λ ≥ λ5. (3.26)

Similarly with (2.13) denote

g̃ =
ε0

B
g, F̃ =

ε0

B
F, (3.27)

where the number ε0 will be chosen later. Then (3.26) holds for functions g̃ and F̃ , i.e.,

‖g̃‖2
L2(Ω) ≤ C exp(λρ1)

∥∥∥F̃∥∥∥2

+
C

λ
‖|∇g̃|‖2

L2(Ω) , ∀λ ≥ λ5. (3.28)

Take an arbitrary β ∈ (0, 2) and choose λ such that

exp(λρ1)
∥∥∥F̃∥∥∥2

=
∥∥∥F̃∥∥∥2−β

.

Hence,

λ =
β

ρ1

ln

 1∥∥∥F̃∥∥∥
 . (3.29)

Since
∥∥∥F̃∥∥∥ ≤ ε0 and we should have λ ≥ λ5, then (3.27) and (3.29) lead to the following

requirement for ε0

ε0 ≤ exp

(
−ρ1λ5

β

)
.

Thus, (3.27)-(3.29) imply (1.7). �
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3.2 Proof of Theorem 2

We keep notations of the proof of Theorem 1. By (1.8)

K2 ≥
∫

QT

(ut − Lu)2 exp (2µϕ) exp (−2µϕ) dxdt ≥ e−2µc

∫
QT

(ut − Lu)2 exp (2µϕ) dxdt.

Since by (3.5) G0 ⊂ QT , then this inequality leads to∫
G0

(ut − Lu)2 exp (2µϕ) dxdt ≤ C1 ‖f‖2
L2(QT ) e

2µc. (3.30)

Further,
u = χu+ (1− χ)u = p+ (1− χ)u.

Hence,
ut − Lu = (pt − Lp) + (1− χ) (ut − Lu) +Q(x, t),

where
|Q(x, t)| ≤ C1 (|∇χ|+ |χt|) (|∇u|+ |u|) .

Hence, using the Cauchy-Schwarz inequality, (3.30) and the fact that by (3.11) |∇χ|+|χt| = 0
in G2ω0 , we obtain that ∫

G0

(pt − L0p)
2 exp (2µϕ) dxdt

≤ C1

∫
G0

[
|∇p|2 + |p|2

]
exp (2µϕ) dxdt

+C1

∫
G0�G2ω0

[
|∇u|2 + u2

]
exp (2µϕ) dxdt+ C1 ‖f‖2

L2(QT ) e
2µc, ∀µ ≥ λ2.

This and (3.15) lead to a direct analog of (3.16), i.e.,

C1 ‖f‖2
L2(QT ) e

2µc+C1

∫
G0�G2ω0

[
|∇u|2 + u2

]
exp (2µϕ) dxdt+C1

∫
G0

[
|∇p|2 + |p|2

]
exp (2µϕ) dxdt

≥ µ

∫
G0

[
|∇p|2 + µ2p2

]
exp (2µϕ) dxdt

−µ3 exp(2µc)
[
‖h1‖2

H1(ST ) + ‖h2‖2
L2(ST )

]
, ∀µ ≥ λ2.

The rest of the proof is the same as the proof of Theorem 1 after (3.16). �
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4 Convergent Numerical Method

We want to find an approximate solution (u, g) of the problem (1.2)-(1.4), assuming, of course
that the initial condition g(x) is unknown. First, it is convenient to obtain zero boundary
conditions in (1.4). Suppose that there exists a function P ∈ H2,1 (QT ) such that

P |ST
= h1,

∂P

∂n
|ST

= h2.

Denote
w = u− P, f̃ = f − (Pt − LP ) , g̃ = g − P (x, 0) .

Then
wt − Lw = f̃ in QT , (4.1)

w |ST
=
∂w

∂n
|ST

= 0, (4.2)

w (x, 0) = g̃ (x) . (4.3)

Introduce a Sobolev space H (QT ) by

H (QT ) =

{
y : ‖y‖2

H := ‖y‖2
H2,1(QT ) + ‖|∇yt|‖2

L2(QT ) <∞, y |ST
=
∂y

∂n
|ST

= 0

}
.

Let 〈, 〉 be the scalar product in H (QT ) . We minimize the Tikhonov functional, see, e.g.,
Tikhonov and Arsenin [16],

Jα (w) =
∥∥∥wt − Lw − f̃

∥∥∥2

L2(QT )
+ α ‖w‖2

H , (4.4)

where α > 0 is the regularization parameter. Since the Frechét derivative of Jα (w) is zero
at the minimizer wα, then the minimizer wα satisfies the following conditions∫

QT

(wα
t − Lwα) (yt − Ly) dxdt+ α 〈wα, y〉 =

∫
QT

f̃ (yt − Ly) dxdt, (4.5)

wα ∈ H (QT ) ,∀y ∈ H (QT ) . (4.6)

Hence, the function wα ∈ H (QT ) is the weak solution of the problem (4.5), (4.6). The
following result follows immediately from the Riesz’ theorem

Lemma 4. For every α > 0 there exists unique solution wα ∈ H (QT ) of the boundary
value problem (4.5), (4.6) and the following estimate holds

‖wα‖2
H ≤ C

α

∥∥∥f̃∥∥∥2

L2(QT )
.

To address a more difficult (than existence) question about convergence, we need to
introduce error in the data and to use Theorem 1. Following the concept of Tikhonov for
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solutions of ill-posed problems [16], we assume that there exists an “ideal” exact data f̃ ∗ ∈
L2 (QT ) and the “ideal” exact solution w∗ ∈ H (QT ) of the problem (4.1), (4.2) corresponding
to this data (It follows from Theorem 1 that if such a solution exists, then it is unique).

However, since actual data f̃ is always given with an error, one cannot find that ideal
solution w∗. Instead, one can only hope to find an approximation for this solution. Hence,
we assume that ∥∥∥f̃ − f̃ ∗

∥∥∥
L2(QT )

≤ δ < 1, (4.7)

where δ is an upper estimate of the level of the error in the data. So, we want to figure out
the choice of the regularization parameter α = α (δ) and to estimate the difference between
the approximate solution wα(δ) and the exact one w∗ as δ → 0+. The following convergence
result is valid.

Theorem 5. Let functions w∗ and f̃ ∗ be those which were introduced above. Let in
(4.4)-(4.6) α = α (δ) = δ and the inequality (4.7) be fulfilled. Let sδ = wα(δ) − w∗ be
the difference between the regularized wα(δ) and the exact w∗ solutions . Then there exists a
positive constant C1 such that for every number β ∈ (0, 2) there exists a number δ2 ∈ (0, 1)
such that for all δ ∈ (0, δ2) the following estimates hold∥∥(wα(δ) − w∗

)
(x, 0)

∥∥2

L2(Ω)
≤ C1δ

−β
2

[
1 + ‖w∗‖2

H

]
· 1

β ln
(

1
δ2δ

) , (4.8)

‖sδ‖2
H1,0(QT ) ≤ C1δ

−β
2

[
1 + ‖w∗‖2

H

]
· 1

β ln
(

1
δ2δ

) (4.9)

The constant C1 depends only on the domain Ω, the number T , C1
(
QT

)
− norms of coeffi-

cients aij, the number σ in (1.1) and B
(
QT

)
-norms of coefficients at low order terms of the

operator L. The number δ2 depends on the same parameters, as well as on the parameter
β.

Remark. Hence, estimates (4.8) and (4.9) tell one that if one a priori imposes a bound
on H (QT )-norms of solutions, ‖w∗‖H ≤ M1, where M1 = const. > 0, and sets a connection
α (δ) = δ between the regularization parameter α and the upper estimate δ of the level of
the error in the data, then the regularized solution wα(δ) converges to the exact one with the
logarithmic speed, as long as δ → 0+.

Proof of Theorem 5. Let q = f̃ − f̃ ∗. Then by (4.7) ‖q‖L2(QT ) ≤ δ. Using (4.1), (4.2),
(4.5) and (4.6), we obtain∫

QT

(sδt − Lsδ) (yt − Ly) dxdt+ α 〈sδ, y〉 =

∫
QT

q (yt − Ly) dxdt+ α 〈w∗, y〉 ,∀y ∈ H (QT ) .

Setting here y := s, α := δ and applying the Cauchy-Schwarz inequality and (4.7), we obtain∫
QT

(sδt − Lsδ)
2 dxdt ≤

(
1 + ‖w∗‖2

H

)
δ, (4.10)
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‖sδ‖2
H ≤ 1 + ‖w∗‖2

H . (4.11)

To apply Theorem 2, set

K2 :=
(
1 + ‖w∗‖2

H

)
δ, f := const. = K,F = (0, 0, f) , B =

√
1 + ‖w∗‖2

H .

It follows from the definition of the space H (QT ), the trace theorem and (4.11) that
‖|∇sδ(x, 0)|‖2 ≤ C1

(
1 + ‖w∗‖2

H

)
. Hence, Theorem 2 and (4.10) imply (4.8) and (4.9). �
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