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Abstract

We study the dynamics of a charged particle moving in a plane
under the in�uence of a constant magnetic �eld and driven by a slowly
time-dependent singular �ux tube through a puncture. We discuss the
meaning of the propagator and show that an adiabatic approximation
is valid. To this end we develop the notion of a propagator weakly
associated to a time-dependent Hamiltonian.

1 Introduction

The model under consideration originates from Laughlin's [13] and Halperin's
[9] discussion of the Integer Quantum Hall e�ect. In the mathematical physics
literature Bellissard [5] and Avron, Seiler, Simon [3] used an adiabatic limit
of the model (with additional randomness) to introduce indices. The indices
explain the quantization of charge transport observed in the experiments [12].
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In this paper we discuss some mathematical aspects of the existence of
the propagator and the validity of the adiabatic approximation and propose
how to overcome the di�culties originating from the strong singularity of the
external �eld.

Let us specify the model, summarize our results and introduce the nota-
tion. The con�guration space is R2 \ {(0, 0)} and the model is considered in
polar coordinates (r, θ). The vector potential A is the sum of a part for the
homogeneous magnetic �eld of strength B > 0,

B

2
(x1dx2 − x2dx1) =

Br2

2
dθ,

plus a part describing the �ux Φ which varies in time,

Φ

2π

1

|~x|2
(x1dx2 − x2dx1) =

Φ

2π
dθ;

the real-valued function Φ is assumed to be monotonous and C2. With the
metric coe�cients g11 = 1, g22 = r2, g12 = 0, the di�erential expression of
the Hamiltonian acting in L2(R+ × [0, 2π[ , rdrdθ) is

1

2m

(
−i~∂j −

e

c
Aj

)√
ggjk

(
−i~∂k −

e

c
Ak

)
=

~2

2m

(
−1

r
∂rr∂r +

1

r2

(
−i∂θ −

e

~c
Br2

2
− e

hc
Φ

)2
)
.

Our purpose is to study the response of the system if �ux quanta hc/e are
added adiabatically, i.e. the �ux function is of the form t 7→ Φ(t/τ) with the
time t varying in [ 0, τ ] for some τ � 1.

In a �rst step we analyze the case when Φ is linear. Furthermore, we �x
an angular momentum sector de�ned by −i∂θe

imθ = meimθ (m ∈ Z), and use
a slow time s, i.e.: the substitution s = −m+ e/(hc)Φ(t/τ). Also we are not
interested here in keeping track of the behavior in the physical parameters e,
~, c, 2m, so we set them all equal to one. This is our motivation to consider
the operator

H(s) = −1

r
∂rr∂r +

1

r2

(
s+

Br2

2

)2

in L2(R+, rdr). (1)

In a second step we shall then show that our analysis generalizes to Hamil-
tonians of the form H

(
ζ(s)

)
where ζ ∈ C2 is a monotone function.

H(s) is essentially selfadjoint on C∞
0 (]0,∞[) i� s2 ≥ 1 [14]. For 0 < s2 < 1

we impose the regular boundary condition as r → 0+ (i.e.: a wavefunction
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belongs to the domain if it has no part proportional to the (square integrable)
singularity r−|s|). This is in fact the most common choice, see [8] for a
detailed discussion. The case s = 0 is particular since the singularity in
question is logarithmic but otherwise the situation is similar, see [1]. The
Hamiltonian H(s) is unambiguously determined by specifying a complete set
of eigenfunctions with corresponding eigenvalues, see below.

The dynamics of the model should be de�ned by

i∂sUτ (s, s0)ψ = τH(s)Uτ (s, s0)ψ, Uτ (s0, s0)ψ = ψ, (2)

where Uτ is unitary and ψ is an arbitrary initial condition from the domain
of H(s0). The existence of a propagator in this sense is, however, uncertain.
The problem arises from the fact that the domain ofH(s) is not constant in s,
respectively that Ḣ(s) is not relatively bounded with respect to H(s). Thus
the usual theorems which assure the existence of the propagator [14] and the
validity of the adiabatic approximation [4, 2] are not directly applicable.

A convenient way to see this is to consider the eigenfunctions. The oper-
ator H(s) has a simple discrete spectrum; the eigenvalues are

λn(s) = B(s+ |s|+ 2n+ 1), n ∈ {0, 1, 2, . . .}, (3)

with the corresponding normalized eigenfunctions

ϕn(s; r) = cn(s) r|s| L(|s|)
n

(
Br2

2

)
exp

(
−Br

2

4

)
where

cn(s) =

(
B

2

)(|s|+1)/2(
2n!

Γ(n+ |s|+ 1)

)1/2

are the normalization constants and L(|s|)
n are the generalized Laguerre poly-

nomials (see, for example, [8]).
The derivative of H(s) equals

Ḣ(s) =
2s

r2
+B.

Notice that if |s| ≤ 1 then ϕn(s) cannot belong to the domain Dom Ḣ(s)
since Ḣ(s)ϕn(s) ∼ r−2+|s| for r → 0+. This means that Ḣ(s) is not relatively
bounded with respect to H(s).

Remark that, on the other hand, the quadratic expression∫ ∞

0

ϕm(s; r) Ḣ(s)ϕn(s; r) r dr
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makes good sense. In order to avoid a complicated notation we shall denote
it by the symbol 〈ϕm(s), Ḣ(s)ϕn(s)〉 even though the symbol cannot be taken
literally and is therefore somewhat misleading. Furthermore, the derivative
of the eigenfunction, ϕ̇n(s), belongs to L2(R+, r dr). Since the eigenfunctions
are chosen to be real-valued it holds true that

〈ϕn(s), ϕ̇n(s)〉 = 0.

Let us also note that, similarly, if |s| ≤ 1 and s2 6= s′2 then the eigen-
function ϕn(s) cannot belong to DomH(s′). It is so because (as formal
expressions) H(s′)−H(s) = (s′2 − s2)/r2 + B(s′ − s) and H(s′)ϕn(s; r) has
a non-integrable singularity at r = 0. Hence DomH(s) depends on s.

It turns out that, following the strategy of Born and Fock [7], the problems
of existence and adiabatic approximation can both be handled:

denote the eigenprojector onto Cϕn(s) by Pn(s); it is di�erentiable as a
bounded operator. The hard part of our work consists in showing that

i
∞∑

k=0

Ṗk(s)Pk(s)

is a bounded operator. This is stated in Lemma 6. It requires work because
its matrix elements have bad o��diagonal decay, see Lemma 4 (which is
formulated for the unitarily equivalent operator Q).

Now

HAD(s) := H(s) +
i

τ

∞∑
n=0

Ṗn(s)Pn(s)

has a propagator which is well de�ned in the usual way, i.e.

i∂sUAD(s, s0)ψ = τHAD(s)UAD(s, s0)ψ, UAD(s0, s0)ψ = ψ, (4)

for ψ ∈ Dom (HAD(s0)). To see this notice that UAD can be computed by its
action on the eigenbasis:

UAD(s, s0)ϕn(s0) = e
−iτ

R s
s0

λn(u) du
ϕn(s).

Furthermore, λn(s)−λn(0) is bounded in n and so UAD(s, s0) DomHAD(s0) =
DomHAD(s).

Since H(s) − HAD(s) is bounded the domains of H(s) and HAD(s) are
identical. By time-dependent transformation a natural candidate for the
propagator of H(s) is

Uτ (s, s0) := UAD(s, 0)C(s, s0)UAD(0, s0) (5)

4



where C(s, s0) is de�ned by

i∂sC(s, s0) = −Qτ (s)C(s, s0), C(s0, s0) = I, (6)

with

Qτ (s) := UAD(0, s)

(
i
∞∑

k=0

Ṗk(s)Pk(s)

)
UAD(s, 0). (7)

Since ‖Qτ (s)‖ is locally bounded the propagator C(s, s0) is well de�ned by
the Dyson formula.

The adiabatic approximation problem is settled in Proposition 11 were it
is shown that

‖Uτ (s, 0)− UAD(s, 0)‖ = O

(
1

τ

)
.

It remains unclear, however, whether C(s, s0) preserves the domain of
H(0) and therefore whether the propagator Uτ (s, s0) is actually related to
the Hamiltonian H(s) in the usual sense. To handle this problem we develop
the general concept of weak association of a propagator and a time dependent
Hamiltonian. We can show that Uτ is weakly associated to H(s) and that
the Schrödinger equation (2) is ful�lled in the sense of distributions.

We shall use the following notation. The symbol V (s) stands for the
unitary operator which sends all eigenstates at time 0 to the corresponding
eigenstates at time s, i.e.

V (s)ϕn(0) = ϕn(s) ∀n ∈ Z+ (8)

(here and everywhere in what follows Z+ stands for the set of nonnegative
integers). Further set

W (s) = V (s)−1H(s)V (s) =
∞∑

n=0

λn(s)Pn(0) (9)

and

Ω(s) =
∞∑

n=0

ωn(s)Pn(0) (10)

where
ωn(s) =

∫ s

0

λn(u) du.

Remark that the adiabatic propagator decomposes as

UAD(s, s0) = V (s)e−iτ(Ω(s)−Ω(s0))V (s0)
−1.
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The paper is organized as follows. In Sections 2 and 3 we do the analysis
necessary to prove the boundedness result stated in Lemma 6. Section 4 is
devoted to the existence problem for the propagator. In Section 5 we prove
the adiabatic theorem in Proposition 11. The result is then extended to a
more general time-dependence in Section 6.

A rather independent part of the paper is the Appendix where we propose
the notion of a propagator weakly associated to a time-dependent Hamilto-
nian. We indicate cases where the weak association can be veri�ed while
the usual relationship between a propagator and a Hamiltonian is unclear or
even is not valid. In particular, this concept was inspired by the situation we
encountered in the present model. We believe, however, that this idea need
not be restricted to this case only and that it might turn out to be useful in
resolving this type of di�culties in other models as well.

2 Auxiliary estimates of matrix operators

Here we derive some auxiliary estimates that will be useful later when veri-
fying assumptions of the adiabatic theorem.

Lemma 1. Let A(σ) be an operator in l2(N) depending on a parameter σ ≥ 0
whose matrix entries in the standard basis equal

A(σ)mn =


0 for m = n

− i
n

(
m
n

)σ
for m < n

i
m

(
n
m

)σ
for m > n

.

Then A(σ) is bounded, uniformly in σ, and its norm satis�es the estimate

‖A(σ)‖ ≤ 24.

Proof. The proof will be done in several steps.
(i) LetK(σ) be an integral operator acting in L2(R+, dx) with the integral

kernel

Kσ(x, y) =

{
− i

y

(
x
y

)σ for x < y

i
x

(
y
x

)σ for x > y
.

Let us show that
‖K(σ)‖ =

2

2σ + 1
.

First we apply the unitary transform

U : L2(R+, dx) → L2(R, dy), Uψ(y) = ey/2ψ(ey). (11)
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The inverse transform reads U−1ψ̂(x) = x−1/2ψ̂(lnx). Set

K̃(σ) = UK(σ)U−1.

One �nds that K̃(σ) is again an integral operator with the integral kernel

K̃σ(y, z) = i sgn(y − z) e−(σ+1/2)|y−z|.

Hence K̃(σ) is a convolution operator and it is therefore diagonalizable with
the aid of the Fourier transform F on R. This means that(

FK̃(σ)F−1ψ
)
(z) = q̂(z)ψ(z)

where
q̂(z) =

∫
R
eizy sgn(y) e−(σ+1/2)|y| dy =

2iz(
σ + 1

2

)2
+ z2

.

It follows that

‖K(σ)‖ = ‖FK̃(σ)F−1‖ = ‖q̂‖∞ =
1

σ + 1
2

. (12)

(ii) Suppose that {ψ}∞n=1 is an orthogonal system in L2(R+, dx) such that

∀m,n ∈ N, 〈ψm, K(σ)ψn〉 = A(σ)mn

and
∀n ∈ N, ‖ψn‖2 = κ > 0.

Let P+ be the orthogonal projector onto span{ψn}∞n=1 in L2(R+, dx). Then
one can identify P+K(σ)P+ with κ−1A(σ). Hence

‖A(σ)‖ = κ‖P+K(σ)P+‖ ≤ κ‖K(σ)‖. (13)

(iii) We shall construct an orthogonal system {ψn}∞n=1 described in the
preceding point as follows. Consider the natural embedding L2([n, n+1], dx) ⊂
L2(R+, dx), n ∈ N. We seek ψn ∈ L2([n, n+ 1], dx) in the form

ψn = αnun + βnvn + fn

where αn, βn ∈ R, un, vn, fn ∈ L2([n, n+ 1], dx),

un(x) = xσ, vn(x) = x−σ−1 for x ∈ [n, n+ 1],

and fn ⊥ un, fn ⊥ vn. Suppose for de�niteness that m < n. Then

〈ψm, K(σ)ψn〉 =

∫ m+1

m

dx
∫ n+1

n

dyKσ(x, y)ψm(x)ψn(y)

= −i 〈um, ψm〉 〈vn, ψn〉 .
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Furthermore,

〈ψn, K(σ)ψn〉 =

∫ n+1

n

∫ n+1

n

Kσ(x, y)ψn(x)ψn(y) dxdy = 0

since Kσ(x, y) is antisymmetric, Kσ(y, x) = −Kσ(x, y). Consequently, it
su�ces to choose the real coe�cients αn, βn so that

∀n ∈ N, 〈un, ψn〉 = nσ, 〈vn, ψn〉 = n−σ−1.

This system has a unique solution (αn, βn). The function fn can be arbitrary.
Its only purpose is to adjust the norms of the functions ψn so that they are
all equal. Set

Nn(σ) = ‖αnun + βnvn‖2 =

∫ n+1

n

(
αnx

σ + βnx
−σ−1

)2 dx
and

κ(σ) = sup
n∈N

Nn(σ).

One can choose the orthogonal system {ψn}∞n=1 so that ‖ψn‖2 = κ(σ) for all
n. According to (12) and (13) we have

‖A(σ)‖ ≤ 2κ(σ)

2σ + 1
. (14)

(iv) It remains to �nd an upper bound on κ(σ). Set

ξn = nσ, ηn = n−σ−1.

Simple algebraic manipulations yield

Nn(σ) =
〈vn, vn〉 ξ 2

n − 2 〈un, vn〉 ξnηn + 〈un, un〉 η 2
n

〈un, un〉 〈vn, vn〉 − 〈un, vn〉2
.

Here

〈un, vn〉 = ln

(
1 +

1

n

)
,

〈un, un〉 =
1

2σ + 1

(
(n+ 1)2σ+1 − n2σ+1

)
,

〈vn, vn〉 =
1

2σ + 1

(
n−2σ−1 − (n+ 1)−2σ−1

)
.

Set
w =

(
σ +

1

2

)
ln

(
1 +

1

n

)
.
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One can rewrite the expression for Nn(σ) as follows,

Nn(σ) =
2σ + 1

n

sinh(w) cosh(w)− w

sinh2(w)− w2
.

Using an elementary analysis one can show that

sinh(w) cosh(w)− w

sinh2(w)− w2
≤ sinh(w) cosh(w)− w

sinh(w) (sinh(w)− w)
≤ 4 cotgh(w).

Hence

Nn(σ) ≤ 4(2σ + 1)

n

(
1 + 1

n

)2σ+1
+ 1(

1 + 1
n

)2σ+1 − 1
≤ 12(2σ + 1).

Consequently,
κ(σ) ≤ 12(2σ + 1). (15)

From (14) and (15) it follows that ‖A(σ)‖ ≤ 24.

Lemma 2. Let A(σ) be an operator in l2(N) whose matrix entries in the
standard basis equal

A(σ)mn =


0 for m = n

− i
n
fσ

(
m
n

)
for m < n

i
m
fσ

(
n
m

)
for m > n

where

fσ(u) =
1− uσ

1− u
, u ∈ ]0, 1[ ,

and σ ∈ [0, 1] is a parameter. Then A(σ) is bounded and its norm satis�es
the estimate

‖A(σ)‖ ≤

(√
2

3
+ 4

)
π2σ.

Proof. The proof will be done in several steps.
(i) LetK(σ) be an integral operator acting in L2(R+, dx) with the integral

kernel

Kσ(x, y) =

{
− i

y
fσ

(
x
y

)
for x < y

i
x
fσ

(
y
x

)
for x > y

.

Let us show that
‖K(σ)‖ ≤ π2σ. (16)
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This step is quite analogous to the proof of point (i) in Lemma 1. First we
apply the unitary transform U de�ned in (11). Set

K̃(σ) = UK(σ)U−1.

One �nds that K̃(σ) is again an integral operator with the integral kernel

K̃σ(y, z) = i sgn(y − z) fσ

(
e−|y−z|) e−|y−z|/2.

Thus K̃(σ) is a convolution operator which is diagonalizable with the aid
of the Fourier transform F on R. This means that

(
FK̃(σ)F−1ψ

)
(z) =

q̂(z)ψ(z) where

q̂(z) =

∫
R
eizy sgn(y) fσ

(
e−|y|

)
e−|y|/2 dy.

A standard estimate yields

|q̂(z)| ≤ 2

∫ ∞

0

1− e−σy

1− e−y
e−y/2 dy ≤ σ

∫ ∞

0

y

sinh(y/2)
dy = π2σ.

It follows that

‖K(σ)‖ = ‖FK̃(σ)F−1‖ = ‖q̂‖∞ ≤ π2σ.

(ii) Let χn(x) be the characteristic function of the interval ]n, n + 1[ .
The linear mapping

J : l2(N) → L2(R+, dx) : {ξn} 7→
∞∑

n=1

ξnχn

is an isometry. The adjoint mapping reads

J∗ : L2(R+, dx) → l2(N) : ψ 7→ {〈χn, ψ〉}∞n=1.

Set
L(σ) = JA(σ)J∗.

L(σ) is an integral operator with the kernel

Lσ(x, y) =
∞∑

m=1

∞∑
n=1

A(σ)mnχm(x)χn(y).
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This can be rewritten as

Lσ(x, y) =


− i

[y]
fσ

(
[x]
[y]

)
if 0 < [x] < [y]

i
[x]
fσ

(
[y]
[x]

)
if 0 < [y] < [x]

0 otherwise

.

Here [x] denotes the integer part of x. Notice that J∗J is the identity on
l2(N) and so L(σ)J = JA(σ). Consequently,

‖A(σ)‖ = ‖JA(σ)‖ = ‖L(σ)J‖ ≤ ‖L(σ)‖. (17)

(iii) Denote by P̃n, n ∈ Z+, the orthogonal projector onto Cχn in L2(R+, dx).
Set

Ko�(σ) = K(σ)− P̃0K(σ)−K(σ)P̃0 + P̃0K(σ)P̃0 −
∞∑

n=1

P̃nK(σ)P̃n.

In other words, we subtract from K(σ) the diagonal as well as the �rst
row and the �rst column (i.e., with index 0) with respect to the orthogonal
system {χn}∞n=0. We can say also that the integral kernel Ko�

σ (x, y) vanishes
if [x] = [y] or [x] = 0 or [y] = 0 and otherwise it coincides with Kσ(x, y).
Since ∥∥∥∥∥P̃0K(σ)P̃0 −

∞∑
n=1

P̃nK(σ)P̃n

∥∥∥∥∥ = sup
n∈Z+

‖P̃nK(σ)P̃n‖ ≤ ‖K(σ)‖

we have
‖Ko�(σ)‖ ≤ 4‖K(σ)‖. (18)

(iv) It remains to estimate the norm of the di�erence L(σ) − Ko�(σ).
This is a Hermitian integral operator whose kernel does not vanish only if
0 < [x] < [y] or 0 < [y] < [x]. Suppose for de�niteness that 0 < [x] < [y].
Then the kernel equals, up to the multiplier −i,

1

[y]
fσ

(
[x]

[y]

)
− 1

y
fσ

(
x

y

)
=

(
1

[y]σ
− 1

yσ

)
[y]σ − [x]σ

[y]− [x]

+
1

yσ

(
[y]σ − [x]σ

[y]− [x]
− yσ − xσ

y − x

)
.

Let us show that

0 ≤ 1

[y]
fσ

(
[x]

[y]

)
− 1

y
fσ

(
x

y

)
≤ 2σ

[x]([y]− [x])
. (19)
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First notice that

0 ≤ 1

[y]σ
− 1

yσ
= −σ

∫ [y]

y

z−σ−1dz ≤ σ(y − [y])

[y]σ+1

and so
0 ≤

(
1

[y]σ
− 1

yσ

)
[y]σ − [x]σ

[y]− [x]
≤ σ

[y]([y]− [x])
. (20)

Further set temporarily

D =
[y]σ − [x]σ

[y]− [x]
− yσ − xσ

y − x

= σ

∫ 1

0

(
([x](1− t) + [y]t)σ−1 − (x(1− t) + yt)σ−1) dt .

The integrand in the last integral equals

σ(1− σ)ξ σ−2
t ((x− [x])(1− t) + (y − [y])t)

where ξt is a real number lying between [x](1 − t) + [y]t and x(1 − t) + yt.
Notice that

0 ≤ (x− [x])(1− t) + (y − [y])t ≤ 1.

We assume that 0 ≤ σ ≤ 1. Therefore

0 ≤ D ≤ σ(1− σ)

∫ 1

0

([x](1− t) + [y]t)σ−2 dt = −σ [y]σ−1 − [x]σ−1

[y]− [x]

and so
0 ≤ 1

yσ
D ≤ σ[x]σ−1

yσ([y]− [x])
≤ σ

[x]([y]− [x])
. (21)

Inequalities (20) and (21) jointly imply (19).
(v) From estimate (19) one can deduce that L(σ)−Ko�(σ) is a Hilbert-

Schmidt operator and

‖L(σ)−Ko�(σ)‖HS ≤
√

2π2

3
σ. (22)

Actually,

‖L(σ)−Ko�(σ)‖ 2
HS = 2

∫ ∞

1

dx
∫ ∞

[x]+1

dy
∣∣Lσ(x, y)−Ko�

σ (x, y)
∣∣2

≤ 8σ2

∫ ∞

1

dx
1

[x]2

∫ ∞

[x]+1

dy
1

([y]− [x])2

= 8σ2

(
∞∑

k=1

1

k2

)2

.
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(vi) Inequalities (17), (18), (16) and (22) imply that

‖A(σ)‖ ≤ ‖L(σ)‖ ≤ ‖Ko�(σ)‖+ ‖L(σ)−Ko�(σ)‖ ≤ 4π2σ +

√
2π2

3
σ.

This shows the lemma.

Lemma 3. Let A(σ) be an operator in l2(N) with the matrix entries in the
standard basis

A(σ)mn =

{
0 for m = n

i
n−m

min{
(

m
n

)σ
,
(

n
m

)σ} for m 6= n
.

Then A(σ) is bounded for all 0 ≤ σ and its norm satis�es the estimate

‖A(σ)‖ ≤ π +

(√
2

3
+ 4

)
π2σ.

Proof. Let us �rst show that

‖A(0)‖ ≤ π.

For σ = 0 we get
A(0)mn =

i

n−m
if m 6= n.

Considering the natural embedding l2(N) ⊂ l2(Z) let us denote by P+ the
orthogonal projector onto l2(N) in l2(Z). Let B be an operator in l2(Z) with
the matrix

Bmn = q(n−m) where q(n) =

{
0 for n = 0

i
n

for n 6= 0
.

One can identifyA(0) with P+BP+. B is a convolution operator and therefore
it is diagonalizable by the Fourier transform F : l2(Z) → L2([0, 2π], dθ). In
more detail,(

FBF−1ψ
)
(θ) = q̂(θ)ψ(θ) where q̂(θ) =

∑
n∈Z

q(n) einθ.

One �nds that q̂(θ) = −π + θ. Consequently,

‖A(0)‖ = ‖P+BP+‖ ≤ ‖B‖ = ‖FBF−1‖ = max
θ∈[0,2π]

|q̂(θ)| = π.

13



Suppose now that 0 < m < n. Notice that

(A(σ + 1)− A(σ))mn = − i

n

(m
n

)σ

and
(A(σ)− A(0))mn = − i

n
fσ

(m
n

)
.

Using Lemma 1 and Lemma 2 one can estimate

‖A(σ)‖ ≤ ‖A(0)‖+ ‖A(σ − [σ])− A(0)‖+ ‖A(σ − [σ] + 1)− A(σ − [σ])‖
+ . . .+ ‖A(σ)− A(σ − 1)‖

≤ π +

(√
2

3
+ 4

)
π2(σ − [σ]) + 24[σ]

≤ π +

(√
2

3
+ 4

)
π2σ.

This proves the lemma.

3 Boundedness of the operator i
∑∞

k=0 Ṗk(s)Pk(s)

We consider i
∑∞

k=0 Ṗk(s)Pk(s) in the time independent frame, i.e. the oper-
ator Q(s) de�ned by

Q(s) = iV (s)∗
∞∑

k=0

Ṗk(s)Pk(s)V (s) = −iV̇ (s)∗V (s) = iV (s)∗V̇ (s). (23)

The operator V (s) is de�ned in (8). Q(s) is symmetric and its matrix entries
in the basis {ϕn(0)} are

〈ϕm(0), Q(s)ϕn(0)〉 = i 〈ϕm(s), ϕ̇n(s)〉 .

Since ϕn(s) depends on s only through the absolute value it holds true that
Q(−s) = −Q(s) for s 6= 0. For s = 0 the operator-valued function Q(s) has
a discontinuity. The goal of this section is to show that the operator Q(s) is
in fact bounded.

To compute the matrix entries one can use the identity

〈ϕm(s), ϕ̇n(s)〉 =

〈
ϕm(s), Ḣ(s)ϕn(s)

〉
λn(s)− λm(s)

. (24)
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Let us emphasize once more that the scalar product on the RHS should
be interpreted as a quadratic form since, in general, ϕn(s) 6∈ Dom Ḣ(s).
The derivation goes through basically as usual even though one cannot use
the scalar product directly. Di�erentiating the equation on eigenvalues one
arrives at the equality

H(s)ϕ̇n(s; r) + Ḣ(s)ϕn(s; r) = λ̇n(s)ϕn(s; r) + λn(s)ϕ̇n(s; r),

valid for any r > 0, in which one should substitute for H(s) and Ḣ(s) the
corresponding formal di�erential operators. Next one multiplies the equality
by rϕm(s; r) and integrates the both sides from ε to in�nity for some ε > 0.
In the integral

−
∫ ∞

ε

ϕm(s; r)∂rr∂rϕ̇n(s; r) dr

occurring on the LHS side one integrates twice by parts. Checking the asymp-
totic behavior of the eigenfunctions near the origin,

ϕn(s; r) ∼
(
B

2

)(|s|+1)/2(
2n!

Γ(n+ |s|+ 1)

)1/2

r|s|
(
1 +O

(
r2
))

for r → 0+,

(25)
one �nds that

lim
r→0+

rϕm(s; r)∂rϕ̇n(s; r) = lim
r→0+

r (∂rϕm(s; r)) ϕ̇n(s; r) = 0.

Hence sending ε to 0 actually leads to equality (24).

Lemma 4. The matrix entries of the operator Q(s) for s 6= 0 are given by
the formulae

〈ϕm(0), Q(s)ϕn(0)〉 = 0 for m = n,

and

〈ϕm(0), Q(s)ϕn(0)〉 =
i sgn(s)

2(n−m)
min

{
γm(s)

γn(s)
,
γn(s)

γm(s)

}
for m 6= n,

where

γn(s) =

(
Γ(n+ |s|+ 1)

n!

)1/2

. (26)

Proof. Assume that m < n and s > 0. Using the explicit expression for the
generalized Laguerre polynomials,

L(α)
n (x) =

n∑
k=0

(−1)k

(
n+ α

n− k

)
1

k!
xk,

15



one �nds that〈
ϕm(s), Ḣ(s)ϕn(s)

〉
= 2s cm(s) cn(s)

×
∫ ∞

0

r2s−1L(s)
m

(
Br2

2

)
L(s)

n

(
Br2

2

)
exp

(
−Br

2

2

)
dr

= s cm(s) cn(s)

(
2

B

)s

Sm,n

where

Sm,n =
m∑

k=0

n∑
`=0

(−1)k+` Γ(m+ s+ 1)Γ(n+ s+ 1)Γ(k + `+ s)

Γ(k + s+ 1)Γ(`+ s+ 1)m!n!

(
m

k

)(
n

`

)
.

In this expression only the summand with k = 0 does not vanish since

n∑
`=0

(−1)`

(
n

`

)
`j = 0 for j = 0, 1, . . . , n− 1,

Hence

Sm,n =
Γ(m+ s+ 1)Γ(n+ s+ 1)

Γ(s+ 1)m!n!

n∑
`=0

(−1)` Γ(`+ s)

Γ(`+ s+ 1)

(
n

`

)
=

Γ(m+ s+ 1)Γ(n+ s+ 1)

Γ(s+ 1)m!n!
B(s, n+ 1)

=
Γ(m+ s+ 1)

sm!
.

Furthermore, λn(s)− λm(s) = 2B(n−m) and so

〈ϕm(0), Q(s)ϕn(0)〉 = i

(
2

B

)s
cm(s)cn(s)

2B(n−m)

Γ(m+ s+ 1)

m!
.

Now it su�ces to plug in the explicit expressions for the normalization con-
stants cm(s) and cn(s).

Using the Stirling formula one can check the asymptotic behavior of the
matrix entries of the operator Q(s) for m and n large. It turns out that
the operator Q(s) is in some sense close to a Hermitian operator A(s) in
L2(R+, rdr) with the matrix entries

〈ϕm(0), A(s)ϕn(0)〉 = 0 for m = n, (27)
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and

〈ϕm(0), A(s)ϕn(0)〉 =
i sgn(s)

2(n−m)
min

{(
m+ 1

n+ 1

)|s|/2

,

(
n+ 1

m+ 1

)|s|/2
}

for m 6= n. (28)

Note that A(0+) = Q(0+). We shall also write Q(s)mn instead of
〈ϕm(0), Q(s)ϕn(0)〉, and similarly for A(s).

Lemma 5. Let A(s) be the Hermitian operator in L2(R+, rdr) de�ned by
relations (27) and (28). Then Q(s)−A(s) is a Hilbert-Schmidt operator and
it holds true that

‖Q(s)− A(s)‖HS ≤
1

2
|s|(1 + |s|)(3+|s|)/2.

Proof. Let us suppose for de�niteness that s > 0 and m < n. For x ≥ 1 set

gs(x) =
Γ(x+ s)

xsΓ(x)
.

One can express

|Q(s)mn − A(s)mn| =
1

2(n−m)

∣∣gs(m+ 1)1/2 − gs(n+ 1)1/2
∣∣

×
(
m+ 1

n+ 1

)s/2

gs(n+ 1)−1/2

≤ 1

4
gs(n+ 1)−1/2

∫ 1

0

gs(m+ 1 + (n−m)t)−1/2

× |g′s(m+ 1 + (n−m)t)| dt.

Notice that
g′s(x)

gs(x)
=

Γ′(x+ s)

Γ(x+ s)
− Γ′(x)

Γ(x)
− s

x
.

Using the well known formula for the logarithmic derivative of the gamma
function,

−Γ′(z)

Γ(z)
=

1

z
+ γ +

∞∑
n=1

(
1

n+ z
− 1

n

)
, (29)
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one �nds that

g′s(x)

gs(x)
= s

(
∞∑

n=0

1

(n+ x)(n+ x+ s)
− 1

x

)

≤ s

(
∞∑

n=0

1

(n+ x)2
− 1

x

)

≤ s

(
1

x2
+

∫ ∞

x

dy
y2
− 1

x

)
=

s

x2
.

Similarly,

g′s(x)

gs(x)
≥ s

(∫ ∞

x

dy
y(y + s)

− 1

x

)
= ln

(
1 +

s

x

)
− s

x

≥ − s2

2x2
.

In particular,

|g′s(x)| ≤
s(s+ 1)

x2
gs(x).

From here one derives the estimates, for t ∈ [0, 1],

gs(m+ 1 + (n−m)t)

gs(n+ 1)
= exp

(
−
∫ n+1

m+1+(n−m)t

g′s(y)

gs(y)
dy
)

≤ exp

(∫ n+1

m+1

(
s

y
− ln

(
y + s

y

))
dy
)

= exp

(
(m+ 1 + s) ln

(
1 +

s

m+ 1

)
− (n+ 1 + s) ln

(
1 +

s

n+ 1

))
≤ (1 + s)1+s

and

|Q(s)mn − A(s)mn| ≤ s(s+ 1)

4 gs(n+ 1)1/2

∫ 1

0

gs(m+ 1 + (n−m)t)1/2

(m+ 1 + (n−m)t)2 dt

≤ 1

4
s(1 + s)(3+s)/2

∫ 1

0

dt
(m+ 1 + (n−m)t)2 .

18



Let F (t) be a Hermitian operator in L2(R+, rdr) with the following matrix
entries in the basis {ϕn(0)}:

F (t)mn = 0 for m = n,

and
F (t)mn = (m+ 1 + (n−m)t)−2 for m < n.

Then F (t) is a Hilbert-Schmidt operator and

‖F (t)‖ 2
HS = 2

∞∑
m=0

∞∑
n=m+1

(m+ 1 + (n−m)t)−4

≤ 2
∞∑

m=0

∫ ∞

0

dy
(m+ 1 + ty)4

=
2

3t

∞∑
m=0

1

(m+ 1)3

≤ 1

t
.

Hence

‖Q(s)− A(s)‖HS ≤ 1

4
s(1 + s)(3+s)/2

∫ 1

0

‖F (t)‖HS dt

≤ 1

2
s(1 + s)(3+s)/2.

This proves the lemma.

Combining Lemma 3 and Lemma 5 we deduce that the operator Q(s) is
actually bounded.

Lemma 6. The operator Q(s) is bounded and its norm satis�es the estimate

‖Q(s)‖ ≤ π

2
+ 12 |s|+ 1

2
|s|(1 + |s|)(3+|s|)/2.

Proof. Let A(s) be the Hermitian operator in L2(R+, rdr) de�ned by rela-
tions (27) and (28). According to Lemma 3 it holds true that

‖A(s)‖ ≤ 1

2

(
π +

(√
2

3
+ 4

)
π2 |s|

2

)
.

19



Lemma 5 leads to the estimate

‖Q(s)‖ ≤ ‖A(s)‖+ ‖Q(s)− A(s)‖

≤ 1

2

(
π +

(
1

3
√

2
+ 2

)
π2|s|+ |s|(1 + |s|)(3+|s|)/2

)
.

Since
(
1 + 1/(6

√
2)
)
π2 < 12 the lemma follows.

4 The meaning of the propagator Uτ (s, s0)

As already discussed in the Introduction the natural propagator Uτ (s, s0)
de�ned in (5) is not related in the standard way to the Hamiltonian τH(s)
de�ned in (1). In particular it is not clear if Uτ (s, s0) maps the domain
DomH(s0) into DomH(s). This is why we propose in the Appendix the no-
tion of a propagator weakly associated to a Hamiltonian, see De�nition A.3.
We should like to emphasize that this relationship is unique, i.e. at most one
propagator can be weakly associated to a Hamiltonian.

In this section we show that Uτ is weakly associated to τH and that
(s, r) 7→ Uτ (s, s0)ψ0(r) satis�es the Schrödinger equation as a distribution
for all ψ0 ∈ L2(R+, rdrdϕ).

Proposition 7. The propagator Uτ (s, s0) is weakly associated to τH(s).

Proof. Relation (5) means that

Uτ (s, s0) = V (s)e−iτΩ(s)C(s, s0)e
iτΩ(s0)V (s0)

−1.

So starting from C(s, s0) one can reach Uτ (s, s0) by two consecutive unitary
transformations. The propagator C(s, s0) was de�ned in (6). It corresponds
to the Hamiltonian −Qτ (s) de�ned in (7). According to Lemma 6 the func-
tion ‖Qτ (s)‖ = ‖Q(s)‖ is locally bounded and thus C(s, s0) is given by the
Dyson formula, see relation (31) in Section 5.

First we apply Proposition A.4 in which we set A(t) = −Qτ (t), D =
DomH(0), T (t) = exp(−iτΩ(t)) and

X(t) = i
(
∂te

−iτΩ(t)
)
eiτΩ(t) = τW (t).

We conclude that the propagator e−iτΩ(s)C(s, s0)e
iτΩ(s0) is weakly associated

to
τW (s)− e−iτΩ(s)Qτ (s)e

iτΩ(s) = τW (s)−Q(s).
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Next we apply Proposition A.6 in which we set H̃(t) = τW (t)−Q(t) and
Ũ(t, s) = e−iτΩ(t)C(t, s)eiτΩ(s). Recall further that V (t) was de�ned in (8).
We conclude that Uτ (s, s0) = V (s)Ũ(s, s0)V (s0)

−1 is weakly associated to

τV (s)W (s)V (s)−1 − V (s)Q(s)V (s)−1 + iV̇ (s)V (s)−1 = τH(s).

The proposition is proven.

In the studied model H = L2(R+, rdr) and so

K = L2(R,H, ds) = L2(R× R+, rdsdr).

Let H =
∫ ⊕

R H(s) ds be the direct integral of the family of self-adjoint opera-
tors H(s) which is nothing but a multiplication operator in K. Let Kτ be the
quasi-energy operator associated to the propagator Uτ (s, s0) (see Appendix).
According to Proposition 7 it holds true that

Kτ = −i∂s + τH . (30)

To an initial condition ψ0 ∈ H we relate the function
ψ(s, r) =

(
Uτ (s, 0)ψ0

)
(r) which is a locally square integrable function in the

variables s and r. We now show that ψ(s, r) ful�lls the Schrödinger equation
in the space of distributions D ′(R× ]0,∞[). Let us note that for the proof
it su�ces to know that −i∂s + τH ⊂ Kτ , the stronger property (30) is not
necessary.

Proposition 8. For every ψ0 ∈ H, the function ψ(s, r) =
(
Uτ (s, 0)ψ0

)
(r)

satis�es the Schrödinger equation in the sense of distributions.

Proof. Let ξ ∈ C∞
0 (R× ]0,+∞[) be an arbitrary real-valued test function.

Set g(s, r) = ξ(s, r)/r. Clearly, g ∈ Dom(−i∂s + τH) ⊂ DomKτ . Let
[a, b]× [c, d] be a rectangle containing supp ξ and choose η ∈ C∞

0 (R) so that
η ≡ 1 on a neighborhood of the interval [a, b]. From Proposition A.2 we know
that Kτ (η(s)ψ(s, r)) = −iη′(s)ψ(s, r). From the choice of η it follows that

0 = −i〈g, η′ψ〉K = 〈g,Kτ (ηψ)〉K = 〈(−i∂s + τH)g, ηψ〉K.

The last term equals∫
R×R+

(
i∂s

1

r
ξ(s, r) + τH(s)

1

r
ξ(s, r)

)
η(s)ψ(s, r) rdsdr

=

∫
R×R+

(
i∂sξ(s, r) + τ

(
− ∂rr∂r

1

r
+

1

r2

(
s+

Br2

2

)2
)
ξ(s, r)

)
ψ(s, r) dsdr.
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This means that

−i∂sψ(s, r) + τ

(
−1

r
∂rr∂r +

1

r2

(
s+

Br2

2

)2
)
ψ(s, r) = 0

in the domain R× ]0,+∞[ in the sense of distributions.

5 Proof of the adiabatic theorem

We follow the strategy explained in the Introduction. The adiabatic propa-
gator UAD (see (4)) and the propagator Uτ de�ned in (5) di�er by C de�ned
by (6). Since Qτ (s) = eiτΩ(s)Q(s)e−iτΩ(s), de�ned in (7), is unitarily equiva-
lent to Q(s) it is bounded, uniformly in s on every bounded interval [0, S].
Hence C(s, s0) exists and is given by the Dyson formula:

C(s, s0) = I +
∞∑

n=1

in
∫ s

s0

ds1

∫ s1

s0

ds2 . . .

∫ sn−1

s0

dsnQτ (s1)Qτ (s2) . . . Qτ (sn).

(31)
The task is to estimate the norm of the integral of Qτ . This will be done

by the integration by parts technique developed in the following two lemmas.
The �rst step is to �nd a bounded di�erentiable solution X(s) of the

commutation equation

Q(s) = i [W (s), X(s)].

The operator W (s) was de�ned in (9). The o�-diagonal entries of the X(s)
are determined unambiguously,

〈ϕm(0), X(s)ϕn(0)〉 = −i 〈ϕm(0), Q(s)ϕn(0)〉
λm(s)− λn(s)

(32)

= − sgn(s)

4B(n−m)2
min

{
γm(s)

γn(s)
,
γn(s)

γm(s)

}
for m 6= n,

with γn(s) de�ned in (26). We set

〈ϕm(0), X(s)ϕn(0)〉 = 0 for m = n, (33)

and write again X(s)mn instead of 〈ϕm(0), X(s)ϕn(0)〉.

Lemma 9. The operator X(s) de�ned by relations (33) and (32) is bounded
and its norm satis�es the estimate

‖X(s)‖ ≤ π2

12B
.
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The derivative Ẋ(s) exists in the operator norm and satis�es the estimate

‖Ẋ(s)‖ ≤ (1 +
√

2)π2

48B
.

Proof. The operator norm of X(s) is bounded from above by the Shur-
Holmgren norm,

‖X(s)‖ ≤ ‖X(s)‖SH = sup
m∈Z+

∞∑
n=0

|X(s)mn| ≤
1

2B

∞∑
k=1

1

k2
=

π2

12B
.

Suppose that s > 0 and m < n. Let us estimate the derivative of X(s)mn.
Using (29) one �nds that(

γm(s)

γn(s)

)′
=

γm(s)

2γn(s)

(
Γ′(m+ s+ 1)

Γ(m+ s+ 1)
− Γ′(n+ s+ 1)

Γ(n+ s+ 1)

)
=

γm(s)

2γn(s)

∞∑
k=0

n−m

(k +m+ s+ 1)(k + n+ s+ 1)
.

Hence∣∣∣∣ ddsX(s)mn

∣∣∣∣ ≤ 1

8B(n−m)

(
1

(m+ 1)(n+ 1)
+

∫ ∞

1

dy
(y +m)(y + n)

)
=

1

8B(n−m)

(
1

(m+ 1)(n+ 1)
+

1

n−m
ln

(
n+ 1

m+ 1

))
.

Thus we get, for m 6= n,∣∣∣∣ ddsX(s)mn

∣∣∣∣ ≤ 1

8B

(
1

(m+ 1)(n+ 1)
+

1

|n−m|min{m+ 1, n+ 1}

)
. (34)

Let Ẋ(s) be a Hermitian operator in L2(R+, rdr) with the matrix entries
dX(s)mn/ds. From the estimate (34) we deduce that Ẋ(s) is a Hilbert-
Schmidt operator and

‖Ẋ(s)‖HS ≤ 1

8B

(
∞∑

m=0

1

(m+ 1)2

∞∑
n=0

1

(n+ 1)2

)1/2

+
1

8B

(
2

∞∑
m=0

1

(m+ 1)2

∞∑
n=m+1

1

(n−m)2

)1/2

=
(1 +

√
2)π2

48B
.
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Furthermore, since estimate (34) is uniform in s one can apply the Lebesgue
dominated convergence theorem to conclude that

lim
ε→0

∥∥∥∥1

ε
(X(s+ ε)−X(s))− Ẋ(s)

∥∥∥∥
HS

= 0.

Hence the derivative of the operator-valued function X(s) exists in the op-
erator norm and equals Ẋ(s).

The matrix entries of the operator Qτ (s) de�ned in (7) equal

〈ϕm(0), Qτ (s)ϕn(0)〉 = i eiτ(ωm(s)−ωn(s)) 〈ϕm(s), ϕ̇n(s)〉 .

Notice that the both operators Ω(s) and W (s) = Ω′(s) are diagonal in the
basis {ϕn(0)} and therefore they commute.

Lemma 10. It holds true that∥∥∥∫ s

0

Qτ (u) du
∥∥∥ ≤ (1 +

1 +
√

2

8
|s|
)

π2

6Bτ
.

Proof. Suppose that s > 0. The integral can be rewritten as follows,∫ s

0

Qτ (u) du = i

∫ s

0

eiτΩ(u)[W (u), X(u)] e−iτΩ(u) du

=
1

τ

∫ s

0

((
eiτΩ(u)

)′
X(u) e−iτΩ(u) + eiτΩ(u)X(u)

(
e−iτΩ(u)

)′) du
=

1

τ

∫ s

0

((
eiτΩ(u)X(u) e−iτΩ(u)

)′ − eiτΩ(u)Ẋ(u)e−iτΩ(u)
)
du .

Consequently,∫ s

0

Qτ (u) du =
1

τ

(
eiτΩ(s)X(s) e−iτΩ(s) −X(0)

−
∫ s

0

eiτΩ(u)Ẋ(u)e−iτΩ(u) du
)
.

More precisely, the derivation of this equality was rather formal but it
becomes rigorous when sandwiching the both sides with the scalar product
〈ϕm(0), ·ϕn(0)〉. This is to say that the both sides have the same matrix en-
tries in the basis {ϕn(0)}. But since the equality concerns bounded operators
it holds true.
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Using Lemma 9 one arrives at the estimate∥∥∥∫ s

0

Qτ (u) du
∥∥∥ ≤ 1

τ

(
‖X(s)‖+ ‖X(0)‖+

∫ s

0

‖Ẋ(u)‖ du
)

≤ π2

Bτ

(
1

6
+

1 +
√

2

48
s

)
.

The lemma is proven.

We can now show that the adiabatic propagator UAD(s, 0) (see (4)) is
close to the propagator Uτ (s, 0) = UAD(s, 0)C(s, 0) de�ned in (5) provided
the adiabatic parameter τ is large.

Proposition 11. It holds true that

‖Uτ (s, 0)− UAD(s, 0)‖ ≤M(s) e|s|M(s) π

3Bτ

where

M(s) =
π

2
+ 12 |s|+ 1

2
|s|(1 + |s|)(3+|s|)/2. (35)

Proof. According to Lemma 6, ‖Q(s)‖ ≤ M(s), and from Lemma 10 one
easily deduces that ∥∥∥∫ s

0

Qτ (u) du
∥∥∥ ≤ π

3Bτ
M(s).

Using formula (5) one can estimate

‖Uτ (s, 0)− UAD(s, 0)‖ = ‖C(s, 0)− I‖

≤
∞∑

n=1

∫ |s|

0

ds1 . . .

∫ sn−2

0

dsn−1 ‖Qτ (s1)‖ . . . ‖Qτ (sn−1)‖

×
∥∥∥∫ sn−1

0

dsnQτ (sn)
∥∥∥

≤ π

3Bτ

∞∑
n=1

M(s)n

∫ |s|

0

ds1 . . .

∫ sn−2

0

dsn−1

=
π

3Bτ

∞∑
n=1

M(s)n |s|n−1

(n− 1)!
.

The proposition is proven.
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6 The general dependence on time

Here we show that the adiabatic theorem extends to Hamiltonians of the
form

Hζ(s) = H
(
ζ(s)

)
where H(s) is de�ned in (1) and ζ ∈ C2(R) is a real-valued function. In order
to simplify the discussion and to avoid considering discontinuities (recall that
Q(s) is discontinuous at s = 0) we shall further assume that ζ ′(s) > 0 and
ζ(0) = 0.

Set

V ζ(s) = V
(
ζ(s)

)
, W ζ(s) = W

(
ζ(s)

)
, Ωζ(s) =

∫ s

0

W ζ(u) du.

Let Cζ(s, s0) be the propagator related via the Dyson formula to the Hamil-
tonian −Qζ

τ (s) where

Qζ
τ (s) = exp

(
iτΩζ(s)

)
Qζ(s) exp

(
−iτΩζ(s)

)
, Qζ(s) = ζ ′(s)Q

(
ζ(s)

)
.

Exactly in the same way as in the proof of Proposition 7 one can show that
the propagator

U ζ
τ (s, s0) = V ζ(s) exp

(
−iτΩζ(s)

)
Cζ(s, s0) exp

(
iτΩζ(s0)

)
V ζ(s0)

−1

is weakly associated to the Hamiltonian Hζ(s). The adiabatic propagator
now reads

U ζ
AD(s, s0) = V ζ(s) exp

(
−iτ

(
Ωζ(s)− Ωζ(s0)

))
V ζ(s0)

−1.

Proposition 12. Assume that ζ ∈ C2(R), ζ ′(s) > 0 and ζ(0) = 0. Then
there exists a locally bounded function mζ(s) such that

∀s ∈ R,
∥∥∥U ζ

τ (s, 0)− U ζ
AD(s, 0)

∥∥∥ ≤ mζ(s)

Bτ
.

Proof. Suppose for de�niteness that s > 0. Recall that ‖Q(s)‖ ≤ M(s)
where M(s) was de�ned in (35). The operator-valued function

Xζ(s) = ζ ′(s)X(ζ(s)),

with X(s) being de�ned in (32) and (33), satis�es the commutation equation

Qζ(s) = i [W ζ(s), Xζ(s)].
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Quite analogously as in the proof of Lemma 10 one derives the estimate∥∥∥∥∫ s

0

Qζ
τ (u) du

∥∥∥∥ ≤ 1

τ

(
‖Xζ(s)‖+ ‖Xζ(0)‖+

∫ s

0

‖Ẋζ(u)‖ du
)
.

In virtue of Lemma 9 we have

‖Xζ(s)‖ ≤ π2

12B
ζ ′(s)

and ∫ s

0

‖Ẋζ(u)‖ du ≤ π2

12B

∫ s

0

|ζ ′′(u)| du+
(1 +

√
2)π2

48B

∫ s

0

ζ ′(u)2 du .

Hence ∥∥∥∥∫ s

0

Qζ
τ (u) du

∥∥∥∥ ≤ qζ(s)

Bτ

where

qζ(s) =
π2

12

(
ζ ′(0) + sup

0≤u≤s
ζ ′(u) +

∫ s

0

|ζ ′′(u)| du+
1 +

√
2

4

∫ s

0

ζ ′(u)2 du

)
.

Finally one can proceed similarly as in the proof of Proposition 11 to derive
the estimate∥∥∥U ζ

τ (s, 0)− U ζ
AD(s, 0)

∥∥∥ =
∥∥Cζ(s, 0)− I

∥∥ ≤ exp

(∫ ζ(s)

0

M(v) dv

)
qζ(s)

Bτ
.

This completes the proof.

Appendix. Propagator weakly associated to a

Hamiltonian

By a propagator U(t, s) we mean a family of unitary operators in a separable
Hilbert space H depending on t, s ∈ R which satis�es the conditions:

(i) U(t, s) is strongly continuous jointly in t, s,

(ii) the Chapman-Kolmogorov equality is satis�ed, i.e.

∀t, s, r ∈ R, U(t, r)U(r, s) = U(t, s).
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Let H(t), t ∈ R, be a family of self-adjoint operators in H. The domain may
depend on t. The standard way how one relates a propagator U(t, s) to H(t)
is based on the following two requirements:

(i) ∀t, s ∈ R, U(t, s)
(
DomH(s)

)
= DomH(t),

(ii) ∀ψ ∈ DomH(s),∀t ∈ R, i∂tU(t, s)ψ = H(t)U(t, s)ψ.

Clearly, if a propagator exists then it is unique. In some situations, however,
these requirements may turn out to be unnecessarily strong. In particular
this is true for the model studied in the current paper. The heart of the
problem is illustrated on the following example.

Let A(t) be a family of bounded Hermitian operators in H which is uni-
formly bounded. Then the propagator exits and is given by the Dyson
formula. Let us call it C(t, s). Let D ⊂ H be a dense linear subspace,
and let T (t) be a strongly continuous family of unitary operators such that
D is invariant with respect to T (t) and for every ψ ∈ D there exists the
derivative ∂tT (t)ψ. Furthermore, suppose that X(t) = iṪ (t)T (t)−1, with
DomX(t) = D, is a self-adjoint operator for all t (the dot designates the
derivative). A formal computation gives

T (t)
(
− i∂t + A(t)

)
T (t)−1 = −i∂t +X(t) + T (t)A(t)T (t)−1.

If C(t, s) preserved the domain D then the propagator T (t)C(t, s)T (s)−1

would solve the Schrödinger equation for X(t)+T (t)A(t)T (t)−1 on D. Thus
it is natural to associate it to this family of self-adjoint operators. The
hypothesis on C(t, s) need not be, however, satis�ed since A(t) is an arbitrary
family of bounded operators and so C(t, s) will in general not preserve this
domain.

In this appendix we propose a way how to associate a propagator to
a given time-dependent Hamiltonian in a weak sense. This association is
more general than the standard one (which supposes a constant domain and
solving the Schrödinger equation in the strong sense) and it is still unique
(i.e.: there is at most one propagator weakly associated to a given time
dependent Hamiltonian).

Here we develop this approach only to an extent which makes it possible
to apply these ideas to the studied model with a time-dependent Aharonov-
Bohm �ux. In particular, the described example is covered by Proposi-
tion A.4 below.

Let X be a Banach space. We shall say that a vector-valued function
f : R → X is absolutely continuous on R if it is absolutely continuous on

28



every compact interval I ⊂ R. By the symbol ÃC(R,X ) (or just ÃC if
there is no danger of misunderstanding) we shall denote the space of all
absolutely continuous vector-valued functions f(t) such that the derivative
f ′(t) exists almost everywhere on R. In such a case the function ‖f ′(t)‖ is
locally integrable and f(t) = f(0) +

∫ t

0
f ′(s) ds [10, Theorem 3.8.6]. If the

Banach space X has the Radon-Nikodym property then the space ÃC(R,X )
coincides with the space of absolutely continuous vector-valued functions
AC(R,X ). Let us recall that X is said to have the Radon-Nikodym property
if the fundamental theorem of calculus holds, i.e. if any absolutely continuous
function is the antiderivative of a Bochner integrable function. For example,
separable Hilbert spaces are known to have the Radon-Nikodym property [6].

Clearly, if f, g ∈ AC(R,H) then the function 〈f(t), g(t)〉 is absolutely
continuous and

∂t〈f(t), g(t)〉 = 〈f ′(t), g(t)〉+ 〈f(t), g′(t)〉 a.e.

Similarly, if A ∈ ÃC(R,B(H)) and f ∈ AC(R,H) then A(t)f(t) ∈ AC(R,H)
and

∂tA(t)f(t) = Ȧ(t)f(t) + A(t)f ′(t) a.e.

Let {ek} be an orthonormal basis in H. A vector-valued function f(t) =∑
ηk(t)ek belongs to AC(R,H) if and only if the following two conditions

are satis�ed:

(i) ∃a ∈ R such that
∑

k |ηk(a)|2 <∞,

(ii) ∀k, ηk ∈ AC, and (
∑

k |η′k(t)|2)
1/2 ∈ L1

loc(R).

From here one easily derives the following criterion (alternatively, one can
again consult [10, Theorem 3.8.6]).

Lemma A.1. A vector-valued function f : R → H belongs to AC(R,H) if
and only if the following two conditions are satis�ed:

(i) there exists a total set T ⊂ H such that for all ψ ∈ T , 〈ψ, f(t)〉 is
absolutely continuous,

(ii) the derivative f ′(t) exists a.e. and ‖f ′(t)‖ ∈ L1
loc(R).

Set K = L2(R,H, dt). Let us recall that to every propagator U(t, s) on H
one can relate a unique self�adjoint operator K in K which is the generator
of the one-parameter group of unitary operators exp(−iσK), σ ∈ R, de�ned
by (

e−iσKf
)
(t) = U(t, t− σ)f(t− σ)
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[11]. K is called the quasi-energy operator. Equivalently,

K = U(−i∂t)U
∗ where U =

∫ ⊕

R
U(t, 0) dt. (A.1)

So f ∈ DomK if and only if U(t, 0)−1f(t) ∈ Dom(−i∂t) which means that
f ∈ L2, U(t, 0)−1f(t) ∈ AC and

(
U(t, 0)−1f(t)

)′ ∈ L2.
From (A.1) one concludes that the spectrum of K is purely absolutely

continuous and coincides with R. So the kernel of K is always trivial. It
seems to be natural, however, to introduce a generalized kernel of K, called
Ker0K, as follows:

Ker0K = {f ∈ L2
loc(R,H, dt); ∀η ∈ C∞

0 (R), ηf ∈ DomK

and K(ηf) = −iη′f}.

Since K can be very roughly imagined as the formal operator −i∂t+H(t) the
elements of Ker0K can be regarded as solutions of the Schrödinger equation
in a weak sense.

Proposition A.2. Let U(t, s) be a propagator and let K be the quasi-energy
operator associated to it. Then it holds

Ker0K = {U(t, 0)ψ; ψ ∈ H}.

Proof. If f(t) = U(t, 0)ψ, with ψ ∈ H, and η ∈ C∞
0 (R) then, in K, there

exists the derivative

i
d
dσ
(
e−iσKηf

)
(t)
∣∣∣
σ=0

= i
d
dσ
(
η(t− σ)U(t, 0)ψ

)∣∣∣
σ=0

= −iη′(t)f(t).

Hence, by the Stone theorem, ηf ∈ DomK and K(ηf) = −iη′f .
Conversely, suppose that f ∈ Ker0K and set g(t) = U(t, 0)−1f(t). Let η

be a test function. From (A.1) one deduces that ηg ∈ Dom(−i∂t) and

∂t

(
η(t)g(t)

)
= η′(t)g(t) a.e.

Since η ∈ C∞
0 (R) is arbitrary this implies that g(t) ∈ AC(R,H) and g′(t) = 0

a.e. Consequently, g(t) = ψ ∈ H is a constant vector-valued function and
f(t) = U(t, 0)ψ.

It is known that the correspondence between the propagators and the
quasi-energy operators is one-to-one [11, Remark (1) on p.321]. On one hand,
by the very de�nition, K is unambiguously determined by U(t, s). On the
other hand, if U(t, s) and U1(t, s) are two propagators with equal quasi-energy
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operators, K = K1, then U(t, s) = U1(t, s). This uniqueness result is also
a straightforward corollary of Proposition A.2. Actually, Proposition A.2
implies that for every ψ ∈ H there exists ψ1 ∈ H such that U(t, 0)ψ =
U1(t, 0)ψ1 for all t (we use the strong continuity of the propagators). By
setting t = 0 one �nds that ψ = ψ1. Hence U(t, 0)ψ = U1(t, 0)ψ for all
ψ ∈ H. Consequently,

U(t, s) = U(t, 0)U(s, 0)−1 = U1(t, 0)U1(s, 0)−1 = U1(t, s).

For a family of self-adjoint operators H(t), t ∈ R, set H =
∫ ⊕

R H(t) dt.
This means that f ∈ K belongs to Dom H if and only if f(t) ∈ DomH(t) a.e.
and ‖H(t)f(t)‖ ∈ L2(R, dt). Then H is a self-adjoint operator in K. In what
follows we shall always suppose that the intersection Dom(−i∂t) ∩Dom H is
dense in K. For example, this is true in the case when the domain DomH(t)
is independent of t. Consequently, −i∂t + H is a densely de�ned symmetric
operator.

De�nition A.3. We shall say that a propagator U(t, s) is weakly associated
to H(t) if

K = −i∂t + H . (A.2)

Notice that equality (A.2) is equivalent to the following two conditions:

(i) −i∂t + H ⊂ K,

(ii) −i∂t + H is essentially self-adjoint.

Furthermore, it is important to note that this de�nition still guarantees the
uniqueness, i.e. to H(t) one can weakly associate at most one propaga-
tor U(t, s). Actually, if U(t, s) and U1(t, s) are weakly associated to H(t)
then K = K1 according to equality (A.2). But due to the one-to-one corre-
spondence between the propagators and the quasi-energy operators we have
U(t, s) = U1(t, s).

Now we are ready to formulate and prove two propositions which are
directly applicable to the model studied in this paper.

Proposition A.4. Let A(t) be a family of bounded self�adjoint operators
in H which is locally bounded. Let C(t, s) be the propagator associated to
A(t) via the Dyson formula. Let D ⊂ H be a dense linear subspace and let
T (t) be a strongly continuous family of unitary operators in H obeying the
conditions:

(i) ∀t ∈ R, T (t)D = D,
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(ii) ∀ψ ∈ D, T (t)ψ is continuously di�erentiable,

(iii) ∀t ∈ R, X(t) = iṪ (t)T (t)−1, with DomX(t) = D, is a self-adjoint
operator.

Then the propagator T (t)C(t, s)T (s)−1 is weakly associated to the family
X(t) + T (t)A(t)T (t)−1.

Proof. Set

Y (t) = X(t) + T (t)A(t)T (t)−1, Y =

∫ ⊕

R
Y (t) dt, T =

∫ ⊕

R
T (t) dt.

LetKY be the quasi-energy operator associated to the propagator T (t)C(t, s)T (s)−1.
Set

C(t) = C(t, 0), C =

∫ ⊕

R
C(t) dt.

C(t) is a family of unitary operators which satis�es C(t) ∈ ÃC(R,B(H)) and
A(t) = iĊ(t)C(t)−1.

(i) Let us verify that

−i∂t + Y ⊂ KY = TC(−i∂t)C
−1T−1.

Suppose that a vector-valued function f : R → H belongs to Dom(−i∂t+Y).
This happens if and only if f obeys the conditions: f ∈ L2, f ∈ AC, f ′ ∈ L2,
f(t) ∈ D a.e. and Y (t)f(t) ∈ L2. In that case the function T (t)−1f(t) is
di�erentiable a.e. and the derivative(

T (t)−1f(t)
)′

= T (t)−1
(
f ′(t) + iX(t)f(t)

)
is square integrable. Moreover, if ψ ∈ D then the function 〈ψ, T (t)−1f(t)〉 =
〈T (t)ψ, f(t)〉 is absolutely continuous. According to Lemma A.1 this implies
that T (t)−1f(t) ∈ AC(R,H) and consequently C(t)−1T (t)−1f(t) ∈ AC as
well. Furthermore, a straightforward computation yields

Y (t)f(t) = i
(
Ṫ (t)T (t)−1f(t) + T (t)Ċ(t)C(t)−1T (t)−1f(t)

)
= i

(
T (t)C(t)

)′
C(t)−1T (t)−1f(t)

= if ′(t)− iT (t)C(t)
(
C(t)−1T (t)−1f(t)

)′
.

Hence (C(t)−1T (t)−1f(t))
′ ∈ L2, f ∈ DomKY and −if ′(t) + Y (t)f(t) =

KY f(t).
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(ii) Let us verify that −i∂t + Y is essentially self-adjoint. Suppose that
g ∈ Dom(−i∂t +Y)∗ satis�es (−i∂t +Y)∗g = zg with Im(z) 6= 0. This means
that

∀f ∈ Dom(−i∂t + Y), 〈(−i∂t + Y)f, g〉K = z〈f, g〉K.

Choose f(t) = η(t)T (t)ψ where ψ ∈ D and η ∈ C∞
0 (R) is real-valued. Then

f ∈ Dom(−i∂t + Y) and an easy computation shows that

(−i∂t + Y)f(t) = −iη′(t)T (t)ψ + η(t)T (t)A(t)ψ.

Hence for all η ∈ C∞
0 (R) we have∫

R
(iη′(t)〈T (t)ψ, g(t)〉+ η(t)〈T (t)A(t)ψ, g(t)〉) dt = z

∫
R
η(t)〈T (t)ψ, g(t)〉dt .

Setting
F (t) = 〈T (t)ψ, g(t)〉, G(t) = 〈T (t)A(t)ψ, g(t)〉,

we �nd that
−i∂tF (t) +G(t) = zF (t) (A.3)

in the sense of distributions. Since both F (t) and G(t) are locally integrable,
a standard result from the theory of distributions tells us that F (t) is abso-
lutely continuous and equality (A.3) holds true in the usual sense. Moreover,
equality (A.3) implies that

∂t

(
e2 Im(z)t|F (t)|2

)
= 2 e2 Im(z)t Im

(
F (t)G(t)

)
.

Let us now choose an orthonormal basis {ψk} whose elements all belong
to the domain D. Let us write Fk instead of F and Gk instead of G when
replacing ψ by ψk. We have derived the equality

|Fk(t)|2 = e−2 Im(z)(t−a)|Fk(a)|2 + 2

∫ t

a

e−2 Im(z)(t−s) Im
(
Fk(s)Gk(s)

)
ds (A.4)

which is valid for all k and all a, t ∈ R. Observe that∑
k

|Fk(t)|2 = ‖g(t)‖2 a.e.,∑
k

|Fk(s)||Gk(s)| ≤ ‖g(s)‖ ‖A(s)T (s)−1g(s)‖ ∈ L1
loc(R, ds) a.e.,

and ∑
k

Fk(s)Gk(s) =
〈
g(s), T (s)A(s)T (s)−1g(s)

〉
∈ R a.e.
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Summing in k in equality (A.4) we �nd that

‖g(t)‖ = e− Im(z)(t−a)‖g(a)‖

for almost all a, t ∈ R. Since ‖g(t)‖ is square integrable this is possible only
if g(t) = 0 a.e.

Proposition A.4 has a corollary justifying the adverb �weakly� in De�ni-
tion A.3.

Corollary A.5. Assume that a propagator U(t, t0) is associated as a strong
solution of the Schrödinger equation to a time-dependent Hamiltonian H(t)
which has, however, a time-independent domain (i.e. the relationship between
the propagator and the Hamiltonian is the usual one). Then U(t, t0) is weakly
associated to H(t).

Proof. In Proposition A.4 it su�ces to set D = DomH(0), T (t) = U(t, 0)
and A(t) = 0. Then X(t) = H(t), C(t, s) = I and T (t)C(t, s)T (s)−1 =
U(t, s).

Proposition A.6. Suppose that V (t), t ∈ R, is a family of unitary operators
which is continuously di�erentiable in the strong sense. Let H̃(t), t ∈ R, be
a family of self-adjoint operators such that Dom H̃(t) = D for all t ∈ R. Set

H(t) = V (t)H̃(t)V (t)−1 + iV̇ (t)V (t)−1.

If the propagator Ũ(t, s) is weakly associated to H̃(t) then the propagator
U(t, s) = V (t)Ũ(t, s)V (s)−1 is weakly associated to H(t).

Proof. Set

Ũ(t) = Ũ(t, 0), Ũ =

∫ ⊕

R
Ũ(t) dt, V =

∫ ⊕

R
V (t) dt .

By the assumption, Ũ(−i∂t)Ũ
−1 = −i∂t + H̃. We have to show that

VŨ(−i∂t)Ũ
−1V−1 = −i∂t + H .

Since

VŨ(−i∂t)Ũ
−1V−1 = V(−i∂t + H̃)V−1 = V(−i∂t + H̃)V−1

it is su�cient to verify that

V(−i∂t + H̃)V−1 = −i∂t + H.
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This would also imply that Dom(−i∂t) ∩Dom(H) is dense in K.
A vector-valued function f : R → H belongs to Dom

(
V(−i∂t + H̃)V−1

)
if

and only if it satis�es the conditions: f ∈ L2, V (t)−1f(t) ∈ AC, (V (t)−1f(t))
′ ∈

L2, V (t)−1f(t) ∈ D a.e. and H̃(t)V (t)−1f(t) ∈ L2. Let us note that from the
continuous di�erentiability of V (t) in the strong sense and from the uniform
boundedness principle it follows that V̇ (t), t ∈ R, is a family of bounded
operators which is locally bounded. Furthermore, V (t)∗ = V (t)−1 is contin-
uously di�erentiable in the strong sense as well and V (t)−1ψ ∈ AC for all
ψ ∈ H. Suppose that f ∈ L2. If V (t)−1f(t) ∈ AC then f ′(t) exists a.e. and
‖f ′(t)‖ is locally integrable, the function 〈ψ, f(t)〉 = 〈V (t)−1ψ, V (t)−1f(t)〉 is
absolutely continuous for all ψ ∈ H and therefore, by Lemma A.1, f(t) ∈ AC.
Similarly, the converse is also true. If f(t) ∈ AC then V (t)−1f(t) ∈ AC.

Using these facts and the relation between H̃(t) and H(t) (including that
DomH(t) = V (t)D) one easily �nds that the domains of V(−i∂t + H̃)V−1

and −i∂t + H coincide and that

V (t)
(
− i∂t + H̃(t)

)
V (t)−1f(t) = −if ′(t) +H(t)f(t)

for every f ∈ Dom(−i∂t + H).

Remark. Proposition A.6 can be easily extended to the case when the family
of unitary operators V (t) is continuous and piece-wise continuously di�eren-
tiable in the strong sense and in each point of discontinuity there exist the
limits of the derivative both from the left and from the right.
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