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- Regularité au sens de Whitney de l’image de l’application de Chevalley.
Résumé : Un fermé F est 1-régulier au sens de Whitney si pour tout compact K ⊂ F ,

il existe C > 0 tel que si x et x′ sont dans K, ils peuvent etre joints par un arc rectifiable
tracé dans K de longueur L ≤ C | x − x′ |. Dans cette note on montre la regularité de
l’image de Rn par l’application de Chevalley définie par une base de la sous-algèbre des
polynomes invariants par un groupe fini engendré par des reflexions. La démonstration
repose sur une version d’un théorème de prolongement de Lojasiewicz adaptée aux jets
r-reguliers d’ordre m ≥ r et sur une caractérisation des ensembles 1-réguliers au sens de
Whitney donnée par Glaeser.

- Whitney regularity of the image of the Chevalley map.
Abstract : A closed set F is Whitney 1-regular if for all compact K ⊂ F , there

exists a C > 0 such that any two points x and x′ in K can be joined by a path of length
L ≤ C | x − x′ |. In this note we prove the Whitney regularity of the image of Rn by
the Chevalley map defined by an integrity basis of the subalgebra of polynomials invariant
by a finite orthogonal group generated by reflections. The proof relies upon a Glaeser
characterization of Whitney regular sets and a version of a Lojasiewicz extension theorem
adjusted to r-regular jets of order m ≥ r.

1. Introduction

Definition 1. ([24], [23])A compact set K ⊂ Rn, connected by rectifiable arcs, is
Whitney 1-regular or has the Whitney property P1 if the geodesic distance in K is equivalent
to the Euclidean distance. That is:
∃kK > 0, ∀(x, x′) ∈ K2, there exists a rectifiable arc from x to x′ in K with length
l(x, x′) ≤ kK |x− x′|.
A closed set F is Whitney 1-regular when any compact set in F is Whitney 1-regular.
The condition for property Pρ would be the inequality l(x, x′) ≤ kK | x − x′ |ρ for all x
and x′ in K. Any semi-analytic set is ρ-regular for a small enough ρ.

The interest of property P1 lies in the:

Theorem 1. [24] Let O be an open set of Rn and assume that its closure F = O
has property P1. If f ∈ Cm(O) is such that whenever | k |= m,

∂|k|f
∂xk

has a continuous

extension to F , then f has an extension f̃ ∈ Cm(Rn).

A function f invariant on the fibers of a polynomial mapping θ : Rn → Rn, may be
written as f = F ◦ θ. In [5] we considered symmetric functions that may be written as

Mots-clés, Keywords : Whitney regularity, Chevalley theorem, finite groups generated
by reflections, regular continuous polynomial fields, r-regular jets of order m.

Classification: 58C25

1



f = F ◦ N where N is the Newton mapping. If f is of class Cr, F is of class Cr on the
regular image where it is obtained by local inversion. It may be shown that F and its
derivatives of order less than or equal to the integer part of r/n, say [r/n], are continuous
on N(Rn). Then theorem 1 shows that F is of class C[r/n] if N(Rn) is 1-regular. The
property P1 of N(Rn) conjectured in [4] and [5], see also [3], was proved by Kostov [17],
using results of Arnold [1], and Givent’al [12].

Let W ⊂ O(n) be a finite reflection group. A theorem of Chevalley ([9]) states that
the algebra of W -invariant polynomials is generated by n algebraically independent W -
invariant homogeneous polynomials, say the basic invariants or an integrity basis. Let
p1(x), . . . , pn(x) be these basic invariants and P be the mapping x 7→ (p1(x), . . . , pn(x)),
say the ‘Chevalley’ mapping. This note gives a proof of the Whitney property P1 for the
image of the ’Chevalley’ mapping associated with any finite reflection group. This property
was implicitly conjectured in [12].

The proof relies upon a characterization of Whitney 1-regular sets given by Glaeser
[13] and uses a version of the ÃLojasiewicz extension theorem ([18], [23]) fitted to r-regular
jets of order m ≥ r.

Besides allowing the use of theorem 1 to get an easier proof for a theorem of Chevalley
in finite class of differentiability, the Whitney regularity property provides a geometric
insight of the image sets of the Chevalley maps and their discriminants that may be of
interest in the theory of singularities ([2]). Anyway, this is an example of Whitney 1-regular
set which is natural but not trivial.

2. The Chevalley map.

The reader familiar with these questions may omit this section. Proofs and details
may be found in [8], [11], and [15].

Let W be a finite orthogonal group generated by reflections and let the polynomial
mapping P : Rn 3 x 7→ P (x) = (p1(x), . . . , pn(x)) ∈ Rn be its associated Chevalley
mapping. P is proper and separates the W -orbits ([22]), but it is neither injective nor
surjective. For i = 1, . . . , n the degree of pi will be denoted by ki.

Let R be the set of reflections different from identity in W . The number of these
reflections is R# = d =

∑n
i=1(ki − 1). For each τ ∈ R, let λτ be a linear form with kernel

Hτ = {x ∈ Rn|τ(x) = x}. The jacobian of P is JP = c
∏

τ∈R λτ for some constant c 6= 0.
The critical set is the union of the Hτ when τ runs through R.

A Weyl Chamber C is a connected component of the regular set. All of the other
connected components are obtained by the action of W and the regular set is

⋃
w∈W w(C).

There is a stratification of Rn by the regular set, the reflecting hyperplanes Hτ and their
intersections. The mapping P induces an analytic diffeomorphism of C onto the interior
of P (Rn). It also induces an homeomorphism that carries the stratification from the
fundamental domain C onto P (Rn).

When W is reducible, it is a direct product of its irreducible components, W =
W 1 × . . .×W s and we may write Rn as an orthogonal direct sum Rn0 ⊕Rn1 ⊕ . . .⊕Rns

where Rn0 is the subspace of W -invariant vectors and for i = 1, . . . , s, W i is an irreducible
finite Coxeter group acting on Rni .
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Any Weyl Chamber C for W is of the form Rn0 × C1 × . . . × Cs where Ci is a chamber
for W i in Rni . If w = w1 . . . ws ∈ W with wi ∈ W i, 1 ≤ i ≤ s, for all x ∈ Rn,
in coordinates that fits the orthogonal direct sum, we have w(x) = w(x0, x1, . . . , xs) =
(x0, w1(x1), . . . , ws(xs)). The direct product of the identity on Rn0 and of Chevalley
mappings P i associated with W i acting on Rni , 1 ≤ i ≤ s, is the Chevalley mapping
P = Id0 × P 1 × . . .× P s associated with the action of W on Rn.

For an irreducible W (or for an irreducible component W i) we may assume that the
degrees of the coordinate polynomials p1, . . . , pn are in increasing order. We have k1 = 2,
kn = h, the Coxeter number of W . In the reducible case, for each W i, i = 1, . . . , s, we
assume the degrees of the pi

j to be in increasing order: 2 = ki
1 ≤ . . . ≤ ki

ni
= hi, the

Coxeter number of W i. We may have hi = hj , either W i = W j or not. Considering for
an example A9 × A9 × H3, h1 = h2 = h3 = 10. Anyway we will denote by h the degree
of the coordinate polynomial of highest degree, equal to the highest Coxeter number of
the irreducible components. We may also observe that if j 6= i, P i and P j have no
monomial in common since P i acts on Rni and P i(X) contains only the indeterminate
Xi = (Xi

1, . . . , X
i
ni

), while P j acts on Rnj and P j(X) contains only the indeterminate
Xj = (Xj

1 , . . . , Xj
nj

).

Let us recall that there are only finitely many types of irreducible finite Coxeter
groups defined by their connected graph types. Even though these groups are Weyl groups
of root systems or of Lie algebras, we will follow the general usage and denote them with
upper case letters: An, Bn, Dn, I2(n),H3, H4, F4, E6, E7, E8 (we omit Cn and G2 since the
Weyl groups of Bn and Cn are the same and G2 = I2(6)). For all of these groups an
integrity basis or system of basic invariants is explicitly given in [21]. In each case, an
invariant set of linear forms {L1, . . . , Lv} is chosen. Symmetric functions of the Li are
W -invariant and we may choose pi(X) =

∑v
j=1[Lj(X)]ki with ki as determined in [10].

As usual Dn does not follow the general line, but an integrity basis for Dn is known
([8]). With the exception of Dn we have k1 < . . . < kn. In Dn with the usual choice
pi(X) =

∑n
j=1 X2i

j , 1 ≤ i ≤ n− 1, pn(X) = X1 . . . Xn, the greatest degree is not kn = n
but kn−1 = 2(n−1). Additionally if n = 2m, there are two polynomials of the same degree
2m, p2m(X) = X1 . . . X2m and pm(X) =

∑2m
i=1 X2m

i .

The Whitney regularity property P1 is preserved by diffeomorphism. So, it does not
depend on the choice of the set of basic invariants, since a change of basic invariants is
an invertible polynomial map on Rn. Therefore when W is reducible, we may and will
choose a coordinate system fitted to the decomposition of W in irreducible factors and the
corresponding Chevalley mapping as described above. We will also assume that for each
W i, the P i are as given in [21].

The mapping P is the restriction to Rn of a complex mapping from Cn to Cn, still
denoted by P . The linear mappings defined by the action of W on Rn are restrictions of
C-automorphisms of Cn and we will still denote by W the group of these automorphisms.
The complex P is W -invariant and thus is not injective, but it is surjective ([16]).
On its regular set, the mapping P is a local analytic isomorphism. The critical set where
the jacobian vanishes is the union of the complex hyperplanes Hτ , kernels of the complex
forms λτ . These hyperplanes and their intersections provide a stratification of Cn. The
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points of each stratum are stabilized by the same isotropy subgroup of W which is generated
by the reflections in the hyperplanes containing the stratum.
The critical image is the algebraic set {u ∈ Cn|∆(u) = J2

P (z) = 0}, onto which P carries
the stratification.

3. Continuous-regular polynomial fields

For a complete presentation of these questions see [23].
Let k = (k1, ..., kn) ∈ Nn and x = (x1, ..., xn) ∈ Rn. We put: |k| = k1 + ... + kn,

k! = k1!...kn! and xk = xk1
1 ...xkn

n . Analogously for the indeterminate X = (X1, ..., Xn), we
put Xk = Xk1

1 ...Xkn
n . In Nn, we write k ≤ l, if and only if for all j, kj ≤ lj , and in this

case l − k = (l1 − k1, ..., ln − kn). The Euclidean norm of x will be denoted by | x |.
Definition 2. Let E be a subset of Rn. A polynomial field on E is a mapping

A : E → R[X] that assigns to each x ∈ E the polynomial Ax =
∑

k
1
k!ak(x)Xk, where

k ∈ Nn. The field A is of degree m if its image is in the subspace of polynomials of degree
≤ m.

Let us now assume that E is a closed set of an open set Ω ⊂ Rn.
Definition 3.The field A of degree m is m-continuous, if its coefficients ak : E → R

of order | k |≤ m, are continuous.
An m-continuous polynomial field, may be identified with a jet of order m, A ' (ak)|k|≤m ∈
Jm(E).
At each point x ∈ E the field A induces a polynomial mapping still denoted by Ax that
acts upon vectors x′ − x tangent to Rn at x.

Ax : x′ 7→ Ax(x′) = a0(x) +
∑

|k|>0

1
k!

ak(x) (x′ − x)k.

After formal derivation with respect to the indeterminates we obtain polynomial fields(
∂|q|A/∂Xq

)
inducing polynomial mappings:

(
∂|q|A
∂Xq

)

x

(x′) = aq(x) +
∑

k>q

1
(k − q)!

ak(x) (x′ − x)k−q.

In particular Ax(x) = a0(x) and
(
∂|q|A/∂Xq

)
x

(x) = aq(x).
For | q |≤ r ≤ m, we put:

(RxA)q(x′) =
(

∂|q|A
∂Xq

)

x′
(x′)−

(
∂|q|A
∂Xq

)

x

(x′).

Definition 4. Let A be an m-continuous field of polynomials of degree m on E. For
r ≤ m,A is r-regular on E, if and only if it satisfies the Whitney conditions:
for all compact set K in E, for all x and x′ in K and for all q ∈ Nn with | q |≤ r,

(Wr
q ) | (RxA)q(x′) |= o(| x′ − x |r−|q|), when |x− x′| → 0.
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Example. Let f be a function of class Cr on an open set of Ω ⊂ Rn, and let E be
a closed set in Ω. The restriction to E of the field of Taylor polynomials of f , T r

Ef say,
defines on E an r-regular field of degree r, or Whitney field of order r.

Remark. When necessary we denote by Ar the field A truncated at order r, but A
being m-continuous (m ≥ r) there is no need to consider Ar in stead of A (= Am) in the
conditions (Wr

q ), since for m > r, (RxAr)q(x′) and (RxA)q(x′) differ by a sum of terms
[ak(x)/(k − q)!] (x− x′)k−q, with ak uniformly continuous on K and |k| − |q| > r − |q|.

The space of polynomial fields m-continuous and r-regular on E or space of r-regular
jets of order m on E, is naturally provided with the Fréchet topology defined by the family
of semi-norms:

‖A‖Kn
r,m = sup

x∈Kn
|k|≤m

| 1
k!

ak(x) | + sup
(x,x′)∈K2

n
x6=x′,|k|≤r

( | (RxA)k(x′) |
| x− x′ |r−|k|

)

where Kn runs through a countable collection of compact sets of E, with E =
⋃

n Kn.
Provided with this topology the space of r-regular, m-continuous polynomial fields on E
will be denoted by Er,m(E).

If r = m, Er(E) is the space of Whitney fields of order r or Whitney functions of class
Cr on E. If r = 0, E0,m(E) ' Jm(E) is the space of m-continuous polynomial fields or

jets of order m, with the topology defined by the semi-norms: |A|Kn
m = sup

x∈Kn
|k|≤m

| 1
k!

ak(x) |.

In general the norms ‖ ‖K
r,m and | |Km are not equivalent on Er,m(K). Nevertheless, we

have the following result of Whitney:

Proposition 1. ([23], [24]) If K is 1-regular, the norms ‖ ‖K
r,m and | |Km are equivalent

on Er,m(K).

Conversely, assuming that the compact K is connected by rectifiable paths (or is a
finite union of sets connected by rectifiable paths), Glaeser has proved :

Proposition 2.([13], [23]) If the norms ‖ ‖K
1 and | |K1 are equivalent on E1(K), then

K is 1-regular.

There is a well-known relevant Whitney extension theorem.
Theorem 3. The restriction mapping T r

E : f → T r
Ef , of the space Er(Rn) of functions

of class Cr to the space Er(E) of Whitney fields of order r on E, is surjective. There
is a linear section, continuous when the spaces are provided with their natural Fréchet
topologies.

This theorem states that if A ∈ Er(E), there exists a function f ∈ Cr(Rn) such that
A = T r

Ef . However, when A ∈ Er,m(E) the Whitney extension erases any information
that might be carried by the terms of degree higher than r.

Example. The Newton mapping, N induces

N∗ : Cr(Rn,R) 3 F 7→ f = F ◦N ∈ Cr(Rn,R).
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For any (a, x) ∈ Rn ×Rn, we have:

f(x) = F [N(x)] =
∑

| k |≤ r

1
k!

DkF [N(a)] (N(x)−N(a))k + o(|N(x)−N(a)|r)

which is the Taylor formula for F between N(a) and N(x). Expanding N(x) − N(a) by
the polynomial Taylor formula we get a polynomial in x− a of degree n and thus

f(x) =
∑

| k |≤ nr

1
k!

ak(x) (x− a)k + o(|N(x)−N(a)|r).

If for some closed set E we consider T r
Ef , its extension given by the theorem of Whitney

will not be in N∗(Cr(Rn,R)). It is the field A with Ax =
∑

| k |≤ nr

1
k!

ak(x) (x− a)k that

carries the informations about the fact that f = N∗(F ) and not the truncated field Ar.
This is the reason why we are considering r-regular, m-continuous fields and not the usual
Whitney fields of order r. ♦

Let E be a closed subset of an open set Ω ⊂ Cn ' R2n, we may consider polynomial
fields on E with complex coefficients:

A : E 3 z 7→ Az =
∑

|k|+|l|≤m

1
k!l!

ak,l(z) XkY l ∈ C[X, Y ].

The questions of continuity and regularity discussed in the real case may be reproduced
here and we may define the Fréchet space Er,m(E;C). For a polynomial field A = Re(A)+
iIm(A), where Re(A) and Im(A) the real and imaginary part of A are both in Er,m(E;R),
we have the semi-norms:

‖A‖K
r,m = ‖Re(A)‖K

r,m + ‖Im(A)‖K
r,m

.
Definition 5. [18] A polynomial field A ∈ Er,m(E;C) is formally holomorphic if it

satisfies the Cauchy-Riemann equalities:

i
∂A

∂Xj
=

∂A

∂Yj
, j = 1, ..., n.

This means that
∂A

∂Zj

= 0, j = 1, ..., n, and that for all z ∈ E the polynomial Az

belongs to C[Z] and is of the form Az(Z) =
∑

k
1
k!ak(z)Zk.

The set of m-continuous, r-regular, formally holomorphic polynomial fields on the
closed set E of Ω ⊂ Cn will be denoted byHr,m(E). It is a closed sub-algebra of Er,m(E;C)
and therefore a Fréchet space when provided with the induced topology. In practice we
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shall define the semi-norms ‖A‖Kn
r,m on Hr,m(E) by the same formulas as in Er,m(E;R),

only using moduli instead of absolute values.

4. An extension operation.

Definition 6. A real form ([20]) or a really situated subspace ([18], [23]) of Cn is a
real vector subspace E of dimension n such that E ⊕ iE = Cn.

Example. For any involution α, the real subspace Γα = {z ∈ Cn|zα(i) = zi}, is a real form
of Cn.

The reciprocal image P−1(Rn) is a W -invariant finite union of real forms of Cn. This is
a particular case of a property which is true for any finite group. (*)

A classical theorem of Hilbert states that for any finite subgroup G of O(n) the
algebra of G-invariant polynomials on Rn is finitely generated. There is a finite number
d ≥ n of G-invariant homogeneous polynomials, say q1, . . . , qd, and for all G-invariant
polynomial function f : Rn → R there exists a polynomial function F : Rd → R such
that f(x) = F (q1(x), . . . , qd(x)).
The polynomial mapping Q : Rn 3 x 7→ Q(x) = (q1(x), . . . , qd(x)) ∈ Rd is the restriction
of a complex mapping from Cn to Cd, still denoted by Q.

Lemma 1. Let G be a finite group acting orthogonally on Rn and Q be the associated
polynomial mapping as above. The reciprocal image Q−1(Rd) ⊂ Cn is a G-invariant finite
union of real forms of Cn.

Proof. For g ∈ G, let us put Sg = {u + iv | gu = u and gv = −v}.
Let Q(z) be real for some z ∈ Cn, that is Q(z) = Q(z). Since the coefficients of Q are real,
we have Q(z) = Q(z) and thus Q(z) = Q(z). The fibers of Q : Cn → Cd are the orbits of
G and there is a g ∈ G such that z = gz. Therefore z ∈ Sg.
Conversely if z ∈ Sg for some g ∈ G, then gz = z and Q(z) = Q(gz) = Q(z). Since Q has
real coefficients Q(z) = Q(z), and thus Q(z) = Q(z) which means that Q(z) is real.

Sg is a real subspace and Sg ∩ iSg = 0. If g is not an involution Sg = {0}. If g is an
involution (including the identity in which case SId = Rn), then Sg is defined by n real
equations, 2q of the form Im(zj + (gz)j) = Re(zj − (gz)j) = 0, and n − 2q of the form
Im(zi) = 0, for i = 2q + 1, . . . , n. Therefore the Sg that are not reduced to {0}, are real
forms of Cn and Q−1(Rd) =

⋃
g∈G Sg is a finite union of real forms.

Since g′Sg = {u′ + iv′ = g′(u + iv)| gu = u, gv = −v} so that g′gg′−1u′ = u′ and
g′gg′−1v′ = −v′, we can see that g′Sg = Sg′gg′−1 . Therefore

⋃
g∈G Sg is G-stable. ♦

Definition 7.([19], [23]) Two closed sets E and F of an open set Ω ⊆ Rn are 1-
regularly separated if either E∩F is empty or if for all x0 ∈ E∩F there exists a neighborhood
U of x0 and a constant C > 0 such that for all x ∈ U ,

d(x,E) + d(x, F ) ≥ Cd(x,E ∩ F ).

(*) I am indebted to the referee for the general form and the smart proof of lemma 1.
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One can prove that E and F are 1-regularly separated if and only if the 0-sequence:

0 → Hr,m(E ∪ F ) → Hr,m(E)⊕Hr,m(F ) → Hr,m(E ∩ F ) → 0

is exact ([23]).

Example. Any two linear subspaces are regularly separated. In particular any two
real forms in Cn ' R2n are 1-regularly separated. Moreover the closed strata of the
stratification of P−1(Rn) by the reflecting hyperplanes and their intersections are regularly
separated.

We have the following consequences for regular continuous fields of polynomials:
Proposition 3.([19], [23]) Let E and F be 1-regularly separated closed sets and A be

a field on E ∪F . If the restrictions AE and AF are respectively in Hr,m(E) and Hr,m(F ),
then A is in Hr,m(E ∪ F ).

Proposition 4([18], [23]): Let Π1, . . . , Πs, . . . , Πt be real forms in Cn. There exists
a linear and continuous extension from Hr,m(

⋃s
i=1 Πi) to Hr,m(

⋃t
i=1 Πi).

In particular:
Proposition 5. Let W be a finite sub group of O(n), generated by reflections. Let

P : Rn 3 x 7→ (p1(x), . . . , pn(x)) ∈ Rn be the Chevalley mapping defined by a basis of
W -invariant polynomials. There exists a linear and continuous extension operator

Hr,m(Rn)W → Hr,m(P−1(Rn))W .

Proof. Let A ∈ Hr,m(Rn)W . By Proposition 4 we get an extension to P−1(Rn) which
is a W -invariant union of real forms and we just have to average on W . Since the initial
field was in (Hr,m(Rn))W , it is not altered by the averaging. All the operations involved
are linear and continuous. ♦

5. 1-regularity of the image of the Chevalley mapping.

Let F be a function of class C1 on the interior of P (Rn). We assume that F and its
first derivatives have continuous extensions to P (Rn). This function induces on P (Rn) a
field still denoted by F which is in E0,1(P (Rn)) and is 1-regular on the interior of P (Rn).
In the reducible case, when using fitted coordinates, we have:

Fu(U) = F0(u) + F 0
1 (u)U0

1 + . . . + F 0
n0

(u)U0
n0

+ F 1
1 (u)U1

1 + . . . + F 1
n1

(u)U1
n1

+

+ . . . + F s
1 (u)Us

1 + . . . + F s
ns

(u)Us
ns

We then consider the field f = F ◦ P defined on Rn by:

fx(x′) = F0(P (x)) + F 0
1 (P (x))(p0

1(x
′)− p0

1(x)) + . . . + F 0
n0

(P (x))(p0
n0

(x′)− p0
n0

(x))
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+F 1
1 (P (x))(p1

1(x
′)− p1

1(x)) + . . . + F 1
n1

(P (x))(p1
n1

(x′)− p1
n1

(x)) + . . .

. . . + F s
1 (P (x))(ps

1(x
′)− ps

1(x)) + . . . + F s
ns

(P (x))(ps
ns

(x′)− ps
ns

(x))

and, using the Taylor’s polynomial expansion of the pj
i (x

′) at x:

= F0(P (x)) +
n0∑

i=1

F 0
i (P (x))((x′)0i − x0

i ) +
s∑

j=1

nj∑

i=1

F j
i (P (x))

( kj
i∑

|α|=1

1
α!

∂|α|pj
i

∂xα
((x′)j − xj)α

)
.

The definition of f entails that it is W-invariant, h-continuous, and 1-regular on the regular
set of P . Moreover, since the critical set is the set where the polynomial

∏

τ∈R
λτ vanishes, f

is in E1,h(Rn)W by a real version of the following consequence of the mean value theorem:

Lemma 2.([18]) Let Γ be a finite union of real forms in Cn. Let P 6= 0 be a complex
polynomial and X = {z ∈ Cn | P (z) = 0}. If A ∈ H0,m(Γ)∩Hr,m(Γ\X) then A ∈ Hr,m(Γ).

This field f induces a formally holomorphic field in H1,h(Rn)W . By proposition 5 this
field has an extension f̃ in H1,h(P−1(Rn))W . On the complement in Γ of Γ∩⋃

τ∈RHτ , the
mapping P is a local analytic isomorphism and this yields the construction of a 1-regular
F̃ = f̃ ◦ P−1, unambiguously since both f̃ and P are W -invariant.

Using lemma 2, if we get a F̃ continuous on Rn it will be 1-regular since the critical
image is the null set of the discriminant polynomial. Then if we get a F̃ ∈ H1(Rn) this
will mean that the function F we started with was the restriction to P (Rn) of a function
of class C1 on Rn.

In practice we can get F̃ by identifying

f̃z(z′) = f̃0(z) +
∑

1≤|α|≤kn

1
α!

f̃α(z)(z′1 − z1)α1 ...(z′n − zn)αn and

F̃0(P (z)) +
n0∑

i=1

F̃ 0
i (P (z))((z′)0i − z0

i ) +
s∑

j=1

nj∑

i=1

F̃ j
i (P (z))

( kj
i∑

|α|=1

1
α!

∂|α|pj
i

∂zα
((z′)j − zj)α

)
.

This will obviously return F on P (Rn) where f was obtained that way. On the regular
set of P where F̃ is of class C1, we will check that this process is consistent with the chain
rule D1f = D1FD1P .
In the chosen coordinates, P preserves the Rni . Therefore the cross derivatives of f̃
between two spaces Rni and Rnj vanish on a dense set and by continuity everywhere.
Actually we just have to perform the identification for each Pi on Rni and in fact consider
the irreducible case by identifying:

f̃z(z′) = f̃0(z) +
∑

1≤|α|≤kn

1
α!

f̃α(z)(z′1 − z1)α1 ...(z′n − zn)αn
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and F̃0(P (z)) +
n∑
1

F̃i ◦ P (z)(
ki∑

|α|=1

1
α!

∂|α|pi

∂zα
(z′ − z)α).

Since P is proper the continuity of the F̃α ◦ P entails the continuity of the F̃α them-
selves. So we just have to check the continuity of the F̃α ◦P for α = 0 and |α| = 1. Clearly
F̃0 ◦ P = f̃0 is continuous.

Disregarding Dn for a while, for all the other groups the ki are distinct and pi(Z)
contains a monomial of the form Zki

1 . There exists ([21]) an invariant set of real linear
forms {L1, . . . , Lv} and we put pi(X) =

∑v
j=1[Lj(X)]ki . At least one of the Lj(X) contains

a monomial in X1, bringing in pi(X) a monomial in Xki
1 that cannot be cancelled since the

pi are defined on the reals and the ki are even, with 2 exceptions: An and I2(p). For I2(p)
we may choose p1(X) = X2

1 + X2
2 and p2(X) =

∑p
i=1(X1 cos 2iθ + X2 sin 2iθ)p in which

the coefficient of Xp
1 is

∑p
i=1(cos 2iθ)p 6= 0. For An we may either get the result from the

symmetric group Sn+1 an integrity basis of which is provided by
∑n+1

i=1 Xk
i , k = 1, . . . , n+1

or directly substituting −∑n
i=1 Xi to Xn+1, and using other monomials such as Xk−1

1 X2

when k is odd. We will not make a special study for An. By the way in [21] we can find for
E6, E7, and E8 linear forms Li acting on R6,R7, and R8 respectively without the usual
additional variables.

So
∂knpn

∂zkn
1

= kn!cn for some coefficient cn 6= 0, while for j 6= n,
∂knpj

∂zkn
1

= 0, since the

greatest exponent of z1 in pj(z) is kj < kn. Then the identification shows that cnF̃n◦P (z) =
1

kn!
f̃kn,0,...,0(z) with cn 6= 0, which brings the continuity of F̃n ◦ P .

Assuming that the F̃s ◦ P are continuous when s > i, since pi(Z) contains a monomial in

Zki
1 , we have

∂kipi

∂zki
1

= ki!ci for some coefficient ci 6= 0, while as above for j < i,
∂kipj

∂zki
1

= 0.

The identification now gives:
1
ki!

f̃ki,0,...,0 = ciF̃i ◦ P +
∑

s>i

F̃s ◦ P
1
ki!

∂kips

∂zki
1

.

By using the induction assumption it brings the continuity of F̃i ◦ P , and by decreasing
induction of all the F̃j ◦ P, j = 1, . . . , n.

Observe that at the last step we get:

f̃1,0,...,0 =
∂p1

∂z1
F̃1 ◦ P +

∑
s>1

F̃s ◦ P
∂ps

∂z1
.

Of course we might choose any Zi, i = 2, . . . , n instead of Z1, so that for i = 1, . . . , n,

∂f̃

∂zi
=

∂p1

∂zi
F̃1 ◦ P +

∑
s>1

F̃s ◦ P
∂ps

∂zi
=

n∑
s=1

F̃s ◦ P
∂ps

∂zi
.

On the regular image this is the condition D1f̃ = D1F̃D1P which was to be checked.
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As far as Dn is concerned if we take as basic invariant polynomials pj(z) =
∑n

i=1 z2j
i ,

j = 1, . . . , n−1 and pn(z) = z1z2 . . . zn, we may use the above method when 1 ≤ j ≤ n−1,

and consider
∂npn

∂z1 . . . ∂zn
= 1 to get the continuity of F̃n ◦ P .

For any finite reflection group, the coefficients F̃0 and F̃α, | α |= 1, belong to H0(Rn).
By lemma 2 the field F̃ is in H1(Rn), its restriction F = F̃|P (Rn) is 1-regular on P (Rn)
and we may state:

Proposition 6. Let W be a finite reflection group and P be the associated Chevalley
map. If F ∈ E0,1(P (Rn)) is 1-regular on the interior of P (Rn), then F ∈ E1(P (Rn)).

Remark. The coefficients of F̃ might be complex valued while the initial F was real
valued. If we write F̃ = ReF̃ + iImF̃ , with real ReF̃ and ImF̃ , on the interior of P (Rn)
and on P (Rn) itself we have ReF̃ = F and ImF̃ = 0. In fact ReF̃ is already an extension
of F to Rn and we may replace F̃ by ReF̃ , and come back from H1(Rn) to E1(Rn) by
replacing the indeterminate Z by X.

Theorem 4. The image P (Rn) of the Chevalley mapping has the Whitney regularity
property P1.

Proof. By proposition 2 it is sufficient to show that on each compact set K of P (Rn),
the norms | |K1 and ‖ ‖K

1 are equivalent on E1(K).
Let us consider a sequence (Fk)k∈N of 1-regular Whitney fields on P (Rn) which is

a Cauchy’s sequence for the topology defined by the semi-norms | |K1 . This sequence
converges to some F ∈ E0,1(P (Rn)).
On open subsets we may identify Whitney fields of order 1 and functions of class C1 and
this class of differentiability is preserved by the compact convergence of functions and their
first derivatives. So F is 1-regular on the interior of P (Rn) and satisfies the hypotheses of
proposition 6. Therefore F is in E1(P (Rn)).
This shows that E1(P (Rn)) is complete when provided with the topology induced by the
semi-norms | |K1 . The Banach isomorphism theorem then shows the equivalence of the
norms | |K1 and ‖ ‖K

1 . ♦

Gérard P. Barbançon Austin, August 2005
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Norm. Sup. (4) 5 (1972), 435-458.
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