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Abstract. We consider the d-dimensional nonlinear Schrödinger
equation under periodic boundary conditions:

−iu̇ = ∆u + V (x) ∗ u + ε
∂F

∂ū
(x, u, ū), u = u(t, x), x ∈ Td

where V (x) =
∑

V̂ (a)ei<a,x> is an analytic function with V̂ real
and F is a real analytic function in <u, =u and x. (This equation
is a popular model for the ‘real’ NLS equation, where instead of
the convolution term V ∗ u we have the potential term V u.) For
ε = 0 the equation is linear and has time–quasi-periodic solutions
u,

u(t, x) =
∑
s∈A

û0(a)ei(|a|2+V̂ (a))tei<a,x>, 0 < |û0(a)| ≤ 1,

where A is any finite subset of Zd. We shall treat ωa = |a|2 + V̂ (a),
a ∈ A, as free parameters in some domain U ⊂ RA.

This is a Hamiltonian system in infinite degrees of freedom, de-
generate but with external parameters, and we shall describe a
KAM-theory which, in particular, will have the following conse-
quence:

If |ε| is sufficiently small, then there is a large subset U ′ of U
such that for all ω ∈ U ′ the solution u persists as a time–quasi-
periodic solution which has all Lyapounov exponents equal to zero
and whose linearized equation is reducible to constant coefficients.

This is a short presentation of the basic ideas. A detailed proof
is given in [EK06].

1. Introduction

We consider the d-dimensional nonlinear Schrödinger equation

−iu̇ = ∆u + V (x) ∗ u + ε
∂F

∂ū
(x, u, ū), u = u(t, x)

under the periodic boundary condition x ∈ Td. The convolution po-
tential V : Td → C have real Fourier coefficients V̂ (a), a ∈ Zd, and we
shall suppose it is analytic. F is an analytic function in <u,=u and x.
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1.1. An ∞-dimensional Hamiltonian system. If we write{
u(x) =

∑
a∈Zd uae

i<a,x>

u(x) =
∑

a∈Zd vae
i<a,x>,

and let

ζa =

(
ξa

ηa

)
= C

(
ua

va

)
, C =

(
1√
2

1√
2

−i√
2

i√
2

)
.

then, in the symplectic space

{(ξa, ηa) : a ∈ Zd} = CZd × CZd

,
∑
a∈Zd

dξa ∧ dηa,

the equation becomes a real Hamiltonian system with an integrable
part

1

2

∑
a∈Zd

(|a|2 + V̂ (a))(ξ2
a + η2

a)

plus a perturbation.
Let A be a finite subset of Zd and fix

0 < pa(0), a ∈ A.

The (#A)-dimensional torus

1
2
(ξ2

a + η2
a) = pa(0) a ∈ A

ξa = ηa = 0 a ∈ L = Zd \ A,

is invariant for the Hamiltonian flow when ε = 0. In a neighborhood
of this torus we introduce action-angle variables (ϕa, ra)

ξa =
√

2(ra(0) + ra) cos(ϕa)

ηa =
√

2(ra(0) + ra) sin(ϕa).

The integrable Hamiltonian now becomes

h =
∑
a∈A

ωara +
1

2

∑
a∈L

(|a|2 + V̂ (a))(ξ2
a + η2

a),

where

ωa = |a|2 + V̂ (a), a ∈ A,

are the basic frequencies, and

|a|2 + V̂ (a), a ∈ L,

are the normal frequencies (of the invariant torus). The perturbation
εf(ϕ, r, ξ, η) will be a function of all variables.
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1.2. The topology. We define the complex domain

Oγ(σ, ρ, µ) =


‖ζ‖γ =

√∑
a∈L(|ξa|2 + |ηa|2)〈a〉2m∗e2γ|a| < σ

|=ϕ| < ρ
|r| < µ,

〈a〉 = max(|a|, 1) and m∗ > d
2
. In this space the Hamitonian equations

ζ̇ = J(∂h
∂ζ

+ ε∂f
∂ζ

), J =

(
0 I
−I 0

)
ϕ̇ = ∂h

∂r
+ ε∂f

∂r

ṙ = −ε ∂f
∂ϕ

have a well-defined local flow.

1.3. Statemant of the result. The Hamiltonian h + εf is a stan-
dard form for the perturbation theory of lower-dimensional (isotropic)
tori with one exception: it is strongly degenerate. We therefore need
external parameters to control the basic frequencies and the simplest
choice is to let the basic frequencies (i.e. the potential itself) be our
free parameters. The parameters will belong to a set

(1) U ⊂ {ω ∈ RA : |ω| ≤ C1} .

The potential V will be analytic and

(2) |V̂ (a)| ≤ C2e
−C3|a|, C3 > 0, a ∈ Zd.

The normal frequencies will be assumed to verify

(3)
||a|2 + V̂ (a)| ≥ C4 ∀ a, b ∈ L ,

||a|2 + V̂ (a) + |b|2 + V̂ (b)| ≥ C4 ∀ a, b ∈ L ,

||a|2 + V̂ (a)− |b|2 − V̂ (b)| ≥ C4 ∀ a, b ∈ L, |a| 6= |b|.
This is fulfilled, for example, if V is small and A 3 0 or if V is arbitrary
and A is sufficiently large.

Theorem A. Under the above assumptions, for ε sufficiently small
there exist a subset U ′ ⊂ U , which is large in the sense that

Leb (U \ U ′) ≤ cte.εexp1 ,

and for each ω ∈ U ′, a real analytic symplectic diffeomorphism Φ

O0(
σ

2
,
ρ

2
,
µ

2
) → O0(

σ

2
+ ε1/2,

ρ

2
+ ε1/2,

µ

2
+ ε1/2)

and a vector ω′ = ω′(ω) such that (hω′ + εf) ◦ Φ equals

c+ <ω, r> +
1

2
<ζ, A(ω)ζ> +εf ′ ,
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where

f ′ ∈ O(|r|2 , |r| ‖ζ‖0 , ‖ζ‖3
0)

and

A(ω) =

(
Ω1(ω) Ω2(ω)
tΩ2(ω) Ω1(ω)

)
is block-diagonal matrix with finite-dimensional blocks and Ω(ω) =
Ω1(ω) + iΩ2(ω) is Hermitian.

This theorem, as well as a more generalized version, is proven in
[EK06].

1.4. Notations. The dimension d will be fixed and m∗ will be a fixed
constant > d

2
. . means ≤ modulo a multiplicative constant that only,

unless otherwise specified, depends on d,m∗ and #A.
The points in the lattice Zd will be denoted a, b, c, . . ..
A matrix on L is just a mapping A : L× L → C or gl(2, C). Its

components will be denoted Ab
a.

<, > is the standard scalar product in Rd. ‖ ‖ is an operator or
l2-norm. | | will in general denote a supremum norm, with a notable
exception: for a lattice vector a ∈ Zd we use |a| for the l2-norm.

For any two compact subsets X,Y of Rn, dist(X, Y ) is the Hausdorff
distance and

X − Y = {x− y : x ∈ X, y ∈ Y }.

2. KAM-tori

A KAM-torus is a tripple object consisting of

(i) an invariant torus;
(ii) a flow on the torus which is conjugate to a linear flow ϕ 7→

ϕ + tω;
(iii) reducibility of the linearized equations on the torus to a con-

stant coefficient system ζ̇ = JAζ
ϕ̇ = ar
ṙ = 0.

The imaginary part of the eigenvalues of JA are the normal
frequencies of the KAM-torus.

In general a KAM-torus is a much stronger property than just being
an invariant torus or just being an invariant torus with a linear flow.
For finite-dimensional Hamiltonian systems there are two notable ex-
ceptions: if the torus is one-dimensional it is just a periodic solution
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and (ii) is automatic and (iii) is a general fact called Floquet theory; if
the torus is Lagrangian then (iii) follows from (i)+(ii) [dlL01].

2.1. Normal form Hamiltonians. This is a Hamiltonian of the form

h = c+ <ω, r> +
1

2
<ζ, A(ω)ζ> ,

where

A =

(
Ω1 Ω2
tΩ2 Ω1

)
is block-diagonal matrix with finite-dimensional blocks and Ω = Ω1 +
iΩ2 is Hermitian. We shall say more about these blocks in Section 4.

Clearly {ζ = r = 0} is a KAM-torus for h. Moreover, since Ω is
Hermitian and block diagonal the eigenvalues of JA are

±iΩa, a ∈ L
where {Ωa : a ∈ L} are the eigenvalues of Ω. Therefore the linearized
equation has only quasi-periodic solutions and, hence, the torus is lin-
early stable.

2.2. Consequences of Theorem A. The consequences of the theo-
rem is a KAM-torus for hω′ + εf . The dynamics of the Hamiltonian
vector field of hω′ + εf on the image of Φ is the same as that of

<ω, r> +
1

2
<ζ, A(ω)ζ> .

The torus {ζ = r = 0} is invariant, since the Hamiltonian vector field
on it is  ζ̇ = 0

ϕ̇ = ω
ṙ = 0,

and the flow on the torus is linear

t 7→ ϕ + tω.

Moreover, the linearized equations on this torus becomes
ζ̇ = JA(ω)ζ + Jε ∂2

∂r∂ζ
f ′(0, ϕ + tω, 0)r

ϕ̇ =<Jε ∂2

∂r∂ζ
f ′(0, ϕ + tω, 0), ζ> +Jε ∂2

∂r2 f
′(0, ϕ + tω, 0)r

ṙ = 0.

Since Ω(ω) is Hermitian and block diagonal the eigenvalues of JA(ω)
are purely imaginary ±iΩa(ω), a ∈ L. The linearized equation is
reducible to constant coefficients if all Ωa(ω) are non-resonant with
respect to ω, something which can be assumed if we restrict the set
U ′ arbitrarily little. Then the ζ-component (and of course also the
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r-component) will have only quasi-periodic (in particular bounded) so-
lutions. The ϕ-component may have a linear growth in t, the growth
factor (the “twist”) being linear in r. It follows that the torus is linearly
stable.

Reducibility is not only an important outcome of KAM-theory it is
also an essential ingredient in the proof – it simplifies the iteration since
it makes possible to reduce all approximate linear equations to constant
coefficients. But it does not come for free as we shall see below.

3. The homological equations

Let Tf be the Taylor polynomial

f(0, ϕ, 0)+ <
∂f

∂r
(0, ϕ, 0), r> + <

∂f

∂ζ
(0, ϕ, 0), ζ> +

1

2
<ζ,

∂2f

∂ζ2
(0, ϕ, 0)ζ>

of f – it also depends on ω.
If εTf = 0 then {ζ = r = 0} is a KAM-torus for h + εf . Now

εTf ∈ O(ε).

Suppose we have a Taylor polynomial s, i.e. s = Ts, and a normal
form Hamiltonian εk

c+ <ω′(ω)− ω, r> +
1

2
<ζ, (A′ − A)(ω)ζ> .

verifying the homological equation

(4) {h, s} = −Tf + k.

If Φt is the flow of 
ζ̇ = εJ ∂s

∂ζ
(ζ, ϕ, r)

ϕ̇ = ε∂s
∂r

(ζ, ϕ, r)
ṙ = −ε ∂s

∂ϕ
(ζ, ϕ, r),

then

(h + εf) ◦ Φ1 = h + εk +
∫ 1

0
d
dt

(h + tεf + (1− t)εk) ◦ Φtdt

= h + εk +
∫ 1

0
({h + tεf + (1− t)εk, εs}+ εf − εk) ◦ Φtdt

= h + εk +
∫ 1

0
(ε2{tf + (1− t)k, s}+ εf − εTf) ◦ Φtdt

= h + εk + εf ′.

So Φ1 transforms hω + εf to a new normal form hω + εk plus a new
perturbation εf ′. It is easy to verify that

εTf ′ ∈ O(ε2).
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3.1. The homological equations. In order to solve (4) we write s as

S01(ϕ)+ <S02(ϕ), r> + <S1(ϕ), ζ> +
1

2
<ζ, S2(ϕ)ζ> .

Then the equation (4) decomposes into three homological equations
corresponding to the three KAM-objects:

(5)

{
∂ωS1(ϕ) + JAS1(ϕ) = ∂f

∂ζ
(0, ϕ, 0)

∂ωS01(ϕ) = ∂f
∂ϕ

(0, ϕ, 0);

(6) ∂ωS02(ϕ) =
∂f

∂r
(0, ϕ, 0)− 1

ε
(ω′ − ω);

(7)
∂ωS2(ϕ) + AJS2(ϕ)− S2(ϕ)JA

= ∂2f
∂ζ2 (0, ϕ, 0)− 1

ε
(A′ − A),

where ∂ω is the directional derivative in the direction ω.
The most delicate of these equations is the third one. This is a

matrix equation since

A and F (ϕ) =
∂2f

∂ζ2
(0, ϕ, 0)

are ∞-dimensional matrices L × L → gl(2, R). For such matrices X
let us define X̃ = tCXC : L × L → gl(2, C) through

(X̃)b
a = tCXb

aC.

Then the equation (7) becomes

∂ωS̃2 + ÃJS̃2 − S̃2JÃ = F̃ − 1

ε
(Ã′ − Ã).

Since Ã has the form (
0 Ω
tΩ 0

)
this equation decouples into four equations for (scalar-valued) matrices
L × L → C

(8) ∂ωR(ϕ)± i(ΩR(ϕ) + R(ϕ)tΩ) = G(ϕ)

(9) ∂ωR(ϕ)± i(ΩR(ϕ)− ΩR(ϕ)) = G(ϕ)− 1

ε
(Ω′ − Ω).

These equations can be solved (formally) in Fourier series and to
get a solution we must prove the convergence of these Fourier series
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and estimate the solution. It is the equations (9) which give rise to
problem. We define

(Ω′ − Ω)b
a =

{
ε(Ĝ(0))b

a if |a| = |b|
0 if not

and

R̂(0)b
a = 0 if |a| = |b|.

The remaining part of R is determined by

(10) i <k, ω> R̂(k)± i(ΩR̂(k)− R̂(k)Ω) = Ĝ(k), k ∈ ZA.

3.2. Small Divisors. In order to get a solution with estimates we
need a lower bound on the small divisors

(11) |<k, ω> +Ωa(ω)− Ωb(ω)| , k ∈ ZA, a, b ∈ L, |a| 6= |b|.

The basic frequencies ω will be keep fixed during the iteration –
that’s what the parameters are there for – but the normal frequencies
will vary. Indeed, Ωa(ω) and Ωb(ω) are perturbations of |a|2 + V̂ (a)

and |b|2 + V̂ (b) which are not known a priori but are determined by the
approximation process. 1

This is a lot of conditions for a few parameters ω. Due to the expo-
nential decay of space modes and Fourier modes we can truncate G to
G∆′

(Ĝ∆′(k))b
a =

{
Ĝ(k)b

a if |a− b| ≤ ∆′ and |k| ≤ ∆′

0 if not

for some sufficiently large (scale-dependent) ∆′ = ∆′
ε. To solve the

truncated equation it is enough to control the small divisors for

(12) |k| , |a− b| ≤ ∆′

which improves the situation a bit. Indeed, in one space-dimension
(d = 1) it improves a lot, and (11 + 12) reduces to only finitely many
cases. Not so however when d ≥ 2, in which case the number of cases
remains infinite.

How to control (11+12) is the main difficulty in the proof. But before
we turn to this question (in Section 5) we shall discuss the normal form
and how it changes during the iteration.

1A lower bound on (11), often known as the second Melnikov condition, is strictly
speaking not necessary at all for reducibility. It is necessary, however, for reducibil-
ity with a reducing transformation close to the identity.
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4. Block decomposition and Normal forms

4.1. Blocks. For a non-negative integer ∆ we define an equivalence
relation on L generated by the pre-equivalence relation

a ∼ b ⇐⇒
{
|a|2 = |b|2
|a− b| ≤ ∆.

Let [a]∆ denote the equivalence class (block) of a, and let E∆ be the set
of equivalence classes.

It is trivial that each block [a] is finite with cardinality

. |a|d−1

that depends on a. But there is also a uniform ∆-dependent bound.

Lemma 4.1. Let

d∆ = sup
a

(#[a]∆).

Then

d∆ . ∆
(d+1)!

2 .

The blocks [a]∆ have a rigid structure when |a| is large. For a vector
c ∈ Zd \ 0 let

ac ∈ (a + Rc) ∩ Zd

be the lattice point b on the line a + Rc with smallest norm – if there
are two such b’s we choose the one with <b, c>≥ 0.

Lemma 4.2. Given a and c 6= 0 in Zd. For all t ≥ 0, such that

|a + tc| ≥ d2
∆(|ac|+ |c|) |c| ,

the set [a + tc]∆ − (a + tc) is independent of t and ⊥ to c.

Description of blocks when d = 2, 3. For d = 2, we have outside
{|a| :≤ d∆ ≈ ∆3}

? rank[a]∆ = 1 if, and only if, a ∈ b
2

+ b⊥ for some 0 < |b| ≤ ∆ –
then [a]∆ = {a, a− b} ;

? rank[a]∆ = 0 otherwise – then [a]∆ = {a}.
For d = 3, we have outside {|a| :≤ d∆ ≈ ∆12}

? rank[a]∆ = 2 if, and only if, a ∈ b
2

+ b⊥ ∩ c
2

+ c⊥ for some 0 <
|b| , |c| ≤ ∆2 linearly independent – then [a]∆ ⊃ {a, a−b, a−c};

? rank[a]∆ = 1 if, and only if, a ∈ b
2

+ b⊥ for a unique(!) 0 <
|b| ,≤ ∆ – then [a]∆ = {a, a− b};

? rank[a]∆ = 0 otherwise – then [a]∆ = {a}.
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4.2. Normal form matrices and Hamiltonians. We say that a
(scalar-valued) matrix X : L × L → C is on normal form – denoted
NF∆ – if

(i) X is Hermitian;
(ii) X is block-diagonal over over E∆, i.e.

Xb
a = 0 if [a]∆ 6= [b]∆.

We say that our normal form Hamiltonians

h = c+ <ω, r> +
1

2
<ζ, A(ω)ζ> ,

A =

(
Ω1 Ω2
tΩ2 Ω1

)
,

is NF∆ if Ω = Ω1 + iΩ2 is NF∆. Clearly if h is NF∆ for some ∆ ≤ ∆′

then k and h+εk are NF∆′ , where k is determined by the homological
equation (4) under the truncation (12).

5. Töplitz-Lipschitz matrices

5.1. Töplitz at ∞. We say that a matrix

X : L × L → C

has a Töplitz-limit at ∞ in the direction c if, for all a, b

lim
t→∞

Xb+tc
a+tc ∃ = Xb

a(c).

X(c) is a new matrix which is Töplitz in the direction c, i.e.

Xb+c
a+c(c) = Xb

a(c).

We say that X is 1-Töplitz if all Töplitz-limits X(c) exist, and we
define, inductively, that X is n-Töplitz if all Töplitz-limits X(c) are
(n-1)-Töplitz. We say that X is Töplitz if it is (d-1)-Töplitz.

Example. Consider the equation (10) and assume for simplicity that

Ω = diag(|a|2 + V̂ (a)).

Then

R̂(k)b
a =

1

i

Ĝ(k)b
a

<k, ω> +|a|2 − |b|2 + V̂ (a)− V̂ (b)

and if the small divisors are all 6= 0 then R̂(k) is a well-defined matrix
L × L → C. Replacing a, b by a + tc, b + tc and letting t →∞ we see
two different cases. If <a− b, c>6= 0 then the limit exist and is = 0 as
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long as |Ĝ(k)b+tc
a+tc| is bounded. If <a− b, c>= 0 then the limit exist as

long as |Ĝ(k)b+tc
a+tc| has a limit:

R̂(k)b
a(c) =

1

i

Ĝ(k)b
a(c)

<k, ω> +|a|2 − |b|2
.

Hence the matrix R̂(k) is Töplitz at ∞ if Ĝ(k) is Töplitz at ∞.

5.2. Lipschitz domains. For a non-negative constant Λ and for any
c ∈ Zd \ 0, let the Lipschitz domain

DΛ(c) ⊂ L× L

be the set of all (a, b) such that there exist a′, b′ ∈ Zd and t ≥ 0 such
that {

|a = a′ + tc| ≥ Λ(|a′|+ |c|) |c|
|b = b′ + tc| ≥ Λ(|b′|+ |c|) |c|

and
|a|
|c|

,
|b|
|c|

≥ 2Λ2.

The Lipschitz domains are not so easy to grasp, but it is easy to
verify

Lemma 5.1. For Λ ≥ 3

|a|
|c|

≈ |b|
|c|
≈ <a, c>

|c|
≈ <b, c>

|c|
≈ t & Λ|c|

and

|a′| ≤ t

Λ− 1
.

The most important property is that finitely many Lipschitz domains
cover a “neighborhood of ∞” in the following sense.

Lemma 5.2. For any N , the subset

{|a|+ |b| & Λ2d−1} ∩ {|a− b| ≤ N} ⊂ Zd × Zd

is contained in ⋃
|c|.Λd−1

DΩ(c)

for any

Ω ≤ Λ

N + 1
− 1.
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5.3. Töplitz-Lipschitz matrices. We define the supremum-norm

|X|γ = sup
a,b∈L

|X|baeγ|a−b|,

the Lipschitz-constant

LipΛ,γX = sup
c∈Zd\0

sup
(a,b)∈DΛ(c)

|Xb
a −Xb

a(c)|max(
|a|
|c|

,
|b|
|c|

)eγ|a−b|

and the Lipschitz-norms
1<X >Λ,γ= LipΛ,γX + |X|γ ,

and, inductively,
n<X >Λ,γ= sup

c∈Zd

n−1<X(c)>Λ,γ

– this norm is defined if X is n-Töplitz.
We define

<X >Λ,γ=
d−1<X >Λ,γ

and we say that the matrix X is Töplitz-Lipschitz if <X >Λ,γ< ∞ for
some Λ, γ.

Example. Consider R̂(k) from the example above. If

(a, b) = (a′ + tc, b′ + tc) ∈ DΛ(c), Λ ≥ 3,

then
|a|
|c|

≈ |b|
|c|
≈ t ≥ Λ.

If <a− b, c>6= 0 then∣∣∣R̂(k)b
a − 0

∣∣∣max(
|a|
|c|

,
|b|
|c|

)eγ|a−b|

≈

∣∣∣∣∣ Ĝ(k)b
a

<a− b, c> +1
t
(<k, ω> +|a′|2 − |b′|2 + V̂ (a)− V̂ (b))

∣∣∣∣∣ eγ|a−b|

which is

≈

∣∣∣∣∣ Ĝ(k)b
a

<a− b, c>

∣∣∣∣∣ eγ|a−b| . |G|γ

if Λ is sufficiently large.
If <a− b, c>= 0 then∣∣∣R̂(k)b

a − R̂(k)(c)b
a

∣∣∣max(
|a|
|c|

,
|b|
|c|

)eγ|a−b|

.

∣∣∣∣ 1

<k, ω> +|a′|2 − |b′|2

∣∣∣∣LipΛ,γ(Ĝ(k))+

∣∣∣∣ 1

<k, ω> +|a′|2 − |b′|2

∣∣∣∣2 ∣∣∣Ĝ(k)
∣∣∣
γ
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if Λ is sufficiently large.
In particular, the matrix R̂(k) is Töplitz-Lipschitz if Ĝ(k) is Töplitz-

Lipschitz.

5.4. How do we use this property. Let us discuss the case d = 2.
Assume that

Ω(ω) = diag(|a|2 + V̂ (a)) + H(ω)

where H(ω) and ∂H
∂ω

(ω) are Töplitz at ∞ and NF∆ for all ω ∈ U and
verify

(13)

∥∥∥∥∂H

∂ω
(ω)

∥∥∥∥ ≤ 1

4
, ω ∈ U.

(Here ‖ · ‖ is the operator norm.)
Let {

(a, b) = (a′ + t0c, b
′ + t0c) ∈ DΛ(c), Λ ≥ d∆2

|a− b| ≤ ∆.

For t ≥ t0, by Lemma 4.2,

σ(Ω
[a′+tc]∆
[a′+tc]∆

(ω))− σ(Ω
[b′+tc]∆
[b′+tc]∆

(ω)) = σ(Ω
[a]∆+tc
[a]∆+tc(ω))− σ(Ω

[b]∆+tc
[b]∆+tc(ω))

2 and
dist(σ(Ω

[a]∆+tc
[a]∆+tc(ω))− σ(Ω

[b]∆+tc
[b]∆+tc(ω)), 0)

is equal to
|t <a′ − b′, c> +|a′|2 − |b′|2|

with an error of size at most

C2 + ‖H(ω)‖ .

By Lemma 5.1

|t <a′ − b′, c> +|a′|2 − |b′|2| ≥ Λ(| <a′ − b′, c> | − 2∆
1

Λ− 1
).

If <a− b, c>=<a′ − b′, c>6= 0 then the small divisors (11) are large
for all

a ∈ [a]∆, b ∈ [b]∆, |k| ≤ ∆

if Λ is sufficiently large.
If <a− b, c>=<a′ − b′, c>= 0 then

σ(Ω
[a]∆+tc
[a]∆+tc(ω))− σ(Ω

[b]∆+tc
[b]∆+tc(ω)) →

σ(diag(|a|2)a∈[a]∆ + H
[a]∆
[a]∆

(c, ω))− σ(diag(|b|2)b∈[b]∆ + H
[b]∆
[b]∆

(c, ω))

as t →∞. Notice that the limit does not change if we replace (a, b) by
(a + c, b + c).

2σ(ΩY
X) is the spectrum of the matrix ΩY

X .
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We denote the limit-set as

{Ωa(c, ω)− Ωb(c, ω) : (a, b) ∈ [a]∆ × [b]∆}

and we notice that he small divisors at “∞c”, i.e.

(14) |<k, ω> +Ωa(c, ω)− Ωb(c, ω)| ,

are only finitely many under the restriction

(15) |k| , |a− b| ≤ ∆′ and <a− b, c>= 0

due to invariance under c-translations. Therefore we can bound (14+15)
for ω in an appropriate subset U ′ of U – here we need (13) – and using
the Lipschitz-property we can propagate this bound into the domain
DΛ(c) if Λ is sufficiently large – the size of Λ depends in particular on

<H >{Λ
U}= sup

ω∈U
(<H(ω)>Λ,0, <

∂H

∂ω

(ω)>Λ,0).

By Lemma 5.2 the set

L × L ∩ {|a− b| ≤ ∆}

is covered by finitely many Lipschitz-domains and a finite set. For each
Lipschitz-domain the small divisor condition holds, as above, for ω in
some subset of U . For (a, b) in the finite set it also holds for ω in some
subset of U .

Carrying out the estimates and making an induction of d we prove

Proposition 5.3. Let ∆′ > 0 and κ > 0. Assume that U verifies (1),

that V̂ is real and verifies (2) and that H(ω) and ∂H
∂ω

(ω) are Töplitz at
∞ and NF∆ and verify (13) for all ω ∈ U .

Then there exists a subset U ′ ⊂ U ,

Leb(U \ U ′) ≤
cte. max(∆′, d2

∆, Λ)exp+#A-1(1+ <H >{Λ
U})

dκ
1
d Cd−1

1 ,

such that, for all ω ∈ U ′, 0 < |k| ≤ ∆′ and all

|a− b| ≤ ∆′

|<k, ω> +α(ω)− β(ω)| ≥ κ ∀
{

α(ω) ∈ σ(Ω(ω)[a]∆)
β(ω) ∈ σ(Ω(ω)[b]∆).

Moreover the κ-neighborhood of U \ U ′ satisfies the same estimate.
The exponent exp depends only on d. The constant cte. depends on

the dimensions d and #A and on C2, C3.
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This proposition permits to control the small divisors and, hence,
estimate the solution of the homological equation if Ω(ω) satisfies the
assumptions of the proposition and if we can bound

<H >{Λ
U} .

In order to iterate this construction and, hence, prove the theorem, we
must grant that the modified normal form

h + εk = c+ <ω′(ω), r> +
1

2
<ζ, A′(ω)ζ> ,

also verifies the assumptions and control

<H + εH ′>n
Λ′
U ′

o
for some Λ′ ≥ Λ. The essential points in doing this is discussed in the
next section.

6. Function with Töplitz-Lipshitz property

6.1. Töplitz structure of ∂2f
∂ζ2 . The quadratic differential

<ζ,
∂2

∂ζ2
f(0, ϕ, r)ζ>

has the form
<ζ, Aζ>=

∑
a,b∈L

<ζa, A
b
aζb>,

where A : L × L → gl(2, R) is a gl(2, R)-valued matrix. It is uniquely
determined by the symmetry condition

tAb
a = Aa

b .

Its properties are best seen in the complex variables

(tCAC)b
a =

(
P b

a Qb
a

Qb P̄ b
a

)
.

Consider for example the Schrödinger equation with a cubic poten-
tial, i.e.

F (x, u, ū) = u2ū2.

Then
P a2

a1
=

∑
b1,b2∈A

b1+b2=a1+a2

2
√

rb1rb2e
−i(ϕb1

+ϕb2
)

and
Qb2

a2
=

∑
a1,b1∈A

a1−b1=a2−b2

8
√

ra1rb1e
i(ϕa1−ϕb1

).
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In particular {
P is symmetric
Q is Hermitian.

Moreover Q is Töplitz,

Qb+c
a+c = Qb

a ∀a, b, c,

and (since A is finite) its elements are zero at finite distance from
the diagonal. In particular, this matrix is Töplitz-Lipschitz and has
exponential decay off the diagonal a = b. P is also Töplitz-Lipschitz
with exponential decay but in a different sense:

P b−c
a+c = P b

a ∀a, b, c,

and has exponential decay off the “anti-diagonal” {a = −b}.

6.2. Töplitz-Lipschitz matrices L×L → gl(2, R). We consider the
space gl(2, C) of all complex 2 × 2-matrices provided with the scalar
product

Tr(tĀB).

Let

J =

(
0 1
−1 0

)
.

and consider the orthogonal projection π of gl(2, C) onto the subspace

M = CI + CJ.

For a matrix
A : L × L → gl(2, C)

we define πA through

(πA)b
a = πAb

a, ∀a, b.

We define the supremum-norms

|A|±γ = sup
(a,b)∈L×L

|Ab
a|eγ|a∓b|

and
|A|γ = max(|πA|+γ , |A− πA|−γ ).

A is said to have a Töplitz-limit at ∞ in the direction c if, for all a, b
the two limits

lim
t→+∞

Ab±tc
a+tc ∃ = Ab

a(±, c).

A(±, c) are new matrices which are Töplitz/“anti-Töplitz” in the di-
rection c, i.e.

Ab+c
a+c(+, c) = Ab

a(+, c) and Ab−c
a+c(−, c) = Ab

a(−, c).
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If |A|γ < ∞, γ > 0, then

πA(−, c) = (A− πA)(+, c) = 0.

We say that A is 1-Töplitz if all Töplitz-limits A(±, c) exist, and we
define, inductively, that X is n-Töplitz if all Töplitz-limits A(±, c) are
(n-1)-Töplitz. We say that A is Töplitz if it is (d-1)-Töplitz.

We define the Lipschitz-constants

Lip±Λ,γA = sup
c 6=0

sup
(a,b)∈DΛ(c)

|(A− A(±, c))±b
a |max(

|a|
|c|

,
|b|
|c|

)eγ|a∓b|

and the Lipschitz-norms

1<A>Λ,γ= max(Lip+
Λ,γπA + |πA|+γ , Lip−Λ,γ(I − π)A + |(I − π)A|−γ )

and, inductively,

n<A>Λ,γ= sup
c

(n−1<A(+, c)>Λ,γ,
n−1<A(−, c)>Λ,γ)

– it is defined if A is n-Töplitz.
We define

<A>Λ,γ=
d−1d<A>Λ,γ

and we say that A Töplitz-Lipschitz if <A>Λ,γ< ∞ for some Λ, γ. (For
a more general formulation see [EK05].) The most important property
is a product formula.

Lemma 6.1.

<A1 · · ·An >Λ+6,γ′≤
(cte.)nΛ2( 1

γ−γ′
)(n−1)d+1[

∑
1≤k≤n

∏
1≤j≤n

j 6=k
|Aj|γj

<Ak >Λ,γk
],

where all γ1, . . . , γn are = γ except one which is = γ′.

6.3. Functions with Töplitz-Lipschitz property. Let Oγ(σ) be
the set of vectors in the complex space l2γ(L, C) of norm less than σ,
i.e.

Oγ(σ) = {ζ ∈ CL × CL : ‖ζ‖γ < σ}.
Our functions f : O0(σ) → C will be defined and real analytic on

the domain O0(σ). 3 Its first differential

l20(L, C) 3 ζ̂ 7→<ζ̂,
∂f

∂ζ
(ζ)>

3The space l2γ(L, C) is the complexification of the space l2γ(L, R) of real sequences.
“real analytic” means that it is a holomorphic function which is real on O0(σ) ∩
l2γ(L, R).
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defines a unique vector ∂f
∂ζ

(ζ) in l20(L, C), and its second differential

l20(L, C) 3 ζ̂ 7→<ζ̂,
∂2f

∂ζ2
(ζ)ζ̂>

defines a unique matrix ∂2f
∂ζ2 (ζ) L × L → gl(2, C) which is symmetric,

i.e.
tAb

a = Aa
b .

We say that f is Töplitz at ∞ if the matrix ∂2f
∂ζ2 (ζ) is Töplitz at ∞

for all ζ ∈ O0(σ). We define the norm

[f ]Λ,γ,σ

to be the smallest C such that
|f(ζ)| ≤ C ∀ζ ∈ O0(σ)
‖∂ζf(ζ)‖γ′ ≤

1
σ
C ∀ζ ∈ Oγ′(σ), ∀γ′ ≤ γ,

<∂2
ζ f(ζ)>Λ,γ′≤ 1

σ2 C ∀ζ ∈ Oγ′(σ), ∀γ′ ≤ γ.

We study the behavior of this norm under truncations, Poisson brack-
ets, flows and compositions in order to control it during the KAM-step.

7. Some References

For finite dimensional Hamiltonian systems the first proof of persis-
tence of stable (i.e. vanishing of all Lyapunov exponents) lower dimen-
sional invariant tori was obtained in [Eli85, Eli88] and there are now
many works on this subjects. There are also many works on reducibil-
ity (see for example [Kri99, Eli01]) and the situation in finite dimension
is now pretty well understood. Not so, however, in infinite dimension.

If d = 1 and the space-variable x belongs to a finite segment supple-
mented by Dirichlet or Neumann boundary conditions, this result was
obtained in [Kuk88] (also see [Kuk93, Pös96]). The case of periodic
boundary conditions was treated in [Bou96], using another multi–scale
scheme, suggested by Fröhlich–Spencer in their work on the Anderson
localization [FS83]. This approach, often referred to as the Craig-
Wayne scheme, is different from KAM. It avoids the, sometimes, cum-
bersome bounds on the small divisors (11) but to a high cost: the ap-
proximate linear equations are not of constant coefficients. Moreover,
it gives persistence of the invariant tori but no reducibility and no infor-
mation on the linear stability. A KAM-theorem for periodic boundary
conditions has recently been proved in [GY05] (with a perturbation F
independent of x) and the perturbation theory for quasi-periodic so-
lutions of one-dimensional Hamiltonian PDE is now sufficiently well
developed (see for example [Kuk93, Cra00, Kuk00]).



A SHORT PRESENTATION 19

The study of the corresponding problems for d ≥ 2 is at its early
stage. Developing further the scheme, suggested by Fröhlich–Spencer,
Bourgain proved persistence for the case d = 2 [Bou98]. More recently,
the new techniques developped by him and collaborators in their work
on the linear problem has allowed him to prove persistence in any
dimension d[Bou04]. (In this work he also treats the wave equation.)
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[Kuk88] S. B. Kuksin, Perturbations of quasiperiodic solutions of infinite-dimen-
sional Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988),
41–63, Engl. Transl. in Math. USSR Izv. 32:1 (1989).

[Kuk93] , Nearly integrable infinite-dimensional Hamiltonian systems,
Springer-Verlag, Berlin, 1993.

[Kuk00] , Analysis of Hamiltonian PDEs, Oxford University Press, Oxford,
2000.
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