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Abstract

We study the motion of solitary-wave solutions of a family of focusing gener-
alized nonlinear Schrödinger equations with a confining, slowly varying external
potential, V (x).

A Lyapunov-Schmidt decomposition of the solution combined with energy es-
timates allows us to control the motion of the solitary wave over a long, but finite,
time interval.

We show that the center of mass of the solitary wave follows a trajectory close
to that of a Newtonian point particle in the external potential V (x) over a long
time interval.

1 Introduction

We consider a family of generalized nonlinear Schrödinger and Hartree equations with a
focusing nonlinearity. These equations have solitary wave solutions, and, in this paper,
we study the effective dynamics of such solitary waves. The equations have the form:

i∂tψ(x, t) = −∆ψ(x, t) + V (x)ψ(x, t)− f(ψ)(x, t), (1.1)
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where t ∈ R is time, x ∈ Rd denotes a point in physical space, ψ : Rd×R 7→ C is a (one-
particle) wave function, V is the external potential, which is a real-valued, confining,
and slowly varying function on Rd, and f(ψ) describes a nonlinear self-interaction with
the properties that f(ψ) is “differentiable” in ψ, f(0) = 0, and f(ψ̄) = f(ψ). Precise
assumptions on V and f are formulated in Section 2.

The family of nonlinearities of interest to us includes local nonlinearities, such as

f(ψ) = λ|ψ|sψ, 0 < s <
4

d
, λ > 0, (1.2)

and Hartree nonlinearities

f(ψ) = λ(Φ ∗ |ψ|2)ψ, λ > 0, (1.3)

where the (two-body) potential Φ is real-valued, of positive type, continuous, spherically
symmetric, and tends to 0 as |x| → ∞. Here Φ ∗ g :=

∫

Φ(x − y)g(y) ddy denotes
convolution. Such equations are encountered in the theory of Bose gases (BEC), in
nonlinear optics, in the theory of water waves and in other areas of physics.

It is well known that Eq. (1.1) has solitary wave solutions when V ≡ 0. Let ηµ ∈ L2

be a spherically symmetric, positive solution of the nonlinear eigenvalue problem

−∆η + µη − f(η) = 0. (1.4)

The function ηµ is called a “solitary wave profile”. Among the solitary wave solutions of
(1.1) are Galilei transformations of ηµ,

ψsol := Sa(t)p(t)γ(t)ηµ(t), (1.5)

where Sapγ is defined by

(Sapγψ)(x) := eip·(x−a)+iγψ(x− a). (1.6)

Let σ := {a, p, γ, µ}, where µ is as in Eq. (1.4). For ψsol to be a solution to (1.1) with
V ≡ 0 the modulation parameters, σ, must satisfy the equations of motion

a(t) = 2pt+ a, p(t) = p, γ(t) = µt+ p2t+ γ, µ(t) = µ (1.7)

with γ ∈ S1, a, p ∈ Rd, µ ∈ R+. In other words, σ satisfy (1.7), then

ψsol(x, t) = (Sa(t)p(t)γ(t)ηµ(t))(x) (1.8)

solves Eq. (1.1) with V ≡ 0. Thus (1.5), with a(t), p(t), γ(t), µ(t) as above, describes a
2d+2-dimensional family solutions of Eq. (1.1) with V ≡ 0. Let the soliton manifold,
Ms be defined by

Ms := {Sapγηµ : {a, p, γ, µ} ∈ R
d × R

d × S
1 × I} , (1.9)
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where I is a bounded interval in R+.
Solutions to (1.4) behave roughly like e−

√
µ|x|, as |x| → ∞. So

√
µ is a reciprocal

length scale that indicates the “size” of the solitary wave.
We consider the Cauchy problem for Eq. (1.1), with initial condition ψ0 in a weighted

Sobolev space. For Hartree nonlinearities, global wellposedness is known [20]. For local
nonlinearities, the situation is more delicate; see Condition 1 and Remark 2.1 in Section 2.
Let the initial condition ψ0 be “close” to Ms. Then, we will show, the corresponding
solution ψ will remain “close” to Ms, over a long time interval. A certain “symplectically
orthogonal” projection of ψ onto Ms is then well defined and traces out a unique curve
on Ms. We denote this curve by ησ(t), see Figure 1.1.

PSfrag replacements
Ms

ψ(·, t)

ησ(t)

Figure 1.1: The trajectory ψ(·, t) over the soliton Manifold Ms.

An essential part of this paper is to determine the leading order behavior of σ(t) =
{a(t), p(t), γ(t), µ(t)} and to estimate error terms. To this end, let W be a smooth,
positive, polynomially bounded function, and define

V (x) = W (εV x) (1.10)

where εV is a small parameter. Furthermore, let ψ0 be an initial condition “ε0–close” to
ησ0 ∈ Ms, for some σ0. Roughly speaking, this initial condition has length scale 1/

√
µ

0
.

We will consider external potentials, V , as in (1.10), for a scaling parameter εV satisfying

εV �
√
µ0, (1.11)

i.e., we assume that the external potential varies very little over the length scale of ψ0.
For simplicity, we choose µ = 1 and εV � 1, at the price of re-scaling the nonlinearity.

We decompose the solution ψ of (1.1) into a part which is a solitary wave and a small
part, a “perturbation”, w. That is, we write ψ as

ψ = Sapγ(ηµ + w). (1.12)
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This does not define a unique decomposition, unless 2d + 2 additional conditions are
imposed. These conditions say that the perturbation w is ‘symplectically orthogonal’ to
the soliton manifold Ms.

The main idea used to control the perturbation w is to derive differential equations in
time for the modulation parameters, σ, which depend on the external potential. These
equations appear naturally when one projects solutions of (1.1) onto the soliton manifold.
To control the motions of σ and w, we make use of conserved quantities: the energy

HV (ψ) :=
1

2

∫

(|∇ψ|2 + V |ψ|2) ddx− F (ψ), (1.13)

where F ′(ψ) = f(ψ) (this is a variational derivative), the mass (or charge)

N (ψ) :=
1

2

∫

|ψ|2 ddx, (1.14)

and the “almost conserved” momentum

P(ψ) :=
1

4

∫

(ψ̄∇ψ − ψ∇ψ̄) ddx. (1.15)

To achieve control over the perturbation w, we introduce a ‘Lyapunov functional’

Λ(ψ, t) := Kσ(ψ)−Kσ(Sapγηµ), (1.16)

where σ = σ(t) = {a(t), p(t), γ(t), µ(t)}, and where

Kσ(ψ) := HV (ψ) + (p2 + µ)N (ψ)− 2p · P(ψ)

− 1

2

∫

(

V (a) +∇V (a) · (x− a)
)

|ψ|2 ddx,
(1.17)

i.e., Kσ is essentially a linear combination of the conserved and almost conserved quan-
tities. Using the linear transformation u := S−1

apγψ, we change questions about the size
of fluctuations around Sapγηµ to ones about the size of fluctuations around the solitary
wave profile ηµ(t). In this “moving frame”, the Kσ(ψ) terms in the Lyapunov functional
introduced above take the form

Kσ(Sapγu) = Eµ(u) +
1

2

∫

RV |u|2 ddx, (1.18)

where
RV (x) := V (x+ a)− V (a)−∇V (a) · (x− a) (1.19)

and
Eµ(u) := HV=0(u) + µN (u). (1.20)
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In the moving frame the Lyapunov functional depends on the parameters µ and a, but
not on p and γ. Furthermore, ηµ is a critical point of Eµ(ηµ), i.e., E ′µ(ηµ) = 0. The
change of frame discussed above simplifies the analysis leading to our main result.

Simply stated, our main theorem shows that, for initial conditions ψ0 ε0-close to Ms,
the perturbation w is of order ε := εV + ε0, for all times smaller than Cε−1. Furthermore,
the center of mass of the solitary wave, a, and the center of mass momentum p satisfy
the following equations

ȧ = 2p+O(ε2), ṗ = −∇V (a) +O(ε2). (1.21)

The remaining modulation parameters µ and γ satisfy

µ̇ = O(ε2), γ̇ = µ− V (a) + p2 +O(ε2). (1.22)

A precise statement is found in the next section.
This is the first result of its type covering confining external potentials. Indeed, we

can exploit the confining nature of the potential to obtain a stronger result than that
of [12] (and that stated above) for a certain class of initial conditions which we now
describe. Consider the classical Hamiltonian function:

h(a, p) :=
(

p2 + V (a)
)

/2. (1.23)

Given an initial condition ψ0 ε0–close to ησ0 ∈ Ms, where σ0 = {a0, p0, γ0, µ0}, we require
the initial position a0 and momentum p0 to satisfy

h(a0, p0)−min
a
h(a, 0) ≤ εh, (1.24)

with εV ≤ Cεh ≤ 1, for some constant C. For this class of initial conditions, our main
result shows that the perturbation w remains O(ε) for longer times:

t <
C

εV
√
εh + ε2

. (1.25)

This improvement is non-trivial. For example, it means that we can control the per-
turbation of a solitary wave which undergoes many oscillations near the bottom of a
potential well.
Remark: We can also extend our analysis to a class of slowly time-dependent external
potentials without much additional work. We introduce a scale parameter, τ , in time:
V (x, t) := W (εV x, τt). To determine the size of τ heuristically we consider

d

dt
h(a, p, t) = p

(

ṗ+∇V (a, t)
)

+
1

2
(ȧ− 2p) · ∇V (a, t) + ∂tV (a, t). (1.26)

We want the last two terms to have the same size. The second but last term is of size
ε2εV , since ȧ satisfy the classical equations of motion to order ε2. The last term is of size
τ . Thus if τ is chosen to be τ = O(ε3

V
) all our estimates will survive.
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The following example suggests that accelerating solitary wave solutions of Eq. (1.1)
in a confining external potential can, in fact, survive for arbitrarily long times. Choose
V (x) := x ·Ax+ d · x+ c ≥ 0 and A > 0 (positive matrix). Then (1.1) has the following
solution:

ψ(x, t) = eip(t)·(x−a(t))+iγ(t)) η̃µ(x− a(t)) (1.27)

with
ṗ = −∇V (a), ȧ = 2p, γ̇ = p2 + µ− V (a), (1.28)

where η̃µ solves the equation

−∆η + µη − f(η) + (x · Ax)η = 0. (1.29)

Thus, given a solution of the equations of motion (1.28), a family of solitary wave solu-
tions is given by (1.27), for arbitrary times t. For details see Appendix D.

The first results of the above type, for bounded, time-independent potentials were
proved in [13, 14] for the Hartree equation under a spectral assumption. This result was
later extended to a general class of nonlinearities in [12]. Neither of these works deals
with a confining external potential. In particular, their results do not extend to the
longer time interval (1.25) described above.

For local pure-power nonlinearities and a small parameter εV , it has been shown in [4]
that if an initial condition is of the form Sa0p0γ0ηµ0 , then the solution ψ(x, t) of Eq. (1.1)
satisfies

ε−dV |ψ(
x

εV
,
t

εV
)|2 → ‖ηµ‖2L2δa(t) (1.30)

in the C1∗ topology (dual to C1), provided a(t) satisfies the equation 1
2
ä = ∇W (a), where

V (x) = W (εV x). This result was strengthened in [19] for a bounded external potential
and in [8] for a potential given by a quadratic polynomial in x.

There have been many recent works on asymptotic properties for generalized nonlin-
ear Schrödinger equations. Asymptotic stability, scattering and asymptotic completeness
of solitary waves for bounded external potential tending to 0 at∞ has been shown under
various assumptions. See for example, [26, 27, 28, 5, 6, 10, 11, 7, 30, 31, 32, 24, 29, 17,
15, 22].

Though these are all-time results, where ours is long (but finite)-time, our approach
has some advantages: we can handle confining potentials (for which the above-described
results are meaningless); we require a much less stringent (and verifiable) spectral con-
dition; we track the finite-dimensional soliton dynamics (Newton equations); and our
methods are comparatively elementary.

Our paper is organized as follows. In Section 2, we state our hypotheses and the
main result. In Section 3, we recall the Hamiltonian nature of Eq. (1.1) and describe
symmetries of (1.1) for V ≡ 0. We give a precise definition of the soliton manifold
Ms and its tangent space. In Section 4, we introduce a convenient parametrization of
functions in a small neighborhood of Ms in phase space, and we derive equations for the
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modulation parameters σ = {a, p, γ, µ} and the perturbation w around a solitary wave
ησ = Sapγηµ. In this parametrization, the perturbation w is symplectically orthogonal to
the tangent space TησMs to Ms at ησ. In Section 5, we similarly decompose the initial
condition ψ0 deriving in this way the initial conditions, σ0 and w0, for σ and w, and
estimating w0. In Section 6, we derive bounds on the solitary wave position, a, and the
momentum, p, by using the fact that the Hamiltonian, h(a, p) is almost conserved in
time. In Section 7, we construct the Lyapunov functional, Λ(ψ, t), and compute its time
derivative. This computation is used in Section 8 in order to obtain an upper bound on
Λ(ψ, t). This bound, together with the more difficult lower bound derived in Section 9, is
used in Section 10 in order to estimate the perturbation w and complete the proof of our
main result, Theorem 2.1. Some basic inequalities are collected in Appendices A–C. In
Appendix D, we construct a family of time-dependent solutions with parameters exactly
satisfying the classical equations of motion.

2 Notation, assumptions and main result

Let Ls denote the usual Lebesgue space of functions, Cs the space of functions with s
continuous derivatives, and Hs the Sobolev space of order s. Abbreviate 〈x〉2 := 1+ |x|2.

Assumptions on the external potential. Let W (x) be a C3 function, and let
minxW (x) = 0. Let β ∈ Zd with βj ≥ 0 ∀j = 1, . . . , d be a multi-index. Given a
number r ≥ 1 let W be such that

|∂βxW (x)| ≤ CmaxV 〈x〉r−|β| for |β| ≤ 3, (2.1)

HessW (x) ≥ ρ1〈x〉r−2, (2.2)

and
W (x) ≥ cV |x|r, for |x| ≥ cL (2.3)

for some positive constants CmaxV , ρ1, cV , cL.
The number r is called the growth rate of the external potential. Here HessW is the

Hessian of W with respect to spatial variables. Define V (x) := W (εV x). Then, for r ≥ 1,

|∂βxV (x)| ≤ CV ε
|β|
V 〈εV x〉r−|β|, for |β| ≤ 3, (2.4)

Hess V (x) ≥ ρ1ε
2
V 〈εV x〉r−2, (2.5)

and
V (x) ≥ cV (εV |x|)r, for εV |x| ≥ cL. (2.6)
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Assumptions on the initial condition ψ0. The energy space, H1,r, for a given
growth rate r of the external potential, is defined as

H1,r := {ψ ∈ H1 : 〈x〉r/2ψ ∈ L2}. (2.7)

Let H ′
1,r denote the dual space of H1,r. The energy norm is defined as

‖ψ‖2H1,r
:= ‖ψ‖2H1

+ ‖〈εV x〉r/2ψ‖2L2 (2.8)

We require ψ0 ∈H1,r.

In what follows, we identify complex functions with real two-component functions
via

C 3 ψ(x) = ψ1(x) + iψ2(x) ←→ ~ψ(x) = (ψ1(x), ψ2(x)) ∈ R
2.

Consider a real function F (~ψ) on a space of real two-component functions, and let F ′(~ψ)
denote its L2-gradient. We identify this gradient with a complex function denoted by
F ′(ψ). Then

F ′(ψ̄) = F ′(ψ) ←→ F (σ ~ψ) = F (~ψ),

where σ := diag(1,−1), since the latter property is equivalent to F ′(~ψ) = σF ′(σ ~ψ).

Assumptions on the nonlinearity f .

1. (GWP [9, 34, 35, 20]) Equation (1.1) is globally well-posed in the space C(R,H1,r)∩
C1(R,H ′

1,r). See Remark 2.1 below.

2. The nonlinearity f maps from H1 to H−1, with f(0) = 0. f(ψ) = F ′(ψ) is the
L2-gradient of a C3 functional F : H1 → R defined on the space of real-valued,
two-component functions, satisfying the following conditions:

(a) (Bounds)

sup
‖u‖H1

≤M
‖F ′′(u)‖B(H1,H−1) <∞, sup

‖u‖H1
≤M
‖F ′′′(u)‖H1 7→B(H1,H−1) <∞, (2.9)

where B(X, Y ) denotes the space of bounded linear operators from X to Y .

(b) (Symmetries [12]) F (T ψ) = F (ψ) where T is either translation ψ(x) 7→ ψ(x+
a) ∀a ∈ Rd, or spatial rotation ψ(x) 7→ ψ(R−1x), ∀R ∈ SO(d), or boosts
T b
p : u(x) 7→ eip·xu(x), ∀p ∈ Rd, or gauge transformations ψ 7→ eiγψ, ∀γ ∈ S1,

or complex conjugation ψ 7→ ψ̄.

3. (Solitary waves) There exists a bounded open interval Ĩ on the positive real axis
such that for all µ ∈ Ĩ:
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(a) (Ground state [3, 1, 2, 21]) The equation

−∆ψ + µψ − f(ψ) = 0. (2.10)

has a spherically symmetric, positive L2 ∩ C2 solution, η = ηµ.

(b) (Stability: see e.g., [16]) This solution, η, satisfies

∂µ

∫

η2
µ ddx > 0. (2.11)

(c) (Null space condition: see e.g., [12]) Let Lη be the linear operator

Lη :=

(

L1 0
0 L2

)

(2.12)

where L1 := −∆ + µ − f (1)(η), and L2 := −∆ + µ − f (2)(η), with f (1) :=
(

∂Reψ

(

Re(f)
)

)

(η), and f (2) :=
(

∂Imψ

(

Im(f)
)

)

(η). We require that

N(Lη) = span{
(

0
η

)

,

(

∂xjη
0

)

, j = 1, . . . , d}. (2.13)

Conditions 2–3 on the nonlinearity are discussed in [12], where further references can be
found. Examples of nonlinearities that satisfy the above requirements are local nonlin-
earities

f(ψ) = β|ψ|s1ψ + λ|ψ|s2ψ, 0 < s1 < s2 <
4

d
, β ∈ R, λ > 0, (2.14)

and Hartree nonlinearities

f(ψ) = λ(Φ ∗ |ψ|2)ψ, λ > 0, (2.15)

where Φ is of positive type, continuous and spherically symmetric and tends to 0, as
|x| → ∞. Of course, λ can be scaled out by rescaling ψ. For precise conditions on Φ we
refer to [9, 20].

Remark 2.1. For Hartree nonlinearities global well-posedness is known for potentials
0 ≤ V ∈ L1

loc [20]. For local nonlinearities, the situation is more delicate. Global well-
posedness and energy conservation is known for potentials with growth-rate r ≤ 2 [9].
For r > 2 and local nonlinearities, local well-posedness has been shown in the energy
space [34, 35]. For local nonlinearities, a proof of the energy conservation needed for
global well-posedness, and the application of this theory to our results, is missing.

For V ≡ 0, Eq. (1.1) is the usual generalized nonlinear Schrödinger (or Hartree)
equation. For self-focusing nonlinearities as in examples (2.14) and (2.15), it has stable
solitary wave solutions of the form

ησ(t)(x) := eip(t)·(x−a(t))+iγ(t)ηµ(t)(x− a(t)), (2.16)
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where σ(t) := {a(t), p(t), γ(t), µ(t)}, and

a(t) = 2pt+ a, γ(t) = µt+ p2t+ γ, p(t) = p, µ(t) = µ, (2.17)

with γ ∈ S
1, a, p ∈ R

d and µ ∈ R
+, and where ηµ is the spherically symmetric, positive

solution of the nonlinear eigenvalue problem

−∆η + µη − f(η) = 0. (2.18)

Recall from (1.6) that the linear map Sapγ is defined as

(Sapγg)(x) := eip·(x−a)+iγg(x− a). (2.19)

In analyzing solitary wave solutions to (1.1) we encounter two length scales: the size
∝ µ−1/2 of the support of the function ηµ, which is determined by our choice of initial
condition ψ0, and a length scale determined by the potential, V , measured by the small
parameter εV . We consider the regime,

εV√
µ
� 1. (2.20)

We claim in the introduction that if ψ0 is close to ησ, for some σ then we retain
control for times ∝ ε−1. Restricting the initial condition to a smaller class of ησ, with
small initial energy, we retain control for longer times. In our main theorem, which
proves this claim, we wish to treat both cases uniformly. To this end, let εh and K be
positive numbers such that εh ∈ K[εV ,minµ∈I

√
µ] and assume

h(a0, p0) :=
1

2

(

p2
0 + V (a)

)

≤ εh (2.21)

(recall mina V (a) = 0). The lower bound for εh corresponds to our restricted class of
initial data, the upper bound to the larger class of data. In particular, εh ≥ KεV .

We are now ready to state our main result. Fix an open proper sub-interval I ⊂ Ĩ.

Theorem 2.1. Let f and V satisfy the conditions listed above. There exists T > 0 such
that for ε := εV + ε0 sufficiently small, and εh ≥ KεV , if the initial condition ψ0 satisfies

‖ψ0 − Sa0p0γ0ηµ0‖H1 + ‖〈εV x〉r/2(ψ0 − Sa0p0γ0ηµ0)‖L2 ≤ ε0 (2.22)

for some σ0 := {a0, p0, γ0, µ0} ∈ R
d × R

d × S
1 × I such that

h(a0, p0) ≤ εh, (2.23)

then for times 0 ≤ t ≤ T (εV
√
εh+ε

2)−1, the solution to Eq. (1.1) with this initial condition
is of the form

ψ(x, t) = Sa(t)p(t)γ(t)
(

ηµ(t)(x) + w(x, t)
)

, (2.24)
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where ‖w‖H1 +
∥

∥〈εV x〉r/2w
∥

∥

L2 ≤ Cε. The modulation parameters a, p, γ and µ satisfy the
differential equations

ṗ = −(∇V )(a) +O(ε2), (2.25)

ȧ = 2p+O(ε2), (2.26)

γ̇ = µ− V (a) + p2 +O(ε2), (2.27)

µ̇ = O(ε2). (2.28)

Remark 2.2 (Remark about notation). Fréchet derivatives are always understood to
be defined on real spaces. They are denoted by primes. C and c denote various constants
that often change between consecutive lines and which do not depend on εV , ε0 or ε.

3 Soliton manifold

In this section we recall the Hamiltonian nature of Eq. (1.1) and some of its symmetries.
We also define the soliton manifold and its tangent space.

An important part in our approach is played by the variational character of (1.1).
More precisely, the nonlinear Schrödinger equation (1.1) is a Hamiltonian system with
Hamiltonian

HV (ψ) :=
1

2

∫

(|∇ψ|2 + V |ψ|2) ddx− F (ψ). (3.1)

The Hamiltonian HV is conserved i.e.,

HV (ψ) = HV (ψ0). (3.2)

A proof of this can be found, for local nonlinearities and r ≤ 2, in e.g., Cazenave [9],
and for Hartree nonlinearities in [20]. An important role is played by the mass

N (ψ) :=

∫

|ψ|2 ddx, (3.3)

which also is conserved,
N (ψ(t)) = N (ψ0). (3.4)

We often identify complex spaces, such as the Sobolev space H1(R
d,C), with real

spaces; e.g., H1(R
d,R2), using the identification ψ = ψ1 + iψ2 ↔ (ψ1, ψ2) =: ~ψ. With

this identification, the complex structure i−1 corresponds to the operator

J :=

(

0 1
−1 0

)

. (3.5)

The real L2-inner product in the real notation is

〈~u, ~w〉 :=

∫

(u1w1 + u2w2) ddx, (3.6)
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where ~u := (u1, u2). In the complex notation it becomes

〈u, w〉 := Re

∫

uw̄ ddx. (3.7)

We henceforth abuse notation and drop the arrows. The symplectic form is

ω(u, w) := Im

∫

uw̄ ddx. (3.8)

We note that ω(u, w) = 〈u, J−1v〉 in the real notation.
Equation (1.1) with V ≡ 0 is invariant under spatial translations, T tr

a , gauge trans-
formations, T g

γ , and boost transformations, T boost
p , where

T tr
a : ψ(x, t) 7→ ψ(x− a, t) , T g

γ : ψ(x, t) 7→ eiγψ(x, t) , (3.9)

T boost
p : ψ(x, t) 7→ ei(p·x−p2t)ψ(x− 2pt, t) . (3.10)

The transformations (3.9)–(3.10) map solutions of eq. (1.1) with V ≡ 0 into solutions of
(1.1) with V ≡ 0.

Let T b
p : ψ(x) 7→ eip·xψ(x) be the t = 0 slice of the boost transform. The combined

symmetry transformations Sapγ introduced in (2.19) can be expressed as

Sapγη = T tr
a T b

p T g
γ ηµ(x) = ei(p·(x−a)+γ)ηµ(x− a). (3.11)

We define the soliton manifold as

Ms := {Sapγηµ : {a, p, γ, µ} ∈ R
d × R

d × S
1 × I} . (3.12)

The tangent space to this manifold at the solitary wave profile ηµ ∈ Ms is given by

TηµMs = span(zt, zg, zb, zs) , (3.13)

where

zt := ∇aT tr
a ηµ

∣

∣

a=0
=

(

−∇ηµ
0

)

, zg :=
∂

∂γ
T g
γ ηµ

∣

∣

∣

∣

γ=0

=

(

0
ηµ

)

, (3.14)

zb := ∇pT boost
p ηµ

∣

∣

p=0,t=0
=

(

0
xηµ

)

, zs :=

(

∂µηµ
0

)

. (3.15)

Above, we have explicitly written the basis of tangent vectors in the real space.
Recall that the equation (2.10) can be written as E ′µ(ηµ) = 0 where

Eµ(ψ) = HV≡0(ψ) +
µ

2
N (ψ).

Then the tangent vectors listed above are generalized zero modes of the operator Lµ :=
E ′′µ(ηµ). That is, (JLµ)2z = 0 for each tangent vector z above. To see this fact for
zg, for example, recall that E ′µ(ψ) is gauge-invariant. Hence E ′µ(T g

γ ηµ) = 0. Taking the
derivative with respect to the parameter γ at γ = 0 gives Lηzg = 0. The other relations
are derived analogously (see [33]).
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4 Symplectically orthogonal decomposition

In this section we make a change of coordinates for the Hamiltonian system ψ 7→ (σ, w),
where σ := (a, p, γ, µ). We also give the equations in this new set of coordinates.

Let

m(µ) :=
1

2

∫

η2
µ(x) ddx. (4.1)

Let
CI := max

z∈{xηµ,ηµ,∇ηµ,∂µηµ}
µ∈Ĩ

(‖z‖H1 , ‖〈εV x〉r/2z‖L2 , ‖Kz‖L2). (4.2)

When it will not cause confusion, for σ = {a, p, γ, µ} we will abbreviate

ησ := Sapγηµ.

Now define the neighborhood of Ms:

Uδ := {ψ ∈ L2 : inf
σ∈Σ
‖ψ − ησ‖L2 ≤ δ}, (4.3)

where Σ := {a, p, γ, µ : a ∈ Rd, p ∈ Rd, γ ∈ S1, µ ∈ I}. Our goal is to decompose a given
function ψ ∈ Uδ into a solitary wave and a perturbation:

ψ = Sapγ(ηµ + w). (4.4)

We do this according to the following theorem. Let Σ̃ := {a, p, γ, µ : a ∈ Rd, p ∈ Rd, γ ∈
S1, µ ∈ Ĩ}.

Theorem 4.1. There exists δ > 0 and a unique map ς ∈ C1(Uδ, Σ̃) such that (i)

〈ψ − ης(ψ), J
−1z〉 = 0, ∀z ∈ Tης(ψ)

Ms, ∀ψ ∈ Uδ (4.5)

and (ii) if, in addition, δ � (2CI)
−1 min(m(µ), m′(µ)) then there exists a constant cI

independent of δ such that
sup
ψ∈Uδ
‖ς ′(ψ)‖L2 ≤ cI . (4.6)

Proof. Part (i): Let the map G : L2 × Σ̃ 7→ R2d+2 be defined by

Gj(ψ, ς) := 〈ψ − ης , J−1zς,j〉, ∀j = 1, . . . 2d+ 2. (4.7)

Part (i) is proved by applying the implicit function theorem to the equation G(ψ, ς) = 0,
around a point (ησ, σ). For details we refer to Proposition 5.1 in [12].

Part (ii): Abbreviate:
Ωjk := 〈∂ςjης , J−1zς,k〉, (4.8)
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where zς,k is the k:th element of Sapγ{zt, zg, zb, zs}. By explicitly inserting the tangent
vectors, we find that ‖Ω‖L2 ≥ infµ∈I(m(µ), m′(µ)). Thus, Ω is invertible by Condition
3b in Section 2.

From a variation of ψ in G(ψ, ς(ψ)) = 0 we find

ς ′k(ψ) =

2d+2
∑

j=1

(J−1zς)j(Ω̃
−1)jk. (4.9)

where
Ω̃jk := Ωjk + 〈ψ − ης(ψ), J

−1∂ςjzς,k〉 (4.10)

Using the upper bound of δ, and the definition of CI above, we find

sup
ψ∈Uδ
‖ς ′(ψ)‖L2 ≤ 2CI

infµ∈I(m(µ), m′(µ))
=: cI. (4.11)

We now assume ψ(t) ∈ Uδ ∩H1,r, and set σ(t) := ς(ψ(t)) as defined by Theorem 4.1.
Write

u := S−1
apγψ = ηµ + w (4.12)

so that w satisfies
〈w, J−1z〉 = 0, ∀z ∈ TηµMs. (4.13)

Here u is the solution in a moving frame.
Denote the anti-self-adjoint infinitesimal generators of symmetries as

Kj = ∂xj , Kd+j = ixj, K2d+1 = i, K2d+2 = ∂µ, j = 1, ..., d (4.14)

and define corresponding coefficients

αj = ȧj − 2pj, αd+j = −ṗj − ∂xjV (a), j = 1, ..., d, (4.15)

α2d+1 = µ− p2 + ȧ · p− V (a)− γ̇, α2d+2 = −µ̇. (4.16)

Denote

α · K :=
2d+1
∑

j=1

αjKj, and α · K := α · K + α2d+2∂µ. (4.17)

Substituting ψ = Sapγu into (1.1) we obtain

iu̇ = E ′µ(u) +RV u+ iα · Ku, (4.18)

where
RV (x) = V (x + a)− V (a)−∇V (a) · x. (4.19)
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To obtain the equations for (σ, w) we project Eqn. (4.18) onto TηMs and (JTηMs)
⊥ and

use (4.12). We illustrate this method of deriving the equations for σ, for the projection
of (4.18) along iη:

〈η, µ̇∂µη + ẇ〉 = 〈iη,Lηw +Nη(w) +RV (η + w) + iα · K(η + w)〉. (4.20)

where we have used u = η + w and E ′µ(u) = Lηw + Nη(w) where Lη := E ′′µ(η) is given
explicitly as

Lηw = −∆w + µw − f ′(η)w. (4.21)

In particular, for local nonlinearities of the form g(|ψ|2)ψ, we have in the complex nota-
tion, since η(x) ∈ R,

Lηw := −∆w + µw − g(η2)w − 2ηg′(η2) Rew. (4.22)

Here
Nη(w) := −f(η + w) + f(η) + f ′(η)w. (4.23)

We find the equation for µ̇ once we note that ∂t〈η, w〉 = 0, Lηiη = 0, 〈iη,RV η〉 = 0,
〈η,Kη〉 = 0 and K∗ = −K. Inserting this into (4.20) gives

µ̇m′(µ) = 〈iη,Nη(w) +RVw〉 − α · 〈Kη, w〉. (4.24)

The projection along the other directions works the same way: we use the fact that these
directions are the generalized zero modes of Lη, and furthermore that they are orthogonal
to Jw. The calculations are worked out in detail in [12] (See Eqns. (6.20)–(6.22) in [12].)
We give the result:

γ̇ = µ− p2 + ȧ · p− V (a)− (m′(µ))−1 (〈∂µη,Nη(w) +RVw〉 (4.25)

−α · 〈K∂µη, iw〉+ 〈∂µη,RV η〉) ,

µ̇ =
(

m′(µ)
)−1

(〈iη,Nη(w) +RVw〉 − α · 〈Kη, w〉) , (4.26)

ȧk = 2pk +
(

m(µ)−1
)

(〈ixkη,Nη(w) +RVw〉 − α · 〈Kxkη, w〉) , (4.27)

ṗk = −∂akV (a) + (m(µ))−1
(

− 1

2
〈(∂xkRV )η, η〉+ 〈∂kη,Nη(w) +RV w〉

− α · 〈K∂kη, iw〉
)

, (4.28)

and
iẇ = Lηw +N(w) +RV (η + w) + iα · K(η + w)− iµ̇∂µη. (4.29)
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Note that the first two terms on the right-hand side of Eqn. (4.28) can be written as
−∂akVeff(a, µ), where

Veff(a, µ) := ‖ηµ‖−2
L2

∫

V (a+ x)|ηµ(x)|2 ddx. (4.30)

Hence,

ṗk = −∇aVeff(a, µ) + (m(µ)−1〈∂xkηµ, Nη(w)〉+O(‖w‖L2(ε2
V

+ |α|)), (4.31)

where |α|2 =
∑ |αj|2.

Thus we have obtained the dynamical equations for (σ, w).

Remark 4.1. The transformation

σ := (a, p, γ, µ) 7→ σ̂ := (a, P, γ,m) (4.32)

with P := 1
2
p‖ηµ‖2L2 and m := 1

2
‖ηµ‖2L2 gives a canonical symplectic structure and Dar-

boux coordinates on Ms, i.e., for w = 0

Ṗ = −∂aHV (Sapγηµ), ȧ = ∂PHV (Sapγηµ), (4.33)

ṁ = ∂γHV (Sapγηµ), γ̇ = −∂mHV (Sapγηµ). (4.34)

Here ∇σ̂HV (Sapγηµ) = (m∇aVeff , 2P/m, 0,−P 2/m2 + V (a)− µ).

5 Initial conditions σ̃0, w0.

In this section we use Theorem 4.1 in order to decompose the initial condition ψ0 as (see
Figure 5.1)

ψ0 = Sã0,p̃0,γ̃0(ηµ̃0 + w0) (5.1)

so that w0⊥J−1Tηµ̃0
Ms. This decomposition provides the initial conditions σ̃0 and w0,

for the parameters, σ, and fluctuation, w (determined for later times by Theorem 4.1).
The main work here goes into estimating w0. Let ς : Uδ 7→ Σ̃ be the map established in
Theorem 4.1. Then σ̃0 = {ã0, p̃0, γ̃0, µ̃0} and w0 are given as σ̃0 := ς(ψ0) and

w0 := S−1
ã0 p̃0γ̃0

(ψ0 − ησ̃0), w0⊥JTηµ̃0
Ms. (5.2)

Recall the definitions of K (4.14), and CI (4.2). Theorem 4.1 states supψ∈Uδ ‖ς ′(ψ)‖L2 ≤
cI.

Bounds for w0 and σ̃0 are stated in the following proposition
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ψ0

ησ0

ης(ψ0) = ησ̃0

H1

Ms

Figure 5.1: Orthogonal decomposition versus skew-orthogonal decomposition.

Proposition 5.1. Let w0 be defined as above. Let σ0 := {a0, p0, γ0, µ0} and let ψ0 satisfy
‖ψ0 − ησ0‖L2 ≤ δ (where δ is from Theorem 4.1), and let ψ0 ∈ H1,r. Then there exists
positive constants C1, C2, such that

|σ̃0 − σ0| ≤ cI‖ψ0 − ησ0‖L2 , (5.3)

‖w0‖H1 ≤ C1(1 + p4
0 + ‖ψ0 − ησ0‖4L2)‖ψ0 − ησ0‖H1 (5.4)

and

‖〈εV x〉r/2w0‖L2 ≤ 3r/2‖〈εV x〉r/2(ψ0 − ησ0)‖L2

+ C2(1 + |p0|2 + εrV |a0|r + ‖ψ0 − ησ0‖2L2 + εrV ‖ψ0 − ησ0‖rL2)‖ψ0 − ησ0‖L2 . (5.5)

where C1 and C2 depend only on CI , cI and r, where CI is defined in (4.2) and cI in
Theorem 4.1.

Proof. First we consider inequality (5.3). Abbreviate σ̃0 := ς(ψ0) and analogously for
the components a, p, γ, µ of ς. Let |ς|2 :=

∑2d+2
j=1 |ςj|2. From Theorem 4.1 we know that

ς(ψ) is a C1-map. Thus, for j ∈ 1, ..., 2d+ 2 and some θ1 ∈ [0, 1]

(σ̃0 − σ0)j = 〈ς ′j(θ1ψ0 + (1− θ1)ησ0), (ψ0 − ησ0)〉. (5.6)

Since supψ∈Uδ ‖ς ′(ψ)‖ ≤ cI the inequality (5.3) follows.
Consider inequality (5.4) and rewrite w(·, 0) =: w0 from (5.2) as

w0 = S−1
ã0p̃0γ̃0

(ψ0 − ησ0) + S−1
ã0p̃0γ̃0

(ησ0 − ησ̃0). (5.7)

To estimate this, we first estimate the linear operator S−1
apγ:

‖S−1
apγψ‖H1 ≤ 2(1 + |p|2)1/2‖ψ‖H1. (5.8)

The first term in (5.7) is in the appropriate form, for the second term we recall that η is
a C1-map. Thus for some θ2 ∈ [0, 1]

ησ̃0 − ησ0 =

2d+2
∑

j=1

(σ̃0 − σ0)j∂σjησ
∣

∣

σ=θ1σ̃0+(1−θ2)σ0
. (5.9)

17



To calculate the norm of this expression, note that

∂σησ = Sapγzµ,p, where zµ,p := {ipηµ +∇ηµ, ixηµ, iηµ, ∂µηµ} (5.10)

and ‖zµ,p‖H1 ≤
√

5CI(1 + |p|2)1/2. Let n(σ, σ0) := (σ − σ0)θ2 + σ0, and define g2 :=
1 + |p̃0 − p0|2 + p2

0. The H1-norm of (5.9), using (5.8) and (5.10) is

‖ησ̃0 − ησ0‖H1 ≤ |σ̃0 − σ0|‖∂σησ‖H1

∣

∣

σ=n(σ̃0 ,σ0)

≤ 2
√

5CI(1 + |p|2)
∣

∣

∣

p=n(p̃0,p0)
|σ̃0 − σ0| ≤ 9CIg

2|σ̃0 − σ0|.
(5.11)

We now calculate the H1 norm of w0 (see (5.7)) using (5.3), (5.8) with momentum
p = p̃0 − p0 + p0 and (5.11). We find

‖w0‖H1 ≤ 2g(‖ψ0 − ησ0‖H1 + ‖ησ̃0 − ησ0‖H1)

≤ 2g
(

1 + 9CIcIg
2
)

‖ψ0 − ησ0‖H1 .
(5.12)

The coefficient above is less then cg4+C, and g4 ≤ 3(1+c4I‖ψ0−ησ0‖4L2 + |p0|4). Inserting
and simplifying gives the inequality (5.4).

The quantity appearing in the third and last inequality (5.5), can be rewritten as

〈εV x〉r/2w0 = 〈εV x〉r/2S−1
ã0p̃0γ̃0

(

(ψ0 − ησ0) + (ησ0 − ησ̃0)
)

. (5.13)

We begin our calculation of the norm of (5.13) by considering the linear operator
〈εV x〉r/2Sapγ . We have

〈εV x〉r/2Sapγψ = Sapγ〈εV (x− a)〉r/2ψ (5.14)

and ‖Sapγψ‖L2 = ‖ψ‖L2. From Lemma A.4 we obtain

‖〈εV x〉r/2Sapγψ‖L2 ≤ ‖〈εV (x− (a− a0)− a0)〉r/2ψ‖L2

≤ 3max(r/2,r−1)
(

‖〈εV x〉r/2ψ‖L2 + g2‖ψ‖L2

)

,
(5.15)

where g2 := (εV |a− a0|)r/2 + (εV |a0|)r/2). Using this we find the L2-norm of (5.13) to be

‖〈εV x〉r/2w0‖L2 ≤ C
(

‖〈εV x〉r/2(ψ0 − ησ0)‖L2 + g2‖ψ0 − ησ0‖L2

+ ‖〈εV x〉r/2(ησ̃0 − ησ0)‖L2 + g2‖ησ̃0 − ησ0‖L2

)

. (5.16)

The first and second term of the above expression is in an appropriate form. We bound
the third term by using (5.9), (5.10) and (5.14) to get

‖〈εV x〉r/2(ησ̃0 − ησ0)‖L2 ≤ |σ̃0 − σ0| ‖〈εV (x− a)〉r/2zp,µ‖L2

∣

∣

σ=n(σ̃0 ,σ0)

≤ 3max(r/2,r−1)
√

5CIg(1 + g2)|σ̃0 − σ0|.
(5.17)

18



The last term of (5.16) is straight forward to bound:

‖ησ̃0 − ησ0‖L2 ≤ |σ̃0 − σ0| ‖∂σησ‖L2|σ=n(σ̃0 ,σ0)

≤ |σ̃0 − σ0|‖zp,µ‖L2

∣

∣

p=n(p̃0,p0)µ=n(µ̃0 ,µ0)
≤
√

5CIg|σ̃0 − σ0|.
(5.18)

Inserting (5.17) and (5.18) into (5.16) gives

‖〈εV x〉r/2w0‖L2 ≤ C
(

‖〈εV x〉r/2(ψ0 − ησ0)‖L2

+
(

g2 + g(1 + 2g2)
)

‖ψ0 − ησ0‖L2

)

, (5.19)

where C depend only on CI , cI and r. We simplify this, by repeatedly using Cauchy’s
inequality and (5.3) on the expression in front of the ‖ψ0 − ησ0‖L2-term, to obtain

‖〈εV x〉r/2w0‖L2 ≤ C
(

‖〈εV x〉r/2(ψ0 − ησ0)‖L2 +
(

1 + ‖ψ0 − ησ0‖2L2

+ εr
V
‖ψ0 − ησ0‖rL2 + |p2|2 + (εV |a0|)r

)

‖ψ0 − ησ0‖L2

)

. (5.20)

This gives the third inequality of the proposition.

Recall the initial energy bound (2.22)

‖ψ0 − ησ0‖H1 + ‖〈εV x〉r/2(ψ0 − ησ0)‖L2 ≤ ε0, (5.21)

and the bound on the initial kinetic and potential energy for the solitary wave (2.23)

1

2
(p2

0 + V (a0)) ≤ εh. (5.22)

We have the corollary

Corollary 5.2. Let (2.22), (2.23) and (2.4)–(2.6) hold with ε0 < δ. Then

|σ̃0 − σ0| ≤ cIε0, ‖w0‖H1 ≤ C1ε0, (5.23)

‖〈εV x〉r/2w0‖L2 ≤ C2ε0 (5.24)

and
h(ã0, p̃0) ≤ C3(εh + ε2

0
+ εV ε0), (5.25)

where C1, C2 and C3 depend only on cL, cV (Eq. (2.6)), CE := max(εV , ε0, εh) and the
constants in Proposition 5.1.
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Proof. Starting from Proposition 5.1 the first three inequalities follow directly through
the energy bounds (2.22), (2.23) together with the observation that either εV |a0| ≤ cL or
cV (εV |a0|)r ≤ V (a0) ≤ 2εh. We also use that εh, ε0 and εV are all bounded by a constant
CE.

The last inequality follows from the fact that h(a, p) := (p2+V (a))/2 is a C1 function.
For some θ ∈ [0, 1]

h(a, p)− h(a0, p0) = ((p− p0)θ + p0) · (p− p0)

+
1

2
(a− a0) · ∇V ((a− a0)θ + a0).

(5.26)

Thus, using (2.4), and 〈x + y〉r−1 ≤ 3max(0,(r−3)/2)
(

1 + 2(r−1)/2(|x|r−1 + |y|r−1)
)

gives

|h(a, p)− h(a0, p0)| ≤ C
(

|p− p0|2 + |p0|2+

ε2V |a− a0|
(

1 + |εV (a− a0)|r−1 + |εV a0|r−1
)

)

. (5.27)

With p = p̃0 and a = ã0 above, and |σ̃0 − σ0| ≤ cIε0, h(a0, p0) ≤ εh, (2.23) and (2.6) we
have have shown (5.25).

6 Bounds on soliton position and momentum

In this section we use the bounded initial soliton energy, Corollary 5.2, to find upper
bounds on position and momentum of the solitary wave. We express the norms first in
terms of h(ã0, p̃0) and the small parameters. In Corollary 6.2 we state the final result,
where the bounds are just constants times the small parameters ε0, εh and εV .

Recall (see (2.4) and (2.6)) that the potential V is non-negative and satisfies the
following upper and lower bounds:

|∂βxV | ≤ CV εV 〈εV a〉r−1, for |β| = 1, (6.1)

and, if εV |a| ≥ cL then
V (a) ≥ cV (εV |a|)r. (6.2)

To obtain the desired estimates on a and p we will use the fact that the soliton energy,

h(a, p) :=
1

2

(

p2 + V (a)
)

, (6.3)

is essentially conserved. We abbreviate α := {αtr, αb, α2d+1, α2d+2}. The size of α is
measured by |α|2 :=

∑

j |αj|2 and |α|∞ := sups≤t |α(s)|. We have the following:
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Proposition 6.1. Let V satisfy conditions (6.1) and (6.2). Let h0 := h(ã0, p̃0), and set

T̃1 :=
CT1

(ε2
V

+ |α|∞)(1 + εV + h0)
, CT̃1

:=
cV

2max(2,r−1)/2CV d
, (6.4)

where the constants CV and cV are related to the growth rate of the potential (see (2.4)
and (2.6)). Then for times t ≤ T̃1:

|p| ≤ Cp̃(
√

h0 + |α|∞t + εV ) and εV |a| ≤ Ca, (6.5)

where Ca and Cp̃ depend only on cL, cV , CT̃1
, r, d, C3 and CE = max(εV , ε0, εh). C3 is

the constant in Corollary 5.2 and

Proof. First we estimate p in terms of a, using the almost conservation of h(a, p)

d

dt
h(a, p) =

1

2
(2p · (ṗ+∇V (a)) +∇V (a) · (ȧ− 2p)) . (6.6)

Now recall the definitions αb := −ṗ−∇V (a) and αtr := ȧ− 2p together with the upper
bound (6.1) of the potential |∇V | ≤ d1/2CV εV 〈εV a〉r−1 to obtain

|dth(a, p)| ≤ |α||p|+
1

2
CV d

1/2εV |α|〈εV a〉r−1. (6.7)

Integration in time and simplification gives

h(a(t), p(t)) ≤ h0 + t(|α|∞)
(

|p|∞ + 2−1d1/2CV εV 〈εV |a|∞〉r−1
)

. (6.8)

Recall that h = 2−1(p2 + V (a)) and that V ≥ 0, thus |p|2 ≤ 2h. Solving the resulting
quadratic inequality for |p|∞ > 0 we find that

|p|∞ ≤
√

2h0 + 3t|α|∞ + 2−1d1/2CV εV 〈εV |a|∞〉r−1. (6.9)

The Eqn. (6.8) also implies

sup
s≤t

V (a(s)) ≤ 2h0 + 2t|α|∞
(

|p|∞ + 2−1d1/2CV εV 〈εV |a|∞〉r−1
)

. (6.10)

As can be seen in (6.9) we need to consider the possibility of large εV |a|. Let εV |a| ≥ cL,
with cL as in (6.2) then V (a) ≥ cV (εV |a|)r. Inserting this lower bound and (6.9) into
(6.10) we obtain

cV (εV |a|∞)r ≤ 2h0 + 2t|α|∞
(

√

2h0 + 3t|α|∞ + d1/2CV εV 〈εV |a|∞〉r−1
)

. (6.11)

Lemma A.4 shows 〈εV |a|∞〉r−1 ≤ 2max(0,r−3)/2(1 + (εV |a|∞)r−1) for r ≥ 1. If the maximal
time satisfies the inequality t ≤ T̃1 (see (6.4)), then the above inequality implies

εV |a|∞ ≤ (
2

cV
(C4 + 2CT̃1

+ 6C2
T̃1

+
1

2
cV )1/r =: C̃a, (6.12)
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where we have used that h0 is bounded by the constant CE. Thus, either εV |a| ≤ cL
holds or, for the given time interval, (6.12) holds. In both cases εV |a| ≤ Ca, where the
constant only depends on C4 = C3CE, CT̃1

, cV , cL and r. We insert this upper bound on

εV |a| into (6.9) and for times t ≤ T̃1 we find

|p|∞ ≤ Cp̃(
√

h0 + |α|∞t+ εV ), (6.13)

where Cp̃ := 3 + d1/2CVC
r−1
ã .

Using the Corollary 5.2 we express the above proposition in terms of εh rather than
h0. Recall the requirement on δ from Theorem 4.1

Corollary 6.2. Let V satisfy (2.4)–(2.6) and let ψ0 ∈ Uδ ∩H1,r. Furthermore, let ψ0

satisfy the ε0-energy bound (2.22) for ησ0 with σ0 = {a0, p0, γ0, µ0}, and let h(a0, p0) ≤ εh
(i.e., (2.23)). Let

T1 :=
CT1

(ε2V + |α|∞)(1 + εV + εh + εV )
, T2 :=

√
εh

|α|∞ + ε2V
, (6.14)

where

CT1 :=
CT̃1

(1 + C3)(1 + C2
E)
. (6.15)

Then for times t ≤ min(T1, T2):

|p| ≤ Cp(
√
εh + ε0 + εV ) and εV |a| ≤ Ca, (6.16)

where Cp depends on CE = max(εV , ε0, εh), CV , d, r and Ca. C3 is defined in Corollary 5.2
and Ca in Proposition 6.1. The constant CV is defined in (2.4).

Proof. Under the assumptions of the corollary we have that Corollary 5.2 holds and
hence

h(ã0, p̃0) ≤ C3(εh + ε2
0
+ εV ε0). (6.17)

We now modify the constants and estimates of Proposition 6.1 to take the upper bound
of h0 into account. The new, maximal time derived from T̃1 becomes T1 ≤ T̃1. For times
shorter than this time, t ≤ T1, the bound on εV |a| remains the same. Using this estimate
for εV |a|, we simplify the |p| estimate. Note first that

√
h0+εV ≤ (

√
εh+ε0+εV )(1+2

√
C3),

inserted into (6.5) gives

|p| ≤ 1

2
Cp(
√
εh + εV + ε0 + |α|t), (6.18)

where Cp depends on C3, CE, Ca and d and r. With the choice of time interval T2 such
that t ≤ T2, where T2 is given in (6.14), we obtain |p| ≤ Cp(

√
εh + ε0 + εV ).
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7 Lyapunov functional

In this section we define the Lyapunov functional and calculate its time derivative in
the moving frame. Recall the definition of Eµ(ψ) in (1.20) together with decomposition
(4.4): ψ = Sapγ(ηµ + w), with w⊥JTηMs. Define the Lyapunov functional, Λ, as

Λ := Eµ(ηµ + w) +
1

2
〈RV (ηµ + w), ηµ + w〉 − Eµ(ηµ)−

1

2
〈RV ηµ, ηµ〉. (7.1)

Here we show that the Lyapunov functional Λ is an almost conserved quantity. We
begin by computing its time derivative. Let αb := −ṗ−∇V (a) and αtr := ȧ− 2p (boost
and translation coefficients). We have the following proposition

Proposition 7.1. Given a solution ψ ∈ H1,r ∩ Uδ to (1.1), define ηµ and w as above.
Then

d

dt
Λ = p · 〈∇aRV w,w〉 − αtr ·D2V (a) · 〈xw,w〉+R, (7.2)

where

R := αb · 〈iw,∇w〉+ 2p · 〈∇aRV ηµ, w〉 −
1

2
αtr · 〈∇aRV ηµ, ηµ〉

+
µ̇

2
‖w‖2L2 − µ̇〈RV ηµ, ∂µηµ〉.

(7.3)

Before proceeding to the proof, we recall the definition of the moving frame solution
u defined by

u(x, t) := e−ip·x−iγψ(x+ a, t). (7.4)

Here a, p and γ depend on time, in a way determined by the splitting of Section 4, and
the function ψ is a solution of the nonlinear Schrödinger equation (1.1). In the moving
frame the Lyapunov functional Λ takes the form

Λ = Eµ(u) +
1

2
〈RV u, u〉 − Eµ(ηµ)−

1

2
〈RV ηµ, ηµ〉. (7.5)

We begin with some auxiliary lemmas.

Lemma 7.2. Let ψ ∈H1,r be a solution to (1.1). Then

∂t〈ψ,−i∇ψ〉 = −〈(∇V )ψ, ψ〉 and ∂t〈xψ, ψ〉 = 2〈ψ,−i∇ψ〉. (7.6)

Proof. The first part of this lemma was proved in [12]. To prove the second part we use
the equation

∂t(xk|ψ|2) = i∇ · (xkψ̄∇ψ − xkψ∇ψ̄)− i(ψ̄∂kψ − ψ∂kψ̄), (7.7)

understood in a weak sense, which follows from the nonlinear Schrödinger equation
(1.1). Formally, integrating this equation and using that the divergence term vanishes
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gives the second equation in (7.6). To do this rigorously, let χ be a C1 function such
that |∇χ(x)| ≤ C and

χ(x) :=

{

1 |x| ≤ 1,
0 |x| > 2,

(7.8)

and let χR(x) := χ( x
R
). Abbreviate jk := (xkψ̄∇ψ−xkψ∇ψ̄) and let R > 1. We multiply

the divergence term by χR. Integration by parts gives

∣

∣

∣

∣

∫

(∇ · jk)χR ddx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

jk · ∇χR(x) ddx

∣

∣

∣

∣

≤ C

R

∫

|jk| ddx. (7.9)

We note that jk ∈ L1 for all k, and is independent of R, thus as R → ∞, this term
vanishes. The remaining terms give in the limit R→∞ the second equation in (7.6).

Lemma 7.3. Let ψ ∈H1,r be a solution to (1.1), and let u be defined as above. Then

d

dt

(

Eµ(u) +
1

2
〈RV u, u〉

)

= p · 〈∇aRV u, u〉 −
1

2
αtr ·D2V (a) · 〈xu, u〉

+
1

2
µ̇‖u‖2L2 + αb · 〈iu,∇u〉,

(7.10)

where αtr := ȧ− 2p and αb = −ṗ−∇V (a).

Proof. The functional Eµ(u) + 1
2
〈RV u, u〉, is related to the Hamiltonian functional by

Eµ(u) +
1

2
〈RV u, u〉 = HV (ψ) +

1

2
(p2 + µ)‖ψ‖2L2 − p · 〈iψ,∇ψ〉

− 1

2

∫

(V (a) +∇V (a) · (x− a))|ψ|2 ddx,
(7.11)

which is obtained by substituting (7.4) into Eµ(u) + 1
2
〈RV u, u〉. Using the facts that the

mass ‖ψ‖2L2 and Hamiltonian HV (ψ) are time independent, together with the Ehrenfest
relations, Lemma 7.2, we obtain

d

dt

(

Eµ(u) +
1

2
〈RV u, u〉

)

= (
µ̇

2
+ p · ṗ)‖ψ‖2L2 − ṗ · 〈iψ,∇ψ〉+ p · 〈(∇V )ψ, ψ〉

− ȧ

2
·D2V (a) ·

∫

(x− a)|ψ|2 ddx−∇V (a) · 〈iψ,∇ψ〉.

Collecting p · ṗ and p · ∇V together, and combining ṗ and ∇V (a) gives

d

dt

(

Eµ(u) +
1

2
〈RV u, u〉

)

=
µ̇

2
‖ψ‖2L2 + p · 〈(ṗ+∇V )ψ, ψ〉

− (ṗ+∇V (a)) · 〈iψ,∇ψ〉 − 1

2
ȧ ·D2V (a) ·

∫

(x− a)|ψ|2 ddx. (7.12)
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From the definition of u, (7.4), the following relations hold

‖ψ‖L2 = ‖u‖L2, 〈iψ,∇ψ〉 = p‖u‖2L2 + 〈iu,∇u〉, (7.13)

〈(∇V )ψ, ψ〉 = 〈(∇Va)u, u〉, 〈(x− a)ψ, ψ〉 = 〈xu, u〉. (7.14)

Substitution of (7.13)–(7.14) into (7.12) gives, after cancellation of the p · ṗ terms,

d

dt

(

Eµ(u) +
1

2
〈RV u, u〉

)

=
µ̇

2
‖u‖2L2 + p · 〈(∇Va −∇V (a))u, u〉

− (ṗ+∇V (a)) · 〈iu,∇u〉 − 1

2
ȧ ·D2V (a) ·

∫

x|u|2 ddx. (7.15)

The last remaining step is to rewrite the second last term as ȧ − 2p + 2p and combine
its p term with the difference of the potentials, recalling the definition of RV , to obtain

d

dt

(

Eµ(u) +
1

2
〈RV u, u〉

)

=
µ̇

2
‖u‖2L2 + p · 〈(∇aRV )u, u〉

− (ṗ+∇V (a)) · 〈iu,∇u〉+ 1

2
(2p− ȧ) ·D2V (a) ·

∫

x|u|2 ddx. (7.16)

Identification of the boost coefficient αb := −ṗ − ∇V (a) and the translation coefficient
αtr := ȧ− 2p gives the lemma.

The time derivative of the second part of the Lyapunov functional (7.5) is computed
in the next lemma.

Lemma 7.4. Let ηµ be the solution of (2.18), and let µ depend on t. Then

d

dt

(

Eµ(ηµ) +
1

2
〈RV ηµ, ηµ〉

)

=

µ̇

2
‖ηµ‖2L2 + (p+

1

2
αtr) · 〈∇aRV ηµ, ηµ〉+ µ̇〈RV ηµ, ∂µηµ〉, (7.17)

where αtr := ȧ− 2p.

Proof. The result follows directly, upon recalling that E ′µ(ηµ) = 0 and 1
2
αtr + p = ȧ

2
.

To proceed to the proof of Proposition 7.1, we restate our condition for unique de-
composition of the solution to the nonlinear Schrödinger equation, ψ ∈ Uδ ∩H1,r, in
terms of u:

u = ηµ + w and w⊥JTηMs. (7.18)

Given Lemma 7.3 and Lemma 7.4, Proposition 7.1 follows directly.
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Proof of Proposition 7.1. Lemma 7.3 states

d

dt

(

Eµ(u) +
1

2
〈RV u, u〉

)

= p · 〈∇aRV u, u〉 −
1

2
αtr ·D2V (a) · 〈xu, u〉

+
1

2
µ̇‖u‖2L2 + αb · 〈iu,∇u〉.

(7.19)

Insert u = ηµ + w above, and use w⊥{ηµ, i∇ηµ, xηµ}. Recall that ηµ is a real valued
symmetric function, hence 〈xηµ, ηµ〉 = 0 as well as 〈iηµ,∇ηµ〉 = 0. We obtain

d

dt

(

Eµ(u) +
1

2
〈RV u, u〉

)

=

p ·
(

〈∇aRV w,w〉+ 2〈∇aRV ηµ, w〉+ 〈∇aRV ηµ, ηµ〉
)

− 1

2
αtr ·D2V (a) · 〈xw,w〉+ 1

2
µ̇(‖w‖2L2 + ‖ηµ‖2L2) + αb · 〈iw,∇w〉 (7.20)

Subtracting the result of Lemma 7.4 we find

d

dt
Λ = p · 〈(∇aRV )w,w〉 − 1

2
αtr ·D2V (a) · 〈xw,w〉

+ αb · 〈iw,∇w〉+ 2p · 〈∇aRV ηµ, w〉 −
1

2
αtr · 〈∇aRV ηµ, ηµ〉+

µ̇

2
‖w‖2L2

− µ̇〈RV ηµ, ∂µη〉. (7.21)

Note that the terms on the second and third line are at least fourth order in the small
parameters. The last two lines is the definition of R in the proposition.

8 Upper bound on Λ

This section we estimate Λ from above using Corollary 6.2 in Proposition 7.1. Taylor
expansion of Eµ

(

η(t) + w(x, t)
)

around η at t = 0, gives

|Eµ(t)(u(x, t))− Eµ(ηµ(t)(x))|t=0 ≤ C‖w0‖2H1
. (8.1)

The remaining terms in the Lyapunov functional are estimated using the inequality
Hess V (x) ≤ Cε2

V
|x|2〈εV x〉r−2 together with Taylor’s formula and Lemma B.3. Further-

more, we use from Corollary 6.2. that |εV ã0| ≤ C. We obtain for a θ ∈ [0, 1]

|〈RV u, u)〉 − 〈RV η, η〉|t=0 = |〈RV w,w)〉+ 2〈RV η, w〉|t=0

= ε2
V
|〈x ·Hess V (xθ + ã0) · x, 2ηµ0 Re(w0)〉+ |〈RVw0, w0〉|

≤ C(ε2
V
‖w0‖L2 + ‖w0‖2L2 +

∥

∥εV x〈εV x〉(r−2)/2w0

∥

∥

2

L2). (8.2)

We now use Corollary 5.2 and Lemma C.1 in (8.2) and (8.1) to obtain

|〈RV u, u)〉 − 〈RV η, η〉|t=0 ≤ C(ε2
V
ε0 + ε2

0
) (8.3)
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and
|Eµ(t)(u(x, t))− Eµ(ηµ(t)(x))|t=0 ≤ Cε2

0
. (8.4)

Thus, finally
|Λ|t=0 ≤ C(ε2

0
+ ε2

V
ε0). (8.5)

Proposition 8.1. Let ψ ∈ Uδ ∩H1,r, and let Λ, w and α be defined as above, and δ as
defined in Theorem 4.1. Then

| d
dt

Λ| ≤ C
(

(εV + ε0 +
√
εh)εV ‖εV x〈εV x〉(r−2)/2w‖2L2 + |α|εV

∥

∥(εV |x|)1/2w
∥

∥

2

L2

+
(

(εV + ε0 +
√
εh)ε

2
V

+ |α|
)

(‖w‖2H1
+ ε2

V
)
)

, (8.6)

for times 0 ≤ t ≤ min(T1, T2), where T1 and T2 are defined in Corollary 6.2.

Proof. Proposition 7.1 implies

| d
dt

Λ| ≤ C
(

|p||〈∇aRV w,w〉|+ |αtr||HessV (a)||〈xw,w〉|
+ |αb|‖w‖L2‖∇w‖L2 + |p|ε3V ‖w‖L2 + |αtr|ε3V + |µ̇|‖w‖2L2 + |µ̇|ε2V

)

. (8.7)

An alternative form of Eqn. (8.7) is

| d
dt

Λ| ≤ C
(

|p||〈∇aRV w,w〉|+ |α||HessV (a)||〈xw,w〉|
+ (|p|ε2

V
+ |α|)(‖w‖2H1

+ ε2
V
)
)

, (8.8)

where we have used εV < C and |αj| ≤ |α|, ∀j.
Using Corollary B.2 we estimate the RV terms to obtain

| d
dt

Λ| ≤ C
(

|p|εV ‖εV |x|〈εV x〉(r−2)/2w‖2L2 + |α|εV 〈εV |a|∞〉r−2|〈εV xw,w〉|
+ (|p|ε2

V
+ |α|)(‖w‖2H1

+ ε2
V
)
)

. (8.9)

The proposition now follows upon using εV |a| ≤ Ca and |p| ≤ C(εV + ε0 +
√
εh) for

t ≤ min(T1, T2) from Corollary 6.2 and the inequality:

〈εV xw,w〉 ≤ ‖(εV |x|)1/2w‖2L2. (8.10)

Equation (8.5) and Proposition 8.1 yield an upper bound on Λ:

|Λ| ≤ Cε20 + Cε2V ε0 + t sup
s≤t
| d
dt

Λ|. (8.11)
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9 Lower bound on Λ

In this section we estimate the Lyapunov-functional Λ from below. Recall the definition
(7.1) of Λ:

Λ := Eµ(η + w)− Eµ(η) +
1

2
〈RV (η + w), η + w〉 − 1

2
〈RV η, η〉. (9.1)

We have the following result.

Proposition 9.1. Let Λ and w be defined as above. Then for a positive constant C,

Λ ≥ 1

2
ρ2‖w‖2H1

+ C0ρ1‖εV |x|〈εV x〉(r−2)/2w‖2L2 − C‖w‖3H1
− Cε2

V
‖w‖L2. (9.2)

where r and ρ1 > 0 are defined in (2.4), C0 is the positive constant defined in Lemma A.1
and ρ2 > 0 is a positive number. The constant C0 depends on the constant Ca defined in
Corollary 6.2 bounding the size of εV |a|.
Proof. By Taylor expansion we have

Eµ(η + w)− Eµ(η) =
1

2
〈Lηw,w〉+R(3)

η (w), (9.3)

where Lη := (Hess Eµ)(η) and by Condition 2a, |R(3)
η (w)| ≤ C‖w‖3H1

. The coercivity
of Lη for w⊥JTηMs is proved in Proposition D.1 of [12] under Conditions 1–3 on the
nonlinearity (in Section 2). Thus

〈Lηw,w〉 ≥ ρ2‖w‖2H1
for w⊥JTηMs. (9.4)

The remaining terms of Λ can be rewritten as

〈RV (η + w), η + w〉 − 〈RV η, η〉 = 〈RV w,w〉+ 2〈RV η, w〉. (9.5)

In Lemma A.1 we show that

RV ≥ C0ρ1(εV |x|)2〈εV x〉r−2 for r ≥ 1. (9.6)

Using Lemma A.1, (9.4), (9.6) and the fact that 〈RV η, w〉 ≤ Cε2
V
‖w‖L2 we obtain the

lower bound on Λ.

10 Proof of Theorem 2.1

The upper bound (8.11) together with the bound from below in Proposition 9.1 yield
the inequality

1

2
ρ2‖w‖2H1

+ C0ρ1

∥

∥εV x〈εV x〉(r−2)/2w
∥

∥

2

L2 − C‖w‖3H1
− Cε2

V
‖w‖L2 ≤ Cε2

0
+ Cε2

V
ε0

+ tC sup
s≤t

(

(ε +
√
εh)εV ‖εV x〈εV x〉(r−2)/2w‖2L2 + |α|εV ‖(εV |x|)1/2w‖2L2

+ ((ε +
√
εh)ε

2
V + |α|)(‖w‖2H1

+ ε2V )
)

, (10.1)
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for 0 ≤ t ≤ min(T1, T2), where T1 and T2 are defined in Corollary 6.2 and ε := εV + ε0.
The right-hand side is independent of the operator t 7→ s, sups≤t in the given time
interval, we can therefore apply this to both sides of (10.1). To simplify, let

ρ := min(
ρ2

8
,
C0ρ1

3
). (10.2)

We absorb higher order terms into lower order ones. Furthermore, we assume

t ≤ min(T1, T2, T3), where T3 :=
ρ

C(|α|∞ + εV (ε +
√
εh))(1 + εV )

, (10.3)

in agreement with Corollary 6.2. Both ρ and C above depend on I, clarifying the need
for ε� C(I). Note that

T3C(ε +
√
εh)εV ≤ ρ, T3C|α|∞εV ≤ ρ, and T3C((ε +

√
εh)ε

2
V

+ |α|∞ ≤ 2ρ. (10.4)

We obtain

ρ sup
s≤t

(

4‖w‖2H1
+ 3

∥

∥εV x〈εV x〉(r−2)/2w
∥

∥

2

L2

)

≤ C
(

sup
s≤t

(‖w‖3H1
+ ε2V ‖w‖L2) + ε20 + ε2V ε0

)

+ ρ sup
s≤t

(

∥

∥εV x〈εV x〉(r−2)/2w
∥

∥

2

L2 +
∥

∥|εV x|1/2w
∥

∥

2

L2 + 2ε2
V

+ 2‖w‖2H1

)

. (10.5)

Note that g(y) := |y|−y2〈y〉−1 ≤ 2−1, y ∈ R. Indeed g(−y) = g(y) and g is continuously
differentiable on (0,∞), g(y) ≥ 0 since |y| ≥ y2〈y〉−1 with g(0) = g(∞) = 0. The
function g(y) has one critical point on (0,∞) at y = (2−1(

√
5 − 1))−1/2 with value

max g = (3 −
√

5)(2(
√

5 − 1))−1/2 ≤ 2−1. This proves the claim. We now use this
intermediate function g(x) to estimate the term above with |x|1/2. We have

εV |x| − (εV |x|)2〈εV x〉r−2 ≤ g(εV |x|) ≤
1

2
. (10.6)

We also have the inequalities

C‖w‖3H1
≤ ρ−1C2‖w‖4H1

+ 4−1ρ‖w‖2H1
, Cε2V ‖w‖H1 ≤ C2ρ−1ε4V + 4−1ρ‖w‖2H1

. (10.7)

Thus we have 3ρ‖w‖2H1
on the right-hand side and 2ρ of terms containing 〈εV x〉. Moving

those to the left-hand side of (10.5) using the above inequalities and simplifying we
obtain

sup
s≤t

(

‖w‖2H1
+

∥

∥εV x〈εV x〉(r−2)/2w
∥

∥

2

L2

)

≤ C ′ε2 + C2ρ−2(sup
s≤t
‖w‖4H1

). (10.8)

Abbreviate κ := C ′ε2. Let

X := sup
s≤t

(

‖w‖2H1
+

∥

∥εV |x|〈εV x〉εV x(r−2)/2w
∥

∥

2

L2

)

. (10.9)
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Equation (10.8) implies
X ≤ C2ρ−2X2 + κ. (10.10)

Solving this inequality, we find

X ≤ 2κ, provided κ ≤ ρ2

4C2
. (10.11)

The definition of X and κ implies

‖w‖H1 ≤ c′ε, and
∥

∥εV x〈εV x〉εV x(r−2)/2w
∥

∥

L2 ≤ c′ε. (10.12)

Lemma C.1 allow us to rewrite (10.12) as ‖w‖H1,r ≤ c′ε. Inserting (10.12) into the
expressions for our modulation parameters, the estimate of the αj-terms in (4.25)–(4.28)
gives us |α| ≤ cε2 and time interval t ≤ T ′, where

T ′ := cmin(ε−2,

√
εh
ε2

,
1

ε2 + εV
√
εh

) (10.13)

Using εh ≥ KεV (that is, εh is not an order of magnitude smaller then εV ), we can shorten
the time-interval to have an upper limit of

T ′′ := C(ε2 + εV
√
εh)

−1. (10.14)

We now choose ε such that (10.11) holds and c′ε ≤ 1
2
δ, where δ is defined in Theorem 4.1.

Then there is a maximum T0 such that the solution ψ of (1.1) is in Uδ for t ≤ T0. Thus
the decomposition (4.4) is valid and the above upper bounds for ‖w‖H1 and α are valid for
t ≤ min(T0, C(ε2 + εV

√
εh)

−1). Thus there exists a constant CT such that 0 < CT ≤ C,
such that for t ≤ CT (ε2 + εV

√
εh)

−1 the theorem holds. This concludes the proof of
Theorem 2.1.

A Lower bound on RV

In this appendix we estimate RV from below. Recall that

RV (x) := V (x + a)− V (a)−∇V (a) · x (A.1)

and
Hess V ≥ ρ1ε

2
V
〈εV x〉(r−2)/2, (A.2)

where ρ1 is a positive constant. We have the following result:

Lemma A.1. Let a, x ∈ Rd and 0 < εV ∈ R. Then (i) if r ≥ 2 or (ii) if r ≤ 2 and
εV |a| ≤ Ca:

RV (x) ≥ C0ρ1ε
2
V
|x|2〈εV x〉r−2, (A.3)

where

C0 :=

{ 1

2r−2+max(0, r−4
2 )r(r−1)

in case (i)

1

2(2(1+C2
a))(2−r)/2

in case (ii).
(A.4)
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Proof. Consider the case x = 0, from the definition ofRV it follows thatRV (0) = 0, thus
the estimate holds. Let x 6= 0, the function RV (x) is the Taylor expansion of V (x + a)
around a to first order. The Taylor series remainder

∫ 1

0

(1− θ)x · Hess V (a+ θx) · x dθ, (A.5)

integrated by parts, gives the identity

∫ 1

0

(1− θ)x · Hess V (a+ θx) · x dθ =

(1− θ)x · ∇V (a+ θx)|10 +

∫ 1

0

∇V (a + θx) · x dθ = RV (x, t). (A.6)

Inserting the lower bound of the Hess V into the Taylor remainder gives the inequality

RV (x) ≥ ρ1ε
2
V
|x|2

∫ 1

0

(1− θ)(1 + ε2
V
|a+ xθ|2)(r−2)/2 dθ = ρ1ε

2
V
|x|2I. (A.7)

To estimate I, we first consider case (a), with r ≥ 2. The integrand of I is estimated
by the following lemma.

Lemma A.2. Let y ≥ 0 and b ≥ 0 then

1

2max(0, 2−b
2

)
≤ (1 + y2)b/2

1 + |y|b ≤ 2max(0, b−2
2

). (A.8)

This lemma is proved at the end of this appendix. For x 6= 0 denote x̂ = x/|x|,
a‖ = a · x̂, and a⊥ = a− a‖x̂, and abbreviate b := r − 2. Lemma A.2 then implies

(

1 + ε2V |a+ xθ|2
)b/2

=
(

1 + ε2V |a⊥|2
)b/2

(

1 +
ε2
V

1 + ε2
V
|a⊥|2

(

a‖ + |x|θ
)2

)b/2

≥ 1

2max(0, 2−b
2

)

(

(

1 + ε2
V
|a⊥|2

)b/2
+ εb

V

∣

∣a‖ + |x|θ
∣

∣

b
)

≥ 1

2
+

1

2
εb
V

∣

∣a‖ + |x|θ
∣

∣

b
, (A.9)

where we used 2max(0, 2−b
2

) ≤ 2. Thus

I ≥ 1

4
+

1

2
εr−2
V

∫ 1

0

(1− θ)
∣

∣a‖ + |x|θ
∣

∣

r−2
dθ =

1

4
+

1

2
εr−2
V I2. (A.10)

The integral I2 evaluates to

I2 =
1

r(r − 1)|x|2
(
∣

∣a‖ + |x|
∣

∣

r − |a‖|r − r|x| sign(a‖)|a‖|r−1
)

, (A.11)
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which is the remainder of a Taylor series of
∣

∣a‖ + |x|
∣

∣

r
around a‖, as expected. At a‖ = 0

we have

I2 ≥
|x|r−2

r(r − 1)
. (A.12)

To estimate I2 for a‖ 6= 0, we use the following lemma

Lemma A.3. Let y ∈ R and r ≥ 2. Then

|1 + y|r − 1− ry ≥ 1

2r−2
|y|r. (A.13)

The lemma is proved at the end of this appendix. Since a‖ 6= 0 we can pull it out of
I2, and use y := |x|/a‖ in the Lemma to obtain

I2 ≥
|x|r−2

2r−2r(r − 1)
. (A.14)

Note that the above result is a lower limit than we obtained in (A.12), so we can use
(A.14) for all a‖. Now, inserting this inequality into (A.10) and the result into (A.7) to
obtain

RV (x) ≥ ρ1ε
2
V
|x|2I ≥ ρ1

(

ε2V |x|2
4

+
εrV |x|r

2r−1r(r − 1)

)

. (A.15)

Once again using Lemma A.2 gives

RV (x) ≥ C1ρ1ε
2
V
|x|2〈εV x〉r−2, (A.16)

where

C1 :=
1

2max(0, r−4
2

)2r−2r(r − 1)
, r ≥ 2. (A.17)

This concludes part (i) of Lemma A.1, except for the proofs of Lemma A.2 and A.3
which is done below.

Now, we estimate the integral I for the case (ii), with r ≤ 2 and εV |a| ≤ Ca. Introduce
the change of variables p = (1− θ)2. The integral takes the form

I =
1

2

∫ 1

0

1

g(p)(2−r)/2 dp, where g(p) := 1 + ε2
V
|a+ x(1 +

√
p)|2. (A.18)

The triangle inequality together with 0 ≤ p ≤ 1 gives

g(p) ≤ 1 + 2ε2
V
|a|2 + 2ε2

V
|x|2(1−√p) ≤

(

1 + max(2ε2
V
|a|2, 1)

)

〈εV x〉2. (A.19)

The upper bound εV |a| ≤ Ca and the estimate 1 + max(2ε2V |a|2, 1) ≤ 2 + 2C2
a together

with a trivial integral gives that I is bounded from below as

I ≥ C2〈εV x〉r−2, where C2 :=
1

2
(

2(1 + C2
a)

)(2−r)/2 . (A.20)

Inserting this result into (A.7) concludes the Lemma.
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Now consider Lemma A.2. It is a combination of the inequalities Theorem 13 and
Theorem 19 in [18]

Lemma A.4. Let y ∈ R and b ≥ 0 then

1

2max(0, 2−b
2

)
≤ (1 + y2)b/2

1 + |y|b ≤ 2max(0, b−2
2

). (A.21)

Proof. Denote

f(y, b) :=
(1 + y2)b/2

1 + |y|b . (A.22)

We first note that f(y, b) = f(−y, b), thus we can restrict our attention to y ≥ 0. At
y = 0 we have f(0, b) = 1 and at y =∞, f(∞, b) = 1. The function is differentiable for
y > 0, the only critical point for y > 0 is at y = 1, where the function takes the value

f(1, b) = 2b/2−1. (A.23)

If b > 2 its a maximum, and if b < 2 its a minimum, the lemma follows.

To prove Lemma A.3 we begin by stating it again.

Lemma. Let y ∈ R and r ≥ 2. Then

|1 + y|r − 1− ry ≥ 1

2r−2
|y|r. (A.24)

Proof. Denote

f(y ; r) := |1 + y|r − 1− ry − 1

2r−2
|y|r. (A.25)

The lemma is equivalent to f ≥ 0, for r ≥ 2. We note that f is twice differentiable at
all points except y = −1 and y = 0. We observe that the inequality is satisfied for both
of these points since we have f(0 ; r) = 0 and f(−1, r) = r − 1 − 1

2r−1 > 0 for r ≥ 2.
Consider the derivative of f with respect to y:

∂yf(y ; r) = r

(

sign(1 + y)|1 + y|r−1 − 1

2r−2
sign(y)|y|r−1 − 1

)

. (A.26)

We wish to show that f decays monotonically on y < 0 and hence, that ∂yf ≤ 0 for
−1 < y < 0 and y < −1. We also wish to show that f increases monotonically for y > 0
with ∂yf ≥ 0. To show this, consider first the case y > 0: using that (1+y)r−1 ≥ 1+yr−1,
we have ∂yf > 0 for y > 0.

For the interval −1 < y < 0, use that br < b for any b ∈ (0, 1), to obtain

∂yf(y ; r) = (1− |y|)r−1 + 22−r|y|r−1 − 1 < −|y|+ 22−r|y|
= −

(

1− 22−r) |y| ≤ 0, r ≥ 2. (A.27)
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For the last interval y < −1 we re-write (A.26) as

∂yf(y ; r) = −r
(

(|y| − 1)r−1 − 22−r|y|r−1 + 1
)

. (A.28)

Upon calculating ∂2
yf , and solving ∂2

yf = 0 for y in this interval we find that ∂yf has
a maximum at |y| = 2 with value ∂yf(2 ; r) = 0. Hence, ∂yf ≤ 0 for y ≤ −1 and
−1 < y < 0. We have showed that f decays monotonically on y < 0 and increases
monotonically on y > 0, and f(0 ; r) = 0. Hence f ≥ 0 for all y ∈ R, which proves the
lemma.

B Upper bound on RV and ∇aRV

In this appendix we estimate RV and derivatives of RV from above. From the proof of
Lemma A.1 we have the following identity

RV (x) =

∫ 1

0

(1− θ)x · Hess V (a+ θx) · x dθ. (B.1)

Furthermore, in (2.4) we made the assumptions that, for β ∈ Zd and |β| ≤ 3,

|∂βxV (x)| ≤ CV ε
|β|
V 〈εV x〉r−|β|. (B.2)

We begin with the following result for derivatives of RV .

Lemma B.1. Let a, x ∈ R
d, 0 < εV ∈ R and εV |a| ≤ Ca, as in Corollary 6.2. Further-

more let β ∈ Zd, with 0 ≤ βj ≤ 1 ∀j = 1, ..., d and |β| = 1 Then, (i) if r ≥ 2:

|∂βaRV | ≤ C1ε
3
V |x|2〈εV x〉max(r−3,0), (B.3)

or (ii) if 1 ≤ r < 2:
|∂βaRV | ≤ C2ε

3
V |x|2〈εV x〉r−2, (B.4)

where

C1 := 2−1CV d(2(1 + C2
a))

max(r−3,0)/2, C2 := CV d
(

6
√

2 + ln(1 + Ca)
)

. (B.5)

Here CV is the constant in (2.4).

Corollary B.2. Under the same conditions as in Lemma B.1 we have

|∂βaRV | ≤ Cε3
V
|x|2〈εV x〉r−2, (B.6)

where C depends on C1 and C2 above.

Proof. Use that 〈εV x〉max(r−3,0) ≤ 〈εV x〉r−2 in Lemma B.1.
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Proof of Lemma B.1. For the case x = 0, (∂βaRV )(0) = 0 and thus the Lemma is satis-
fied. For x 6= 0, and since V ∈ C3, we have from (B.1) that

∂βaRV (x, t) =
d

∑

k,l=1

xlxk

∫ 1

0

(1− θ)(∂βx∂xk∂xlV )(a+ θx) dθ. (B.7)

The upper bound on the potential, (B.2), gives

|∂ajRV (x)| ≤ ε3
V
CV

d
∑

k,l=1

|xlxk|
∫ 1

0

(1− θ)(1 + ε2
V
|a+ θx|2)(r−3)/2 dθ, (B.8)

here CV is the constant in (2.4). To estimate |∂βaRV |, we use the inequality

d
∑

k,l=1

|xkxl| ≤ d|x|2, (B.9)

to obtain

|∂βaRV (x)| ≤ CV dε
3
V |x|2

∫ 1

0

(1− θ)(1 + ε2V |a+ θx|2)(r−3)/2 = dCV ε
3
V |x|2I. (B.10)

To estimate the integrand, we consider first case (i), with r > 3, εV |a| ≤ Ca. Before
we estimate the integral I, we estimate part of its integrand with the triangle inequality
together with εV |a| ≤ Ca and θ ≤ 1 to obtain

1 + ε2
V
|a+ θx|2 ≤ 1 + 2C2

a + 2|x|2 ≤ (1 + max(2C2
a , 1))〈εV x〉2. (B.11)

Thus
|∂βaRV (x, t)| ≤ C̃1ε

3
V
|x|2〈εV x〉r−3, (B.12)

where
C̃1 := 2−1CV d(2(1 + C2

a))
(r−3)/2. (B.13)

To extend this case to include r ≥ 2, we note that for r ∈ [2, 3] the exponent in the
integrand of I, r − 3 ≤ 0, and that 1 + ε2V |a+ θx|2 ≥ 1 to obtain

I ≤ 2−1. (B.14)

We conclude that for r ∈ [2, 3] |∂βaRV | ≤ 2−1dCV ε
3
V
|x|2. Thus upon changing (B.12) and

(B.13) into
|∂βaRV (x)| ≤ C1ε

3
V |x|2〈εV x〉max(r−3,0), (B.15)

where
C1 := 2−1CV d(2(1 + C2

a))
max(r−3,0)/2, (B.16)
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part (i) is proved.
For the case (ii), with r < 2 we need a more precise estimate that the case of r ∈ [2, 3].

To obtain this, recall that x 6= 0 and let us introduce the notations x̂ := x/|x|, a‖ := a · x̂
and a⊥ := a − a‖. Then |a + θx|2 = a2

⊥ +
∣

∣a‖ + θ|x|
∣

∣

2
. By the change of variables

y = εV (a‖ + θ|x|) and that 1 + a2
⊥ ≥ 1, we find

I ≤ 1

εV |x|

∫ εV (a‖+|x|)

εV a‖

dy

(1 + y2)(3−r)/2 =:
1

εV |x|
I2. (B.17)

The goal is to show that 〈εV x〉2−rI is bounded by a constant independent of εV . To show
this, we consider two intervals for |x| first εV |x| ≤ 1. For this interval 〈εV x〉2−r ≤ 22−r

and I2 ≤ εV |x|, thus 〈εV x〉2−rI ≤ 2.
For the intervals εV |x| ≥ 1 and 1 ≤ r ≤ 1.5. We show that I2 is bounded by a

constant. Indeed, regardless of the values of a‖ and |x| we have

I2 ≤ 2

∫ ∞

0

dy

(1 + y2)(3−r)/2 =
√
π

Γ(1− r
2
)

Γ( r−3
2

)
≤ 6 (B.18)

for 1 ≤ r ≤ 1.5. Thus

〈εV x〉2−rI ≤ 6
〈εV x〉2−r
εV |x|

≤ 6
√

2. (B.19)

For r ∈ [1.5, 2] we need a better estimate, we use that (1 + y2)(3−r)/2 ≥ (1 + y2)1/2,
thus

I2 ≤
∫ εV (a‖+|x|)

εV a‖

dy
√

1 + y2
= ln(

εV a‖ + εV |x|+
√

1 + ε2
V
|a+ x|2

εV a‖ +
√

1 + ε2
V
a2
‖

). (B.20)

To estimate this, we consider four different regions, For a‖ > 0 and |x| > |a| it is
bounded by ln(1 + 4εV |x|). For a‖ > 0 and |x| ≤ |a| it is bounded by ln 2. For a‖ < 0
and |x| < |a| it is bounded by ln(1 + 2Ca). For a‖ < 0 and |x| > |a| it is bounded by
ln

(

(1 + 2Ca)(1 + 4εV |x|)
)

. Thus

I2 ≤ ln(2 + 2Ca) + ln(1 + 4εV |x|) ≤ (εV |x|)1/2 ln
(

10(1 + Ca)
)

, for εV |x| ≥ 1. (B.21)

where we have used that for εV |x| ≥ 1, q ≥ 0 we have q + ln(1 + 4εV |x|) ≤ (q +
ln 5)(εV |x|)1/2. Thus

〈εV x〉2−rI ≤ ln(10(1 + Ca))
〈εV x〉2−r
(εV |x|)1/2

≤ 21/4 ln(10(1 + Ca)). (B.22)

Comparing the constants above for the I estimate we find that

C2 := CV d(6
√

2 + ln(1 + Ca)), (B.23)

is sufficient. This concludes the proof of the lemma.
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To bound RV from above we could use the same methods as above, but the upper
bound will be to large to fit into the energy space. But we have the following

Lemma B.3. For r ≥ 1 and εV |a| ≤ Ca

RV ≤ C1(1 + ε2V |x|2〈εV x〉r−2), (B.24)

where
C1 := 2CV (2 + 2C2

a)
(r−1)/2. (B.25)

Proof. For r ≥ 2, we there exists a θ ∈ [0, 1] such that

RV ≤ CV ε
2
V
|x|2〈xθ + a〉r−2. (B.26)

Since r−2 ≥ 0 we estimate εV |xθ+a| ≤ εV |x|+Ca and (1+2a|x|2+2C2
a) ≤ (2+2C2

a)〈εV x〉2
we obtain the lemma for r ≥ 2 as

RV ≤ CV (2 + 2C2
a)

(r−2)/2|εV |2|x|2〈εV x〉r−2. (B.27)

For r ∈ [1, 2) we use that there exists a θ ∈ [0, 1] such that

RV = (∇V (xθ + a, t)−∇V (a)) · x ≤ CV εV |x|(〈εV (xθ + a)〉r−1 + 〈Ca〉r−1). (B.28)

Once again εV |xθ + a| ≤ εV |x|+ Ca and we obtain

RV ≤ CV εV |x|
(

(2 + 2C2
a)

(r−1)/2〈εV x〉r−1 + 〈Ca〉r−1
)

. (B.29)

To estimate the second term, recall (10.6), to get

εV |x| ≤ 2−1 + (εV |x|)2〈εV x〉r−2. (B.30)

To estimate the first term in (B.29), let y = εV |x| ≥ 0, r ∈ [1, 2] and calculate

y〈y〉r−1 − y2〈y〉r−2 = y〈y〉r−1(1− y

〈y〉) =
y〈y〉r−1

(y + 〈y〉)〈y〉 ≤
y

(y + 〈y〉) ≤
1

2
. (B.31)

Thus
εV |x|〈εV x〉r−1 ≤ 2−1 + (εV |x|)2〈εV x〉r−2. (B.32)

Collecting the above two terms gives

RV ≤ 2CV (2 + 2C2
a)

(r−1)/2(1 + (εV |x|)2〈εV x〉r−2). (B.33)

Since (B.33) for r ≥ 2 is larger than (B.27) we have proved the lemma.
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C Bound in energy-space

In Eq. (10.12) we show that

‖w‖0 := ‖w‖H1 +
∥

∥εV |x|〈εV x〉(r−2)/2w
∥

∥

L2 ≤ Cε. (C.1)

We want to show that ‖w‖H1,r ≤ Cr‖w‖0. This result follows from the following lemma:

Lemma C.1. For r ∈ (0,∞) there exists a constant cr such that

0 < 1 + min(0, cr) ≤
1 + y2〈y〉r−2

〈y〉r ≤ 1 + max(0, cr) < 2, (C.2)

where

cr :=
2− r

2

(

2

r

)2/(r−2)

, r 6= 2, (C.3)

and for r = 2, cr = 0.

Proof. Denote

f(z) =
1 + (z2 − 1)zr−2

zr
= 1 + z−r − z−2, z ≥ 1. (C.4)

Note that for z2 = 1 + y2, f is the function we want to estimate for the lemma. For
r = 2, f = 1, thus cr = 0. The function f is at least C1 for z ≥ 1. Now consider r 6= 2.
We note that f(1) = 1 and f → 1 as z → ∞. The critical point on [1,∞) of f is at
zc := (r/2)1/(r−2) > 1, where the function take the value

f(zc) = 1 +
2− r
r

(

2

r

)2/(r−2)

. (C.5)

A maximum(minimum) for r < 2(r > 2). This concludes the proof.

D A family of time-dependent solutions

In this appendix, we construct a family of solutions to the nonlinear Schrödinger equation
with a quadratic, time-independent potential.

Let ψ(x, t) have the form

ψ(x, t) = eip(t)·(x−a(t))+iγ(t) η̃µ(x− a(t)), (D.1)

where η̃µ is a real-valued function, not yet determined. We substitute this function into
(1.1), and let y := x− a to obtain

0 = ṗ · yη̃µ + (γ̇ + p2 − ȧ · p)η̃µ + i∇η̃µ · (ȧ− 2p)−∆η̃µ − f(η̃µ) + V (y + a)η̃µ. (D.2)
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By adding and subtracting the terms (µ+V (a))η̃µ and ∇V (a) ·yη̃µ and as usual defining
RV := V (y + a)− V (a)−∇V (a) · y we find

0 = (ṗ+∇V (a)) · yη̃µ + (γ̇ + p2 − ȧ · p+ V (a)− µ)η̃µ + i∇η̃µ · (ȧ− 2p)

+ (−∆ + µ)η̃µ − f(η̃µ) +RV η̃µ. (D.3)

If we choose
ṗ = −∇V (a), ȧ = 2p, γ̇ = p2 + µ− V (a), (D.4)

then the Eqn. D.3 reduces to

0 = −∆η̃µ + µη̃µ − f(η̃µ) +RV η̃µ, (D.5)

where η̃µ = η̃µ(y), and ∆ =
∑

∂2
yj

. In general this equation is time-dependent due to
the appearance of a in RV , but for potentials of the form V (x) = x · A · x + v · x + d,
with constant matrix A, vector v and scalar d, we have

RV = (y + a) ·A · (y + a) + v · (y + a) + d− (a · A · a+ v · a+ d)

− (a · A · y + y ·A · a + v · y) = y · A · y. (D.6)

The right-hand side is independent of a, and hence of time. Equation (D.3) reduces to

0 = −∆η̃µ + µη̃µ − f(η̃µ) + y · A · yη̃µ. (D.7)

Thus, if there exists nontrivial solutions to this equation, we have constructed a family of
solutions eip(t)·(x−a)+iγ η̃µ(x−a), where η̃µ solves (D.7). Existence of solutions to a general
class of equations that includes (D.7) under some restrictions on b := µ+y ·A ·y and with
a class of local nonlinearities is shown by Rabinowitz [23] and extended to more general
potentials by Sikarov [25]. Sikarov require the following potential conditions: b > −c,
where |c| <∞,

inf
u∈H1,‖u‖L2=1

‖∇u‖2L2 + 〈bu, u〉 > 0 (D.8)

and that b grows to infinity in almost all directions as |y| → ∞.
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