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We consider transport exponents associated with the dynamics of a wavepacket in a discrete
one-dimensional quantum system and develop a general method for proving upper bounds for these
exponents in terms of the norms of transfer matrices at complex energies. Using this method, we
prove such upper bounds for the Fibonacci Hamiltonian. Together with the known lower bounds,
this shows that these exponents are strictly between zero and one for sufficiently large coupling and
the large coupling behavior follows a law predicted by Abe and Hiramoto.
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I. INTRODUCTION

The spreading of a quantum mechanical wavepacket
has been the focus of intense research both in the physics
and mathematics communities. The free case and, more
generally, the case where the spectral measure of the ini-
tial state has an absolutely continuous component are
well understood. More recently, the case of point spec-
trum has received a lot of attention and the question
whether spectral localization leads to dynamical local-
ization has been answered quite satisfactorily [1]. As a
consequence, dynamical localization was shown in most
systems for which spectral localization had been estab-
lished earlier. The most prominent exception to this rule
is given by the random dimer model [2], which displays
spectral localization and dynamical delocalization and,
in fact, super-diffusive transport.

Between these two extreme cases there are a lot of
models for which intermediate spectral and dynamical
behavior has been observed; for example, Bloch electrons
in a magnetic field [3] and one-dimensional quasicrystals
[4, 5]. The spreading of a wavepacket in such systems
is much less understood. There are a number of works
based on heuristics and numerics for the Harper and Fi-
bonacci models devoted to this issue. As a consequence it
is expected that transport in the Harper model is almost
diffusive and transport in the Fibonacci model is anoma-
lous in the sense that the transport exponents take values
other than zero (which would be the case in a dynamically
localized system), one-half (diffusive transport), and one
(ballistic transport). In fact, these exponents decrease as
the coupling constant is increased and their behavior for
large values of the coupling constant λ is expected to be
of order 1/ log λ [6, 7].

For the Harper model, there are no explicit rigorous
bounds for the transport exponents. Bellissard et al.
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show a lower bound in terms of the multifractal dimen-
sions of the density of states, [8], but they do not have
lower bounds for these dimensions. On the other hand,
there are some explicit rigorous results for the Fibonacci
model. However, they are limited to bounding the trans-
port exponents from below. The question of whether the
expected upper bounds, and hence anomalous transport,
hold has been open from a rigorous standpoint. In fact,
there was no general method for proving upper bounds
on transport exponents, and finding such a method (that
is applicable to models of interest) is one of the most
important problems in this field.

In any event, quantum dynamics for models with sin-
gular continuous spectra supported on Cantor sets with
critical eigenfunctions is a rich subject and has been stud-
ied by many authors, with most papers focusing on the
Harper model and the Fibonacci model or generaliza-
tions thereof. A nice discussion of “what determines the
spreading of a wavepacket,” particularly in these inter-
mediate cases, may be found in [9].

It is the purpose of this Letter to report on rigor-
ous work concerning these issues. We have developed
a general approach for proving upper bounds on trans-
port exponents in terms of the norms of transfer matri-
ces. These matrices are the standard tool, in one dimen-
sion, to study spectral (and dynamical) properties of a
given model. Essentially, it is always the ultimate goal to
reduce a problem at hand (such as studying dynamical
quantities) to properties of transfer matrices or, which is
essentially equivalent, solutions of the associated differ-
ence equation. The first rigorous results on lower bounds
for transport exponents could only be established after
Jitomirskaya and Last had found such a general corre-
spondence [10]. See [10] for the first explicit lower bounds
for transport exponents in the Fibonacci model and [11]
for the best bounds known to this date. We will describe
our general method for proving upper bounds on trans-
port exponents in Theorem 1 below. Secondly, we have
applied this method to the Fibonacci model and proved
upper bounds on transport exponents that are indeed
of order 1/ log λ in the large coupling regime. See The-
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orem 2 for the detailed statement. Together with the
known lower bounds, this establishes the first rigorous
anomalous transport result.

The organizations is as follows: We recall the defini-
tions of the transport exponents and some of the known
rigorous lower bounds for them in Section II, describe
our general upper bound for these exponents in terms of
transfer matrix norms in Section III, and discuss the ap-
plication of this general result to the case of the Fibonacci
model in Section IV.

II. TRANSPORT EXPONENTS

Consider a discrete one-dimensional Schrödinger oper-
ator,

[Hψ](n) = ψ(n+ 1) + ψ(n− 1) + V (n)ψ(n), (1)

on `2(Z). A number of recent papers (e.g., [10–17]) were
devoted to proving lower bounds on the spreading of an
initially localized wavepacket, say ψ = δ1, under the dy-
namics governed by H, typically in situations where the
spectral measure of δ1 with respect to H is purely singu-
lar and sometimes even pure point.

A standard quantity that is considered to measure
the spreading of the wavepacket is the following: For
p > 0, define 〈|X|pδ1

〉(T ) =
∑

n |n|pa(n, T ), where
a(n, T ) = 2

T

∫∞
0
e−2t/T |〈e−itHδ1, δn〉|2 dt. Clearly, the

faster 〈|X|pδ1
〉(T ) grows, the faster e−itHδ1 spreads out,

at least averaged in time. One typically wants to prove
power-law bounds on 〈|X|pδ1

〉(T ) and hence it is natural
to define the following quantity: For p > 0, define the
lower transport exponent β−δ1

(p) by

β−δ1
(p) = lim inf

T→∞

log〈|X|pδ1
〉(T )

p log T

and the upper transport exponent β+
δ1

(p) by

β+
δ1

(p) = lim sup
T→∞

log〈|X|pδ1
〉(T )

p log T
.

Both functions β±δ1
(p) are non-decreasing. Numerical

studies suggest that for some models, they may exhibit
non-trivial growth [9, 18, 19]. Such a multiscaling phe-
nomenon was termed quantum intermittency by Guarneri
and Mantica [18]. For the two main models of interest,
numerics show that there is non-trivial growth for the
Harper model, but no growth for the Fibonacci model
[9].

Another way to describe the spreading of the wave-
function, which turns out to capture the limiting behav-
ior of β±δ1

(p) for small and large values of p, respectively,
is in terms of probabilities. We define time-averaged
outside probabilities by P (N,T ) =

∑
|n|>N a(n, T ). De-

note S−(α) = − lim infT→∞
log P (T α−2,T )

log T and S+(α) =

− lim supT→∞
log P (T α−2,T )

log T for any α ∈ [0,+∞]. They

obey 0 ≤ S+(α) ≤ S−(α) ≤ ∞. These numbers control
the power decaying tails of the wavepacket. In particular,
the following critical exponents are of interest:

α±l = sup{α ≥ 0 : S±(α) = 0}

and

α±u = sup{α ≥ 0 : S±(α) <∞}.

We have that 0 ≤ α−l ≤ α−u ≤ 1, 0 ≤ α+
l ≤ α+

u ≤ 1, and
also that α−l ≤ α+

l , α−u ≤ α+
u .

One can interpret α±l as the (lower and upper) rates
of propagation of the essential part of the wavepacket,
and α±u as the rates of propagation of the fastest (poly-
nomially small) part of the wavepacket. In particular,
if α > α+

u , then P (Tα, T ) goes to 0 faster than any in-
verse power of T . Since a ballistic upper bound holds
in our case (for any potential V ), Theorem 4.1 in [17]
yields limp→0 β

±
δ1

(p) = α±l and limp→∞ β±δ1
(p) = α±u . In

particular, since β±δ1
(p) are nondecreasing, we have that

β±δ1
(p) ≤ α±u for every p > 0.

When one wants to bound all these dynamical quan-
tities for specific models, it is useful to connect them to
the qualitative behavior of the solutions of the difference
equation

u(n+ 1) + u(n− 1) + V (n)u(n) = zu(n) (2)

since there are effective methods for studying these solu-
tions. Presently, the known general results are limited to
one-sided estimates of the transport exponents. Namely,
a number of approaches to lower bounds on β±δ1

(p) have
been found in recent years. The papers [10, 14, 15] derive
such bounds in terms of the behavior of solutions to (2)
with real energies z, with a link furnished by Hausdorff-
dimensional properties of spectral measures due to results
of Guarneri, Combes, and Last [12]. In fact, what is
proven in these papers (although not stated in this form)
are lower bounds on α−l . Therefore, the lower bounds for
β−δ1

(p) obtained in this way are constant in p. There is
also work by Guarneri and Schulz-Baldes [13], who bound
α+

l from below in terms of the packing dimension of the
spectral measure.

Further developments of these ideas by Guarneri and
Schulz-Baldes, Barbaroux et al., and Tcheremchantsev
[16] allowed these authors to obtain better lower bounds
for β±δ1

(p) which are growing in p. These results elucidate
the phenomenon of quantum intermittency.

On the other hand, [11] develop a direct approach with-
out an intermediate step. These papers use power-law
upper bounds on solutions corresponding to energies from
a set S to derive lower bounds for β−δ1

(p). The set S can
even be very small. One already gets non-trivial bounds
when S is not empty. If S is not negligible with respect
to the spectral measure of δ1, the bounds are stronger,
but there are situations of interest (e.g., random poly-
mer models [2]), where the spectral measure assigns zero
weight to S.
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III. TRANSFER MATRICES AND UPPER
BOUNDS FOR TRANSPORT EXPONENTS

It should be stressed that there were no general rigor-
ous methods for bounding α±l , α

±
u , or β±δ1

(p) non-trivially
from above. In the present paper we propose a first gen-
eral approach to proving upper bounds on α±u (which in
turn bound α±l and β±(p) for all p > 0 from above, as
well). This approach relates the dynamical quantities in-
troduced above to the behavior of the solutions to the
difference equation (2) for complex energies z. To state
this result, let us recall the reformulation of (2) in terms
of transfer matrices. These matrices are uniquely deter-
mined by the requirement that(

u(n+ 1)
u(n)

)
= Φ(n, z)

(
u(1)
u(0)

)
for every solution u of (2). Consequently,

Φ(n, z) =


T (n, z) · · ·T (1, z) n ≥ 1,
Id n = 0,
[T (n+ 1, z)]−1 · · · [T (0, z)]−1 n ≤ −1,

where

T (m, z) =
(
z − V (m) −1

1 0

)
.

We have the following result:

Theorem 1 Suppose H is given by (1), where V is a
bounded real-valued function, and K ≥ 4 is such that
σ(H) ⊆ [−K + 1,K − 1]. Suppose that, for some C ∈
(0,∞) and α ∈ (0, 1), we have

∫ K

−K

(
max

3≤n≤CT α

∥∥Φ
(
n,E + i

T

)∥∥2
)−1

dE = O(T−m)

and∫ K

−K

(
max

3≤−n≤CT α

∥∥Φ
(
n,E + i

T

)∥∥2
)−1

dE = O(T−m)

for every m ≥ 1. Then α+
u ≤ α. In particular, β+

δ1
(p) ≤

α for every p > 0.

Remarks. (a) If the conditions of the theorem are sat-
isfied for some sequence of times, Tk → ∞, we get an
upper bound for α−u .
(b) The proof of Theorem 1 is based on the well-known
formula a(n, T ) = 1

Tπ

∫ ∣∣〈(H − E − i
T )−1δ1, δn〉

∣∣2 dE
and the fact that resolvent decay is closely related to
lower bounds on transfer matrix growth. Details will be
given in [20].

IV. THE FIBONACCI HAMILTONIAN

The Fibonacci Hamiltonian is an operator of the form
(1), where the potential is given by V (n) = λχ[1−α,1)(nα
mod 1) with α = (

√
5 − 1)/2. This potential belongs to

the more general class of Sturmian potentials, given by
V (n) = λχ[1−α,1)(nα+ θ mod 1) with general irrational
α ∈ (0, 1) and arbitrary θ ∈ [0, 1). These sequences pro-
vide standard models for one-dimensional quasicrystals.
(See [5] for the discovery of quasicrystals.) Early studies
of the spectral properties of the Fibonacci model were
done by Kohmoto et al. and Ostlund et al. [4]. It was
suggested that the spectrum is always purely singular
continuous and of zero Lebesgue measure. This was rig-
orously established by Sütő for the Fibonacci case [21]
and by Bellissard et al. [22] and Damanik et al. [14] in
the general Sturmian case. Abe and Hiramoto studied
the transport exponents for the Fibonacci model numer-
ically [6]; see also Geisel et al. [7]. They found that they
are decreasing in λ and their work suggests that

α±l , α
±
u ∼ const

log λ
(3)

as λ→∞.
The general approaches to lower bounds for the trans-

port exponent described above have all been applied to
the Fibonacci Hamiltonian (and some Sturmian mod-
els). The best lower bound for α−l was obtained by
Killip et al. in [15]. It reads α−l ≥ 2κ

ζ(λ)+κ+1/2 , where

κ = log
√

17
4

5 log
(√

5+1
2

) ≈ 0.0126 and ζ(λ), chosen so that one

can prove a result like
∑L

n=1 ‖Φ(n,E)‖2 ≤ CL2ζ(λ)+1 for
energies in the spectrum of H (our definition differs from
that of [15]), obeys ζ(λ) = 3 log

√
5

log
(√

5+1
2

) (log λ+O(1)). This

shows in particular that α−l admits a lower bound of the
type (3).

The best lower bound for α−u was found in [11], where it
was shown that α−u ≥ 1

ζ(λ)+1 . In terms of the exponents
β−δ1

(p), the best known lower bounds are (see [11])

β−δ1
(p) ≥

{
p+2κ

(p+1)(ζ(λ)+κ+1/2) p ≤ 2ζ(λ) + 1,
1

ζ(λ)+1 p > 2ζ(λ) + 1.

We also want to mention work on upper bounds for the
slow part of the wavepacket by Killip et al. [15]. More
precisely, they showed that there exists a δ ∈ (0, 1) such
that for λ large enough, P (C2T

p(λ), T ) ≤ 1 − δ. Here,

p(λ) = 6 log
√

5+1
2

log ξ(λ) and

ξ(λ) =
λ− 4 +

√
(λ− 4)2 − 12
2

. (4)

See [15, Theorem 1.6.(i)]. However, this result does not
say anything about the fast part of the wavepacket, and
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in particular, no statement for any of the transport ex-
ponents can be derived.

With the help of Theorem 1 we can prove upper bounds
for α+

u for the Fibonacci model at sufficiently large cou-
pling. These upper bounds show that (3) is indeed true.

The precise result is as follows:

Theorem 2 Consider the Fibonacci Hamiltonian and
assume that λ ≥ 8. Let α(λ) = 2 log

√
5+1
2

log ξ(λ) , where ξ(λ)
is as in (4). Then, α+

u ≤ α(λ), and hence β+(p) ≤ α(λ)
for every p > 0.

Remarks. (a) One can observe that α(λ) < p(λ).
(b) Note that ξ(λ) = λ + O(1) as λ → ∞. Moreover,

α(8) = 2 log
√

5+1
2

log 3 ≈ 0.876 and α(λ) is a decreasing func-
tion of λ for λ ≥ 8. Thus, we establish anomalous trans-
port for the Fibonacci Hamiltonian with coupling λ ≥ 8

and confirm the asymptotic dependence of the transport
exponents α±u on the coupling constant λ that was pre-
dicted by Abe and Hiramoto. We emphasize again that
this is the first model for which anomalous transport can
be shown rigorously.
(c) They key idea is to study the well-known trace map as
a complex dynamical system and prove upper bounds on
the imaginary width of the (complex) canonical approx-
imants of the spectrum. Denote xn(z) = Tr Φ(Fn, z),
where Fn is the n-th Fibonacci number and z ∈ C,
and σn = {z ∈ C : |xn(z)| ≤ 2}. Then we prove that
σn ⊆ {z ∈ C : |Im z| < Cξ(λ)−n/2}. Outside of the sets
σn ∪ σn+1, the traces grow super-exponentially and this
yields the lower bounds on the norms of transfer matri-
ces that we need. The claimed upper bound on α+

u then
follows from Theorem 1. A detailed proof of Theorem 2
may be found in [20].
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