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Abstract

We consider the incompressible stationary flow of a fluid past a semi-infinite flat plate. This is
a very old and well studied problem and is discussed in most introductory texts on fluid mechanics.
Indeed, an easy scaling argument shows that far downstream the flow should be to leading order
described by the so called Blasius solution, and this has been confirmed to good precision by ex-
periments. However, there still exists no mathematical proof of the existence of a solution of the
Navier-Stokes equations for this situation. Here, we do not prove existence of a solution either, but
rather show that the problem might be even more complicated than hitherto thought, by providing
solid arguments that a solution with broken symmetry should exist. Namely, by using techniques
from dynamical system theory we analyze in detail the vorticity equation for this problem, and show
that a symmetry-breaking term fits naturally into a downstream asymptotic expansion of a solution.
This new term replaces the symmetric second order logarithmic term found in the literature. In con-
trast to all earlier work our expansion produces order by order smooth divergence free vector fields
satisfying all the boundary conditions. To check that our asymptotic expressions can be completed to
a solution of the Navier-Stokes equations we also solve the problem numerically, by using our results
to prescribe artificial boundary conditions for a sequence of truncated domains. The results of these
numerical computations are clearly compatible with the existence of a symmetry-breaking solution.

Mathematics Subject Classification (2000). 76D05, 76D25, 76M10, 41A60, 35Q35.

Keywords. Navier-Stokes equations, semi-infinite plate, symmetry-breaking.

1 Introduction
The study of the stationary Navier-Stokes flow of an incompressible fluid past a semi-infinite flat plate
that is aligned with the flow at infinity has a long history [3], [22], [13], [24], [20]. The so called Blasius
solution [3], is discussed in essentially any introductory textbook on fluid dynamics [2], [17], [19], [7]. It
is one of the cornerstones of boundary layer theory [19] and serves as an input to the so called triple
deck solution at the trailing end of a flat plate of finite length [18], [6]. Quantities that are routinely
used by engineers, like the “displacement thickness” for instance, are based on the intuition that we have
gained through this analysis [19], [3], [17], [7]. The semi-infinite flat plate flow also plays a role in the
Orr-Sommerfeld stability theory [19] which was developed to predict the point at which the boundary
layer on a wing becomes unstable. A complete mathematical understanding of this problem is therefore
very desirable, would put a whole body of work on a solid footing, and might in addition shed light on a
related important open question [10].
Given its practical importance, it is astonishing how little is known about this problem on a math-

ematical level. Indeed, there still exists no proof that the Navier-Stokes equations admit a stationary
solution in the corresponding domain. In order to gain some insight into the structure of such a solution
various authors have constructed higher order terms of a downstream asymptotic expansion which has
as its leading order term (order zero) the solution of the Blasius equation. A first very nice paper on this
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subject was written by H. L. Alden [1]. It was however rapidly pointed out by other authors [22] that
the second order term found by Alden could not be correct, since it predicted a vorticity that was not
decaying exponentially fast transverse to the flow, in contradiction with experimental observation. This
problem was then discussed by S. Goldstein [13] and later by M. Van Dyke [24]. In his very interesting ar-
ticle [13] Goldstein showed the impossibility to cure the problem by the introduction of a first order term,
and reluctantly concluded that the only possibility for correcting the problem encountered by Alden was
the introduction of a second order term containing logarithms. This theory has been recently reviewed
in [20]. Interestingly enough it appears to have passed unnoticed in the literature that the logarithmic
term violates the boundary conditions at infinity. Such difficulties with boundary conditions are not new
and are considered not to be fundamental by many, but it should not be forgotten that a similar problem
with the boundary conditions for the Blasius solution was the very reason for which higher order terms
and matched asymptotic expansions were introduced in the first place (see Section 3).
Be this as it may, an asymptotic expansion satisfying term by term divergence freeness and all the

boundary conditions in a natural way is evidently satisfactory. Similar expansions for the case of lam-
inar flows around an obstacle of finite size have recently been discussed in [15], [4], [5]. There, such
well-behaved expansions were used for prescribing artificial boundary conditions when solving the cor-
responding problem numerically by truncating the infinite domain to a finite computational domain.
Here, we will use similar techniques in order to verify numerically that our asymptotic expressions can
be completed to a solution of the Navier-Stokes equations.
As in [5] our construction of an asymptotic expansion follows basically the old ideas of Alden [1],

Goldstein [13] and Van Dyke [24], supplemented with the more recent ideas from dynamical systems
theory. It is these new ideas which allow us to properly address questions related to the boundary
conditions. As mentioned above, Goldstein introduced his second order logarithmic correction term
in order to resolve the problem with the slowly decaying vorticity term found by Alden. Our new
asymmetric first order term achieves the same and makes logarithmic terms superfluous. The reason for
which Goldstein could not find such a first order term is that he was restricting himself (implicitly) to
symmetric flows. More historic details can be found in Section 4 and Section 5.
To summarize, the goal of this paper is two-fold: First, by providing solid evidence that a solution

with broken symmetry should exist we show that the mathematical problem concerning the existence
of solutions may be more complicated than hitherto thought. Second, by formulating our result as a
detailed conjecture we provide an explicit framework for further research. Such an approach has already
proved fruitful in fluid dynamics in the past. An example is the introduction of the concept of physically
reasonable solutions by Finn [9], a framework which helped to solve the questions concerning regularity
and uniqueness of stationary solutions for the case of flows for exterior domains with a smooth finite
boundary.
So, consider a semi-infinite flat plate that is put into a uniform stream of a homogeneous incompressible

fluid filling up all of R2, aligned such that the fluid flows at infinity parallel to the plate. The same
problem can be posed in R3, but reduces to the problem in R2 if we restrict ourselves to solutions that
are independent of the third coordinate. The situation under consideration is therefore in both cases
modeled by the stationary Navier-Stokes equations

−ρ (ũ ·∇) ũ+ µ∆ũ−∇p̃ = 0 , (1)

∇ · ũ = 0 , (2)

in Ω = R2 \B, with B = [0,∞), subject to the boundary conditions

ũ|B = 0 , (3)

lim
ρ→∞

ϕ∈(0,2π)
x∈R

ũ((x, 0) + ρe(ϕ)) = ũ∞ . (4)

Here, ũ is the velocity field, p̃ is the pressure, ũ∞ = u∞e1 with e1 = (1, 0) and u∞ > 0, and e(ϕ) =
(cos(ϕ), sin(ϕ)). The notation in the limit in (4) means that ρ goes to plus infinity for arbitrary but
fixed ϕ ∈ (0, 2π) and x ∈ R. The density ρ and the viscosity µ are arbitrary positive constants. The
boundary condition (4) may not look very natural at first. It can however not be replaced by the limit
where the argument of u goes to infinity in an arbitrary way since, because of (3), one expects that
limx→∞ ũ(x, y) = 0 for fixed y ∈ R. In directions transversal to the flow the vector field ũ should
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however converge to ũ∞, and the formulation in (4) in particular ensures that limy→±∞ u(x, y) = ũ∞
for arbitrary fixed x ∈ R. From µ, ρ and u∞ we can form the length ,

=
µ

ρu∞
, (5)

the so called viscous length of the problem. Usually, for an exterior problem with a domain of diameter
A, we can compute the Reynolds number Re = A/ . The geometry of the present problem is however
invariant under rescaling (i.e., Re = ∞) so that we can assume without restriction of generality that
µ = ρ = 1. Namely, if we define dimensionless coordinates x = x̃/ , and introduce a dimensionless vector
field u and a dimensionless pressure p through the definitions

ũ(x̃) = u∞u(x) , (6)

p̃(x̃) = (ρu2∞)p(x) , (7)

then in the new coordinates we get instead of (1)-(4) the equations

− (u ·∇)u+∆u−∇p = 0 , (8)

∇ · u = 0 , (9)

in the same domain Ω = R2 \B, subject to the boundary conditions
u|B = 0 , (10)

lim
ρ→∞

ϕ∈(0,2π)
x∈R

u((x, 0) + ρe(ϕ)) = e1 . (11)

In (8)-(9) all derivatives are with respect to the new coordinates.

The following conjecture is our main result.

Conjecture 1 There exists a vector field u = (u, v) and a function p satisfying the Navier-Stokes equa-
tions (8), (9) in Ω = R2 \ [0,∞), subject to the boundary conditions (10), (11), with the following
properties:
(i) there exists a sequence of divergence free vector fields uN =

PN
n=0(un, vn), N = 0, 1, 2, defined in Ω,

such that

lim
x→∞xN/2 sup

y∈R

¯̄̄̄
¯u(x, y)−

NX
n=0

un(x, y)

¯̄̄̄
¯ = 0 , (12)

lim
x→∞x(N+1)/2 sup

y∈R

¯̄̄̄
¯v(x, y)−

NX
n=0

vn(x, y)

¯̄̄̄
¯ = 0 , (13)

and
lim
ρ→∞

ϕ∈(0,2π)
x∈R

ρ[N/2]+1/2 (u− uN) ((x, 0) + ρe(ϕ)) = 0 . (14)

Here, [ ] means integer part (i.e., [N/2] = N/2 for N even and (N − 1)/2 for N odd), and e(ϕ) =
(cos(ϕ), sin(ϕ)), and the notation in the limit in (14) means that ρ goes to plus infinity for arbitrary but
fixed ϕ ∈ (0, 2π) and x ∈ R.
(ii) the functions ωn, ωn(x, y) = −∂yun(x, y)+ ∂xvn(x, y) are rapidly decaying functions of y for fixed x,
in the sense that limy→±∞ eC|y|ωn(x, y) = 0 for all C > 0, x ∈ R, and n = 0, 1, 2.

(iii) the vector fields (u0, v0) and (u2, v2) are mirror symmetric with respect to the x-axis, but (u1, v1),
and therefore u, are not.

Below we give explicit expressions for the vector fields uN . The rest of the paper is organized as
follows. In Section 2 we reformulate the problem in terms of the vorticity equation and give an outline
of our method. In Section 3 we recall the Blasius’ scaling ansatz and show that it leads, when applied
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correctly, to an approximate solution satisfying all the boundary conditions. In Section 4 we compute
higher order terms for the case of a solution with broken symmetry. These computations involve limits
of certain functions. All these limits, as well as all solutions of ordinary differential equations involved,
have been calculated using the computer algebra system Maple (Maple V, Release 4, and Maple 9.51).
For comparison with the literature we recall in Section 5 the symmetric expansion with Goldstein’s
logarithmic corrections. In Section 6 we discuss the stress tensor and give an expansion for the drag.
Section 7 contains the numerical results. The corresponding computer programs are written in ADA 95
and were executed on various PC’s. In Appendix I we give details concerning the the Blasius equation,
the computation of the drag, and discuss the Green’s function of the Laplacean for our domain. Appendix
II contains all the computational details related to the asymptotic expansion.

2 The vorticity equation
Let u = (u, v), and let

ω(x, y) = −∂yu(x, y) + ∂xv(x, y) . (15)

The function ω is the vorticity of the fluid. To solve (8) and (9) we can first solve (9) together with the
equation that we get by taking the curl of (8),

W (u, v, ω) ≡ − (u ·∇)ω +∆ω = 0 . (16)

Once (9), (15) and (16) are solved for u and ω, the pressure p can be constructed by solving the equation
that we get by taking the divergence of (8) subject to the appropriate boundary conditions.
As we will see below, Conjecture 1 follows from a detailed analysis of the vorticity equation (16). So

assume a solution (u, ω) to the above problem exists. Then, in analogy with recent results [26], [28], [15],
[27], [25],[12], [11], we expect the existence of functions ωn : Ω→ R and a nonnegative integer Nmax > 0
(possibly infinity), such that

lim
x→∞x(1+N)/2 sup

y∈R

¯̄̄̄
¯ω(x, y)−

NX
n=0

ωn(x, y)

¯̄̄̄
¯ = 0 , (17)

for 0 ≤ N ≤ Nmax. More precisely, let 0 < ε < 1/4, and let W be the Banach space of continuous
functions from Ω to R for which the norm k kW ,

kω̃kW = sup
(x,y)∈Ω

¯̄̄
ω̃(x, y |x|1/2)

¯̄̄
e|y| |x|3/2+ε (1 + e−x) ,

is finite. Then we expect that

ω =
2X

n=0

ωn + ω̃ , (18)

and for the symmetry breaking case of Conjecture 1 the functions ωn are conjectured to be of the form

ωn(x, y) = θ(x)x−(n+1)/2ϕ00n(
y√
x
) , (19)

with ϕn certain smooth functions with derivatives ϕ0n, ϕ
00
n decaying at infinity faster than exponential,

with ϕ0 and ϕ2 odd and with ϕ1 even (symmetry-breaking), with θ the Heaviside function (i.e., θ(x) = 1
for x > 1 and θ(x) = 0 for x ≤ 0), and with ω̃ ∈W. From the representation (18) the decomposition of
the vector field u in Conjecture 1 is obtained by solving equation (9) and (15).
In this paper we stay on a formal level and explain the construction of the functions ϕn by asymptotic

expansion techniques, using equation (16) as a starting point. The main problem with (16) is that it
involves in addition to the vorticity ω also the velocity u. For this reason, the traditional approach for
constructing an asymptotic expansions is to use an ad hoc ansatz for the stream function ψ from which
one then computes expansions for u and v and ω via

u(x, y) = ∂yψ(x, y) , v(x, y) = −∂xψ(x, y) , (20)
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and
ω(x, y) = −∆ψ(x, y) , (21)

and these expansions are then plugged into (16) and solved order by order. The stream function has
however a more complicated structure than the vorticity and in spite of the efforts of various authors the
matched asymptotic expansion for ψ of the traditional ansatz is plagued with inconsistencies concerning
the boundary condition (4). Here, we solve this problem by avoiding this ad hoc ansatz. The basic
observation is that from the vorticity ω and its downstream asymptotic expansion (18) an expansion of
the stream function can be obtained simply by using the definitions.
Namely, let ω be given. Then, the stream function ψ has to satisfy (21) in Ω, subject to the boundary

conditions

ψ|B = 0 , (22)

∂nψ|B = 0 , (23)

lim
ρ→∞

ϕ∈(0,2π)
x0∈R

(∂yψ,−∂xψ)((x0, 0) + ρe(ϕ)) = (1, 0) . (24)

Equations (22) and (23) are equivalent to (10), and (24) is equivalent to (11). Note that the system of
equations (21)-(24) is a priori over-determined, since for a problem of the form (21) only (22) (Dirichlet
problem) or (23) (Neumann problem) can be imposed1. The assumption that the Navier-Stokes problem
(8)-(11) has a solution therefore has the important implication that the vorticity ω has to be such that
(22) and (23) are equivalent, i.e., lead to the same solution ψ, and it is therefore essential to construct
an asymptotic expansion which is compatible with this requirement.

Definition 2 A function ω : Ω → R is called admissible, if there exists a unique solution ψ of equation
(21) subject to the boundary conditions (22) and (24) which satisfies (23).

The functions
PN

n=0 ωn constructed below for N = 0, 1, 2 will be shown to be admissible.

In practice we simply first solve (21) by using the Dirichlet boundary condition (22) and verify then
in a second step (23). So let ω be given, and define for (x, y) ∈ Ω the functions r and r− by the equations

r(x, y) =
p
x2 + y2 , r−(x, y) =

p
2r(x, y)− 2x . (25)

Then, the general solution of (21) satisfying the boundary conditions (22) and (24) is (see Appendix I
for details),

ψ(x, y) = y + αr−(x, y) + ψω(x, y) , (26)

with α ∈ R arbitrary, and with ψω = LG(ω), where

LG(ω)(x, y) = −
Z
Ω

G(x, y;x0, y0) ω(x0, y0) dx0dy0 , (27)

with G the Green’s function of the Laplacean in Ω with Dirichlet boundary conditions on [0,∞) and at
infinity. Namely,

G(x, y;x0, y0) = G̃(y/r−(x, y), r−(x, y)/2; y0/r−(x0, y0), r−(x0, y0)/2) , (28)

where

G̃(ξ, η; ξ0, η0) =
1

4π
log((ξ − ξ0)

2 + (η − η0)
2)

− 1

4π
log((ξ − ξ0)

2 + (η + η0)
2) . (29)

Note that G̃ is nothing else than the Green’s function of the Laplacean in the upper half plane H = {z ∈
C | Im(z) > 0} with Dirichlet boundary conditions on the real axis, and the arguments in the definition

1For the (singular) domain Ω at hand the solution of the Dirichlet or Neumann problem is determined by the above
boundary conditions only up to a multiple of a certain harmonic function, since the boundary condition (24) at infinity is
not sufficient to ensure uniqueness.
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(28) are obtained from the inverse of the conformal mapping H → Ω, z 7→ z2. Here we have interpreted
Ω as a subset of the complex plane. Let ψ0,∞(x, y) = y, ψ1,∞(x, y) = αr−(x, y) and ψn,∞ = 0 for n ≥ 2.
For the function ψ we will then use below for 0 ≤ N ≤ 2 the decomposition

ψ =
NX
n=0

ψn +RN , (30)

where,

ψn = ψn,∞ − LG(ωn) , (31)

RN =
∞X

n=N

ψn,∞ − LG(ω −
NX
n=0

ωn) , (32)

and we will show formally that there are functions ωn such that

lim
x,y→∞ r3/2∂xR2(x, y) = lim

x,y→∞ r3/2∂yR2(x, y) = 0 , (33)

provided the solution ω is indeed as conjectured in (18) with ω̃ ∈W.
Basically, the idea is now to use the functions

PN
n=0 ψn as an approximation to ψ in order to compute

approximations for u = (u, v) using (20). These approximations are then plugged together with the
approximation

PN
n=0 ωn for ω into (16) in order to obtain recursively equations for the functions ωn.

This way, by construction, all vector fields are smooth in Ω and satisfy the boundary conditions (22) and
(24) and a posteriori also (23), since the functions

PN
n=0 ωn turn out to be admissible in the sense of

Definition in 2. This solves the above mentioned consistency problems of the ad hoc procedures found
in the literature at the price of introducing non-local expressions for ψn due to the integration in the
definition (31). Such non-local expressions are not manipulated easily when trying to solve the resulting
equations for ωn, and for 0 ≤ N ≤ 2 we have therefore analyzed the functions ψn in detail. It turns
out that, modulo terms obeying the same bounds as R2 in (33), local approximations ψn,loc for ψn can
be constructed, such that if we use these approximations instead of ψn to compute the approximations
uN =

PN
n=0(un, vn) for u, the vector fields uN nevertheless satisfy all the boundary conditions.

3 Blasius equation and beyond
In order to motivate the mathematical analysis in subsequent sections we recall here briefly the Blasius’
theory [3], [18]. This also allows us to give the reader a first glimpse at our method. Let x, y > 0 and set
ψ(x, y) = ψB(x, y) ≡ √xf(y/√x), with f the solution of the Blasius equation, defined for z ≥ 0 by,

f 000(z) +
1

2
f(z)f 00(z) = 0 , f(0) = f 0(0) = 0 , lim

z→∞ f 0(z) = 1 . (34)

See equation (40) below and Appendix I for details concerning the equation. We have that

f 00(0) = a2 = 0.332057 . . . , (35)

lim
z→∞(f(z)− z) = a = −1.72078 . . . , (36)

and the function z 7→ f(z) − z − a and all its derivatives decay at infinity faster than exponential. See
Figure 3 for a graph of f 0, f 00 and z 7→ f(z) − z − a. The idea behind the above ansatz for the stream
function is the experimental observation that a boundary layer of width

√
x forms along the plate (see

for example [19]), and ψB is supposed to describe the flow in this boundary layer to leading order of an
expansion for large x and fixed ratio y/

√
x > 0. From ψB we find with (20)

uB(x, y) = ∂yψB(x, y) = f 0(
y√
x
) , (37)

vB(x, y) = −∂xψB(x, y) = −1
2

1√
x

µ
f(

y√
x
)− y√

x
f 0(

y√
x
)

¶
, (38)
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and from (21) we find, neglecting terms of order 1/x3/2,

ωB(x, y) = − 1√
x
f 00(

y√
x
) . (39)

By construction the vector field (uB, vB) is divergence free. We now substitute (37)-(39) into (16) and
compute the limit as x → ∞, keeping z = y/

√
x > 0 fixed. We find (by hand, or using a computer

algebra system) that

lim
x→∞x3/2W (uB , vB, ωB)(x, z

√
x) = −(1

2
ff 00 + f 000)0(z) , (40)

and the right hand side in (40) equals zero since f solves the Blasius equation (34). Therefore, in the
sense of the limit in (40), (37)-(39) provide a solution of equation (16) to leading order. Note that the
boundary conditions on f in (34) imply that uB(x, 0) = vB(x, 0) = 0 and that limy→∞ uB(x, y) = 1 for
x ≥ 0. Therefore the boundary condition (10) is satisfied, but because of (36) we find that for x > 0

lim
y→∞(uB, vB)(x, y) = (1,−

a

2
√
x
) 6= (1, 0) , (41)

i.e., the vector field (uB, vB) does not satisfy the boundary condition (11). At this point one usually
resolves to some sort of hand-waving and explains that the Blasius’ theory was after all only meant to
describe the flow within the boundary layer. The following proposition shows that, by following the
procedure outlined in the preceding section, the Blasius’ ansatz naturally leads to a vector field satisfying
all the boundary conditions:

Proposition 3 Let f be the solution of the Blasius equation (34) and define the function ω0 : Ω→ R by
the equation

ω0(x, y) = −sign(y)θ(x)√
x
f 00(

|y|√
x
) , (42)

with θ the Heaviside function (i.e., θ(x) = 1 for x > 0 and θ(x) = 0 for x ≤ 0). Then ω0 is admissible in
the sense of Definition 2.

A proof of this proposition is given in Appendix II.

From Proposition 3 it follows that there is a unique solution ψ0 of ∆ψ0 = −ω0 in Ω, such that the
vector field (∂yψ0,−∂xψ0) satisfies the boundary conditions (10), (11). In Appendix II we moreover
extract from ψ0 a local approximation ψ0,loc,

ψ0,loc(x, y) = y + a
yq

2
p
x2 + y2 − 2x

+ θ(x)sign(y)
√
x(f(

|y|√
x
)− |y|√

x
− a) . (43)

Note that since limy→0 y/r−(x, y) =
√
x sign(y) for x > 0, we find that that ψ0,loc(x, 0) = 0 for x > 0.

From (43) one finds the vector field u0 = (u0, v0) = (∂yψ0,loc,−∂xψ0,loc),

u0(x, y) = u0,E(x, y) + θ(x)(f 0(
|y|√
x
)− 1) , (44)

v0(x, y) = v0,E(x, y)− θ(x)sign(y)
1

2
√
x
(f(

|y|√
x
)− |y|√

x
f 0(

|y|√
x
)− a) , (45)

with

u0,E(x, y) = 1 +
a

4

r−(x, y)
r(x, y)

, v0,E(x, y) = −a
2

y

r−(x, y) r(x, y)
, (46)

and r and r− as defined in (25). It is easily checked that the vector field u0 is smooth in Ω. Note that

u0(x, y) = u0,E(x, y) + θ(x)(uB(x, |y|)− 1) ,
v0(x, y) = v0,E(x, y) + θ(x)sign(y)(vB(x, |y|) + a

2
√
x
) ,
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and therefore we see using (41) that the boundary conditions (10) and (11) are satisfied. Moreover we
find (see Appendix II) that

lim
x→∞x3/2W (∂yψ0,−∂xψ0, ω0)(x, z

√
x) = lim

x→∞x3/2W (u0, v0, ω0)(x, z
√
x) , (47)

and as in (40), that for z ∈ R

lim
x→∞x3/2W (u0, v0, ω0)(x, z

√
x) = −sign(z)(1

2
ff 00 + f 000)0(|z|) , (48)

with the right hand side of (48) being equal to zero because f solves the Blasius equation (34). This
means that the theoretical prediction for the leading order asymptotic shape of the flow in the boundary
layer is not affected by the replacement of (uB, vB , ωB) by (u0, v0, ω0). This is what we should expect,
since the correctness of the Blasius velocity profile has been experimentally checked to good precision
[19].
We conclude that, at least on the level of the Blasius ansatz, there is in fact no problem with boundary

conditions, provided we interpret it as an ansatz for the vorticity and not for the stream function. Last but
not least we note that the vector field u0 is similar to the leading order term of the matched asymptotic
expansion that Goldstein proposed in order to cure the problem with the limit (41). See [13].

3.1 Pressure

In Section 8 we need an approximate expression for the pressure. Let u = (u, v) = (∂yψ,−∂xψ). From
(8) we find for p the equation

∆p = 2(∂xu∂yv − ∂xv∂yu) = 2 J(ψ) , (49)

where J(ψ) is the Jacobian of ψ,

J(ψ) = det

µ
∂2xψ ∂x∂yψ
∂x∂yψ ∂2yψ

¶
.

Furthermore we get from (10), using (8) and (15) for x ≥ 0 the boundary condition

lim
y→±0

∂yp(x, y) = lim
y→±0

∂xω(x, y) . (50)

By hand, or using a computer algebra system, we find that

lim
x→∞x2J(ψ0,loc)(x, zx

1/2) = ρ000(|z|) , (51)

where

ρ0(z) = −1
4
f(z)2 +

1

4
zf(z)f 0(z) +

1

2
zf 00(z) +

a

4
z +

a2

4
.

Note that limz→∞ ρ0(z) = 0. From (50) and (42) we get that an approximation p0 to the pressure has to
satisfy the boundary condition

lim
y→±0

∂yp0(x, y) = lim
y→±0

∂xω0(x, y) =
a2
2

sign(y)

x3/2
. (52)

Since ∆ρ0(y/x1/2) ≈ ∂2yρ0(y/x
1/2) in the sense of limit (48), we conclude from (51) that the function ρ0

determines the pressure to leading order, modulo a harmonic function which has to be chosen such that
the boundary condition (52) is satisfied. We therefore get that p ≈ p0, where

p0(x, y) =
θ(x)

x
ρ0(

|y|√
x
)− a

4

q
2
p
x2 + y2 − 2xp
x2 + y2

. (53)
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4 The symmetry-breaking case
When analyzing equation (16) to leading order in the sense of limit (48) we found the Blasius equation,
which is a nonlinear third order ordinary differential equation. Similarly, when discussing the higher
order term of order n ≥ 1, one finds the equation

Lngn = jn ,

for certain functions jn depending on the solution up to order n− 1, and with Ln the third order linear
ordinary differential operator defined for n ≥ 1 and z ≥ 0 by the equation

(Lng) (z) = g000(z) +
1

2
f(z)g00(z) +

n

2
f 0(z)g0(z)− 1

2
(n− 1)f 00(z)g(z) , (54)

where f is the solution of the Blasius equation. The operators Ln have been analyzed in some detail by
Alden [1], and then by Goldstein [13]. It is easily verified that the multiples of the function f 0 are in the
kernel of Ln for all n ≥ 1. The kernel of L1 contains in addition the constant functions and the kernel of
L2 the multiples of the function f2,0,

f2,0(z) = (f(z)− zf 0(z))/a , (55)

with a as defined in (36). With this normalization limz→∞ f2,0(z) = 1. See Figure 3 for a graph of f2,0.
Alden, in the paper mentioned in the introduction [1], tried to get higher order corrections by an ad

hoc ansatz for the stream function which corresponds to keeping only terms with n even in (17). He
found the equation L2g2 = j2,0 for a certain function j2,0 given below. The problem with this equation
is that the function j2,0 is not in the image of L2 of a function with derivatives of rapid decrease. This is
related to the fact that the function f2,0 is in the kernel of L2. The equation still has a solution though
and this is the solution that Alden constructed, but its derivatives decay only algebraically at infinity,
and as explained above this is in contradiction with experimental observations. For this reason Goldstein
made an ansatz which corresponds to also keeping terms with n odd in (17) which, on the basis of more
recent mathematical results [25], is indeed expected to be the correct ansatz for the problem.

4.1 The first order term

Goldstein’s hope was that through the introduction of a term with n = 1 one would be able to adjust
the right hand side of the second order equation in order to obtain a solution with derivatives of rapid
decrease. By restricting himself implicitly to vector fields that are symmetric with respect to the x-axis,
Goldstein found for n = 1 the homogeneous equation L1g1 = 0. The only solution of this equation
satisfying the “natural” boundary conditions g1(0) = g01(0) = 0 is g1 ≡ 0, and one therefore again finds
for n = 2 the solution of Alden. Goldstein then also tried to use the boundary conditions g1(0) = 1,
g01(0) = 0 instead, for which g1 ≡ 1. He then correctly concluded that this leads to a vector field violating
the boundary conditions. He therefore reluctantly put g1 ≡ 0 and instead introduced the logarithmic
correction term, which for comparison with the literature is discussed in Section 5.
The discovery here is that Goldstein’s original idea actually works. Namely, if we use the boundary

conditions g1(0) = 0, g01(0) = 1 for which the solution of the homogeneous equation L1g1 is g1 = f 0

and furthermore give up the mirror-symmetry of the vector field with respect to the x-axis, then we can
construct a solution satisfying the boundary conditions. More precisely we have the following proposition:

Proposition 4 Let ω0 be as defined in (42). Let f1 : R+ → R be the solution of the equation

f 001 (z) +
1

2
f(z)f 01(z) =

1

2
(f(z)− z − a), f1(0) = 0, f

0
1(0) = 1 , (56)

and define ω1 : Ω→ R by the equation

ω1(x, y) = − b

2
θ(x)

1

x
f 001 (

|y|√
x
) , (57)

for b ∈ R. Then, the function ω0 + ω1 is admissible in the sense of Definition 2.
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A proof of this proposition is given in Appendix II.

Note that, in contrast to the order zero term (42), the function ω1 is even in y (otherwise ω0+ω1 would
not be admissible), and the corresponding vector field is therefore not mirror symmetric with respect to
the x-axis. Taking the derivative of equation (56) we get that (L1f1)(z) = (f 0(z)− 1)/2. What comes as
a surprise is the fact that the function f1 does not have to solve the homogeneous equation L1f1 = 0 as
one would have expected on a heuristic level, but the inhomogeneous equation (56). The right hand side
in this equation is produced through a nonlinear coupling between the stream functions of order zero and
order one. We take the fact that this equation has a nontrivial solution with the desired properties as
an indication in favor of a symmetry breaking solution. The equation (56) can be solved explicitly. One
finds

f1(z) =
1

2

Z z

0

dζ f 00(ζ)
Z ζ

0

f(η)− η − a

f 00(η)
dη + f 0(z)/a2 , (58)

with f the solution of the Blasius equation and a2 as in (35). See Figure 4 for a graph of f1. The
derivatives of f1 decay faster than exponential at infinity.
From Proposition 4 it follows that there is a unique solution ψ1 of ∆ψ1 = −ω1 in Ω, such that the

vector field u0 + (∂yψ1,−∂xψ1), with u0 as defined in (44)-(46), satisfies the boundary conditions (10),
(11). In Appendix II we also extract from ψ1 a local approximation ψ1,loc,

ψ1,loc(x, y) = − b

2

q
2
p
x2 + y2 − 2x− b

2
c1 +

b

2
θ(x)(f1(

|y|√
x
)− c1) , (59)

where
c1 = lim

z→∞ f1(z) = 5.353 . . . .

We use the function ψ1,loc to define the vector field (u1, v1) = (∂yψ1,loc,−∂xψ1,loc),

u1(x, y) = u1,E(x, y) + θ(x)
b

2

sign(y)√
x

f 01(
|y|√
x
) , (60)

v1(x, y) = v1,E(x, y) + θ(x)
b

4

1

x

|y|√
x
f 01(

|y|√
x
) , (61)

where

u1,E(x, y) = − b

2

y

r−(x, y) r(x, y)
, v1,E(x, y) = − b

4

r−(x, y)
r(x, y)

, (62)

with r and r− as defined in (25). It is easily checked that the vector field u1 = u0 + (u1, v1) is smooth
in Ω and satisfies the boundary conditions (10), (11). Equation (56) is obtained from (16) in the limit
(computed with a computer algebra system)

lim
x→∞x2W (∂yψ0 + ∂yψ1,−∂xψ0 − ∂xψ1, ω0 + ω1)(x, z

√
x)

= lim
x→∞x2W (u0 + u1, v0 + v1, ω0 + ω1)(x, z

√
x)

=
b

4
f 00(|z|)− b

2
(
1

2
ff 01 + f 001 )

00(|z|) , (63)

and the right hand side of (63) is equal to zero because f1 solves equation (56). Note the presence of the
term bf 00/4 on the right hand side of equation (63), which as explained above comes as a surprise when
compared with naïve perturbation theory. The constant b in (63) remains undetermined at this stage.
It will be determined from the computation to second order. Note that, since limy→0 ψ1,loc(x, y) = −bc1
for x > 0, there is for b > 0 a finite amount more of the fluid passing above the plate than below, and
vice versa for b < 0.

4.2 The second order term

As mentioned above the source of all difficulties in the construction of an asymptotic expansion is the
equation L2g2 = j2, which is obtained when studying (16) to second order. Without the contribution
coming from a nonzero term of order one (or logarithmic corrections, see Section 5), the right hand side
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in this equation is not in the image of L2 of functions with derivatives of rapid decrease. With our first
order term we get to second order the equation

(L2f2)(z) = j2,0(z) + b2j2,1(z), f2(0) = f 02(0) = f 002 (0) = 0 , (64)

with

j2,0(z) =
a

16
z2f 00(z)− 1

8
zf(z)f 0(z) +

1

8
z2f 00(z)f(z)

− 3
2
zf 00(z)− 1

8
f 0(z)2z2 − a

8
f(z) +

1

4
f(z)2

− 1
4
azf 0(z)− 1

8
a2 , (65)

which is (modulo normalization) the function already obtained by Alden in [1], and

j2,1(z) =
1

4
f 01(z)(1−

1

2
f 01(z)) . (66)

The (real) number b in (64) has to be chosen such thatZ ∞
0

f(z)(j2,0(z) + b2j2,1(z)) dz = 0 . (67)

The condition (67) ensures that the right hand side is the image of L2 of functions with derivatives of
rapid decrease at infinity. Namely (see Alden [1]), the function f is an integrating factor for L2, i.e.,

fL2(g) = (fg
00 + (

1

2
f2 − f 0)g0 + f 00g)0 , (68)

and therefore (64) is equivalent to the equation

(ff 002 + (
1

2
f2 − f 0)f 02 + f 00f2)(z) =

Z z

0

f(ξ)(j2,0(ξ) + b2j2,1(ξ)) dξ . (69)

Equation (69) can again be solved explicitly in terms of quadratures (see Alden [1]), and by virtue of
(67) the derivatives of the solution f2 are functions of rapid decrease at infinity. Note that the functions
j2,0 and j2,1 decay at infinity also faster than exponential so that the integral in (67) is well defined. See
Figure 4 for a graph of j2,0 and j2,1. A priori it is however not clear that the signs in equation (67) are
such that the resulting equation can be solved for b ∈ R. We take the fact that this is indeed the case as
a further indication for the existence of a solution with broken symmetry. Numerically we find that

b = ±1.2378 . . . , (70)

and we use from now on f2 to mean the solution of equation (64) obtained with this value of b. See
Figure 4 for a graph of f2.
After these preparatory remarks we can now formulate the results concerning the expansion to second

order:

Proposition 5 Let f be the Blasius function and let f1 be as defined in (56). Let

f̃2(z) = f2(z) + c2,0f2,0(z) , (71)

with f2 the solution of equation (64), with f2,0 as defined in (55) and with c2,0 an arbitrary real constant.
Let furthermore

f̃0(z) =
1

4
z2f(z)− 3

4
z F1(z) +

3

4
F2(z) +

az2

8
+
3

4
λ1 , (72)

with

F1(z) =

Z z

0

f(ξ) dξ , F2(z) =

Z z

0

F1(ξ) dξ ,

and λ1 =
R∞
0

dξ
R∞
ξ
(f(η) − η − a) dη. Let ω2 = ω̃0 + ω̃2, with ω̃i : Ω → R, i ∈ {0, 2} defined by the

equation

ω̃i(x, y) = −sign(y)θ(x) 1

x3/2
f̃ 00i (

|y|√
x
) . (73)

Then, the function
P2

n=0 ωn is admissible in the sense of Definition 2.
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A proof of this proposition is given in Appendix II.

From Proposition 5 it follows that there exists a function ψ2 that solves the equation ∆ψ2 = −ω2 in
Ω, such that the vector field u1 + (∂yψ2,−∂xψ2) satisfies the boundary conditions (10) and (11). The
reason for introducing ω2 as the sum of two terms is that ψ0 − ψ0,loc is of the same order as ψ2. In fact
(see Appendix II), we have that ∆(ψ0 − ψ0,loc) = −ω̃0, so that is is sufficient to compute a solution ψ̃2
of the equation ∆ψ̃2 = −ω̃2. In Appendix II we extract from ψ̃2 a local approximations ψ̃2,loc,

ψ̃2,loc(x, y) = c̃2
y

r(x, y) r−(x, y)
+ θ(x)sign(y)

1√
x
(f̃2(

|y|√
x
)− c̃2) , (74)

with r and r− as defined in (25), and with c̃2 = c2 + c2,0, where

c2 = lim
z→∞ f2(z) = −3.777 . . . . (75)

Note that limy→±0 ψ̃2,loc(x, y) = 0 for x > 0. We use ψ̃2,loc to define the vector field (u2, v2) =
(∂yψ̃2,loc,−∂xψ̃2,loc),

u2(x, y) = u2,E(x, y) + θ(x)
1

x
f̃ 02(

|y|√
x
) ,

v2(x, y) = v2,E(x, y) + θ(x)
sign(y)

2x3/2
(f̃2(

|y|√
x
) +

|y|√
x
f̃ 02(

|y|√
x
)− c̃2) , (76)

where

u2,E(x, y) = − c̃2
4

r−
r2
(1 +

2x

r
) , v2,E(x, y) = − c̃2

2

y

r− r2
(1− 2x

r
) . (77)

The vector field u2 = u1 + (u2, v2) is smooth in Ω and satisfies the boundary conditions (10), (11).
Finally, equation (64) is obtained from (16) by the limit (computed with a computer algebra system),

lim
x→∞x5/2W (u0 + u1 + u2, v0 + v1 + v2, ω0 + ω1 + ω2)(x, z

√
x)

= −sign(z)(L2f̃2 − j2,0 − b2j2,1)
0(|z|) , (78)

and the right hand side of (78) is equal to zero because f2 solves equation (64) and f2,0 is in the kernel
of L2.

5 The symmetric case
For comparison with the literature we recall in this section some facts about the symmetric expansion
involving logarithmic corrections proposed by Goldstein [13]. For this case we still expect (17), but
the functions ωn are more complicated than in (19). Namely, Goldstein proposed that there should be
functions ϕn,m, with derivatives decaying rapidly at infinity, such that

ωn(x, y) =
nX

m=0

ρn,m(x)ϕ
00
n,m(

y√
x
)

with

ρn,m(x) = θ(x)
log(x)n−m

x(n+1)/2
.

See [24] for a motivation concerning the logarithmic terms. To leading order one finds as before the vector
field (44)-(46) and (48), the first order term is identically zero, and for the second order terms one makes
the ansatz

ω2(x, y) = ω2,1(x, y) + ω2,2(x, y) (79)

with

ω2,1(x, y) = −bs sign(y)θ(x) log(x)
x3/2

f 002,0(
|y|√
x
) , (80)
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with f2,0 as defined in (55), and with ω2,2 = ω̃0 + ω̃2,2, with ω̃0 as defined in (73), and where

ω̃2,2(x, y) = −sign(y)θ(x) 1

x3/2
g̃002 (

|y|√
x
) , (81)

with g̃2 = g2 + c2,0f2,0, with f2,0 as defined in (55) and c2,0 an arbitrary real constant, and with g2 the
solution of the equation

(L2g2)(z) = j2,0(z) + bs js,2,1(z), g2(0) = g02(0) = g002 (0) = 0 , (82)

with j2,0 as defined in (65) and with

js,2,1(z) = −1
a
f 00(z)f(z) , (83)

where bs has to be chosen such thatZ ∞
0

f(z) (j2,0(z) + bs js,2,1(z)) dz = 0 . (84)

Numerically we find that
bs = 1.427 . . . , (85)

and we use from now on g2 to mean the solution of equation (82) obtained with this value of bs.
The problem with the above ansatz is that the function ω0 + ω2,1 is not admissible in the sense

of Definition 2. More precisely, there is no solution ψ2,1 to ∆ψ2,1 = −ω2,1 such that the vector field
u0+(∂yψ2,1,−∂xψ2,1) satisfies both of the boundary conditions (10) and (11). Here, in order to circumvent
this problem for numerical purposes and for comparison with the literature, we have added to the local
approximation obtained from ψ2,1 as defined by Dirichlet boundary conditions an ad hoc term of higher
order, in the spirit of our results in [5]. This produces a modified local approximation ψ2,1,loc such that
the vector field u2,1 = u0 + (∂yψ2,1,loc,−∂xψ2,1,loc) satisfies both of the boundary conditions (10) and
(11). Explicitly we have

ψ2,1,loc(x, y) = bsy
log(r)

r r−
+

bs
2

r−
r
(arctan(

y

x
)− πθ(x)sign(y))

+ bssign(y)θ(x)
log(x)

x1/2
(f2,0(

|y|√
x
)− 1) + λ

bsπ

2a22

1

x
f 0(

|y|√
x
)f 00(

|y|√
x
) , (86)

and the term proportional to λ is the just mentioned ad hoc term, chosen such that for λ = 1, limy→±0
∂yψ2,1,loc(x, y) = 0. With (u2,1, v2,1) = (∂yψ2,1,loc,−∂xψ2,1,loc) we get (using a computer algebra system)
that

lim
x→∞x5/2/ log(x)W (u0 + u2,1, v0 + v2,1, ω0 + ω2,1)(x, z

√
x) = −bs

2
sign(z) (L2f2,0)

0(|z|) , (87)

with the right hand side being equal to zero because f2,0 is in the kernel of L2. Finally, a local approxi-
mation to the solution ψ̃2,2 of the equation ∆ψ̃2,2 = −ω̃2,2 is ψ̃2,2,loc,

ψ̃2,2,loc(x, y) = c̃2,2
y

r r−
+ θ(x)sign(y)

1√
x
(g̃2(

|y|√
x
)− c̃2,2) , (88)

with r and r− as defined in (25), and with c̃2,2 = c2,2 + c2,0, where

c2,2 = lim
z→∞ g2(z) = −4.436 . . . . (89)

We use ψ̃2,2,loc to define the vector field (u2,2, v2,2) = (∂yψ̃2,2,loc,−∂xψ̃2,2,loc). The vector field u2,1 +
(u2,2, v2,2) is smooth in Ω and satisfies the boundary conditions (10), (11). Finally, equation (82) is
obtained from (16) by the limit (computed with a computer algebra system),

lim
x→∞x5/2W (u0 + u2,1 + u2,2, v0 + v2,1 + v2,2, ω0 + ω1 + ω2)(x, z

√
x)

= −sign(z) (L2g̃2 − j2,0 − bsjs,2,1)
0(|z|) , (90)

and the right hand side of (90) is equal to zero because g2 solves equation (64) and f2,0 is in the kernel
of L2.
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6 The stress tensor
Using that u(x, 0) = v(x, 0) = 0 for x ≥ 0, the stress tensor Σ of our problem evaluated on ∂Ω = [0,∞)
is

Σ(x,±0) = lim
y→±0

µ −p(x, y) ∂yu(x, y)
∂yu(x, y) −p(x, y)

¶
. (91)

For x ≥ 0 we set
τ±(x) = ± lim

y→±0
∂yu(x, y) = ∓ lim

y→±0
ω(x, y) . (92)

From (91) we get for the average drag D̄ exerted on the interval [0, x] of the plate

D̄(x) =
1

x

Z x

0

(τ+(s) + τ−(s)) ds .

For the symmetry breaking case we get from the asymptotic expansion (42), (57), (73), and using that
f 001 (0) = −a/2 (see (56)) and that f̃ 00(0) = a/4 (see (72)), that τ± = τa,±,

τa,±(x) =
a2√
x
∓ ab

2

1

x
+

a

4

1

x3/2
+

c2,0
x3/2

+ . . . , (93)

with a2 as in (35) , with a as in (36), and b as in (70), and c2,0 an arbitrary real constant. Similarly, the
theory with the second order logarithmic term predicts that τ± = τ , where

τ(x) =
a2√
x
− bsa2

a

log(x)

x3/2
+

a

4

1

x3/2
+

c2,0
x3/2

+ . . . . (94)

In the asymmetric case we therefore have that

1

2
(τa,+ + τa,−)(x) =

a2√
x
+
const.

x3/2
+ . . . . (95)

Note that the terms proportional to b which are not integrable at x = 0 and x = ∞ cancel out. In the
asymmetric case we therefore get for the average drag D̄(x) acting on [0, x] that D̄(x) = D̄a(x), where

D̄a(x) =
2

x

Z x

0

a2√
s
ds+

2

x

Z ∞
0

µ
1

2
(τa,+ + τa,−)(s)− a2√

s

¶
ds− 2

x

Z ∞
x

(
const.

s3/2
+ . . . ) ds

=
4a2√
x
+

C0
x
+
const.

x3/2
+ . . . . (96)

Here we have used the fact that we expect (τa,+ + τa,−)(s) to be integrable at s = 0 (otherwise the tip
of the plate produces an infinite amount of drag), to absorb all our lack of knowledge on τa,± for small
values of x into the constant C0. Namely, if (τa,++τa,−)(s) is integrable at s = 0, then because of (95) the
function (τa,+ + τa,−)(s)− 2a2/

√
s is integrable at zero and infinity. Astonishingly enough, the constant

C0 can be determined from the asymptotic expansion to leading order by using the integral form of the
momentum equations. This fact has been first pointed out by Imai [16], [24]. One finds (see Appendix
I),

C0 =
a2π

4
= 2.3256 . . . , (97)

and therefore
D̄a(x) =

1.328 . . .√
x

+
2.3256 . . .

x
+
const.

x3/2
+ . . . . (98)

Similarly, we find for the symmetric case that D̄(x) = D̄s(x), where

D̄s(x) =
2

x

Z x

0

a2√
s
ds+

2

x

Z ∞
0

µ
τ(s)− a2√

s

¶
ds− 2

x

Z ∞
x

(−bs a2
a

log(s)

s3/2
+
const.

s3/2
+ . . . ) ds

=
4a2√
x
+

C0
x
+
2bsa2
a

2 log(x) + 4

x3/2
+
const.

x3/2
+ . . . , (99)

and therefore

Ds(x) =
1.328 . . .√

x
+
2.3256 . . .

x
− 1.1018 . . . log(x)

x3/2
+
const.

x3/2
. (100)

For comparison with the literature see [24] equation (7.46) page 140.
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7 Numerical solution
In order to check that the asymptotic expressions obtained in Section 4 can be completed to a solution of
the Navier-Stokes equations we solve the problem (8)-(11) numerically by restricting the equations from
the exterior infinite domain Ω to a sequence of bounded domains DL = {(x, y) ∈ R2 | max{|x| , |y|} ≤
L} ⊂ Ω. This leads to the problem of finding appropriate boundary conditions on the surface ΓL =
∂DL \ ∂Ω of the truncated domain. In a recent paper [4], [5] we have introduced for the case of the flow
around an obstacle of finite size a novel scheme that uses on the boundary the vector field obtained from
an asymptotic analysis of the problem to second order [15]. Here, we use similar techniques and use on ΓL
Dirichlet boundary conditions obtained from the vector fields calculated in the previous sections through
our asymptotic analysis. In contrast to the work in [4], [5] the boundary B of the original domain also
gets truncated in the present case, and forms a corner of ninety degrees with the artificial boundary ΓL.
This fact is numerically somewhat delicate and we have therefore chosen to use a very straightforward,
unsophisticated but robust numerical implementation of the problem. See for example [14], [21], [8].
Namely, we use after truncation to a finite domain DL a simple first order finite difference scheme on
staggered lattices and solve then the time dependent Navier-Stokes equation

∂tu = −(u ·∇)u+∆u−∇p
by iterating a first order discretization in time with a sufficiently small time step until convergence to
a stationary solution, on each of a sequence of nested lattices (see [8]). The pressure is computed at
each time step with high precision in order to keep the vector fields divergence free. This method is
numerically robust, but convergence is slow and many weeks of computer time on a PC equipped with a
Pentium 4, 2.8GHz processor were necessary to obtain the results that we discuss now.
Let L = 125, 250, 500, 1000. Then, on each of the corresponding domains DL, with we have solved

(8)-(11) on a sequence of nested lattices using:

A the symmetric vector field u0 obtained from perturbation theory to leading order (see (44)-(46)),

B the symmetric vector field u0 + (∂yψ1,2,loc,−∂xψ1,2,loc) obtained from perturbation theory with loga-
rithmic corrections (see (86)),

C the asymmetric vector field u1 obtained from perturbation theory to second order (see (60)-(62)).

Some care has to be taken when discretizing these vector field in order to ensure that numerically
the total flux through the surface of the truncated domain is zero, since otherwise the equation for the
pressure cannot be solved. In a finite domain the boundary conditions determine the flux, and since the
boundary conditions A and B are mirror symmetric with respect to the x-axis the flux above and below
the plate has to be the same. It turns out that the vector field converges in these cases to a symmetric
vector field, even when starting from asymmetric initial conditions. Similarly, the vector field C forces
the flux to be asymmetric with respect to the plate and in this case the vector field converges to an
asymmetric solution. Let (uL,X , vL,X) be the numerical solution of the problem obtained in the domain
DL with Dirichlet boundary conditions X being either of the vector fields described in A, B and C. For
the symmetric cases we have computed upon convergence to a stationary solution the function τL,X(x) =
limy→+0 ∂yuL,X(x, y), and in the asymmetric case the functions τ±,L,X(x) = ± limy→±0 ∂yuL,X(x, y).
The results are summarized in Figure 1 for the symmetric case, and in Figure 2 for the asymmetric case.
We expect that, for a given type of boundary conditions, the functions τL,X and τ±,L,X converge as a
function of L uniformly on compact sets to the corresponding limiting function. This limit should be the
same for the two symmetric boundary conditions. This is indeed what the figures suggest. In particular
the convergence to a limit appears to be faster when one includes the term with logarithmic corrections in
the symmetric case, and the results are close to the numerical solution found previously by other groups
[23]. Taking the good convergence of the procedure in the symmetric case (Figure 1) as a confirmation
for the validity of our method, we conclude from Figure 2 that there is good evidence for the existence
of an asymmetric stationary solution to the problem (8)-(11).

8 Appendix I
In this appendix we discuss in more detail the Blasius equation (34), recall the computation of drag
(and lift) through surface integrals and give some more details concerning the Green’s function for the
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Laplacean in Ω.

8.1 Blasius equation

Let f be the solution of the Blasius equation (34). In order to find this function numerically one usually
uses the following scaling property, which is a consequence of the scale-invariance of the domain Ω.
Namely, define for β > 0 the function fβ by the equation f(z) = βfβ(βz). Then fβ satisfies the same
equation as f and fβ(0) = f 0β(0) = 0, but

lim
z→∞ f 0β(z) = 1/β

2 . (101)

Since furthermore f 00(0) = β3f 00β (0), we can first solve the equation (34) with the additional boundary
condition at zero f 00β (0) = 1, and use (101) to determine β. The boundary condition limz→∞ f 0(z) = 1 is
therefore equivalent to setting

f 00(0) = a2 = β3 .

Numerically we find β = 0.69247 . . . and therefore a2 = 0.33205 . . . . Furthermore one finds numerically
that

lim
z→∞ f(z)− z = a = −1.7207 . . . .

Note that the functions z 7→ f(z)− z − a, z 7→ f 0(z)− 1, z 7→ f(z)− zf 0(z) and f 00 all decay faster than
exponential at infinity. For graphs of these functions see Figure 3. Additional details can be found in
many textbooks. See for example [2]. For convenience later on we also define the functions F1,

F1(z) =

Z z

0

f(ζ)dζ =
z2

2
+ az +

Z z

0

(f(ζ)− ζ − a) dζ

=
z2

2
+ az + λ0 −

Z ∞
z

(f(ζ)− ζ − a) dζ , (102)

where λ0 =
R∞
0
(f(ζ) − ζ − a) dζ = 2.182 . . . . The function z 7→ F1(z) − z2/2 − az − λ0 decays faster

than exponential at infinity. There is also an explicit expression for F1 in terms of f . Namely, using the
equation for f (see (34)) we find that

F1(z) = −2
Z z

0

f 00(ζ)
f 000(ζ)

dζ = −2 log(f 00(z)/a2) .

We also need the function F2,

F2(z) =

Z z

0

F1(ζ)dζ =
z3

6
+ a

z2

2
+ λ0z −

Z z

0

dζ

Z ∞
ζ

f0(η)dη

=
z3

6
+ a

z2

2
+ λ0z + λ1 +

Z ∞
z

dζ

Z ∞
ζ

f0(η)dη . (103)

with λ1 =
R∞
0

dζ
R∞
ζ
(f(η) − η − a) dη. The function z 7→ F2(z) − z3/6 − az2/2 − λ0z − λ1 also decays

faster than exponential at infinity. The functions F1 and F2 are used in Section 4.2.

8.2 Computation of Drag

Let u, p be a solution of the Navier-Stokes equations (8), (9) subject to the boundary conditions (10),
(11), and let e be some arbitrary unit vector in R2. Multiplying (8) with e leads to

− (u ·∇) (u · e) +∆ (u · e)−∇ · (pe) = 0 . (104)

Since

∇ · ((u · e)u) = u · (∇ (u · e)) + (u · e) (∇ · u) = (u ·∇) (u · e) ,

∆ (u · e) = ∇ · ( [∇u+(∇u)T ] · e) ,
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equation (104) can be written as ∇ ·P(e) = 0, where

P(e) = − (u · e)u+ [∇u+(∇u)T ] · e− pe , (105)

i.e., the vector field P(e) is divergence free. Therefore, applying Gauss’s theorem to the region ΩS =
[−x, x]× [−s, s] for x, s > 0, we find (with inward normal vectors on ∂Ω and outward normal vectors on
S) that Z

∂Ω

P(e) · n dσ =

Z
S

P(e) · n dσ . (106)

We have that P(ẽ) · e = P(e) · ẽ for any two unit vectors e and ẽ, and therefore it follows from (106),
since e is arbitrary, that Z

∂Ω

P(n) dσ =

Z
S

P(n) dσ . (107)

Since u = 0 on ∂Ω, we finally get from (107) and (105) that the total force the fluid exerts on the body is

F =

Z
∂Ω

Σ(u, p)n dσ =

Z
S

³
− (u · n)u+ [∇u+(∇u)T ]n− pn

´
dσ , (108)

with Σ(u, p) = ∇u+(∇u)T − p the stress tensor. The force F is traditionally decomposed into a compo-
nent D parallel to the flow at infinity called drag and a component L perpendicular to the flow at infinity
called lift. We compute here the drag only. Since lim|y|→∞ u(x, y) = (1, 0) and since p can be chosen
such that lim|y|→∞ p(x, y) = 0 for all x ∈ R, we can take the limit s→∞ and replace S by two vertical
lines, one at −x < 0 and one at x > 0. To leading order we therefore get that D ≈ D0, where

D0(x) =

Z
R

µ0(x, y) dy , (109)

with
µ0(x, y) = −u0(x, y)2 − p0(x, y) + u0(−x, y)2 + p0(−x, y) ,

with u0 as defined in (44) and p0 as defined in (53). On the scale y ∼ x1/2 we have

ν0(z) = lim
x→∞µ0(x, zx

1/2) = 1− f 0(|z|)2 ,

whereas on the scale y ∼ x we get that

ν1(z) = lim
x→∞x1/2µ0(x, zx) =

a

4

r−(−1, z)− r−(1, z)
r(1, z)

, (110)

and that

ν2(z) = lim
x→∞x

µ
µ0(x, zx)− 1√

x
ν1(z)

¶
=

a2

4

1

r(1, z)2
. (111)

Therefore, since

−
Z ∞
0

(f 0(z)2 − 1) dz = − [f(z)f 0(z)− z]
z=∞
z=0 +

Z ∞
0

f(z)f 00(z) dz

= −a− 2
Z ∞
0

f 000(z) dz = 2a2 − a , (112)

with a2 as defined in (15), we find that

D(x) ≈ D0(x) ≈ −2
√
x

Z ∞
0

(f 0(z)2 − 1) dz + 2√x
Z ∞
0

ν1(z) dz + 2

Z ∞
0

ν2(z) dz

= 4a2
√
x− 2a√x+ 2a√x+ a2π

4
= 4a2

√
x+

a2π

4
, (113)

from which, after division by x, (96) and (99) follow with C0 as defined in (97). It is tedious but
straightforward to verify that all the neglected terms are smaller than the ones computed here.
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8.3 Green’s function

In this section we derive the Green’s function for the Laplacean in Ω with Dirichlet boundary conditions
on [0,∞), i.e., a function G : Ω×Ω→ R, such that

f(x, y) =

Z
Ω

G(x, y;x0, y0) g(x0, y0) dx0 dy0 (114)

solves the equation ∆f = g in Ω with f(x, 0) = 0 for x ≥ 0. We use complex notation, i.e., Ω = C\[0,∞).
Let H = {z ∈ C | Im(z) > 0} be the upper half plane. The map z 7→ z2 maps H conformally onto Ω.
Let z = ξ + iη ∈ H. Then z2 = x+ iy with

x = ξ2 − η2 , (115)

y = 2ξη . (116)

The inverse of (115), (116) is ξ = y/r−(x, y), η = r−(x, y)/2, with r− as defined in (25).
The following observation concerning the limit towards the boundary will be useful below: Let η → 0

for fixed ξ 6= 0, then x→ ξ2 > 0, and y converges to zero from above or below depending on the sign of ξ.
In other words, the limit when y → ±0 for x > 0 corresponds to taking the limit η → 0 (from above) for
fixed ξ = ±√x. The differential version of the change of coordinates (115), (116) is (dx, dy) = A(dξ, dη)
with

A =

µ
2ξ −2η
2η 2ξ

¶
.

We have that det(A) = 4(ξ2 + η2) and the inverse infinitesimal change of coordinates is therefore given
by (dξ, dη) = B(dx, dy), with

B = A−1 =
1

4

1

(ξ2 + η2)

µ
2ξ 2η
−2η 2ξ

¶
.

Define now, for given functions f and g the functions f̃ and g̃ by the equation f̃(ξ, η) = f(x, y), and
g̃(ξ, η) = g(x, y), with x, y given by (115), (116). Then, we find by direct calculation that

(∆f) (x, y) =
1

4

1

(ξ2 + η2)
(∆f̃)(ξ, η) ,

and therefore we get from (114) by the change of variables x0 = ξ20 − η20, y0 = 2ξ0η0 with inverse
ξ0 = y0/r−(x0, y0), η0 = r−(x0, y0)/2, the identity

(∆f) (x, y) =
1

(ξ2 + η2)

Z
H

(∆G̃)(ξ, η; ξ0, η0) g̃(ξ0, η0) (ξ
2
0 + η20) dξ0 dη0 , (117)

where G̃(ξ, η; ξ0, η0) = G(x, y;x0, y0). It is now easy to see that the Green’s function G̃ of our problem is
given by

G̃(ξ, η; ξ0, η0) =
1

4π

£
log((ξ − ξ0)

2 + (η − η0)
2)− log((ξ − ξ0)

2 + (η + η0)
2)
¤
. (118)

Namely, by definition of G̃ we have that (∆G̃)(ξ, η; ξ0, η0) = δ(ξ−ξ0)δ(η−η0), for (ξ, η) ∈ H, and therefore
we find that ∆f = g in Ω. Furthermore limη→+0 G̃(ξ, η; ξ0, η0) = 0, and therefore G(x,±0;x0, y0) =
0, for x > 0. This implies that f(x, 0) = 0 for x > 0 as required. From the above it follows that
(∂2x + ∂2y)G(x, y;x0, y0) = δ(x− y)δ(y − y0), and similarly one can show that

(∂2x0 + ∂2y0)G(x, y;x0, y0) = δ(x− y)δ(y − y0) . (119)

Next, we note that
lim

y0→±0
G(x, y;x0, y0) = lim

η0→+0
G̃(ξ, η;±√x0, η0) = 0 , (120)

and an explicit computation shows that

lim
y→±0

∂yG(x, y;x0, y0) = lim
η→0

µ
∂ξG̃(ξ, η; ξ0, η0)

∂ξ

∂y
+ ∂ηG̃(ξ, η; ξ0, η0)

∂η

∂y

¶
= − 1

2π

1

ξ

η0
(ξ − ξ0)2 + η20

, (121)
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where the right hand side has to be evaluated at ξ = sign(y)
√
x and at ξ0 = y0/r−(x0, y0), η0 =

r−(x0, y0)/2. Similarly we have that

lim
y0→−0

∂y0G(x, y;x0, y0) + lim
y0→+0

∂y0G(x, y;x0, y0) = −
2

π

ξη

((ξ − ξ0)2 + η2) ((ξ + ξ0)2 + η2)
, (122)

lim
y0→−0

∂y0G(x, y;x0, y0)− lim
y0→+0

∂y0G(x, y;x0, y0) = −
1

π

η(ξ2 + η2 + ξ20)

((ξ − ξ0)2 + η2) ((ξ + ξ0)2 + η2)
, (123)

where ξ0 =
√
x0 and where ξ = y/r−(x, y), η = r−(x, y)/2. Finally we have that

− 2
π

Z ∞
0

ξη

((ξ − ξ0)2 + η2) ((ξ + ξ0)2 + η2)

√
x0 dx0

= − 4
π
ξη

Z ∞
0

ξ20
((ξ − ξ0)2 + η2) ((ξ + ξ0)2 + η2)

dξ0 = −ξ , (124)

and similarly that

− 1
π

Z ∞
0

η(ξ2 + η2 + ξ20)

((ξ − ξ0)2 + η2) ((ξ + ξ0)2 + η2)
dx0 = −1 . (125)

9 Appendix II
This appendix contains the details concerning the asymptotic expansion.

9.1 Proof of Proposition 3

Let ψ0 be as defined in (31), i.e.,

ψ0(x, y) = y −
Z
Ω

G(x, y;x0, y0) ω0(x0, y0) dx0dy0 . (126)

To check that ω0 is admissible we first show that limy→±0 ∂yψ0(x, y) = 0 for x ≥ 0. Using (121) we find
that

lim
y→±0

∂yψ0(x, y) = 1−
Z
Ω

lim
y→±0

∂yG(x, y;x0, y0) ω0(x0, y0) dx0dy0

= 1 +
1

2π

1

ξ

Z
Ω

η0
(ξ − ξ0)2 + η20

ω0(x0, y0) dx0dy0 , (127)

where ξ = sign(y)
√
x and where ξ0 = y0/r−(x0, y0), η0 = r−(x0, y0)/2, with r− as defined in (25). Next,

using the definition of ω0 we get

lim
y→±0

∂yψ0(x, y) = 1− 1

2π

1

ξ

Z ∞
0

dx0

Z 0

−∞
dy0

η0
(ξ − ξ0)2 + η20

1√
x0

f 00(
−y0√
x0
)

+
1

2π

1

ξ

Z ∞
0

dx0

Z ∞
0

dy0
η0

(ξ − ξ0)2 + η20

1√
x0

f 00(
y0√
x0
)

= 1− 1

2π

1

ξ

Z ∞
0

dx0

Z ∞
0

dy0

µ
η0

(ξ − ξ0)2 + η20
− η0
(ξ + ξ0)2 + η20

¶
1√
x0

f 00(
y0√
x0
)

= 1− 2
π

Z ∞
0

dx0

Z ∞
0

dy0
ξ0η0

((ξ − ξ0)2 + η20) ((ξ + ξ0)2 + η20)

1√
x0

f 00(
y0√
x0
) . (128)

We change coordinates by setting y0 =
√
x0z. We then get

lim
y→±0

∂yψ0(x, y) = 1− 2
π

Z ∞
0

dx0

Z ∞
0

dz
ξ̃0η̃0

((ξ − ξ̃0)2 + η̃20)((ξ + ξ̃0)2 + η̃20)
f 00(z) , (129)
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where ξ̃0 = z
√
x0/r−(x0, z

√
x0), η̃0 = r−(x0, z

√
x0)/2. Next we exchange the integrals and change then

coordinates by setting x0 = z2s. We get

lim
y→±0

∂yψ0(x, y) = 1− 2
π

Z ∞
0

dz f 00(z)
Z ∞
0

ds
eeξ0eeη0

((ξ/z − eeξ0)2 + eeη20)((ξ/z + eeξ0)2 + eeη20) , (130)

where eeξ0 = √s/r−(s,√s), eeη0 = r−(s,
√
s)/2. The integral over s can be computed explicitly to be

equal to π/2, independent of ξ, and therefore since limz→∞ f 0(z) = 1 and f 0(0) = 0 we find that
limy→±0 ∂yψ0(x, y) = 1 − 1 = 0 as required. Finally, since limy→±0 ∂yr−(x, y) 6= 0 for x > 0, (126) is
the only solution satisfying all the boundary conditions, and therefore ω0 is admissible in the sense of
Definition 2. This completes the proof of Proposition 3.

9.2 Local approximation for ψ0
We now extract a local approximation from ψ0. From (126) we find

ψ0(x, y) = y −
Z ∞
0

dx0

Z 0

−∞
dy0 G(x, y;x0, y0)

1√
x0

f 00(
−y0√
x0
)

+

Z ∞
0

dx0

Z ∞
0

dy0 G(x, y;x0, y0)
1√
x0

f 00(
y0√
x0
) . (131)

Integrating by parts once we find

ψ0(x, y) = y −
Z ∞
0

dx0

∙
G(x, y;x0, y0)

µ
−f 0(−y0√

x0
) + 1

¶¸y0=0
y0=−∞

+

Z ∞
0

dx0

∙
G(x, y;x0, y0)

µ
f 0(

y0√
x0
)− 1

¶¸y0=∞
y0=0

+

Z ∞
0

dx0

Z 0

−∞
dy0 ∂y0G(x, y;x0, y0)

µ
−f 0(−y0√

x0
) + 1

¶
−
Z ∞
0

dx0

Z ∞
0

dy0 ∂y0G(x, y;x0, y0)

µ
f 0(

y0√
x0
)− 1

¶
. (132)

The boundary terms compensate each other. Therefore we get, integrating by parts a second time,

ψ0(x, y) = y +

Z ∞
0

dx0

∙
∂y0G(x, y;x0, y0)

µ√
x0f(

−y0√
x0
) + y0 − a

√
x0

¶¸y0=0
y0=−∞

−
Z ∞
0

dx0

∙
∂y0G(x, y;x0, y0)

µ√
x0f(

y0√
x0
)− y0 − a

√
x0

¶¸y0=∞
y0=0

−
Z ∞
0

dx0

Z 0

−∞
dy0 ∂

2
y0G(x, y;x0, y0)

µ√
x0f(

−y0√
x0
) + y0 − a

√
x0

¶
+

Z ∞
0

dx0

Z ∞
0

dy0 ∂
2
y0G(x, y;x0, y0)

µ√
x0f(

y0√
x0
)− y0 − a

√
x0

¶
, (133)

and therefore

ψ0(x, y) = y − a

Z ∞
0

µ
lim

y0→−0
∂y0G(x, y;x0, y0) + lim

y0→+0
∂y0G(x, y;x0, y0)

¶ √
x0 dx0

+

Z
Ω

∂2y0G(x, y;x0, y0)sign(y0)θ(x0)
√
x0

µ
f(
|y0|√
x0
)− |y0|√

x0
− a

¶
dx0dy0 . (134)

From (134) we find for (x, y) ∈ Ω using (119), (122) and (124) the decomposition ψ0 = ψ0,loc + ψ0,nonloc,
with ψ0,loc as defined in (43) and with

ψ0,nonloc(x, y) = −
Z
Ω

∂2x0G(x, y;x0, y0)sign(y0)θ(x0)
√
x0

µ
f(
|y0|√
x0
)− |y0|√

x0
− a

¶
dx0dy0 . (135)
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9.3 The remainder ψ0,nonloc
The remainder ψ0,nonloc does not contribute to the limit (63), since as we now show it is of the same size
as the second order term and therefore contributes to the limit (78). Namely, we have that

ψ0,nonloc(x, y) = −
Z ∞
0

dy0

Z ∞
0

dx0 ∂
2
x0G(x, y;x0, y0)

√
x0 (f(

|y0|√
x0
)− |y0|√

x0
− a)

+

Z 0

−∞
dy0

Z ∞
0

dx0 ∂
2
x0G(x, y;x0, y0)

√
x0 (f(

|y0|√
x0
)− |y0|√

x0
− a) . (136)

Integrating twice by parts with respect to x0 we find that

ψ0,nonloc(x, y) = −
Z ∞
0

dy0

Z ∞
0

dx0 G(x, y;x0, y0) ∂
2
x0

µ√
x0 (f(

|y0|√
x0
)− |y0|√

x0
− a)

¶
+

Z 0

−∞
dy0

Z ∞
0

dx0 G(x, y;x0, y0) ∂
2
x0

µ√
x0 (f(

|y0|√
x0
)− |y0|√

x0
− a)

¶
. (137)

We have that

∂2x0

µ√
x0 (f(

|y0|√
x0
)− |y0|√

x0
− a)

¶
=

1

x
3/2
0

f̃ 000 (
|y0|√
x0
) , (138)

where
f̃ 000 (z) =

1

4
(z2f 00(z)− (f(z)− zf 0(z)− a)) . (139)

Equation (139) can be integrated explicitly to yield f̃0 as given in (72). In terms of f̃0 we find for (137)

ψ0,nonloc(x, y) =

Z
Ω

G(x, y;x0, y0) ω̃0(x, y) dx0dy0 , (140)

with ω̃0 as defined in (73). As we will see below the function ψ0,nonloc has the same form as the second
order term, and is therefore discussed in the corresponding subsection below.

9.4 Proof of Proposition 4

Let ψ1 be as defined in (31) with α = b/2, i.e.,

ψ1(x, y) =
b

2
r−(x, y)−

Z
Ω

G(x, y;x0, y0) ω1(x0, y0) dx0dy0 , (141)

with r− as defined in (25). We now check that ω0+ω1 is admissible. First we show that limy→±0 ∂yψ1(x, y) =
0 for x ≥ 0. Using (121) we find that

lim
y→±0

∂yψ1(x, y) =
b

2
lim
y→±0

∂yr−(x, y)−
Z
Ω

lim
y→±0

∂yG(x, y;x0, y0) ω1(x0, y0) dx0dy0

=
b

2ξ
+
1

2π

1

ξ

Z
Ω

η0
(ξ − ξ0)2 + η20

ω1(x0, y0) dx0dy0 , (142)

where ξ = sign(y)
√
x and where ξ0 = y0/r−(x0, y0), η0 = r−(x0, y0)/2. Next, using the definition (17)

of ω1 we get

lim
y→±0

∂yψ1(x, y) =
b

2ξ
− b

4π

1

ξ

Z ∞
0

dx0

Z 0

−∞
dy0

η0
(ξ − ξ0)2 + η20

1

x0
f 001 (
−y0√
x0
)

b

2ξ
− b

4π

1

ξ

Z ∞
0

dx0

Z ∞
0

dy0
η0

(ξ − ξ0)2 + η20

1

x0
f 001 (

y0√
x0
)

=
b

2ξ
− b

4π

1

ξ

Z ∞
0

dx0

Z ∞
0

dy0

µ
η0

(ξ − ξ0)2 + η20
+

η0
(ξ + ξ0)2 + η20

¶
1

x0
f 001 (

y0√
x0
)

=
b

2ξ
− b

2π

1

ξ

Z ∞
0

dx0

Z ∞
0

dy0

¡
ξ2 + ξ20 + η20

¢
η0

((ξ − ξ0)2 + η20) ((ξ + ξ0)2 + η20)

1

x0
f 001 (

y0√
x0
) . (143)
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We change coordinates by setting y0 =
√
x0z. We get

lim
y→±0

∂yψ1(x, y) =
b

2ξ
− b

2π

1

ξ

Z ∞
0

dx0

Z ∞
0

dz

³
ξ2 + ξ̃20 + η̃20

´
η̃0

((ξ − ξ̃0)2 + η̃20)((ξ + ξ̃0)2 + η̃20)

1√
x0

f 001 (z) , (144)

where ξ̃0 = z
√
x0/r−(x0, z

√
x0), η̃0 = r−(x0, z

√
x0)/2. Next we exchange the integrals and then change

coordinates by setting x0 = z2s. We get

lim
y→±0

∂yψ1(x, y) =
b

2ξ
− b

2π

1

ξ

Z ∞
0

dz f 001 (z)
Z ∞
0

ds√
s

((ξ/z)2 +
eeξ20 + eeη20)eeη0

((ξ/z − eeξ0)2 + eeη20)((ξ/z + eeξ0)2 + eeη20) , (145)

where eeξ0 = √s/r−(s,√s), eeη0 = r−(s,
√
s)/2. The integral over s can be computed explicitly and is equal

to π, independent of ξ and therefore, since limz→∞ f 01(z) = 0 and f 01(0) = 1, we find that for x > 0

lim
y→±0

∂yψ1(x, y) =
b

2ξ
− b

2ξ

Z ∞
0

dz f 001 (z) = 0 ,

as required. Finally, since limy→±0 ∂yr−(x, y) 6= 0 for x > 0, (141) is the only solution such that ψ0 +ψ1
satisfies all the boundary conditions, and therefore ω0+ω1 is admissible in the sense of Definition 2. This
completes the proof of Proposition 4.

9.5 Local approximation for ψ1
We now extract a local approximation from ψ1. From (141) we find

ψ1(x, y) =
b

2
r−(x, y)+

b

2

Z ∞
0

dx0

Z 0

−∞
dy0 G(x, y;x0, y0)

1

x0
f 001 (
−y0√
x0
)

+
b

2

Z ∞
0

dx0

Z ∞
0

dy0 G(x, y;x0, y0)
1

x0
f 001 (

y0√
x0
) . (146)

Integrating by parts once we find

ψ1(x, y) =
b

2
r−(x, y) +

b

2

Z ∞
0

dx0

∙
G(x, y;x0, y0)

1√
x0

µ
−f 01(

−y0√
x0
)

¶¸y0=0
y0=−∞

+
b

2

Z ∞
0

dx0

∙
G(x, y;x0, y0)

1√
x0

f 01(
y0√
x0
)

¸y0=∞
y0=0

− b

2

Z ∞
0

dx0

Z 0

−∞
dy0 ∂y0G(x, y;x0, y0)

1√
x0

µ
−f 01(

−y0√
x0
)

¶
− b

2

Z ∞
0

dx0

Z ∞
0

dy0 ∂y0G(x, y;x0, y0)
1√
x0

µ
f 01(

y0√
x0
)

¶
, (147)

and therefore, since f 01(0) = 1,

ψ1(x, y) =
b

2
r−(x, y)− b

2

Z ∞
0

µ
lim

y0→−0
G(x, y;x0, y0) + lim

y0→+0
G(x, y;x0, y0)

¶
dx0√
x0

+
b

2

Z ∞
0

dx0

Z 0

−∞
dy0 ∂y0G(x, y;x0, y0)

1√
x0

f 01(
−y0√
x0
)

− b

2

Z ∞
0

dx0

Z ∞
0

dy0 ∂y0G(x, y;x0, y0)
1√
x0

µ
f 01(

y0√
x0
)

¶
. (148)
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The second term on the right hand side is equal to zero by (120). Therefore we get, integrating by parts
again,

ψ1(x, y) =
b

2
r−(x, y) +

b

2

Z ∞
0

dx0

∙
∂y0G(x, y;x0, y0)

µ
−f1(−y0√

x0
) + c1

¶¸y0=0
y0=−∞

− b

2

Z ∞
0

dx0

∙
∂y0G(x, y;x0, y0)

µ
f1(

y0√
x0
)− c1

¶¸y0=∞
y0=0

− b

2

Z ∞
0

dx0

Z 0

−∞
dy0 ∂

2
y0G(x, y;x0, y0)

µ
−f1(−y0√

x0
) + c1

¶
+

b

2

Z ∞
0

dx0

Z ∞
0

dy0 ∂
2
y0G(x, y;x0, y0)

µ
f1(

y0√
x0
)− c1

¶
, (149)

and therefore

ψ1(x, y) =
b

2
r−(x, y) +

b

2
c1

Z ∞
0

dx0

µ
lim

y0→−0
∂y0G(x, y;x0, y0)− lim

y0→+0
∂y0G(x, y;x0, y0)

¶
− b

2

Z
Ω

∂2y0G(x, y;x0, y0)θ(x0)

µ
f1(

|y0|√
x0
)− c1

¶
dx0dy0 . (150)

From (150) we find for (x, y) ∈ Ω using (119), (122) and (125) the decomposition ψ1 = ψ1,loc + ψ1,nonloc,
with ψ1,loc as defined in (59) and with

ψ1,nonloc(x, y) =
b

2

Z
Ω

∂2x0G(x, y;x0, y0) θ(x0)

µ
f1(

|y0|√
x0
)− c1

¶
dx0dy0 . (151)

A careful analysis shows that

lim
x,y→∞ r3/2∂xψ1,nonloc(x, y) = lim

x,y→∞ r3/2∂yψ1,nonloc(x, y) = 0 ,

and therefore ψ1,nonloc does not contribute to the limits (63) and (78).

9.6 Proof of Proposition 5

By definition ω2 = ω̃0 + ω̃2, with ω̃0 = ∆ψ0,nonloc, see (140). Therefore, ψ2 = −ψ0,nonloc + ψ̃2, where

ψ̃2(x, y) = −
Z
Ω

G(x, y;x0, y0) ω̃2(x0, y0) dx0dy0 . (152)

Since ψ0 and ψ0,loc both satisfy all the boundary conditions, it follows that ω0 + ω1 + ω̃0 is admissible,
and it therefore suffices to show that limy→±0 ∂yψ̃2(x, y) = 0 for x ≥ 0 in order to prove that

P2
n=0 ωn

is admissible. Using (121) we find that

lim
y→±0

∂yψ̃2(x, y) = −
Z
Ω

lim
y→±0

∂yG(x, y;x0, y0) ω̃2(x0, y0) dx0dy0

=
1

2π

1

ξ

Z ∞
0

dx0

Z
R

dy0
η0

(ξ − ξ0)2 + η20
ω̃2(x0, y0) , (153)

where ξ = sign(y)
√
x and where ξ0 = y0/r−(x0, y0), η0 = r−(x0, y0)/2. Next, using the definition of ω̃2

in (73) we get,

lim
y→±0

∂yψ̃2(x, y) =
1

2π

1

ξ

Z ∞
0

dx0

Z 0

−∞
dy0

η0
(ξ − ξ0)2 + η20

1

x
3/2
0

f̃ 002 (
−y0√
x0
)

− 1

2π

1

ξ

Z ∞
0

dx0

Z ∞
0

dy0
η0

(ξ − ξ0)2 + η20

1

x
3/2
0

f̃ 002 (
y0√
x0
)

=
1

2π

1

ξ

Z ∞
0

dx0

Z ∞
0

dy0

µ
η0

(ξ − ξ0)2 + η20
− η0
(ξ + ξ0)2 + η20

¶
1

x
3/2
0

f̃ 002 (
y0√
x0
)

=
2

π

Z ∞
0

dx0

Z ∞
0

dy0
ξ0η0

((ξ − ξ0)2 + η20) ((ξ + ξ0)2 + η20)

1

x
3/2
0

f̃ 002 (
y0√
x0
) . (154)
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We change coordinates by setting y0 =
√
x0z. We get

lim
y→±0

∂yψ2(x, y) =
2

π

Z ∞
0

dx0

Z ∞
0

dz
ξ̃0η̃0

((ξ − ξ̃0)2 + η̃20)((ξ + ξ̃0)2 + η̃20)

1

x0
f̃ 002 (z) ,

where ξ̃0 = z
√
x0/r−(x0, z

√
x0), η̃0 = r−(x0, z

√
x0)/2. Next we exchange the integrals and then change

coordinates by setting x0 = z2s. We get

lim
y→±0

∂yψ2(x, y) =
2

π

Z ∞
0

dz
1

z2
f̃ 002 (z)

Z ∞
0

ds

s

eeη0eeξ0
((ξ/z − eeξ0)2 + eeη20)((ξ/z + eeξ0)2 + eeη20) ,

where eeξ0 = √s/r−(s,√s), eeη0 = r−(s,
√
s)/2. The integral over s can be computed explicitly and is

equal to (π/2)(z/ξ)2, and therefore since limz→∞ f̃ 02(z) = f̃ 02(0) = 0 we find that limy→±0 ∂yψ̃2(x, y) = 0
for x > 0 as required. Finally, since limy→±0 ∂yr−(x, y) 6= 0 for x > 0, (152) is the only solution such
that

P2
n=0 ψn satisfies all the boundary conditions, and therefore

P2
n=0 ωn is admissible in the sense of

Definition 2. This completes the proof of Proposition 5.

9.7 Local approximation for ψ2 and higher order terms

We now extract a local approximation from ψ̃2. From (152) we find

ψ̃2(x, y) = −
Z ∞
0

dx0

Z 0

−∞
dy0 G(x, y;x0, y0)

1

x
3/2
0

f̃ 002 (
−y0√
x0
)

+

Z ∞
0

dx0

Z ∞
0

dy0 G(x, y;x0, y0)
1

x
3/2
0

f̃ 002 (
y0√
x0
) , (155)

Integrating by parts once we find

ψ̃2(x, y) =−
Z ∞
0

dx0

∙
G(x, y;x0, y0)

1

x0

µ
−f̃ 02(

−y0√
x0
)

¶¸y0=0
y0=−∞

+

Z ∞
0

dx0

∙
G(x, y;x0, y0)

1

x0
f̃ 02(

y0√
x0
)

¸y0=∞
y0=0

+

Z ∞
0

dx0

Z 0

−∞
dy0 ∂y0G(x, y;x0, y0)

1

x0

µ
−f̃ 02(

−y0√
x0
)

¶
−
Z ∞
0

dx0

Z ∞
0

dy0 ∂y0G(x, y;x0, y0)
1

x0

µ
f̃ 02(

y0√
x0
)

¶
. (156)

Since limz→∞ f̃ 02(z) = f̃ 02(0) = 0 the boundary terms are both equal to zero. Integrating by parts again,

ψ̃2(x, y) =

Z ∞
0

dx0

∙
∂y0G(x, y;x0, y0)

1√
x0

µ
f̃2(
−y0√
x0
)− c̃2

¶¸y0=0
y0=−∞

−
Z ∞
0

dx0

∙
∂y0G(x, y;x0, y0)

1√
x0

µ
f̃2(

y0√
x0
)− c̃2

¶¸y0=∞
y0=0

−
Z ∞
0

dx0

Z 0

−∞
dy0 ∂

2
y0G(x, y;x0, y0)

1√
x0

µ
f̃2(
−y0√
x0
)− c̃2

¶
+

Z ∞
0

dx0

Z ∞
0

dy0 ∂
2
y0G(x, y;x0, y0)

1√
x0

µ
f̃2(

y0√
x0
)− c̃2

¶
, (157)

and therefore

ψ̃2(x, y) =− c̃2

Z ∞
0

dx0√
x0

µ
lim

y0→−0
∂y0G(x, y;x0, y0) + lim

y0→+0
∂y0G(x, y;x0, y0)

¶
+

Z
Ω

∂2y0G(x, y;x0, y0) θ(x0) sign(y0)
1√
x0

µ
f̃2(

|y0|√
x0
)− c̃2

¶
dx0dy0 . (158)
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From (158) we find for (x, y) ∈ Ω using (119), (122) and (124) the decomposition ψ̃2 = ψ̃2,loc + ψ̃2,nonloc,
with ψ̃2,loc as defined in (74) and with

ψ̃2,nonloc(x, y) = −
Z
Ω

∂2x0G(x, y;x0, y0) θ(x0) sign(y0)
1√
x0

µ
f̃2(

|y0|√
x0
)− c̃2

¶
dx0dy0 .

A careful analysis shows that

lim
x,y→∞ r3/2∂xψ2,nonloc(x, y) = lim

x,y→∞ r3/2∂yψ2,nonloc(x, y) = 0 ,

and therefore ψ2,nonloc does not contribute to the limits (63) and (78). Finally, using the same techniques
and assuming that ω is of the form (18) with ω̃ ∈W one shows the bounds (33).
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10 Figures
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Figure 1. Plot of the function x 7→ x1/2τ(x) as a function of domain size L with artificial boundary
conditions computed from first order symmetric perturbation theory (top left) and zoom on the same
quantity (top right). Bottom: same results for artificial boundary conditions obtained from second order
logarithmic symmetric perturbation theory.
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Figure 2. Plot of the function x 7→ x1/2τ+(x) as a function of domain size L with artificial boundary
conditions obtained from first order asymmetric perturbation theory (top left) and zoom on the same
quantity (top right). Bottom: same results for the function x 7→ x1/2τ−(x).
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Figure 3. From left to right, top to bottom: graph of the function f 0, f 00, z 7→ f(z) − z − a, and
z 7→ f2,0(z) = (f(z)− zf 0(z))/a
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Figure 4. From left to right, top to bottom: graph of the function f1, j2,0, j2,1, and f2.
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