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Abstract

The problem of conjugation of torus diffeomorphisms to rigid rotations is con-
sidered here. Rather than assuming that the diffeomorphisms are close to rotations,
we assume that the conjugacy equation has an approximate solution. First, it is
proved that if the rotation vector is Diophantine and the invariance error function
of the approximate solution has sufficiently small norm, then there exists a true so-
lution nearby. The previous result is used to prove that if an element of a family of
diffeomorphisms { fµ}µ is conjugated to a rigid rotation with Diophantine rotation
vector, then there exists a Cantor set C of parameters such that for each µ ∈ C the
diffeomorphism fµ is conjugated to a Diophantine rigid rotation with rotation vector
that depends on µ ∈ C in a Whitney-smooth way.

Keywords: conjugation of torus maps, KAM theory, non-perturbative conjugation, Whit-
ney differentiability.

1 Introduction

In this paper we consider the problem of conjugating diffeomorphisms of the d-dimensional
torus Td def

= (R/Z)d to rigid rotations. The case of diffeomorphisms that are perturba-
tions of rotations have been widely, studied [Arn65, Her83, Mos66b, Zeh75]. However, the
diffeomorphisms considered here are not assumed to be close to a rotation. Instead we
assume that the conjugacy equation has an approximate solution. More precisely, it is well
known [BHS96b, Chapter 2], [Mos66b, Zeh75] that to conjugate a given torus diffeomor-
phism to a rotation with fixed rotation vector it is necessary to add parameters to ‘correct’
the diffeomorphism. Hence the conjugacy equation one deals with is the following:

f ◦ h = h ◦ Tω + λ , (1)

where f is the diffeomorphism of Td to be conjugated to the rotation Tω on Td, with ω
Diophantine, h is the unknown conjugation and λ ∈ Td is the unknown ‘correction’. In our
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setting, by an approximate solution of (1) we mean a couple (h0, λ0) with h0 in a suitable
function space and λ0 ∈ Td, such that the error function

e0
def
= f ◦ h0 − h0 ◦ Tω − λ0 (2)

is sufficiently small in an appropriate norm.

In Section 2 of [Mos66c] Moser describes an iterative method to construct solutions of
non-linear functional equations satisfying certain conditions (see (2.1) in [Mos66c]), which
we call group structure. Under the assumption of existence of an initial solution of the
functional equation, the necessary condition to formally define the iterative method is the
solvability of the linearised equation at the initial solution (see equation (2.6) in [Mos66c]).
Moser’s method is multiplicative in the sense that at each step the approximate solution
is computed by using the composition operator (see equation (2.3) in [Mos66c]).

A variation of Moser’s method is considered by Zehnder in Section 5 of [Zeh75], where
the author explains how to construct an iterative method to solve conjugation problems
that have a group structure (see (5.1) in [Zeh75]). The main assumption Zehnder requires is
the invertibility of the linearised operator at solutions of the functional equation (see page
134 in [Zeh75]). Zehnder’s method is additive in the sense that at each step of the iterative
procedure, the new approximate solution is computed as the sum of the previous one and
an increment, which is obtained by solving –approximately– the linearised equations.

The main idea of Moser’s and Zehnder’s methods is the following. If a solution of
the functional equation is known and the linearised operator at the initial solution has a
right inverse, then, using the group structure one obtains that the linearised operator at
an approximate solution has an approximate right inverse (for a definition see [Ham82,
Zeh75]). Thereby, the linearised equations are approximately solvable and a modified
Newton method can be constructed to solve the non-linear problem.

Both Moser’s and Zehnder’s method were used to study conjugation problems in a
perturbative setting. In particular, they assume that the identity map is a solution of
the unperturbed problem. The main observation we make here is that in the case of
conjugation of torus diffeomorphisms to rotations, it is not necessary to assume either
that the diffeomorphism is a perturbation of a rigid rotation or the initial – approximate –
solution is the identity. What one actually needs is the existence of an approximate solution
of the conjugacy equation satisfying an appropriate non-degeneracy condition. We show
that if a non-degenerate approximate solution of the conjugacy equation exists then an
additive iterative procedure can be constructed to solve the non-linear problem.

It turns out that the linearised equation of the conjugacy equation at an (approximate)
solution is (approximately) reducible. More precisely, the derivatives of an approximate
solution provide a change of variables which takes the linearised equation into a difference
equation with constant coefficients.

We study the conjugation equation (1) in the case that f is analytic. Under the as-
sumption of the existence of an approximate solution (h0, λ0) of (1) – with h0 analytic and
satisfying a non-degenerate condition – we prove that if the error function e0 in (2) is suffi-
ciently small, where the bound is explicitly given in terms of the initial data (f, ω, h0, λ0),
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then there is a true solution of (1) which is close to the initial one ( Theorem 1 ). Although
we do not assume that the diffeomorphism f in (1) is close to a rotation, we need the linear
part of the error e0 to be equal to zero. This enables us to improve the nonlinear part of
h0 by solving a difference equation.

By using Moser’s smoothing technique [Mos66c, Sal86, Zeh75] a finitely differentiable
version of Theorem 1 is obtained in [GEV05], where both f and h0 are assumed to be only
finitely differentiable.

Remark 1. Given a torus diffeomorphism f and a Diophantine rotation vector ω, notice
that if (h, λ) satisfy equation (1) then for any θ0 ∈ Td the couple (h ◦ Tθ0 , λ) is also a
solution of (1). We adopt the criterion that two solutions (h, λ) and (ĥ, λ) are equivalent
whenever h(θ) = ĥ(θ + θ0) for some θ0 ∈ Tn, since they only differ in the arbitrary choice
of the origin of the phases. Here we prove that solutions of (1) are locally unique modulo
the above equivalence criterion.

Equation (1) is also studied in the case of a C2-parametric family1 { fµ }µ of analytic
torus diffeomorphisms. We prove in Theorem 4 that if there is an element fµ0 of the family
which is conjugated to the rigid rotation Tω0 with Diophantine rotation ω0, then there is a
Cantor set C of parameters in a sufficiently small neighbourhood of µ0, such that for each
µ ∈ C the corresponding element of the family fµ is also conjugated to a rigid rotation Tω(µ).
Moreover we prove that the mapping ω(µ) is Whitney-C2 and also give an approximation
of order 2, with respect to (µ− µ0), of ω(µ) in a neighbourhood of µ0.

In order to prove Theorem 4 we use the technique of ‘borrowing parameters’. The
idea is similar to that of Moser [Mos66a, Mos67] also developed in [BHTB90, BHS96a], see
also [BHS96b, Section 2.3]. It consists on adding parameters and let the frequencies vary on
Diophantine vectors in a small neighbourhood of ω0. Then, after solving the problem with
the borrowed parameters, ‘pay for’ them. That is, find conditions for which the frequency
can be obtained from the added parameters.

More precisely, consider the conjugacy equation (1) but replace f with fµ, and let ω
run over Diophantine vectors in a sufficiently small neighbourhood of ω0. So that the
considered conjugation problem is the following

fµ ◦ h− h ◦ Tω − λ = 0 , (3)

where (µ, ω) are known and close to (µ0, ω0), and (h, λ) are the unknowns.
Assuming that there is an approximate solution (µ0, ω0, h0, λ0) of (3), with h0 satisfying

a non-degenerate condition, we prove – using Theorem 1 and local uniqueness – that there
are functions H(µ, ω) and Λ(µ, ω), defined on a sufficiently small neighbourhood of (µ0, ω0),
with µ in the set of parameters and ω Diophantine, satisfying the following properties:

1. (µ, ω, h, λ) = (µ, ω, H(µ, ω), Λ(µ, ω)) satisfies (3).

2. Functions H(µ, ω) and Λ(µ, ω) are Whitney-C2.

1 Definition 4 in Section 2.1.
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Then Theorem 4 follows applying a version of the Whitney Extension Theorem2 to Λ and
the classical Implicit Function Theorem to the extended function Λ̂ to obtain the frequency
mapping ω(µ) such that Λ(µ, ω(µ)) = 0.

An outline of the paper follows. In Section 2 we state the main results. In Section 3
we describe, briefly and without technical details, the procedure used to prove the results
of this work. Once proved that the linearised equations are approximately solvable, the
proof of existence and local uniqueness of solutions of (1) is quite standard in KAM theory.
So we do not include it here completely and only sketch the main steps in Sections 4.1
and 4.2. Section 4.3 contains a proof of the existence of the Cantor set C with the properties
described above. In Section 5 we prove of the existence and Whitney differentiability of
the functions H(µ, ω) and Λ(µ, ω).

2 Setup and statement of the results

2.1 Notation and definitions

Before stating the results of this work we introduce some notation and definitions. C0(Td)
denotes the set of functions u : Rd → Rd, which are Zd-periodic and such that

‖u‖C0(Td)

def
= sup

x∈Rd

|u(x)| < ∞ ,

where |·| represents the maximum norm on the spaces Rm and Cm, i.e.

|x| def
= max

j=1,...,m
|xj| for x = (x1, . . . , xm) ∈ Cm.

Similar notation for the norm is also used for real or complex matrices of arbitrary dimen-
sion.

Given ρ ≥ 0 consider the complex strip

T d
ρ

def
={z = x + iy ∈ Cd : |y | ≤ ρ } .

Let A
(

T d
ρ , C 0

)
be the Banach space of functions u : T d

ρ → Cd which are Zd-periodic, real
analytic on the interior of T d

ρ , continuous on the boundary of T d
ρ , and such that

‖u‖ρ

def
= sup

θ∈T d
ρ

|u(θ)| < ∞ .

For r > 0, A
(

T d
ρ , C r

)
denotes the subset of A

(
T d

ρ , C 0
)

for which the following holds:

‖u‖ρ, Cr

def
= sup

|k|≤r

{∥∥Dku
∥∥

ρ

}
< ∞, if r ∈ N,

2See for example Theorem 4 in Chapter VI in [Ste70] or Theorem 6.15 in [BHS96b].
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and letting r = p + α with p ∈ N and α ∈ (0, 1),

‖u‖ρ, Cr

def
= sup

|k|≤p

{∥∥Dku
∥∥

ρ

}
+ sup

x,y∈T d
ρ ,x6=y

|k|=p

{
|Dkf(x)−Dkf(y)|

|x− y|α

}
< ∞ ,

where N denotes the set of natural numbers.

Given a continuous torus map f : Td → Td, a lift of f to Rd (the universal cover of Td)
is a continuous map f̂ : Rd → Rd such that

π ◦ f̂ = f ◦ π , (4)

where π is the covering map

π : Rd → Td, π(x) = x mod Zd. (5)

Proposition 1. Given a continuous torus map f : Td → Td any lift f̂ : Rd → Rd has the
form

f̂(x) = A x + u(x) (6)

where A ∈ Md×d(Z) and u ∈ C0
(
Td

)
(here Md×d(Z) is the set d × d integer valued

matrices). Moreover, if f has additional regularity the corresponding periodic function u
has the same regularity.

Proof. Let f̂ satisfy (4), then for each x ∈ Rd, and k ∈ Zd there exists a vector s ∈ Zd

depending on k (for continuity s is independent of x) such that

f̂(x + k) = f̂(x) + s .

Then for each i = 1, . . . , d, there exists a vector Ai ∈ Zd such that

f̂(x + ei) = f̂(x) + Ai

where ei is the vector in Rd with zero in all its coordinates but the i-th which is equal to
1. Then for any x ∈ Rd and k ∈ Zd

f̂(x + k) = f̂(x) + A k ,

where A is the matrix with columns Ai. Hence the function u : Rd → Rd defined by

u(x)
def
= f̂(x)− A x

is Zd-periodic and satisfies (6).

Remark 2. Let f : Td → Td be continuous, and let f̂ and A be as in Proposition 1, then

f̂(x + k) = f̂(x) + A k .

Moreover, if Γ ∈ Td is a closed curve in Td with winding numbers k = (k1, . . . , kd), then
the transformed curve f (Γ) has winding numbers given by Ak.
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Remark 3. Let D0(Td) denote the set of C0-diffeomorphism on Rd that can be written in
the form (6). Notice that any diffeomorphism f̂ ∈ D0(Td) defines a torus diffeomorphism
f on Td such that f ◦ π = π ◦ f̂ , with π as in (5). Even though lifts of continuous torus
diffeomorphism are not unique, they differ from a constant vector in Zd. This enables us
to work with lifts of torus maps. For notational simplicity we use the same letter to denote
the torus map and a lift of it.

Given a map u ∈ C0(Td) the average of it is defined by

avg {u }θ

def
=

∫
Td

u(x)dx .

The above notation is extended to matrix or vector valued-functions G with components
Gi,j ∈ C0(Td) by integrating component-wise.

Definition 1. Let v ∈ A
(

T d
ρ , C 0

)
, and B ∈ Md×d(Z). We say that h = B + v is

non-degenerate if it satisfies the following conditions:

1. The matrix Dh(θ) is invertible for any θ ∈ T d
ρ ,

2. The matrix Φ
def
= avg {Dh(θ)−1 }θ is invertible.

3. There exist two positive numbers η = η(h) and η̃ = η̃(h) such that∣∣ Φ−1
∣∣ ≤ η ,

∥∥ [ Dh(θ)]−1
∥∥

ρ
≤ η̃ .

Definition 2. Given γ > 0 and σ ≥ d, we define D(γ, σ) as the set of frequency vectors
ω ∈ Rd satisfying the Diophantine condition:

| k · ω −m| ≥ γ |k|−σ
1 ∀k ∈ Zd \ {0}, m ∈ Z,

where |k|1 = |k1|+ · · ·+ |kd|.

Definition 3. Let Ω ⊂ Rn and ` > 0 be such that m < ` ≤ m + 1, for m ∈ Z+ (the set of
non-negative integer numbers). The function g defined on Ω is Whitney-C` if there exist
functions {g(j) : 0 ≤ |j|1 ≤ m} defined on Ω, and a constant M so that for all |j|1 ≤ m∣∣ g(j)(x)

∣∣ ≤ M ∀x ∈ Ω, (7)

and if

Rj(x, y)
def
= g(j)(x)−

∑
|i+j|1≤m

1

i !
g(i+j)(y) (x− y)i ,

where xj def
= xj1

1 . . . xjn
n , then

|Rj(x, y)| ≤ M |x− y|`−|j|1 ∀x, y ∈ Ω . (8)
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Remark 4. As it is well known, the Whitney derivatives are not unique.3 For this reason
if Ω 6= Rn when talking about a Whitney-C` function g, we refer to a family of functions
{gj}0≤|j|1≤m with g0 = g, as in Definition 3.

Definition 4. A C`-parametric family of analytic functions on Td with parameter µ ∈ Ξ ⊂
Rs, denoted by {uµ : µ ∈ Ξ ⊂ Rs} (or {uµ}µ for shortness) is a function u defined on

Ξ×T d
ρ , for some ρ > 0, such that for each µ ∈ Ξ the map uµ

def
= u(µ, ·) ∈ A

(
T d

ρ , C 0
)
, and

such that for each θ ∈ T d
ρ , u(·, θ) is C` on Ξ.

We denote by ∂1u(µ, θ) and ∂2u(µ, θ), respectively, the partial derivatives of u with
respect to µ and with respect to θ.

Given two Banach spaces B1 and B2 we denote by L(B1, B2) the space of linear trans-
formations defined on B1 and with range in B2.

2.2 Statement of the results

In this section we state the results of this work. Briefly, Theorem 1 ensures that if there is
an approximate solution (h0, λ0) of the conjugation problem (1) with h0 non-degenerate,
and if the norm of the error function is sufficiently small, then there is a true solution which
is close to the initial one. Theorem 2 deals with the uniqueness of the solutions of (1).

In Theorems 3 and 4 we consider the conjugation problem (3) for a C2-parametric
family of diffeomorphisms {fµ}µ∈Ξ. Theorem 3 says that if there is a solution of (3)
(µ0, ω0; h0, λ0) with ω0 ∈ D(γ, σ) and h0 non-degenerate then there is a set Ω in a small
neighbourhood of (µ0, ω0) in Ξ×D(γ, σ), such that for each (µ, ω) ∈ Ω there is a solution
(µ, ω; h(µ, ω), λ(µ, ω)) of (3). Moreover, the functions h(µ, ω), λ(µ, ω) are Whitney-C2.

Theorem 4 states that if λ0 = 0 in Theorem 3, then there is a Cantor set C in a small
neighbourhood of µ0 in Ξ, and a function ω defined on C such that for each µ ∈ C there is
a solution (µ, ω(µ); h(µ, ω(µ)), 0) of (3).

Theorem 1. Let ω ∈ D(γ, σ), for some γ > 0 and σ ≥ d. Assume that %, ρ > 0, λ0 ∈ Rd,
and f , h0 ∈ D0(Td) are lifts of the form (6), that is, f = A + u and h0 = B + v0. Define
the error function

e0
def
= f ◦ h0 − h0 ◦ Tω − λ0 .

Assume that the following hypotheses hold

1. u ∈ A
(

T d
2 % ρ, C 2

)
, v0 ∈ A

(
T d

ρ , C 0
)
, and ‖ Im h0‖ρ < % ρ.

2. e0 ∈ A
(

T d
ρ , C 0

)
.

3. h0 is non-degenerate in the sense of Definition 1 with∣∣ Φ−1
∣∣ ≤ η0 ,

∥∥ [Dh0(θ)]
−1

∥∥
ρ
≤ η̃0 for some η̃0, η0 > 0.

3See Section 2 of Chapter VI in [Ste70].
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Then there exists a constant κ > 0, depending on d, σ, γ−2, %, η, η̃, |B| + |Dv0|ρ, and
|u|2 %ρ,C2, such that if q ≥ 2(σ + 1), 0 < δ ≤ ρ/8, and

κ δ− q | e0|ρ < min( 1, %) ,

then there exists a constant vector λ∗ ∈ Rd and a diffeomorphism h∗ ∈ D0(Td) with
(h∗ − h0) ∈ A

(
T d

ρ−4δ, C 0
)
, and such that

f ◦ h∗ = h∗ ◦ Tω + λ∗ .

Moreover, the following inequalities hold:

|h∗ − h0|ρ−4δ ≤ κ δ−σ | e0 |ρ ,

|Dh∗ −Dh0|ρ−4δ ≤ κ δ−(σ+1) | e0 |ρ ,

|λ∗ − λ0| ≤ κ | e0 |ρ .

Remark 5. It follows from the proof of Theorem 1 that the constant κ in Theorem 1 is
an increasing function of the initial data %, η0, η̃0, |Dv0|ρ, and |u|2 %ρ,C2. Moreover, the

dependence on γ−2 of κ is of the form κ = γ−2 κ̃ where κ̃ does not depend on γ−2.

As we already mentioned in Remark 1, two solutions of (1) of the form (h1, λ) and
(h1 ◦ Tθ0 , λ), for some θ0 ∈ Rd, are considered to be equivalent. Within this equivalence
class the local uniqueness is the following:

Theorem 2. Let ω, %, ρ and f be as Theorem 1. Assume that λ1, λ2 ∈ Rd, and v1, v2 ∈
A

(
T d

ρ , C 0
)

are such that for i = 1, 2 hi
def
= B + vi ∈ D0(Td) satisfies hypotheses of Theo-

rem 1, and that (λi, hi) is a solution of (1). Then there exists a constant c > 0 depending

on d, σ, γ−1, |u|ρ,C2,
∥∥Dh−1

1

∥∥
ρ
,
∣∣∣(avg

{
Dh−1

1

}
θ

)−1
∣∣∣
ρ
, and |B|+ ‖Dv1‖ρ, such that if

c ρ−σ ‖h1 − h2‖ρ < 1 , and c ‖λ1 − λ2‖ρ < 1 ,

then λ1 = λ2, and there exists an initial phase θ0 ∈ Rn, such that h1 ◦ Tθ0 = h2 on T d
ρ/2.

Theorem 3. Let {uµ}µ∈Ξ be a C2-parametric family of analytic functions on Td with

Ξ ⊂ Rs such that for each µ ∈ Ξ, uµ
def
= u(µ, ·) ∈ A

(
T d

2 % ρ, C 2
)

and∥∥D 2u(µ, θ)
∥∥

2 % ρ
< Υ.

Let µ0 ∈ Ξ, and ω0 ∈ D(γ, σ) for some σ ≥ d and γ > 0. Assume that for µ ∈ Ξ,

fµ
def
= A + uµ ∈ D0(Td), and that there exist h0 = B + v0 ∈ D0(Td) and λ0 ∈ Rd, such that

1. v0 ∈ A
(

T d
ρ , C 0

)
.

2. ‖Im (h0)‖ρ < ρ %.

3. fµ0 ◦ h0 = h0 ◦ Tω0 + λ0.
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4. h0 is non-degenerate (Definition 1) with η0 = η(h0) and η̃0 = η̃(h0)

Then there exists a positive constant κ, depending on d, σ. γ−1, %, Υ, η0, η̃0, and
‖Dh0(θ) ‖ρ, such that if q ≥ 4σ + 2 and ε > 0 satisfy

κ ρ− q ε2 < min(1, %) ,

then for each (µ, ω) ∈ Ω(µ0, ω0; ε)
def
= {(µ, ω) ∈ Ξ×D(γ, σ) : | (µ− µ0, ω − ω0) | < ε} , there

exist λ(µ, ω) ∈ Rd and v(µ, ω) ∈ A
(

T d
ρ/2, C 0

)
such that h(µ, ω)

def
= B + v(µ, ω) is non-

degenerate in the sense of Definition 1 and

fµ ◦ h(µ, ω) = h(µ, ω) ◦ Tω + λ(µ, ω) .

Define the functions

H : Ω(µ0, ω0; ε) → A
(

T d
ρ/2, C 0

)
, H(µ, ω) = h(µ, ω) ,

Λ : Ω(µ0, ω0; ε) → Rd, Λ(µ, ω) = λ(µ, ω) .
(9)

There are functions a, b, α, and β, defined on Ω(µ0, ω0; ε) such that for each (µ, ω) ∈
Ω(µ0, ω0; ε),

a(µ, ω) ∈ L
(
Rs,A

(
T d

ρ/2, C 0
))

, α(µ, ω) ∈ L
(
Rs, Rd

)
b(µ, ω) ∈ L

(
Rd,A

(
T d

ρ/2, C 0
))

, β(µ, ω) ∈ L
(
Rd, Rd

)
,

and such that the functions {H, a, b } and {Λ, α, β } are Whitney-C2 on Ω(µ0, ω0; ε) (see
Definition 3).

Furthermore, for each (µ, ω) ∈ Ω(µ0, ω0; ε), β(µ, ω) is invertible and

β(µ, ω)−1 = − avg
{
(∂θ h(µ, ω)(θ))−1}

θ
.

Remark 6. Informally, we can think of a and α as the partial derivatives with respect to
µ, and of b and β as the partial derivatives with respect to ω of, respectively, H and Λ.

The proof of the Whitney differentiability we present here follows [dlLGE] where the
authors prove Whitney differentiability of arbitrary order of a family of invariant tori for
exact symplectic maps. In fact, if in Theorem 3, one assumes that uµ is a C`-parametric
family of analytic maps on Td, then it is possible to prove – following [dlLGE] – that the
mappings H and Λ are Whitney-C`. The idea is the following. First one constructs Lind-
stedt series in a neighbourhood of (µ0, ω0). and then prove that the Lindstedt coefficients
satisfy Definition 3. Informally, the Lindstedt coefficient of order k give us the Whitney
derivative of order k. In this paper we restrict ourselves to the case ` = 2, we hope to come
back to general case in a future work.
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Theorem 4. Assume that the hypotheses of Theorem 3 hold and that moreover λ0 = 0.
Then there exists a Cantor set C ⊂ Ξ and a function ω : C → D(γ, σ) such that, for µ ∈ C,
one has (µ, ω(µ)) ∈ Ω(µ0, ω0; ε) and

fµ ◦ h(µ, ω(µ)) = h(µ, ω(µ)) ◦ Tω(µ) .

Furthermore if α and β are as in Theorem 3 and ω1 is defined by

ω1(µ)
def
= − β(µ, ω(µ))−1α(µ, ω(µ)) , µ ∈ C,

then {ω, ω1 } is Whitney-C2 on C. In particular, for each each µ ∈ C∣∣ ω(µ)−
[
ω0 − β(µ0, ω0)

−1α(µ0, ω0) (µ− µ0)
] ∣∣ ≤ κ |µ− µ0 | 2 ,

where κ is a constant depending on d, σ. γ−1, %, Υ, η0, η̃0, and ‖Dh0(θ) ‖ρ.

Theorems 1, 2 and 4 are proved in Section 4 and Theorem 3 is proved in Section 5.

3 Sketch of the procedure

The conjugation problem we are dealing with can be written in a functional setting as
follows. Let uµ be a C2-parametric family of maps with parameter µ ∈ Ξ ⊂ Rs, such that

for each µ ∈ Ξ the map fµ
def
= A + uµ belongs to D0(Td). For (µ, ω; h, λ) ∈

(
Ξ× Rd

)
×

D0(Td)× Rd we define the functional

F(µ, ω; h, λ)
def
= fµ ◦ h− h ◦ Tω − λ (10)

In the case that both µ and ω ∈ D(γ, σ) are fixed, we set f = fµ and denote

F (h, λ)
def
=F(f, ω; h, λ) . (11)

We denote by D1F(µ, ω; h, λ) and by D2F(µ, ω; h, λ) the Fréchet derivative of F with
respect to (µ, ω) and with respect to (h, λ), respectively. Similarly, DF (h, λ) denotes the
Fréchet derivative of F with respect to (h, λ).

Roughly, Theorem 1 states that if there is a sufficiently ‘good’ approximate solution
(h0, λ0) of the functional equation

F (h, λ) = 0 , (12)

and if h0 is non-degenerate (see Definition 1), then it is possible to find a true solution
of (12), which is close to the initial one. Theorem 2 states that the solutions of (12) are
locally unique (see Remark 1).

In Section 3.1 we show that if an approximate solution of (12) is non-degenerate, then
the corresponding linearised operator has an approximate right inverse [Ham82, Zeh75].
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Moreover for a true non-degenerate solution of (12) the corresponding linearised operator
is invertible – of course with some loss of domain of analyticity.

As it is proved in [Ham82, Mos66c, Mos66b, Zeh75], the existence of an approximate
right inverse of the linearised equations is enough to prove the existence of a true solu-
tion of (12) by constructing a modified Newton method. The local uniqueness stated in
Theorem 2 follows from the fact that the approximate solutions of the linear equations
corresponding to (12) are unique when the initial phase is fixed.

An implicit function theorem for the functional equation

F(µ, ω; h, λ) = 0 . (13)

is given in Theorem 3, which states moreover that the implicit functions h(µ, ω) and λ(µ, ω)
are Whitney-C2. In Section 5.1 we show that the existence of such implicit functions is
guaranteed by Theorem 1 and the invertibility properties of the linear operator

D2F(µ, ω; h, λ)(∆, ∆λ) = ∂2f(µ, h) ∆−∆ ◦ Tω −∆λ ,

which is essentially the same as DF (h, λ)(∆, ∆λ) for (µ, ω) fixed.

We proceed as follows. For ε > 0 define Ω( µ0, ω0; ε) as in Theorem 3 and assume that
(µ0, ω0; h0, λ0) is a solution of (13), with h0 non-degenerate. For ε sufficiently small and
(µ, ω) ∈ Ω( µ0ω0; ε) we take (µ, ω; h0, λ0) as an approximate solution of (13). Define the
polynomials

H≤1 (µ0, ω0; x, y) = h(µ0, ω0) + a(µ0, ω0) (x− µ0) + b(µ0, ω0) (y − ω0) ,

and
Λ≤1 (µ0, ω0; x, y) = h(µ0, ω0) + α(µ0, ω0) (x− µ0) + β(µ0, ω0) (y − ω0) ,

where the functions a(µ0, ω0), b(µ0, ω0), α(µ0, ω0), and β(µ0, ω0), are solutions of the linear
equations

D2F ( µ0, ω0; h0, λ0 ) [ a(µ0, ω0), α(µ0, ω0) ] = −∂1u(µ0, h0(θ)) ,

D2F ( µ0, ω0; h0, λ0 ) [ b(µ0, ω0), β(µ0, ω0) ] = −∂1u(µ0, h0(θ)) .
(14)

It turns out that if ε is sufficiently small and (µ, ω) ∈ Ω( µ0ω0; ε), then(
µ, ω ; H≤1 (µ0, ω0; µ, ω) , Λ≤1 (µ0, ω0; µ, ω)

)
(15)

is an approximate solution of (13) with error of order 2 with respect to ε. Taking ε
sufficiently small and applying Theorem 1 to the approximate solution (15) we obtain the
existence of a true solution (µ, ω; h(µ, ω), λ(µ, ω)) of (13) for each (µ, ω) ∈ Ω(µ0, ω0; ε).
In Section 5.2 we prove that if ε is sufficiently small then for each (µ, ω) ∈ Ω(µ0, ω0; ε).
the equations obtained by replacing (µ0, ω0; h0, λ0) with (µ, ω; h(µ, ω), λ(µ, ω)) in (14) have
solutions a(µ, ω), b(µ, ω), α(µ, ω), and β(µ, ω).
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The fact that the non-degeneracy condition given in Definition 1 is an open property
enables us to obtain uniform estimates of the involved quantities in such a way that the
size of ε will depend only on the initial data ω0, µ0, and h0. The Whitney differentiability
of the functions H and Λ in (9) follows from the uniform estimates and from the local
uniqueness of the solutions of (12).

Theorem 4 states that if the element fµ0 of the family {fµ}µ∈Ξ is conjugated to the
rigid rotation Tω0 , with ω0 ∈ D(γ, σ), and the conjugation map h0 is non-degenerate, then
in a sufficiently small neighbourhood of µ0 there is a Cantor set of parameters C such
that for each µ ∈ C, the diffeomorphism fµ is conjugated to the rigid rotation Tω(µ), with
ω(µ0) = ω0. Theorem 4 is proved in Section 4.3. The proof follows from Theorem 3 by
applying first the a version of the Whitney Extension Theorem [Whi34] to the equation
Λ(µ, ω) = 0 and then the classical Implicit Function Theorem to the extended equation
Λ̂(µ, ω) = 0.

3.1 The linearised equation

Let (h, λ) be an approximate solution of (12) with function error defined by

e(θ)
def
= F (h, λ)(θ) . (16)

Then, by taking derivatives with respect to θ we have the following fundamental equality

Df(h(θ))Dh(θ) = Dh(θ + ω) + De(θ) . (17)

Equality (17) enables us to solve approximately the linearised equation

DF (h, λ)(∆, ∆λ) = Df(h(θ)) ∆−∆ ◦ Tω −∆λ = g (18)

in the case g ∈ A
(

T d
ρ , C 0

)
, for some ρ > 0.

Lemma 2. Let ω ∈ D(γ, σ) and f = A + u ∈ D0(Td), with u ∈ A
(

T d
% ρ, C 0

)
, for some

% , ρ > 0. Let h = B + v ∈ D0(Td), with v ∈ A
(

T d
ρ , C 0

)
, be non-degenerate (Definition 1)

and such that | Im h|ρ < % ρ. Assume (h, λ) is an approximate solution of (12) with

function error e defined by (16) such that e ∈ A
(

T d
ρ , C 0

)
. Then for any g ∈ A

(
T d

ρ , C 0
)

the linear equation (18) has a unique approximate solution (∆, ∆λ) ∈ A
(

T d
ρ−δ, C 0

)
× Rd

satisfying
avg

{
(Dh(θ))−1 ∆

}
θ

= 0 ,

∆λ = avg
{
Dh(θ)−1

}−1

θ
avg

{
Dh(θ + ω)−1g

}
θ

, (19)

and

‖∆‖ρ−δ ≤ c γ−1 δ−σ ‖g‖ρ ,

‖D∆‖ρ−2δ ≤ c γ−1 δ−(σ+1) ‖g‖ρ ,

|∆λ| ≤ c ‖g‖ρ .

12



where c is a constant depending on d, σ,
∣∣∣(avg {Dh(θ)−1}θ)

−1
∣∣∣, ‖Dh(θ)‖ρ, and

‖Dh(θ)−1‖ρ. Moreover, the following holds

‖DF (h, λ)(∆, ∆λ)− g‖ρ−δ =
∥∥De(θ) Dh(θ)−1 ∆

∥∥
ρ−δ

≤ ĉ γ−1 δ−σ ‖e‖ρ ‖g‖ρ .

Proof. Since Dh(θ) is invertible we can define the change of variables ∆(θ) = Dh(θ)ξ(θ).
Then using (17) we have that in the new variables (18) becomes

Dh(θ + ω) [ ξ − ξ ◦ Tω ] + De(θ) ξ −∆λ = g. (20)

From (19) we have
avg

{
Dh(θ + ω)−1 (g + ∆λ)

}
θ

= 0 .

Hence [dlL01, Rüs75] the linear equation

ξ − ξ ◦ Tω = Dh(θ + ω)−1 (g + ∆λ) ,

has a unique solution with avg {ξ}θ = 0 satisfying

‖ξ‖ρ−δ ≤ c̃ δ−σ
(
‖g‖ρ + |∆λ|

)
,

‖Dξ(θ)‖ρ−2δ ≤ c̃ δ−(σ+1)
(
‖g‖ρ + |∆λ|

)
,

(21)

where c̃ is a constant depending on d, σ, ‖Dh(θ)−1‖ρ.

Lemma 2 follows from (20), (21), and (19).

Remark 7. Notice that if the error function e in (16) is identically zero, then Lemma 2
provides an exact solution of the linear equation (18).

3.2 The non-degeneracy condition

From Lemma 2 we know that the linearised equation (18) can be solved approximately in
the case that h is non-degenerate (Definition 1). In order to use Lemma 2 to construct a
modified Newton method to solve the nonlinear equation (12) we need that at each step
the corrections to the approximate solution are again non-degenerate. The non-degeneracy
condition we are considering here amounts to invertibility of matrices. So the openness of
the non-degeneracy condition follows from the fact that invertibility of matrices is an open
property.

Lemma 3 states the openness property of the non-degeneracy condition and gives es-
timates which enable us obtain uniform bounds of the constants in the modified Newton
method described in Section 4.1 and in proof of Theorem 3 (Section 5).

Lemma 3. Assume that h is non-degenerate and let η and η̃ be as in Definition 1. Let
∆ ∈ A

(
T d

ρ , C 0
)

be such that

η̃ ‖D∆‖ρ ≤ 1/2 , and 2 η η̃ 2 ‖D∆‖ρ ≤ 1/2. (22)
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Then h1
def
= h + ∆ is non-degenerate and∥∥Dh1(θ)

−1
∥∥

ρ
≤ η̃ + 2 η̃ 2 ‖D∆(θ)‖ρ ,∣∣∣avg

{
Dh1(θ)

−1
}−1

θ

∣∣∣
ρ
≤ η + 2 η 2 ‖D∆(θ)‖ρ .

Proof. Let θ ∈ T d
ρ , the first inequality in (22) implies [ Id −Dh(θ)−1D∆(θ) ] is invertible,

where Id represents the d × d identity matrix. Performing some simple computations one
has

Dh1(θ)
−1 = Dh(θ)−1 −

[
Id −Dh(θ)−1D∆(θ)

]−1
Dh(θ)−1D∆(θ) Dh(θ)−1 ,

from which Lemma 3 follows.

4 Proof of theorems 1, 2 and 4

4.1 Proof of Theorem 1

Let ω, ρ, %, f = A + u, h0, λ0, and e0 be as in Theorem 1. In this section we describe a
modified Newton method to solve the non-linear equation (12). The method converges to
a true solution if ‖e0‖ρ is sufficiently small. The proof of convergence is quite standard in
KAM theory, so we only give an outline of the main steps.

Starting with the approximate solution (h0, λ0) of (12) we construct a sequence of
approximate solutions

hn+1 = hn + ϕn , λn+1 = λn + ∆λn .

The key point on constructing the modified Newton method, as it is explained in [Mos66c]
and [Zeh75], is to solve approximately the corresponding linearised equation (18). Lemma 2
provides such approximate solution. Moreover, if ‖e0‖ is sufficiently small, Lemma 3 enables
us to iterate the method. Lemma 4 provides one step of the modified newton method and
it is a immediate consequence of lemmas 2, and 3 and Taylor’s Theorem.

Lemma 4. Assume that %n, ρn > 0, λn ∈ Rd, and hn ∈ D0(Td) are given and define the
error function

en
def
= F (hn, λn) . (23)

Assume that the following hypotheses hold:

S1(n). ‖Dhn‖ρn
≤ τn .

S2(n). ‖ Im hn‖ρn
< ζn, with ρ/2 ≤ ρn ≤ ρ and ζn = % ρ

n∑
k=0

2−k .

S3(n). en ∈ A
(

T d
ρn

, C 0
)
.
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S4(n). hn is non-degenerate (Definition 1): The matrix Dhn(θ) is invertible for any θ ∈
T d

ρn
. The matrix Φn

def
= avg {Dhn(θ)−1 }θ is invertible. Moreover, there exist two

positive numbers ηn and η̃n such that∣∣ (Dhn(θ))−1
∣∣
ρn
≤ η̃n ,

∣∣ Φ−1
n

∣∣ ≤ ηn .

Then there exists a vector ∆λn ∈ Rd and a function hn+1 ∈ D0(Td) such that hn+1 − hn ∈
A

(
T d

ρn−2δn
, C 0

)
with 0 < δn < ρn/2, and such that if ρn+1 = ρn− 2 δn , then the following

estimates hold

‖hn+1 − hn‖ρn+1
≤ Mn δ−σ

n ‖en‖ρn
,

‖Dhn+1 −Dhn‖ρn+1
≤ Mn δ−(σ+1)

n ‖en‖ρn
,

|λn+1 − λn| ≤ ηn η̃n ‖en‖ρn
,

where Mn is a constant which depends on d, σ, γ−2, ηn, η̃n, and ‖Dhn‖ρn
.

Moreover the following estimate holds

|en+1|ρn+1
≤ M̂n δ−2σ

n |en|2ρn
,

where en+1 is defined by (23) by replacing n with n+1 and M̂n is a constant which depends
on Mn, and ‖u ‖2 % ρ,C2.

Furthermore, there exists a constant M̃n, depending on Mn, η̃n, and ηn such that if

M̃n 2(n+1) δ−(σ+1)
n |en|ρn

< min(1, %)

then properties S(n + 1) hold with

τn
def
= τn + % 2−(n+1) ,

ζn+1
def
= ζn + ρ % 2−(n+1) ,

ηn+1
def
= ηn

(
1 + 2−(n+1)

)
,

η̃n+1
def
= η̃n

(
1 + 2−(n+1)

)
.

Remark 8. Let Mn M̃n and M̂n be as in Lemma 4. Define

κn
def
= max

(
Mn, M̃n, M̂n

)
.

Performing the proof of Lemma 4 one realizes that κn is increasing with respect to ηn, η̃n,
and |Dhn|ρn

. Let us write explicitly dependence on these variables as follows:

κn = ϑ
(
ηn, η̃n, ‖Dhn‖ρn

)
,

Now the proof of Theorem 1 follows the same lines of the proof of Theorem 1.1 in [Zeh75]
using Lemma 4 and defining

κ∞ = ϑ
(
3 η, 3 η̃ , ‖Dh‖ρ + 2 %

)
.
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4.2 Proof of Theorem 2

The local uniqueness stated in Theorem 2 is proved by using the fact that, in the case that
(h, λ) is a solution of (12), the linearised equation (18) has a solution which is unique if the
average of Dh(θ)−1∆ is fixed (see Lemma 5 bellow). We only include here the statement
of the uniqueness of the linearised equation (18). The complete proof of Theorem 2 is not
reported here because it is essentially the same as in Section 6 of [dlLGJV05], where the
authors prove local uniqueness of invariant tori for exact symplectic maps.

Lemma 5. Assume that the hypotheses of Lemma 2 hold and that e = F (h, λ) ≡ 0. Let
(∆, ∆λ) be as in Lemma 2. Then for any solution (∆̂, ∆λ) of the linear equation (18), the
following holds:

∆ = ∆̂−Dh(θ) avg
{

Dh(θ)−1∆̂
}

θ
.

4.3 Proof of Theorem 4

Assume that the hypotheses of Theorem 3 holds, and let Ω (µ0, ω0; ε), H and Λ be as
in Theorem 3. Theorem 4 in Chapter VI in [Ste70] (a version of the Whitney Extension
Theorem) ensures the existence of an extension of Λ, say Λ̂, which is Whitney-C2 on Rs×Rd

and such that for any (µ, ω) ∈ Ω (µ0, ω0; ε) the following holds:

1. Λ̂(µ, ω) = Λ(µ, ω),

2. Λ̂(µ0, ω0) = 0,

3. ∂1

[
Λ̂(x, y)

]
(x,y)=(µ,ω)

= α(µ, ω),

4. ∂2

[
Λ̂(x, y)

]
(x,y)=(µ,ω)

= β(µ, ω) = −
[
avg

{
[ ∂θ h(µ, ω)(θ) ]−1 }

θ

]−1
is invertible.

Then, the classical Implicit Function Theorem implies the existence of a neighbourhood
V ⊂ Rs of µ0 and a unique Whitney-C2 map ω : V → Rd such that for all x ∈ V

Λ̂(x, ω (x)) = 0 .

Define

C def
= ω−1 ( { y ∈ D(γ, σ) : | y − ω0| < ε } )

⋂
{µ ∈ Ξ : |µ− µ0| < ε } .

Then for any µ ∈ C we have

f ◦ h(µ, ω(µ)) = h(µ, ω(µ)) ◦ Tω(µ) .

Moreover, ω(µ0) = ω0 and for any µ ∈ C

D [ ω(x) ]x=µ = − ∂2

[
Λ̂(x, y)

]−1

(x,y)=(µ,ω(µ))
∂1

[
Λ̂(x, y)

]
(µ,ω(µ))=(µ,ω(µ))

= −β(µ, ω)−1 α(µ, ω(µ)) .

This finishes the proof of Theorem 4.
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5 Proof of Theorem 3

Assume that the hypotheses of Theorem 3 hold. Throughout this section δ
def
= ρ/32 and for

ε > 0, B(µ0, ω0; ε) denotes the open ball of radius ε and centre (µ0, ω0).
The proof of Theorem 3 is divided into two parts. First, in Section 5.1 we prove that

there exist two functions H and Λ defined in an ε-neighbourhood of (µ0, ω0) in Ξ×D(γ, σ)
such that for each (µ, ω) in such neighbourhood, (µ, ω; H(µ, ω), Λ(µ, ω)) is a solution of (13).
Since the non-degeneracy condition in Definition 1 is an open property (see Lemma 3) we
obtain uniform bounds, which enables us to choose ε depending on µ0, ω0, and h0, but
independent on µ, ω. Second, in Section 5.2 we prove the Whitney regularity of H and Λ.

5.1 Existence of the implicit functions

We prove the existence of the implicit functions H(µ, ω) and Λ(µ, ω) in Theorem 3 in
two parts. The first part consists in finding ε sufficiently small such that for any (x, y) ∈
B(µ0, ω0; ε) with x ∈ Ξ, the equation

F(x, y; h, λ) = 0 (24)

has an approximate solution for which the error function has norm of order 2 with respect
to |(x− µ0, y − ω0)|,. This is done in Lemma 6 bellow.

In the second part we choose ε sufficiently small such that if (x, y) ∈ B(µ0, ω0; ε) with
x ∈ Ξ, and y ∈ D(γ, σ), then Theorem 1 implies existence of a solution of (24) (this is
done in Lemma 7). Moreover, in Lemma 8 we give estimates of the norm of the difference
between the functions H(µ, ω), Λ(µ, ω), and h0, λ0.

Lemma 6. Let fµ, µ0, ω0, h0 and λ0 be as in Theorem 3. Then there exist two polynomials

H≤1(µ0, ω0; x, y)(θ) = h0(θ) + a(µ0, ω0)(θ) (x− µ0) + b(µ0, ω0)(θ)(y − ω0) , (25)

and
Λ≤1(µ0, ω0; x, y) = λ0 + α(µ0, ω0) (x− µ0) + β(µ0, ω0)(y − ω0) , (26)

with

‖ a(µ0, ω0)‖ρ−δ ≤ κ1 γ−1 δ−σ ‖∂1 f (µ0, h0(θ))‖ρ ,

‖ b(µ0, ω0)‖ρ−δ ≤ κ1 γ−1 δ−σ ‖∂θ h0(θ)‖ρ ,
(27)

|α(µ0, ω0)| ≤ κ1 ‖∂1f (µ0, h0(θ))‖ρ ,

| β(µ0, ω0)| ≤ κ1 ‖∂θ h0(θ)‖ρ ,
(28)

where κ1 depends on d, σ, η0, η̃0, ‖∂θh0(θ)‖ρ.
Assume that ε > 0 is such that

κ2 δ−(σ+1) ε ≤ min(1, %) , (29)
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where

κ2
def
= 4 κ1 max

(
1, η̃0, η0 η̃2

0, η0

)
γ−1

(
‖∂1 u (µ0, h0(θ))‖ρ + ‖∂θ h0(θ)‖ρ

)
.

Then for each (x, y) ∈ B(µ0, ω0; ε) with x ∈ Ξ∥∥F (
x, y; H≤1(µ0, ω0; x, y), Λ≤1(µ0, ω0; x, y)

) ∥∥
ρ−2δ

≤ κ̂2 δ−2 σ | (x− µ0, y − ω0) |2 , (30)

where κ̂2 depends on d, κ2
1, γ−2, ‖ ∂θh0(θ) ‖ρ, and ‖ ∂ 2

2 uµ0(θ)‖2 % ρ.

Moreover, for each (x, y) ∈ B(µ0, ω0; ε) the map H≤1(µ0, ω0; x, y) is non-degenerate and
the following estimates hold∥∥ ∂θ H≤1(µ0, ω0; x, y)(θ)

∥∥
ρ−2δ

≤ ‖∂θh0(θ)‖ρ + %/2 , (31)

∥∥∥ [
∂θ H≤1(µ0, ω0; x, y)(θ)

]−1
∥∥∥

ρ−2δ
≤ η̃0

(
1 + 2−1

)
∣∣∣∣ avg

{ [
∂θ H≤1(µ0, ω0; x, y)(θ)

]−1
}−1

θ

∣∣∣∣ ≤ η0

(
1 + 2−1

)
.

(32)

Proof. It is clear that in order to satisfy (30) the coefficients of the polynomials (25)
and (26) have to be such that

∂

∂(x, y)

[
F

(
x, y; H≤1(µ0, ω0; x, y), Λ≤1(µ0, ω0; x, y)

) ]
(x,y)=(µ0,ω0)

= 0 . (33)

Performing some simple computations one sees that formally the coefficients a, b, α, and
β have to satisfy the following linear equations

D2F(µ0, ω0; h0, λ0) [ a(µ0, ω0), α(µ0, ω0) ] = −∂1u (µ0, h0(θ)) ,

D2F(µ0, ω0; h0, λ0)[ b(µ0, ω0), β(µ0, ω0) ] = ∂θh0(θ + ω0) .

Then estimates (27) and (28) follow from Lemma 2 by choosing

avg
{

[ Dh0(θ) ]−1 a(µ0, ω0)
}

θ
= avg

{
[ Dh0(θ) ]−1 b(µ0, ω0)

}
θ

= 0 .

If (29) holds and (x, y) ∈ B(µ0, ω0; ε)), from Cauchy’s inequalities and (27) we have∥∥ Im
(
H≤1(µ0, ω0; x, y)

) ∥∥
ρ−2δ

≤ ‖Im ∂θh0(θ)‖ρ + ρ
∥∥ ∂θ

[
H≤1(µ0, ω0; x, y)− h0(θ)

]∥∥
ρ−2δ

≤ % + κ2 ε ρ

< 2 % ρ .

Therefore the composition f(x, H≤1(µ0, ω0; x, y)) is well defined for each (x, y) ∈ B(µ0, ω0; ε),
with x ∈ Ξ. Hence (30) follows from Taylor’s Theorem, estimates (33), (27), (28), and
from the following inequality

‖h0 ◦ Ty − [ h0 ◦ Tω0 − ∂θh0(θ + ω0) (y − ω0) ] ‖ρ−2 δ ≤ δ−1 ‖∂θh0(θ)‖ρ |y − ω0|2 ,

that is obtained using Cauchy’s inequalities.
Estimate (31) is obtained by taking derivatives with respect to θ in (25) and using (27)

and (29). The non-degeneracy of H≤1(µ0, ω0; x, y) and estimates (32) follow from (27), (29),
and Lemma 3.
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We now apply Theorem 1 to the approximate solutions of (13) given by Lemma 6:(
µ, ω; H≤1(µ0, ω0; µ, ω), Λ≤1(µ0, ω0; µ, ω)

)
.

Lemma 7. Let

Ω(µ0, ω0; ε)
def
={ (µ, ω) ∈ Ξ×D(γ, σ) : |(µ− µ0, ω − ω0)| < ε }

and let κ̂2 be as in Lemma 6. There exists a constant κ3, depending on d, σ, γ−2, %, η̃0,
η0, and κ̂2, such that if q ≥ 2(σ + 1) and

κ3 δ−(q+2σ) ε 2 < min(1, %) , (34)

then for each (µ, ω) ∈ Ω(µ0, ω0; ε) there exists a solution (µ, ω; h(µ, ω), λ(µ, ω)) of the
equation (13) such that h(µ, ω) = B + v(µ, ω), with v(µ, ω) ∈ A

(
T d

ρ−6δ, C 0
)

and∥∥h(µ, ω)−H≤1(µ0, ω0; µ, ω)
∥∥

ρ−6δ
≤ κ3 δ−3σ | (µ− µ0, ω − ω0) | 2∥∥ ∂θh(µ, ω)(θ)− ∂θH

≤1(µ0, ω0; µ, ω)(θ)
∥∥

ρ−6δ
≤ κ3 δ−(3σ+1) | (µ− µ0, ω − ω0) | 2∣∣λ(µ, ω)− Λ≤1(µ0, ω0; µ, ω)

∣∣ ≤ κ3 δ−2σ | (µ− µ0, ω − ω0) | 2 .

Moreover, if ε also satisfies

κ4 δ−(3σ+1) ε 2 < min(1, %) , (35)

where
κ4

def
= 23 κ3 max

(
1, η̃0, 2η0 η̃2

0, η0

)
,

then for each (µ, ω) ∈ B(µ0, ω0; ε) h(µ, ω) is non-degenerate and the following estimates
hold

‖∂θh(µ, ω)(θ)‖ρ−6δ ≤ ‖∂θh0(θ)‖ρ + %
(
2−1 + 2−2

)
,∥∥[ ∂θh(µ, ω)(θ) ]−1

∥∥
ρ−6δ

≤ η̃0

(
1 + 2−1 + 2−2

)∥∥∥avg
{
[ ∂θh(µ, ω)(θ) ]−1}−1

θ

∥∥∥
ρ−6δ

≤ η0

(
1 + 2−1 + 2−2

)
.

(36)

Proof. This is an immediate consequence of Theorem 1, Lemma 6 and Lemma 3.

Lemmas 6 and 7 yield

Lemma 8. Let ε > 0 be such that lemmas 6 and 7 hold and such that

δ−2σ ε < 1 . (37)

Then for each (µ, ω) ∈ Ω (µ0, ω0; ε), the functions h(µ, ω) and λ(µ, ω) defined in Lemma 7
satisfy the following estimates

‖h(µ, ω)− h0 ‖ρ−6δ ≤ κ5 δ−σ |(µ− µ0, ω − ω0)| ,

|λ(µ, ω)− λ0 | ≤ κ5 |(µ− µ0, ω − ω0)| ,

where
κ5

def
= κ3 + κ1 γ−1

(
‖∂1u(µ0, h0(θ))‖ρ + ‖∂θh0(θ)‖ρ

)
.
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5.2 Whitney differentiability

For ε as in Lemma 7 the implicit mappings H : Ω(µ0, ω0; ε) → D0(Td) and Λ : Ω(µ0, ω0; ε) →
Rd in (9) are well defined. We are now ready to prove that – taking ε sufficiently
small– the polynomials H≤1(µ, ω; x, y) and Λ≤1(µ, ω; x, y) corresponding to the solution
(µ, ω; h(µ, ω), λ(µ, ω)) are well defined for all (µ, ω) ∈ Ω(µ0, ω0; ε). Informally, this means
that the partial derivatives of the mappings H and Λ are well defined for (µ, ω) ∈ Ω(µ0, ω0; ε).

We emphasise that in order to prove the Whitney regularity of the functions H(µ, ω) and
Λ(µ, ω) we have to allow changes on the initial phases (see Lemma 11 bellow), However, this
is not a problem because we are working within the equivalence class described in Remark 1.

Throughout this section we assume that Lemma 7 holds and that ε1 > 0 satisfies (29),
(34), (35) and (37).

Lemma 9. For each (µ, ω) ∈ Ω(µ0, ω0; ε1) let h(µ, ω) and λ(µ, ω) be as in Lemma 7. There
are two polynomials

H≤1(µ, ω; x, y)(θ) = h(µ, ω) + a(µ, ω)(θ) (x− µ) + b(µ, ω)(θ)(y − ω) ,

and
Λ≤1(µ, ω; x, y) = λ(µ, ω) + α(µ, ω) (x− µ) + β(µ, ω)(y − ω) ,

where the coefficients a(µ, ω), b(µ, ω), α(µ, ω), and β(µ, ω) are the solutions of the linear
equations

D2F(µ, ω; h(µ, ω), λ(µ, ω)) [ a(µ, ω), α(µ, ω) ] = − ∂1u (µ, h(µ, ω)(θ)) ,

D2F(µ, ω; h(µ, ω), λ(µ, ω))[ b(µ, ω), β(µ, ω) ] = ∂θh(µ, ω)(θ + ω) ,
(38)

satisfying

avg
{

[ Dh(µ, ω)(θ) ]−1 a(µ, ω)
}

θ
= 0,

avg
{

[ Dh(µ, ω)(θ) ]−1 b(µ, ω)
}

θ
= 0.

(39)

Moreover, if κ5 is as in Lemma 8, then there exists a constant κ6, depending on d, σ, %,
η0, η̃0, κ5 , ‖∂θh0(θ)‖ρ, ‖∂1u(µ0, h0(θ))‖ρ, ‖∂2∂1 u (µ0, h0)‖ρ, and ‖∂2

1u (µ0, h0)‖ρ , such that
for any (µ, ω) ∈ Ω(µ0, ω0; ε), with 0 < ε < ε1,

‖h(µ, ω)‖ρ−8δ ≤ ‖h0‖ρ + κ6 δ−σ ε , (40)

‖ a(µ, ω)‖ρ−8 δ ≤ κ6 γ−1 δ−σ , |α(µ, ω)| ≤ κ6 ,

‖ b(µ, ω)‖ρ−8δ ≤ κ6 γ−1 δ−σ , | β(µ, ω)| ≤ κ6 .
(41)

Furthermore, for any (x, y) ∈ B(µ0, ω0; ε) the following estimates hold:∥∥H≤1(µ, ω; x, y)− h(µ, ω)
∥∥

ρ−8δ
≤ κ6 γ−1 δ−σ | (x− µ, y − ω) | , (42)∣∣Λ≤1(µ, ω; x, y)− λ(µ, ω)
∣∣ ≤ κ6 | (x− µ, y − ω) | ,
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Proof. The existence of the solutions of (38) is guaranteed by Lemma 2. Moreover, from
estimates in (36) we have that there is a constant κ7 , depending on d, σ, η0, η̃0 and %, such
that

‖ a(µ, ω)‖ρ−8 δ ≤ κ7 γ−1 δ−σ ‖ ∂1u(µ, h(µ, ω)(θ)) ‖ρ−6δ ,

‖ b(µ, ω)‖ρ−8δ ≤ κ7 γ−1 δ−σ ‖ ∂θh(µ, ω)(θ) ‖ρ−7δ ,
(43)

and

|α(µ, ω)| ≤ κ7 ‖ ∂1u(µ, h(µ, ω)(θ)) ‖ρ−6δ ,

| β(µ, ω)| ≤ κ7 ‖ ∂θh(µ, ω)(θ) ‖ρ−6δ .
(44)

Using Lemma 8 one has

‖∂1 u (µ, h(µ, ω))− ∂1 u (µ0, h0)‖ρ−6δ ≤ κ̂7 δ−σ ε ,

where
κ̂7

def
= κ7 ‖∂2∂1 u (µ0, h0)‖ρ +

∥∥∂2
1u (µ0, h0)

∥∥
ρ

.

Therefore

‖∂1 u (µ, h(µ, ω))‖ρ−6δ ≤ ‖∂1 u (µ0, h0)‖ρ + κ̂7 δ−σ ε ≤ ‖∂1 u (µ0, h0)‖ρ + κ̂7 ,

‖∂θh(µ, ω)(θ) ‖ρ−7δ ≤ ‖∂θh0(θ) ‖ρ + κ5 δ−(σ+1) ε ≤ ‖∂θh0(θ) ‖ρ + κ5 .
(45)

Lemma 9 follows from (43), (44), and (45).

Lemma 10. Let κ6 be as in Lemma 9 and assume that (37) holds. Then there exists a
constant κ8, depending on κ6 , η0, and η̃0 such that if ε ≤ ε1 and

κ8 δ−(σ+1) ε ≤ min (1, %) , (46)

then for each (x, y) ∈ B(µ0, ω0; ε) the map H≤1(µ, ω; x, y), defined in Lemma 9, is non-
degenerate and the following estimates hold∥∥ ∂θ H≤1(µ, ω; x, y)(θ)

∥∥
ρ−8δ

≤ ‖∂θh0(θ)‖ρ + %
(
2−1 + 2−2 + 2−3

)
, (47)

∥∥∥ [
∂θ H≤1(µ, ω; x, y)(θ)

]−1
∥∥∥

ρ−8δ
≤ η̃0

(
1 + 2−1 + 2−2 + 2−3

)
∣∣∣∣ avg

{ [
∂θ H≤1(µ, ω; x, y)(θ)

]−1
}−1

θ

∣∣∣∣ ≤ η0

(
1 + 2−1 + 2−2 + 2−3

)
.

(48)

Moreover, for each (x, y) ∈ B(µ0, ω0; ε) with x ∈ Ξ,∥∥F (
x, y; H≤1(µ, ω; x, y), Λ≤1(µ, ω; x, y)

) ∥∥
ρ−8δ

≤ κ̂8 δ−2 σ | (x− µ, x− ω) | 2 , (49)

where κ̂8 depends on d, κ2
6, γ−2, %, ‖ ∂θh0(θ) ‖ρ, and sup

µ∈Ξ
‖ ∂ 2

θ uµ(θ)‖2 % ρ.
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Proof. Estimates (47) and (48) follow from (42), (36) and Lemma 3 by choosing

κ8
def
= 26 κ6 γ−1 max (1, 2 η̃0, η0 η̃0, 2 η0) .

Estimate (49) follows from Taylor’s Theorem, inequality (42), and Cauchy’s inequalities
The independence of κ̂8 on ∂θh(µ, ω) follows from the first inequality in (36).

Remark 9. For ε as in Lemma 10. Notice that, since the coefficients α(µ, ω) and β(µ, ω)
of Λ≤1(µ, ω; x, y) in Lemma 9 satisfy (38), from Lemma 2 we have that for any (µ, ω) ∈
Ω (µ0, ω0; ε)

α(µ, ω) = avg
{
(∂θ h(µ, ω)(θ))−1 }−1

θ
avg

{
(∂θ h(µ, ω)(θ + ω))−1 ∂1f(µ, h(µ, ω)(θ))

}
θ
,

β(µ, ω) = − avg
{
(∂θ h(µ, ω)(θ))−1}−1

θ
,

where we have defined h(µ0, ω0)
def
= h0 . Hence β(µ, ω) is invertible and

β(µ, ω)−1 = − avg
{
(∂θ h(µ, ω)(θ))−1}

θ
.

Let ε > 0 such that Lemma 10 holds. For (µ, ω) ∈ Ω(µ0, ω0; ε) let h(µ, ω) and λ(µ, ω) be
as in Lemma 7 and a(µ, ω), b(µ, ω), α(µ, ω), and β(µ, ω) be as in Lemma 9. In order to
show that {H, a, b} and {Λ, α, β } are Whitney-C2 we have to prove that (7) and (8) in
Definition 3 hold. Notice that, if ε satisfies (46), then (7) follows from (40), and (41).

It is not difficult to see that in order to prove (8) for any multi-index j ∈ Zs
+ × Zd

+

with |j|1 = 1, 2, it is enough to prove that the functions a, b, α, β are Lipschitz and that
there exists a constant M such that the following estimates hold, for some ρ′ > 0 and any
(µ, ω), (µ̄, ω̄) ∈ Ω(µ0, ω0; ε) :∥∥h(µ, ω)−H≤1 (µ̄, ω̄; µ, ω)

∥∥
ρ′
≤ M |(µ− µ̄, ω − ω̄) |2 ,∣∣λ(µ, ω)− Λ≤1 (µ̄, ω̄; µ, ω)

∣∣ ≤ M |(µ− µ̄, ω − ω̄) |2 .
(50)

In order to prove (50) we have to allow changes on the initial phases (see Lemmas 11 and
12 bellow, and also see Remark 1).

Lemma 11. Let ε > 0 be such that Lemma 10 holds, let h(µ, ω) and λ(µ, ω) be as in
Lemma 7 and a(µ, ω), b(µ, ω), α(µ, ω), and β(µ, ω) be as in Lemma 9.

Then there exists a constant κ9, depending on d, σ, γ−2, %, η0, η̃0, ‖ ∂θh0(θ) ‖ρ, and

sup
µ∈Ξ

‖∂2
2 uρ‖2 % ρ such that if q ≥ 2(σ + 1) and

κ9 δ−(q+2σ) ε2 ≤ min( 1, %) , (51)

then for each (µ, ω), (µ̄, ω̄) ∈ Ω(µ0, ω0; ε) the following estimate holds∣∣ λ(µ, ω)− Λ≤1(µ̄, ω̄; ω, µ )
∣∣ ≤ κ9 δ−2σ | (µ̄− µ, ω̄ − ω) |2 . (52)

Moreover, there exists a vector Θ(ω, µ; µ̄, ω̄) such that if

Ĥ≤1(µ̄, ω̄; µ, ω)
def
= H(µ̄, ω̄; µ, ω) ◦ TΘ(ω,µ;µ̄,ω̄) ,

then ∥∥∥h(µ, ω)− Ĥ≤1(µ̄, ω̄; µ, ω)
∥∥∥

ρ−14δ
≤ κ9 δ−3σ | (µ̄− µ, ω̄ − ω) |2 . (53)
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Proof. First of all notice that Lemma 10 implies that for any (µ, ω), (µ̄, ω̄) ∈ Ω(µ0, ω0; ε),(
µ, ω; H≤1(µ̄, ω̄; µ, ω), Λ≤1(µ̄, ω̄; µ, ω)

)
is an approximate solution of (13) such that its error

is bounded as in (49). Moreover, H≤1(µ̄, ω̄; µ, ω) is non-degenerate and the hypotheses of
Theorem 1 hold. The uniform estimates (47) and (48) and Theorem 1 yield the existence
of a constant κ10, depending on d, σ, γ−2, %, η0, η̃0, ‖ ∂θh0(θ) ‖ρ, and sup

µ∈Ξ
‖∂ 2

2 uµ‖2 % ρ,

such that if (51) holds then there exist a function v∗(µ, ω) ∈ A
(

T d
ρ−12δ, C 0

)
and a vector

λ∗(µ, ω) ∈ Rd such that if h∗(µ, ω)
def
= B + v∗(µ, ω), then

F (µ, ω; h∗(µ, ω), λ∗(µ, ω)) = 0 ,

∥∥h∗(µ, ω)−H≤1(µ̄, ω̄; µ, ω)
∥∥

ρ−12δ
≤ κ10 δ−3σ | (µ̄− µ, ω̄ − ω) |2 , (54)

and ∣∣ λ∗(µ, ω)− Λ≤1(µ̄, ω̄; µ, ω)
∣∣ ≤ κ10 δ−2σ | (µ̄− µ, ω̄ − ω) |2 . (55)

Hence (µ, ω; h(µ, ω), λ(µ, ω)) and (µ, ω; h∗(µ, ω), λ∗(µ, ω)) are solutions of (13) obtained
from two different initial approximate solutions:(

µ, ω; H≤1(µ0, ω0; µ, ω), Λ≤1(µ0, ω0; µ, ω)
) (

µ, ω; H≤1(µ̄, ω̄; µ, ω), Λ≤1(µ̄, ω̄; µ, ω)
)

Theorem 1

y yTheorem 1

F (µ, ω; h(µ, ω), λ(µ, ω)) = 0 F (µ, ω; h∗(µ, ω), λ∗(µ, ω)) = 0 .

We are going to prove now that if ε is sufficiently small, then these solutions are equal
(modulo the equivalence class defined in Remark 1). Let us first estimate the difference
of the initial approximate solutions: From Lemma 7 and estimates (42) and (8) for any
(µ, ω), (µ̄, ω̄) ∈ Ω(µ0, ω0; ε) we have∥∥H≤1(µ0, ω0; µ, ω)−H≤1(µ̄, ω̄; µ, ω)

∥∥
ρ−8δ

≤ γ−1κ11 δ−σ ε ,

and ∣∣ Λ≤1(µ0, ω0; µ, ω)− Λ≤1(µ̄, ω̄; µ, ω)
∣∣ ≤ κ11 ε ,

where
κ11

def
= κ2 + κ5 + 2 κ6

with κ2, κ5, κ6 as in Lemma 7, Lemma 8, and Lemma 9 respectively.

Hence if κ9 ≥ max (κ11 γ−1, κ10) and condition (51) holds, then Theorem 2 implies
λ(µ̄, ω̄) = λ∗(µ̄, ω̄) and the existence of an initial phase Θ(µ, ω; µ̄, ω̄) such that∥∥h(µ, ω) − h∗(µ, ω) ◦ TΘ(µ,ω;µ̄,ω̄)

∥∥
ρ−14σ

= 0 .

Therefore (53) and (52) follow from (54) and (55).
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Now we prove that the functions a, b, α, and β defined in Lemma 9 are Lipschitz on
Ω (µ0, ω0; ε), with ε > 0 sufficiently small.

Lemma 12. Assume that ε > 0 is such that Lemma 11 holds. Let Υ be as in Theorem 3,
and let κ9, Ĥ≤1(µ̄, ω̄, x, y) and Θ(µ, ω; µ̄, ω̄) be as in Lemma 11. Define

â (µ̄, ω̄)
def
= a(µ̄, ω̄) ◦ TΘ(µ,ω;µ̄,ω̄) ,

b̂ (µ̄, ω̄)
def
= a(µ̄, ω̄) ◦ TΘ(µ,ω;µ̄,ω̄) .

Then there exists a constant κ12, depending on the same variables as κ9 and on Υ, such
that for any (µ, ω), (µ̄, ω̄) ∈ Ω (µ0, ω0; ε) the following estimates hold:

‖ a(µ, ω)− â(µ̄, ω̄) ‖ρ−16δ ≤ κ12 δ−(2σ+1) | (µ− µ̄, ω − ω̄) | ,∥∥∥ b(µ, ω)− b̂(µ̄, ω̄)
∥∥∥

ρ−16δ
≤ κ12 δ−(2σ+1) | (µ− µ̄, ω − ω̄) | ,

(56)

|α(µ, ω)− α(µ̄, ω̄)| ≤ κ12 | (µ− µ̄, ω − ω̄) | ,

| β(µ, ω)− β(µ̄, ω̄) | ≤ κ12 | (µ− µ̄, ω − ω̄) | .
(57)

Proof. Performing some computations we obtain

D2F(µ, ω; h(µ, ω), λ(µ, ω)) [ a(µ, ω)− â(µ̄, ω̄), α(µ, ω)− α(µ̄, ω̄) ] = R1 (µ, ω; µ̄, ω̄) , (58)

and

D2F(µ, ω; h(µ, ω), λ(µ, ω))
[
b(µ, ω)− b̂(µ̄, ω̄), β(µ, ω)− β(µ̄, ω̄)

]
= R2 (µ, ω; µ̄, ω̄) , (59)

where

R1 (µ, ω; µ̄, ω̄)
def
=

[
∂2u

(
µ, Ĥ≤1(µ̄, ω̄; µ, ω)

)
− ∂2u(µ, h(µ, ω))

]
â(µ̄, ω̄)+

+
[
∂1u

(
µ, Ĥ≤1(µ̄, ω̄; µ, ω)

)
− ∂1u(µ, h(µ, ω))

]
+

+ ∂x [G(x, y) ](x,y)=(µ,ω) ,

and

R2 (µ, ω; µ̄, ω̄)
def
=

[
∂2u

(
µ, Ĥ≤1(µ̄, ω̄; µ, ω)

)
− ∂2u(µ, h(µ, ω))

]
b̂(µ̄, ω̄)+

+
[
∂θh(µ, ω) ◦ Tω − ∂θĤ

≤1(µ̄, ω̄; µ, ω) ◦ Tω

]
+

+ ∂y [G(x, y) ](x,y)=(µ,ω) ,

where for any (x, y) ∈ B(µ, ω0; ε) with x ∈ Ξ

G(x, y)
def
=F(x, y; H≤1(µ, ω; x, y), Λ≤1(µ, ω; x, y))−F(x, y; Ĥ≤1(µ̄, ω̄; x, y), Λ≤1(µ̄, ω̄; x, y)) .
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Now we estimate the right hand side of (58) and (59). Performing some computations,
using that â (µ̄, ω̄), b̂ (µ̄, ω̄), α (µ̄, ω̄) and β (µ̄, ω̄) satisfy (38) and using estimates (40), (41),
and (42) one obtains that there exists a constant κ13 , depending on Υ , γ−1, κ6 ( with κ6

is as in Lemma 9) such that∥∥∥∥ ∂x

[
F

(
x, y; Ĥ≤1(µ̄, ω̄; x, y), Λ≤1(µ̄, ω̄; x, y)

)]
(x,y)=(µ,ω)

∥∥∥∥
ρ−14δ

≤ κ13δ
−2σ |(µ− µ̄, ω − ω̄)| ,

and∥∥∥∥ ∂y

[
F

(
x, y; Ĥ≤1(µ̄, ω̄; x, y), Λ≤1(µ̄, ω̄; x, y)

)]
(x,y)=(µ,ω)

∥∥∥∥
ρ−14δ

≤ κ13 δ−2σ |(µ− µ̄, ω − ω̄)| .

Then Lemma 10 implies∥∥∥ ∂x [G(x, y) ](x,y)=(µ,ω)

∥∥∥
ρ−14δ

≤ κ13 δ−2σ | (µ− µ̄, ω − ω̄) | ,

∥∥∥ ∂y [G(x, y) ](x,y)=(µ,ω)

∥∥∥
ρ−14δ

≤ κ13 δ−2σ | (µ− µ̄, ω − ω̄) | ,

Moreover, Lemma 11 implies for i = 1, 2∥∥∥ ∂iu
(

µ, Ĥ≤1 (µ̄, ω̄; µ, ω)
)
− ∂iu ( µ, h(µ, ω) )

∥∥∥
ρ−14δ

≤ Υ κ9 δ−3σ | (µ− µ̄, ω − ω̄) |2 ,

and ∥∥∥ ∂θh(µ, ω)− ∂θĤ
≤1 (µ̄, ω̄; µ, ω)

∥∥∥
ρ−15δ

≤ κ9 δ−(3σ+1) | (µ− µ̄, ω − ω̄) |2 .

Hence if ε > 0 also satisfies condition (37) we have

‖R1 (µ, ω; µ̄, ω̄)‖ρ−15δ ≤ κ14 δ−2σ | (µ− µ̄, ω − ω̄) | (60)

and
‖R2 (µ, ω; µ̄, ω̄)‖ρ−15δ ≤ κ14 δ−2σ | (µ− µ̄, ω − ω̄) | , (61)

where κ14 is a constant depending on Υ, κ6, κ9, and κ13.

Lemma 2 and estimates (60), and (61) imply

‖ a(µ, ω)− â(µ̄, ω̄) ‖ρ−16δ ≤ κ̃14 δ−(2σ+1) | (µ− µ̄, ω − ω̄) | + |ϕ1 (µ, ω; µ̄, ω̄)|∥∥∥ b(µ, ω)− b̂(µ̄, ω̄)
∥∥∥

ρ−16δ
≤ κ̃14 δ−(2σ+1) | (µ− µ̄, ω − ω̄) | + |ϕ2 (µ, ω; µ̄, ω̄) | ,

(62)

where

ϕ1 (µ, ω; µ̄, ω̄)
def
= avg

{
[∂θh(µ, ω)(θ)]−1 [a(µ, ω)− â(µ̄, ω̄) ]

}
θ

ϕ2 (µ, ω; µ̄, ω̄)
def
= avg

{
[∂θh(µ, ω)(θ)]−1

[
b(µ, ω)− b̂(µ̄, ω̄)

] }
θ

.
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Notice that from condition (39) and estimates (41) in Lemma 9, for i = 1, 2 we have

|ϕi | ≤
∥∥∥∥ [ ∂θh(µ, ω)(θ) ]−1 −

[
∂θĥ(µ̄, ω̄)(θ)

]−1
∥∥∥∥

0

κ6 γ−1 δ−σ ,

where ĥ(µ̄, ω̄)
def
= h(µ̄, ω̄) ◦ TΘ(µ,ω;µ̄,ω̄). Using condition (37) and estimates (42) and (53) we

have ∥∥∥ ∂θh(µ, ω)(θ) − ∂θĥ(µ̄, ω̄)(θ)
∥∥∥

0
≤ (κ9 + κ2) δ−(σ+1) | (µ− µ̄, ω − ω̄) | ,

from which we have∥∥∥∥ [ ∂θh(µ, ω)(θ) ]−1 −
[
∂θĥ(µ̄, ω̄)(θ)

]−1
∥∥∥∥

0

≤ κ15 δ−(σ+1) | (µ− µ̄, ω − ω̄) | ,

where thanks to second inequality in (36), the constant κ15 depends on
∥∥[∂θh0(θ)]

−1
∥∥, η̃0,

κ9, γ−1, and κ6, but it does not depend either on (µ, ω) or (µ̄, ω̄).
Hence for i = 1, 2 we have

|ϕi | ≤ κ16 δ−(2σ+1) | (µ− µ̄, ω − ω̄) | . (63)

Estimates (56) and (57) follow from (58), (59), (60), (61), (62), and (63), and Lemma 2.
The constant κ15 depends on d, σ, γ−1, ‖∂θh0(θ)‖ρ, %, κ14, and κ16 but independent of (µ, ω)
and (µ̄, ω̄).

The Whitney regularity stated in Theorem 3 follows from (40), (41), (52), (53), (56),
and (57).
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[Ste70] Elias M. Stein. Singular integrals and differentiability properties of functions.
Princeton University Press, Princeton, N.J., 1970. Princeton Mathematical
Series, No. 30.

[Whi34] H. Whitney. Analytic extensions of differentiable functions defined in closed
sets. Trans. Amer. Math. Soc., 36(1):63–89, 1934.

[Zeh75] E. Zehnder. Generalized implicit function theorems with applications to some
small divisor problems. I. Comm. Pure Appl. Math., 28:91–140, 1975.

28


	Introduction
	Setup and statement of the results
	Notation and definitions
	Statement of the results

	Sketch of the procedure
	The linearised equation
	The non-degeneracy condition

	Proof of theorems 1, 2 and 4
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4

	Proof of Theorem 3
	Existence of the implicit functions
	Whitney differentiability


