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Abstract

We test the extended Zimanyi-Moszkowski model of relativistic nuclear matter
for reproducing the density dependence of the symmetry energy, the direct URCA
constraint MDU

G � 1:5M� on the gravitational mass of neutron star (NS), the
large radii of NSs in RX J1856.5-3754 and qLMXB X7, the massive NSs in PSR
J0751+1807 and 4U1700-37, and the baryonic mass of J0737-3039B. The two sets
of NN� coupling constant are considered. The �rst (EZM1) is the same as the
Bonn A potential. The second (EZM2) is chosen so as to reproduce the symmetry
energy Es = 32MeV of nuclear matter. The EZM1 can pass 6 tests among 7,
while the EZM2 passes 5 tests. We can therefore conclude that the EZM model
has unique and excellent features and is the most prospective one for studying the
dense baryonic matter.

1 Introduction

To study the equation-of-state (EOS) of dense nuclear medium has been an important

subject in nuclear physics and astrophysics. It becomes more and more important as in-

creasing information from the intermediate-energy heavy-ion experiments and the astro-

nomical observations of neutron stars (NSs). Although whether the EOS is sti¤or soft is a

controversial problem until now, the recent noticeable observations of the nearby isolated

NS RX J1856-3754 [1] and the quiescent low-mass X-ray binary (qLMXB) X7 [2] have

strongly suggested that the NSs of the typical gravitational massesMG = 1:4M� � 1:5M�

hold larger radii than 13km. This indicates that the sti¤EOS is favorable and so severely

restricts the models of dense nuclear matter. In fact, the EOS from the extensive vari-

ational calculation [3], which has no �tting parameters and so is believed to be most

reliable, has been ruled out. Moreover, the possibilities of (strange) quark stars and

quark matter cores have been denied.

Consequently, there remain the relativistic models based on the �eld theory of nucleons

interacting through mesons [4] as possible candidates to reproduce the reasonable EOS of

NS matter. In this respect, the latest paper [5] has performed extensive tests of the EOSs

in several relativistic models, which are the so-called nonlinear Walecka (NLW) model
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[6], the Dirac-Brueckner-Hartree-Fock (DBHF) model [7], the density-dependent (DD)

relativistic mean-�eld (RMF) model [8] and the truly nonlinear RMF model developed

recently by Kolomeitsev and Voskresensky (KV) [9]. Here it is noted that the KV model

has nonlinear meson-nucleon couplings, while the NLW model does not so in spite of its

name.

The truly nonlinear RMF model was �rst developed by Zimanyi-Moszkowski (ZM)

[10]. The KV model can be regarded as an extension of the ZM model. On the other

hand, Ref. [11] developed another nonlinear model in a completely di¤erent point of

view from the ZM model. The physical origin of the ZM model was also investigated

in Refs. [12] and [13]. Moreover, the present author found [14] that the ZM model can

be interpreted in the constituent quark model of nucleons and that a little modi�cation

of it reproduces the same saturation properties of nuclear matter as the DBHF model

in Ref. [15]. (But it is di¤erent from the result of Tübingen group [7].) This extended

Zimanyi-Moszkowski (EZM) model has no more free parameters than theNN� andNN!

coupling constants, which are adjusted so as to reproduce the saturation, in contrast to

the DD and KV models. Moreover, their values are close to those in Bonn A potential

[15]. Therefore, the applications of the EZM model to asymmetric matter [16] and dense

hadronic matter containing strangeness [14,17-23] are possible without ambiguities.

Although the NS matter in the EZM model has already been investigated in Ref. [16],

there was used an approximation [24] in the numerical calculation. In the present paper,

we will reinvestigate the NS matter in the EZM model through the exact calculation.

Because the EZM model is not familiar, our main purpose is to supplement the extensive

tests of RMF models in Ref. [5] with the EZMmodel and to show its unique and excellent

feature. In the next section, the EZM model of NS matter is reviewed. In section 3 we

impose the similar extensive tests to Ref. [15] on it. Finally, the results are discussed

and our conclusions are derived in section 4.

2 The EZM model of NS matter

Here we reformulate the EZM model of NS matter in a somewhat di¤erent fashion from

Ref. [16]. In the present work we consider only nucleons as baryons so as to compare

the EZM model with the results in Ref. [5]. The model Lagrangian for NS matter in the

mean-�eld approximation is

L =
X
N=p; n

� N
�
=p�M�

N � 0VN
�
 N +

X
l=e�; ��

� l
�
=p�ml

�
 l

� 1

2
m2
� h�i

2 � 1
2
m2
� h�3i

2 +
1

2
m2
! h!0i

2 +
1

2
m2
� h�03i

2 ; (1)

where  N and  l are the Dirac �elds of nucleons and leptons. The isoscalar-scalar,

isoscalar-vector, isovector-scalar and isovector-vector mean-�elds are h�i, h!0i, h�3i and
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h�03i, respectively. The masses of each meson are m�, m!, m� and m�. The renormalized

mass of nucleon M�
N in the matter is de�ned by

M�
N = m�

NMN =MN + SN : (2)

The scalar potentials are

Sp = �g�pp� h�i � g�pp� h�3i ; (3)

Sn = �g�nn� h�i+ g�nn� h�3i ; (4)

while the vector potentials are

Vp = g�pp! h!0i+ g�pp� h�03i ; (5)

Vn = g�nn! h!0i � g�nn� h�03i : (6)

The renormalized coupling constants in Eqs. (3)-(6) are given [14,16] by

g�pp�(!) � h�pp�(!)gNN�(!) =
�
(1� �) + �m�

p

�
gNN�(!); (7)

g�nn�(!) � h�nn�(!)gNN�(!) = [(1� �) + �m�
n ] gNN�(!); (8)

g�pp�(�) � h�pp�(�)gNN�(�) =
�
(1� �) + �

�
2m�

n �m�
p

��
gNN�(�); (9)

g�nn�(�) � h�nn�(�)gNN�(�) =
�
(1� �) + �

�
2m�

p �m�
n

��
gNN�(�); (10)

where gNN�(!;�;�) is the free coupling constant and � = 1=3.

The total energy density of NS matter is given by

E =
1

4

X
N=p; n

( 3E�FN�N +M�
N�SN) +

1

4

X
l=e�; ��

( 3EFl�l +ml�Sl) +
X
N=p; n

VN�N

+
1

2
m2
� h�i

2 +
1

2
m2
� h�3i

2 � 1
2
m2
! h!0i

2 � 1
2
m2
� h�03i

2 ; (11)

where �N and � l are the vector densities of baryons and leptons in NS matter, E
�
FN and

EFl are their Fermi energies, and �SN and �Sl are their scalar densities. From Eqs. (2)-(4)

the scalar mean-�elds h�i and h�3i are expressed by the renormalized nucleon massesM�
p

andM�
n. From Eqs. (5) and (6) the vector mean-�elds h!0i and h�03i are expressed by the

vector potentials Vp and Vn. The total energy density E of Eq. (11) is therefore expressed
byM�

N and VN . Then, they are determined by extremizing the energy, @E=@M�
N = 0 and

@E=@V N = 0. Consequently, we have the self-consistency equations:
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(14)
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(15)

where we have introduced Vp(n) = vp(n)MN and

A(0) = h�nn�
�
m�
p � 1

�
+ h�pp� (m

�
n � 1) ; (16)

B(0) = h�nn�
�
m�
p � 1

�
� h�pp� (m

�
n � 1) ; (17)

C(0) = h�pp�h
�
nn� + h�nn�h

�
pp� = h�pp!h

�
nn� + h�nn!h

�
pp�; (18)
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A(1)p = (1� 2�) + 2�
�
2m�

p �m�
n

�
; (19)

C(1)p = 2�h�nn�; (20)

A(1)n = (1� 2�) + 2�
�
2m�

n �m�
p

�
; (21)

C(1)n = 2�h�pp�: (22)

The baryon and scalar densities in Eqs. (12)-(15) are determined from the chemical

potentials �p and �n of nucleons through their Fermi momenta kFp and kFn:

�N =
�
k2FN +M�

N
2
�1=2

+ VN : (23)

Because the NS matter satis�es the �-equilibrium condition

�n � �p = �e = ��; (24)

there are only two independent chemical potentials, which are constrained by the baryon

number conservation

�B = �p + �n; (25)

and the charge neutral condition

�p = �e + ��: (26)

3 Tests of the EZM model

For calculating in RMF model, we have to specify the meson-nucleon coupling constants.

The NN� and NN! coupling constants, (gNN�=m�)
2 = 16:9 fm2 and (gNN!=m!)

2 =

12:5 fm2, have been determined [14] so as to reproduce the nuclear matter saturation.

The NN� coupling constant (gNN�=m�)
2 = 0:39 fm2 is assumed to be the same as the

Bonn A potential in Ref. [15]. On the other hand, we consider two sets of the NN�

coupling constant. The �rst one (gNN�=m�)
2 = 0:82 fm2, referred as EZM1, is also same

as the Bonn A potential, while the second one (gNN�=m�)
2 = 1:433 fm2, referred as

EZM2, is determined so as to reproduce the empirical symmetry energy of nuclear matter

Es = 32:0MeV [25]. Although the isovector part of EZM1 is free from parameters, its

symmetry energy Es = 24:6MeV is rather low.

Once determining the coupling constants, for a de�nite density �B in Eq. (25) we

can solve the selfconsistent equations (12)-(15), (25) and (26) in terms of 6-dimensional

Newton-Raphson method so that the renormalized massesM�
p andM

�
n, the vector poten-

tials Vp and Vn, and the chemical potentials �p and �n are calculated. We �rst show in

Fig. 1 the pressures of NS matter as functions of the total baryon density. The pressure

is calculated in terms of the Gibbs-Duhem relation P = �n�B � E . The black and red
curves are the results of EZM1 and EZM2, respectively. The region enclosed by the blue
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Figure 1: The pressures of NS matter as functions of the total baryon density. The black
and red curves are the results of EZM1 and EZM2, respectively. The region enclosed by
the blue dashed lines shows the empirical values for pure neutron matter in Ref. [26].

dashed lines shows the empirical values of Fig. 5 in Ref. [26] for pure neutron matter,

which are consistent with the experimental �ow data from heavy-ion reactions. Although

the NS matter is not a pure neutron matter, it is highly asymmetric as seen below in

Fig. 2. The empirical values of the pressure for NS matter are therefore expected to be

only slightly lower than those in Fig. 1. Consequently, we can conclude that both the

EZM models reproduce the empirical values well. To the contrary, Ref. [5] calculates the

pressures of symmetric nuclear matter rather than NS matter and compares them with

the empirical values of Fig. 3 in Ref. [26] rather than Fig. 5. For symmetric matter, the

pressure in the EZM model is somewhat larger than the upper boundary of the empirical

values. This is because the incompressibility K = 302MeV of the EZM model is higher

than the values of the other RMF models in Ref. [5]. However, K = 300MeV is still

reasonable in the analyses of Ref. [26]. Therefore, the pressure of symmetric nuclear

matter cannot be a meaningful criterion to constrain the models.

In Fig. 1 there is little di¤erence between EZM1 and EZM2. This indicates that the

contribution of �mean-�eld to the pressure of dense nuclear matter is not signi�cant. The

di¤erence in NN� coupling constant is however apparent in the density dependence of the

symmetry energy Es(�B), which can be expanded around the nuclear matter saturation
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Table 1: The values L and Kasy � Ks � 6L in Eqs. (27)-(29) from the EZM models
and their empirical values derived from isospin di¤usion in heavy-ion reactions. The �rst
empirical value is suggested by the authors of Refs. [27] and [28]. The second is the value
that the present author �nds directly from Fig. 4 in Ref. [27] and Fig. 8 in Ref. [28].

EZM1 EZM2 Empirical 1 Empirical 2
L(MeV) 65.0 88.8 88� 22 70 � L � 105

Kasy(MeV) �369 �529 �500� 50 �550 � Kasy � �500

density �0 as

Es (�B) = Es (�0) +
L

3

�
�B � �0
�0

�
+
Ks

18

�
�B � �0
�0

�2
; (27)

where

L = 3�0
@Es (�B)

@�B

����
�B=�0

; (28)

Ks = 9�
2
0

@2Es (�B)

@�2B

����
�B=�0

: (29)

The L and Ks determine the behavior of the symmetry energy at high densities if the

higher order terms than [(�B � �0)=�0]
3 are neglected in Eq. (27). We compare in Table

1 the calculated values of L and Kasy � Ks� 6L in the EZM models with their empirical

values [27,28] derived from isospin di¤usion data in heavy-ion reactions. We show two

sets of empirical values. The �rst is the value suggested by the authors of Refs. [27]

and [28]. The second is the value that the present author �nds directly from Fig. 4 in

Ref. [27] and Fig. 8 in Ref. [28]. This is because the margins of the �rst set seem to be

arti�cially loosed. In any case the EZM2 reproduces the empirical values well while the

EZM1 fails.

Next, we show in Fig. 2 the proton fractions of NS matter. The black and red solid

curves are the results of EZM1 and EZM2, respectively. Because the � mean-�eld h�03i
is negative in NS matter, the stronger NN� coupling constant leads to weaker vector

potential Vp in Eq. (5). The weaker Vp leads to higher Fermi momentum kFp in Eq. (23).

Therefore, the EZM2 produces richer protons than the EZM1. According to the standard

scenario of NS cooling, the direct URCA process should be suppressed. This implies [5]

that in the NSs of lower masses than the typical gravitational mass MG = 1:5M� the

direct URCA cooling is forbidden. In order to investigate this direct URCA constraint in

the EZM models, the lowest limit on the proton fraction, above which the rapid cooling

through the direct URCA happens, is calculated:

fDUp =
1

1 + (1 + kFe=kFp)
3 ; (30)
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Figure 2: The proton fractions (the solid curves) and their Direct URCA limits (the
dashed curves) of NS matter in the EZM1 (the black curves) and the EZM2 (the red
curves) as functions of the baryon density.

where kFe is the Fermi momentum of electron. The results are shown by the dashed

curves. The intersection between the solid and dashed curves determines the direct URCA

limit on the central density �DUB and so the gravitational mass MDU
G of NS. Because of

the charge neutral condition (26), the ratio kFe=kFp in Eq. (30) does not strongly depend

on the proton fraction and so there is little di¤erence between the direct URCA limits

in EZM1 and EZM2. Consequently, �DUB = 0:447 fm�3 in the EZM1 is higher than

�DUB = 0:312 fm�3 in the EZM2. The gravitational mass (and the radius in Fig. 4) of NS

is calculated by integrating the Tolman-Oppenheimer-Volkov equation [29]. For the crust

of NS in low-density region �B < 0:1 fm�3, we use the EOSs by Feynman-Metropolis-

Teller, Baym-Pethick-Sutherland and Negele-Vautherin from Ref. [30]. Figure 3 shows

the gravitational masses as functions of the central baryon density in NS. There is little

di¤erence between the EZM1 (the black curve) and the EZM2 (the red curve) because

the pressures of both the models are almost the same as seen in Fig. 1. For a de�nite

central density the mass of NS in the EZM model is heavier than the other RMF models

in Ref. [5]. This is because as mentioned above the incompressibility of the EZM model

is higher than those of the other models. The dashed lines indicate the direct URCA

limits on the gravitational masses corresponding to �DUB determined above. We have
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Figure 3: The gravitational masss of NSs as functions of their central baryon densities.
The black and red solid curves are the results of EZM1 and EZM2, respectively. The
dashed lines indicate the direct URCA limits on the gravitational masses corresponding
to �DUB = 0:447 fm�3 in the EZM1 and �DUB = 0:312 fm�3 in the EZM2.

MDU
G = 1:69M� in the EZM1 and MDU

G = 1:15M� in the EZM2. The EZM1 satis�es

the direct URCA constraint MDU
G � 1:5M� but the EZM2 can not. It is seen that the

direct URCA constraint is not consistent to the constraint on the symmetry energy in

Table 1. In general, the constraints on the EOS of dense nuclear medium from the nuclear

experiments in terrestrial laboratories are not always consistent with the constraints from

the astronomical observations of compact stars.

Recently, there have been successively reported the noticeable astronomical observa-

tions that suggest the sti¤EOS of NS matter. The �rst is the large radii R = 13:7�0:6 km
of the nearby isolated neutron star RX J1856.5-3754 [1] with the assumed gravitational

massMG = 1:5M� and R = 14:5+1:8�1:6 km of a NS in qLMXB X7 [2] with the assumed grav-

itational mass MG = 1:4M�. Although their masses have not been con�rmed yet, they

suggests strongly that the radii of typical NSs with their masses 1:4M� � MG � 1:5M�

are larger than 13km. The second is the massive NSs of MG = 2:1 � 0:2M� [31] in the

millisecond pulsar PSR J0751+1807 and MG = 2:44 � 0:27M� [32] in the X-ray binary

4U1700-37. We show in Fig. 4 the mass-radius relations of NSs in the EZM models as

well as these data. The maximum gravitational masses MG = 2:18M� in the EZM1 and

MG = 2:17M� in the EZM2 lie just on the lower limit of 4U1700-37. It is seen that both
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Figure 4: The mass-radius relations of NSs in the EZM1 (the black curve) and the EZM2
(the red curve) along with the observational data of several NSs.

the EZM models satisfy all of the constraints on the mass-radius relation of NS. On the

other hand, the work [33] derived another constraint on RX J1856.5-3754 depicted by

the green dotted curve in Fig. 4. Although it does not agree with the observation in

Ref. [1], the larger radius than the EZM models is estimated for MG = 1:4M�. In any

case, the observations of RX J1856.5-3754 suggest the sti¤ EOS of NS matter. Finally,

the observed redshift z = 0:35 of EXO 0748-676 [34] also o¤ers a signi�cant constraint

on the mass-radius relation depicted by the light-blue dotted line in Fig. 3. According to

the result, the EZM models predict a massive NS of MG ' 2:0M� in EXO 0748-676. Al-

though its mass or radius has not been well determined [35], such a high-mass is expected

because we have already discovered the massive NSs in X-ray binaries as 4U1700-37 [32],

4U1636-536 [36] and Vela X-1 [37].

The recently discovered binary NS system J0737-3039 [38,39] has attracted consider-

able attention. It has been strongly expected [40-42] that even a moderately accurate

measurement of the moment-of-inertia of the pulsar A is able to provide a strong con-

straint on the EOS of NS matter. On the other hand, Ref. [43] has estimated the baryonic

mass of the pulsar B, which also strongly constrains the EOS because its gravitational

mass [39] is well determined. Unfortunately, none of the RMF models in Ref. [5] can sat-

isfy the constraint while the EOS from the variational calculation [3] is satisfactory. This
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Figure 5: The gravitational-baryonic mass relation of NSs. The black and red curves are
the results of EZM1 and EZM2, respectively. The rectangles enclosed by the solid and
dotted blue lines are the constraints from J0737-3039B in Refs. [43] and [5], respectively.

is sharply contrast to the above results from X-ray binaries that exclude the variational

model. It is however noted that the constraint is critically based on the assumption of the

formation scenario for the pulsar B. Then, Ref. [5] assumed the loss of baryon number

by 1% of the solar mass. The black and red solid curves in Fig. 5 show the results of

gravitational-baryonic mass relations in EZM1 and EZM2, respectively. The rectangle

enclosed by the solid blue lines is the constraint of Ref. [43] while the rectangle enclosed

by the dotted blue lines is due to Ref. [5]. Although the strong constraint of Ref. [43]

can never be satis�ed, the EZM1 meets the weak constraint of Ref. [5].

4 Summary and conclusions

Recently, T. Klähn, et al. [5] has tested the several kinds of RMF models against the

empirical information of EOS for dense nuclear matter from the heavy-ion reactions in

terrestrial laboratories and the compact stars in universe. The present work supplements

them with adding the tests of the EZM model, which is a truly nonlinear RMF model

based on the constituent quark picture of nucleons. The two sets of NN� coupling

constant are considered. The �rst is the same as the Bonn A potential while the second
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Table 2: Summary of results for the proposed scheme of tests.

L
=
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eV
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R
C
A

J1
85
6.
5-
37
54

qL
M
X
B
X
7

P
SR

J0
75
1+
18
07

4U
17
00
-3
7

J0
73
7-
30
39
B

N
o.
of
pa
ss
ed
te
st
s

NL�  � � � � � � 1
NL��  � �  � � � 2
DBHF  � � �    4
DD �      � 5
D3C �      � 5
KVR �  � � � �  2
KVOR   � �  � � 3
DD-F �  � �  �  3
EZM1 �       6
EZM2  �     � 5

is chosen so as to reproduce the symmetry energy Es = 32MeV of nuclear matter. The

contents of tests are the following: 1) The constraint on the pressure of NS matter from

the �ow data of heavy-ion reactions; 2) The constraint L = 88� 22MeV on the density
dependence of the symmetry energy; 3) The direct URCA constraint MDU

G � 1:5M�

on the gravitational mass of NS; 4) The constraint R = 13:7 � 0:6 km on radius of the

isolated NS RX J1856.5-3754 with the assumed gravitational mass MG = 1:5M�; 5) The

second constraint R = 14:5+1:8�1:6 km on radius of a NS in qLMXB X7 with the assumed

gravitational massMG = 1:4M�; 6) The constraintMG = 2:1�0:2M� on mass of a NS in

the millisecond pulsar PSR J0751+1807; 7) The second constraint MG = 2:44� 0:27M�

on mass of a compact star in the X-ray binary 4U1700-37; 8) The constraint on baryonic

mass from J0737-3039B:

The results are summarized in Table 2. The results of the other RMF models than

the EZM models are from Ref. [5]. We have omitted the test 1 because Ref. [5] tested

the EOS of symmetric nuclear matter but not of NS matter. For the test 8 we assume

the weak constraint suggested in Ref. [5] because none of the RMF models can satisfy

the strong constraint of Ref. [43]. For the number of the passed tests, the DD and

EZM models are good. Especially, the EZM1 is the best one. It is however noted that

the proposed tests are not always consistent to each other. In fact, the test 2 is not

consistent to the test 3 except for the KVOR. Moreover, we have to note that there

remain uncertainties in the information from compact stars while the information from

heavy-ion reactions strongly depend on the model of numerical simulation.

We can see that our result is di¤erent from Table V in Ref. [5]. In fact, our valuation

12
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on the KV models is low in contrast to Ref. [5]. This is because the contents of both

the tests are somewhat di¤erent from each other. We have omitted the constraint on

the incompressibility while Ref. [5] omitted the constraint on the symmetry energy.

However, the recent analysis [44] of K+ production in heavy-ion reactions has predicted

rather low incompressibility K ' 200MeV and so excludes the KV models. Moreover,

if the constraint M�
N ' 0:6MN [45,46] on the e¤ective mass of nucleon at saturation is

taken into account, our valuation on the KV models becomes lower. The common result

to both the investigations is that the NLWmodel is not suitable for NS matter. Although

we can adjust the parameters in NLW model [47,48] so as to pass any test in Table 2,

the NLW model with the accurately calibrated set of parameters in Ref. [49] predicts the

similar results to the NL� and NL�� in Table 2. It is noted again that unlike the KV

and the EZM models the NLW model is not a truly nonlinear RMF model. The implicit

or explicit density dependences of the meson-nucleon coupling constants realized in the

DD, KV and EZM models are crucial to studying the dense nuclear matter

In spite of the incompleteness of our tests, we can see that the EZM models have

unique and excellent features. For the nuclear matter saturation properties, the EZM

model predicts the same results [14] as the DBHF in Ref. [15]. The EZM2 and the NLW

models are able to reproduce the density dependence of the symmetry energy. Only the

DD and EZM models predict large radius R > 13 km of NSs with typical gravitational

mass 1:4M� � MG � 1:5M�. For the baryonic mass constraint from J0737-3039B, the

EZM1 has a common advantage to the KV model. It is however important to note that

the EZM1 has no parameters in the isovector contributions. Even the EZM2 has only

three parameters in contrast to the NLW, DD and KV models. In this respect the EZM

model can be regarded as a semi-microscopic model. Consequently, we can conclude that

the EZM model is the most promising model for NS matter.

In the present work, we have taken into account nucleons only as baryons for the com-

parison with the results of Ref. [5]. It is however well known [50] that the hyperons may

appear in the inner cores of NSs and soften the EOS of NS matter at high densities con-

siderably. In this case, although the nucleon-hyperon and hyperon-hyperon interactions

have not been well determined, the maximum gravitational mass of NS is MG ' 1:6M�

[20] and so the above tests 6 and 7 cannot be passed. It is necessary to go beyond the

EZM model so as to reproduce the massive NSs. We will challenge to the subject in

future works.
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Appendix: Table of the EOSs

For the reproduction of our results we here tabulate the EOSs, the pressure P vs. the

baryon density �B and the energy density E , of the EZM models in the core region

�B � 0:08 fm�3 of NSs. For the crust we have used the EOSs in Ref. [30].

EZM1 EZM2
�B(cm

�3) E(g � cm�3) P (dyn � cm�2) E(g � cm�3) P (dyn � cm�2)
8.00E+37 1.341722E+14 3.508627E+32 1.347333E+14 7.477153E+32
1.00E+38 1.678871E+14 9.968690E+32 1.687182E+14 1.543051E+33
1.20E+38 2.017903E+14 2.075634E+33 2.029242E+14 2.764063E+33
1.40E+38 2.359388E+14 3.671253E+33 2.374003E+14 4.469768E+33
1.60E+38 2.703856E+14 5.857574E+33 2.721841E+14 6.654859E+33
1.80E+38 3.051795E+14 8.668718E+33 3.073098E+14 9.410959E+33
2.00E+38 3.403584E+14 1.211220E+34 3.428143E+14 1.280443E+34
2.20E+38 3.759586E+14 1.626001E+34 3.787339E+14 1.689154E+34
2.40E+38 4.120154E+14 2.115888E+34 4.151036E+14 2.172183E+34
2.60E+38 4.485624E+14 2.684685E+34 4.519568E+14 2.733862E+34
2.80E+38 4.856307E+14 3.335562E+34 4.893254E+14 3.377900E+34
3.00E+38 5.232494E+14 4.071111E+34 5.272393E+14 4.107385E+34
3.20E+38 5.614455E+14 4.893388E+34 5.657264E+14 4.924781E+34
3.40E+38 6.002438E+14 5.803937E+34 6.048129E+14 5.831950E+34
3.60E+38 6.396670E+14 6.803817E+34 6.445226E+14 6.830175E+34
3.80E+38 6.797359E+14 7.893636E+34 6.848775E+14 7.920202E+34
4.00E+38 7.204692E+14 9.073586E+34 7.258975E+14 9.102288E+34
4.20E+38 7.618839E+14 1.034349E+35 7.676005E+14 1.037625E+35
4.40E+38 8.039950E+14 1.170283E+35 8.100027E+14 1.174154E+35
4.60E+38 8.468159E+14 1.315082E+35 8.531182E+14 1.319729E+35
4.80E+38 8.903585E+14 1.468642E+35 8.969594E+14 1.474235E+35
5.00E+38 9.346330E+14 1.630840E+35 9.415374E+14 1.637538E+35
5.20E+38 9.796483E+14 1.801537E+35 9.868614E+14 1.809488E+35
5.40E+38 1.025412E+15 1.980583E+35 1.032939E+15 1.989920E+35
5.60E+38 1.071930E+15 2.167816E+35 1.079778E+15 2.178663E+35
5.80E+38 1.119209E+15 2.363072E+35 1.127383E+15 2.375540E+35
6.00E+38 1.167251E+15 2.566178E+35 1.175758E+15 2.580370E+35
6.20E+38 1.216061E+15 2.776963E+35 1.224908E+15 2.792969E+35
6.40E+38 1.265642E+15 2.995252E+35 1.274835E+15 3.013157E+35
6.60E+38 1.315994E+15 3.220873E+35 1.325539E+15 3.240752E+35
6.80E+38 1.367119E+15 3.453654E+35 1.377024E+15 3.475575E+35
7.00E+38 1.419017E+15 3.693425E+35 1.429289E+15 3.717451E+35
7.20E+38 1.471688E+15 3.940018E+35 1.482333E+15 3.966208E+35
7.40E+38 1.525132E+15 4.193270E+35 1.536157E+15 4.221676E+35
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EZM1 EZM2
�B(cm

�3) E(g � cm�3) P (dyn � cm�2) E(g � cm�3) P (dyn � cm�2)
7.60E+38 1.579347E+15 4.453020E+35 1.590759E+15 4.483690E+35
7.80E+38 1.634332E+15 4.719109E+35 1.646137E+15 4.752088E+35
8.00E+38 1.690085E+15 4.991381E+35 1.702290E+15 5.026711E+35
8.20E+38 1.746603E+15 5.269687E+35 1.759216E+15 5.307407E+35
8.40E+38 1.803885E+15 5.553875E+35 1.816911E+15 5.594022E+35
8.60E+38 1.861928E+15 5.843802E+35 1.875373E+15 5.886410E+35
8.80E+38 1.920728E+15 6.139322E+35 1.934599E+15 6.184424E+35
9.00E+38 1.980282E+15 6.440296E+35 1.994586E+15 6.487923E+35
9.20E+38 2.040587E+15 6.746585E+35 2.055330E+15 6.796767E+35
9.40E+38 2.101640E+15 7.058053E+35 2.116827E+15 7.110817E+35
9.60E+38 2.163435E+15 7.374565E+35 2.179074E+15 7.429939E+35
9.80E+38 2.225970E+15 7.695988E+35 2.242066E+15 7.753996E+35
1.00E+39 2.289241E+15 8.022189E+35 2.305800E+15 8.082858E+35
1.02E+39 2.353242E+15 8.353039E+35 2.370270E+15 8.416392E+35
1.04E+39 2.417970E+15 8.688408E+35 2.435473E+15 8.754467E+35
1.06E+39 2.483421E+15 9.028164E+35 2.501405E+15 9.096953E+35
1.08E+39 2.549589E+15 9.372179E+35 2.568060E+15 9.443718E+35
1.10E+39 2.616470E+15 9.720323E+35 2.635433E+15 9.794633E+35
1.12E+39 2.684060E+15 1.007246E+36 2.703521E+15 1.014956E+36
1.14E+39 2.752354E+15 1.042847E+36 2.772318E+15 1.050838E+36
1.16E+39 2.821346E+15 1.078821E+36 2.841819E+15 1.087094E+36
1.18E+39 2.891031E+15 1.115153E+36 2.912019E+15 1.123711E+36
1.20E+39 2.961405E+15 1.151831E+36 2.982912E+15 1.160674E+36
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