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Abstract

This paper offers the functional model of a class of non-selfadjoint extensions of a Hermitian operator
with equal deficiency indices. The explicit form of dilation of a dissipative extension is offered and the
symmetric form of Sz.Nagy-Foiaş model as developed by B. Pavlov is constructed. A variant of functional
model for a general non-selfadjoint non-dissipative extension is formulated. We illustrate the theory by
two examples: singular perturbations of the Laplace operator in L2(R

3) by a finite number of point
interactions, and the Schrödinger operator on the half axis (0,∞) in the Weyl limit circle case at infinity.

Introduction

Functional model approach plays a prominent role in the study of non-selfadjoint and non-unitary operators
on Hilbert space. The rich and comprehensive theory has been developed since pioneering works of M. Brod-
skĭı, M. Livŝiç, B. Szökefalvi-Nagy, C. Foiaş, L. de Branges, and J. Rovnyak, see [N1], [N2] and references
therein. The functional model techniques are based on the fundamental theorem of B. Szökefalvi-Nagy and
C. Foiaş stating that each linear contraction T , ‖T ‖ ≤ 1 on a separable Hilbert space H can be extended to
an unitary operator U on a wider Hilbert space H ⊃ H such that T n = PHU

n|H , n ≥ 0, where PH is the
orthogonal projection from the space H onto its subspace H . Operator U is called dilation of the contrac-
tion T . An unitary operator U with such properties is not unique, but if the contraction T does not have
reducing unitary parts (such operators are called completely non-unitary, or simple) and if U is minimal in
the sense that the linear set {UkH : k ∈ Z} is dense in the dilation space H , then the unitary dilation U
is unique up to an unitary equivalence. B. Szökefalvi-Nagy and C. Foiaş proved as well that the spectrum
of the minimal unitary dilation of a simple contraction is absolutely continuous and coincides with the unit
circle T := {z ∈ C : |z| = 1}. In the spectral representation of the unitary operator U , when U becomes a
multiplication f �→ k ∗ f , k ∈ T on some L2 space of vector-functions f , the contraction T = PHU |H takes
the form of its functional model T ∼= PH k ∗ |H .

Originating in the specific problems of physics of the time, the initial research on functional model quickly
shifted into the realm of “pure mathematics” and most of the model results are now commonly regarded as
“abstract”. One of the few exceptions is the scattering theory developed by P. Lax and R. Phillips [LP].
The theory was originally devised for the analysis of the scattering of electromagnetic and acoustic waves
off compact obstacles. The research, however, not only resulted in important discoveries in the scattering
theory, but deeply influenced the subsequent developments of the operator model techniques as well.

The connection between the Lax-Phillips approach and the Sz.-Nagy-Foiaş dilation theory is established
by means of the Cayley transform that maps a bounded operator T such that R(T − I) is dense in H
into a possibly unbounded operator A := −i(T + I)(T − I)−1, D(A) := R(T − I). If T is unitary, then
A is selfadjoint, and when T is contractive, the imaginary part of the operator A (properly understood,
if needed, in the sense of sesquilinear forms) is positive. The latter operators A are called dissipative.
By definition, the selfadjoint dilation A = A ∗ of a dissipative operator A = −i(T + I)(T − I)−1 is the
Cayley transform of the unitary dilation of T . Correspondingly, the dilation A is called minimal if the set
{(A − zI)−1H : Im z 
= 0} is dense in H .

∗vryzhov@shaw.ca
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The main object of the Lax-Phillips scattering theory is a strongly continuous contractive group of
operators on a Hilbert space. The generator of this group is a dissipative operator that describes the geometry
of the scatterer. Its selfadjoint dilation is present in the problem statement from the very beginning, and as
all other mathematical objects of the theory, allows a clear physical interpretation.

Another line of examples of the fruitful interplay between the functional model theory and mathematical
physics originates in the works [P1], [P3], [P4], [P5] of B. Pavlov on dissipative Schrödinger operators with
a complex potential on L2(R3) and with a dissipative boundary condition on L2(0,∞). In comparison with
the Lax-Phillips theory these studies are distinguished by the absence of the “natural” selfadjoint dilation
known upfront. In both cases the selfadjoint dilations have to be “guessed” and explicitly assembled from the
objects given in the initial problem statement. This approach eventually evolved into a recipe that not only
allows to recover the selfadjoint dilation (see [K]), but also to build its spectral representation, obtaining
the eigenfunction expansion of the original dissipative operator. The dilation and the model space used
by B. Pavlov known as symmetric model are well suited for the study of differential operators, and as in
the case of the Lax-Phillips theory, the objects emerging from the model considerations have clear physical
meaning. (See [P6].) The technique of expansion by the dilation’s eigenfunctions of absolutely continuous
spectrum in order to pass to the spectral representation is well-known in the physical literature, where this
otherwise formal procedure is properly rectified by the distribution theory. In application to the setting
of a generic dissipative operator, this approach requires a certain adaptation of the rigged Hilbert spaces
technique. (See [P6] for an example.)

The next step in the development was made by S. Naboko, who offered a “direct” method of passing on
to the functional model representation for the dissipative operators with the relatively bounded imaginary
part [Na], [Na1], [Na2]. The approach is based on the preceding works of B. Pavlov, but without resorting to
the dilation’s eigenfunctions of continuous spectrum, the spectral mapping is expressed in terms of boundary
values of certain operator- and vector-valued functions analytic in the upper and lower half planes. In a
sense, this is exactly what one should expect trying to justify the distributions by methods of the analytic
functions theory [Br]. As an immediate benefit, this direct approach opened up the opportunity to include
non-selfadjoint relatively bounded perturbations of a selfadjoint operator with the relative bound lesser
than 1 in the model-based considerations. It turned out that for an operator of this class there exists a
model space where the action of the operator can be expressed in a simple and precise form. The ability
to abandon the dissipativity restriction imposed on the operator class suitable for the model-based study
allowed S. Naboko to conduct the profound spectral analysis of additive perturbations of the selfadjoint
operators, to develop the scattering theory for such perturbations, and to introduce valuable definitions of
spectral subspaces of a non-selfadjoint non-dissipative operator. The idea of utilization of the functional
model of a “close” operator for the study of the operator under consideration was adopted by N. Makarov
and V. Vasyunin in [MV], who offered the analogue of S. Naboko’s construction for an arbitrary bounded
operator considered as a perturbation of an unitary. It comes quite naturally that the relationship between
these two settings is established by the Cayley transform and we term this construction Naboko-Vasyunin
model.

Although the question of model representation of a bounded operator became settled on the abstract
level with the work [MV], the challenges with various applications to the physical problems remain to be
addressed. (See [S] for valuable details on dissipative case.) Speaking of two basic examples of non-selfadjoint
Schrödinger operators tracked back to the original works of B. Pavlov, it has to be noted that the example
of the Schrödinger operator with a complex-valued potential can be studied from the more general point
of view of relative bounded perturbations developed in [Na].1 At the same time the second example, non-
selfadjoint extensions of a Hermitian differential operator, mostly remains outside of the general theory since
these operators could not be divided into a selfadjoint one, plus a relatively bounded additive perturbation.
Consequently, in order to utilize the functional model approach for the study of extensions of Hermitian
operators arising in the physical applications, one is left solely with the recipe of B. Pavlov. In other words,
one has to “guess” the selfadjoint dilation and to prove the eigenfunction expansion theorem.

The present paper concerns the functional model construction for a wide class of extensions of Hermitian
operators known in the literature as almost solvable extensions. Our approach is identical to that of
S. Naboko and as such does not involve the eigenfunctions expansion at all. All considerations are carried out

1The functional model of additive perturbations has been applied to the spectral analysis of the transport operator in [NR],
[KNR].
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in the general setting of the model for non-dissipative non-selfadjoint operators. Although results obtained
here are applicable to many interesting physical and mathematical problems, the limitations of almost solv-
able extensions theory hamper the study of the most interesting case of a multi-dimensional boundary value
problem for the partial differential operators. (See Remark 1.5 for more details.) Dissipative extensions of
Hermitian operators with finite deficiency indices are much easier to analyze. A few successful attempts
that utilize B. Pavlov schema to examine operators of this class encountered in applications were published
recently. In particular, Pavlov’s approach to the model construction of dissipative extensions of Hermitian
operators was followed by B. Allahverdiev in his works [A2], [A3], [A4], [A5], and some others, and by the
group of authors [KaNR], [BN], [BKNR1], [BKNR2], where the theory of dissipative Schrödinger operator
on finite interval was applied to the problems arising in the semiconductor physics. In comparison with
these results, Section 2 below offers an abstract perspective on the selfadjoint dilation and its resolvent for
a dissipative almost solvable extension, and more importantly, verifies correctness of many underlying argu-
ments needed for the further development in the general situation. These abstract results are immediately
applicable to any dissipative almost solvable extension, thereby relieve of the burden to prove them in each
particular case. Since the eigenfunction expansion is not used in the model construction, all the objects
are well defined and there is no need for special considerations with regard to formal procedures dealing
with “generalized” vectors. Finally, the paper proposes a model of an almost solvable extension with no
assumption of its dissipativity.

The paper is organized as follows. In Section 1 we briefly review some definitions and results pertinent
to our study. The Section culminates with the calculation of the characteristic function of a non-selfadjoint
almost solvable extension of a Hermitian operator expressed in terms of the extension’s “parameter” and
the Weyl function. (See the definitions below.) The relationship of these three objects is believed to be first
obtained in the paper [P1] for a Hermitian operator with the deficiency indices (1, 1), but seems to remain
unnoticed. We take an opportunity and formulate this result in the more general setting of almost solvable
extensions. In Section 2 we show how to build the functional model of a non-selfadjoint almost solvable
extension of a Hermitian operator following the approach of [Na]. All the results are accompanied with the
full proofs, starting from the exact form of dilation of a dissipative almost solvable extension and ending
in the main model theorem for a general non-selfadjoint non-dissipative extension. In Section 3 the theory
is illustrated by two examples of Hermitian operators with finite deficiency indices. We refrain from giving
the model construction of non-selfadjoint extensions of these operators, because all such results are easily
derived from the theory developed in Section 2.

We use symbol B(H1, H2) where H1, H2 are separable Hilbert spaces, for the Banach algebra of bounded
operators, defined everywhere in H1 with values in H2. The notation A : H1 → H2 is equivalent to
A ∈ B(H1, H2). Also, B(H) := B(H,H). The real axis, complex plane are denoted as R, C, respectively.
Further, C± := {z ∈ C : ± Im z > 0}, R± := {x ∈ R : ± x > 0}, where Im stands for the imaginary part of
a complex number. The domain, range and kernel of a linear operator A are denoted as D(A), R(A), and
ker(A); the symbol ρ(A) is used for the resolvent set of A.

The author would like to thank Prof. Serguei Naboko for his attention to the work and encouragement.

1 Preliminaries

Let us recall a few basic facts about unbounded linear operators.
For a closed linear operator L with dense domain D(L) on a separable Hilbert space H a sesquilinear

form ΨL(·, ·) defined on domain D(L) ×D(L):

ΨL(f, g) =
1
i
[(Lf, g)H − (f, Lg)H ], f, g ∈ D(L) (1.1)

plays a role of the imaginary part of L in the sense that 2Im (Lf, f) = ΨL(f, f), f ∈ D(L).

Definition 1.1. Operator L is called dissipative if

Im (Lf, f) ≥ 0, f ∈ D(L) (1.2)

Definition 1.2. Operator L is called maximal dissipative if (1.2) holds and the resolvent (L − zI)−1

exists for any z ∈ C− as operator from B(H) .
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In what follows A denotes a closed and densely defined Hermitian operator on the separable Hilbert
space H with equal deficiency indices 0 < n+(A) = n−(A) ≤ ∞. We will assume that A is simple, i.e. it
has no reducing subspaces where it induces a self-adjoint operator. The adjoint operator A∗ is closed and
A ⊆ A∗ in a sense that D(A) ⊆ D(A∗) and Ax = A∗x for x ∈ D(A).

1.1 Boundary triples and almost solvable extensions

An extension A of the operator A is called proper, if A ⊆ A ⊆ A∗. The following definition, see [GG],
[Bru], [Ko1], may be considered as an abstract version of the second Green’s formula.

Definition 1.3. A triple {H,Γ0,Γ1} consisting of an auxiliary Hilbert space H and linear mappings Γ0,Γ1

defined on the set D(A∗), is called a boundary triple for the operator A∗ if the following conditions are
satisfied:

1. The Green’s formula is valid

(A∗f, g)H − (f,A∗g)H = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ D(A∗) (1.3)

2. For any Y0, Y1 ∈ H there exist f ∈ D(A∗), such that Γ0f = Y0, Γ1f = Y1. In other words, the
mapping f �→ Γ0f ⊕ Γ1f , f ∈ D(A∗) into H⊕H is surjective.

The boundary triple can be constructed for any closed densely defined Hermitian operator with equal de-
ficiency indices. Moreover, the space H can be chosen so that dimH = n+(A) = n−(A). (See references
above for further details.)

Definition 1.4. A proper extension A of the Hermitian operator A is called almost solvable (a.s.) if
there exist a boundary triple {H,Γ0,Γ1} for A∗ and an operator B ∈ B(H) such that

f ∈ D(A) ⇐⇒ Γ1f = BΓ0f (1.4)

Note that this definition implies inclusion D(A) ⊂ D(A∗) and in fact operator A is a restriction of A∗ to
the linear set {f ∈ D(A∗) : Γ1f = BΓ0f}.

It can be shown (see [DM]) that if a proper extension A has regular points in both the upper and lower
half planes, then this extension is almost solvable. In other words, there exist a boundary triple {H,Γ0,Γ1}
and an operator B ∈ B(H) such that A = AB. We will refer to the operator B as a “parameter” of the
extension AB .

Next Theorem summarizes some facts concerning a.s. extensions needed for the purpose of the paper.

Theorem 1.1. Let A be a closed Hermitian operator with dense domain on a separable Hilbert space H
with equal (finite or infinite) deficiency indices and {H,Γ0,Γ1} be the boundary triple for its adjoint A∗. Let
B ∈ B(H) and AB be the corresponding a.s. extension of A. Then

1. A ⊂ AB ⊂ A∗

2. (AB)∗ ⊂ A∗, (AB)∗ = AB∗

3. AB is maximal, i.e. ρ(AB) 
= ∅
4. B is dissipative ⇐⇒ AB is maximal dissipative

5. B = B∗ ⇐⇒ AB = (AB)∗

Proof. The proof can be found in [GG], [DM]. Note that the last two assertions can easily be verified using
equality

ΨAB (f, g) =
1
i
[(ABf, g) − (f,ABg)] =

1
i
((B −B∗)Γ0f,Γ0g), f, g ∈ D(AB) (1.5)

which directly follows from (1.3), (1.4).
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Remark 1.5. In many cases of operators associated with partial differential equations, the boundary triple
constructed according to the results cited in Definition 1.3 could not be easily linked to the Green formula
as traditionally understood in a sense of differential expressions. For example, let Ω be a smooth bounded
domain in R3, and A be a minimal Hermitian operator in L2(Ω) associated with the Laplace differential
expression −∆ in Ω. Then A∗ is defined on the set of functions u ∈ L2(Ω) such that ∆u ∈ L2(Ω). The
well known Green formula (see [AF], for example) suggest the “natural” definition of mappings Γ0, Γ1 as
Γ0 : u �→ u|∂Ω, Γ1 : u �→ ∂u

∂n |∂Ω, u ∈ D(A∗) with the boundary space H = L2(∂Ω). However, because
there exist functions in D(A∗) that do not possess boundary values on ∂Ω, operators Γ0 and Γ1 are not
defined on the whole of D(A∗), and the theory of almost solvable extensions is inapplicable to this choice of
triple {H,Γ0,Γ1}.

1.2 Weyl function

For a given boundary triple {H,Γ0,Γ1} for the operator A∗ introduce an operator A∞ as a restriction of A∗

on the set of elements y ∈ D(A∗) satisfying condition Γ0y = 0:

A∞ := A∗|D(A∞), D(A∞) := {y ∈ D(A∗) : Γ0y = 0} (1.6)

Formally, the operator A∞ is an almost solvable selfadjoint extension of A corresponding to the choice
B = ∞. (See (1.4).) This justifies the notation. It turns out ([GG], [DM]), that the operator A∞ is
selfadjoint indeed. Further, for any z ∈ C− ∪C+ the domain D(A∗) can be represented in the form of direct
sum:

D(A∗) = D(A∞)+̇ ker(A∗ − zI) (1.7)

according to the decomposition f = y + h with f ∈ D(A∗), y ∈ D(A∞), and h ∈ ker(A∗ − zI), where

y := (A∞ − zI)−1(A∗ − zI)f, h := f − y

Taking into account equality D(A∞) = ker(Γ0) and surjective property of Γ0, it follows from the formula (1.7)
that for each e ∈ H and z ∈ C−∪C+ the equation Γ0h = e has an unique solution that belongs to ker(A∗−zI).
In other words, a restriction of operator Γ0 on the set ker(A∗−zI) is invertible. Denote γ(z) the corresponding
inverse operator:

γ(z) =
[
Γ0|ker(A∗−zI)

]−1
, z ∈ C− ∪ C+. (1.8)

By a simple computation we deduce from (1.3) with f ∈ D(A∞), g ∈ ker(A∗ − zI) that

γ∗(z̄) = Γ1(A∞ − zI)−1, z ∈ C− ∪ C+. (1.9)

Weyl function M(·) corresponding to the boundary triple {H,Γ0,Γ1} is defined as an operator-function
with values in B(H), such that for each z ∈ C− ∪ C+, and fz ∈ ker(A∗ − zI)

M(z)Γ0fz = Γ1fz (1.10)

Another representation of M(·) easily follows from (1.8) and (1.10)

M(z) = Γ1γ(z), z ∈ C+ ∪ C−. (1.11)

Next Theorem sums up a few properties of the Weyl function.

Theorem 1.2. Let M(·) be the Weyl function (1.10), z ∈ C− ∪ C+ and an operator B ∈ B(H) be a
parameter of a.s. extension AB of A. Following assertions hold:

1. M(z) is analytic,

2. Im M(z) · Im z > 0,

3. [M(z)]∗ = M(z̄),

4. M(z)−M(ζ) = (z − ζ)γ∗(ζ̄)γ(z), z, ζ ∈ C+ ∪ C−
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5. z ∈ ρ(AB) ⇐⇒ (B −M(z)) is boundedly invertible in H
6. (AB − zI)−1 − (A∞ − z)−1 = γ(z)(B −M(z))−1γ∗(z̄), z ∈ ρ(AB)

Proof. The proof of the Theorem can be found in [DM].

It follows from the Theorem 1.2 that the Weyl function M(·) is a Herglotz function. It is analytic in the
upper half plane, with positive imaginary part.

1.3 Characteristic function of an almost solvable extension

As before, let A be a simple densely defined Hermitian operator with equal deficiency indices and {H,Γ0,Γ1}
be the boundary triple for A∗. Let M(·) be the Weyl function corresponding to that triple. According to the
Theorem 1.1, for any B ∈ B(H) the extension AB is selfadjoint if B = B∗. We shall assume that B 
= B∗

and calculate the characteristic function of the nonselfadjoint operator AB. (See the definition below.) For
simplicity sake we assume that the operator AB is simple. In other words, AB has no non-trivial selfadjoint
parts. It turns out that there exists an elegant formula which ties together the characteristic function of AB,
Weyl function M(·) and the extension “parameter” B. In the particular case of one-dimensional Schrödinger
operator on R+, this formula was obtained in [P1].

Let us recall the definition of characteristic function of a linear non-selfadjoint operator. In our narrative
we follow the abstract approach developed by Štraus [St1].

For a closed linear operator L with dense domain D(L) introduce a linear set G(L):

G(L) =
{
g ∈ D(L) : ΨL(f, g) = 0, ∀f ∈ D(L)

}
,

and a linear space L(L) defined as closure of the quotient D(L)/G(L) endowed with an inner product
[ξ, η]L = ΨL(f, g), ξ, η ∈ L(L), f ∈ ξ, g ∈ η, where ΨL(f, g) is defined in (1.1). The inner product [·, ·]L is
symmetric and non-degenerate, but not necessarily positive. The non-degeneracy means the implication

[ξ, η]L = 0, ∀η ∈ L ⇒ ξ = 0

Definition 1.6. A boundary space for the operator L is any linear space L which is isomorphic to L(L).
A boundary operator for the operator L is the linear operator Γ with the domain D(L) and the range in
the boundary space L such that

[Γf,Γg]L = ΨL(f, g), f, g ∈ D(L) (1.12)

We shall assume that the operator L is non-selfadjoint and its resolvent set is non-empty: ρ(L) 
= ∅. Let
L endowed with an inner product [·, ·] be a boundary space for L with boundary operator Γ, and let L′ with
an inner product [·, ·]′ be a boundary space for −L∗ with boundary operator Γ′ mapping D(L∗) onto L′.

Definition 1.7. A characteristic function of the operator L is an operator-valued function ΘL defined
on the set ρ(L∗) whose values ΘL(z) map L into L′ according to the equality

ΘL(z)Γf = Γ′(L∗ − zI)−1(L− zI)f, f ∈ D(L). (1.13)

Since the right hand side of (1.13) is analytic with regard to z ∈ ρ(L∗), the function ΘL is analytic on
ρ(L∗).

Let us carry out the calculation of characteristic function of an a.s. extension AB of the Hermitian
operator A parameterized by the bounded operator B ∈ B(H).

Let B = BR + iBI where BR = 1
2 (B +B∗) and BI = 1

2i (B −B∗) be the real and the imaginary parts of
operator B, and

E = closR(BI), α = |2BI |1/2, J = sign(BI |E) (1.14)

Obviously, operators α and J commute as functions of the selfadjoint operator BI . Note as well the invo-
lutional properties of the mapping J acting on the space E, namely, the equalities J = J∗ = J−1. If the
operator B is dissipative (i.e. BI ≥ 0), then J = IE and α = (2BI)1/2.
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Using notation (1.14) the equality (1.5) can be rewritten in the form

ΨAB (f, g) = 2(BIΓ0f,Γ0g)E = (JαΓ0f, αΓ0g)E , f, g ∈ D(AB)

where equality 2BI |E = αJα|E holds due to the Spectral Theorem. According to the definition (1.12) we can
choose the boundary space of the operator AB to be the space E with the metric [·, ·] = (J ·, ·)H = (J ·, ·)E

and define the boundary operator Γ as the map

Γ : f �→ JαΓ0f, f ∈ D(Γ), D(Γ) = D(AB) (1.15)

Since −A∗
B = −AB∗ , see Theorem 1.1, we can repeat the arguments above and choose the boundary

space of −A∗
B to be the same Hilbert space E with the same metric [·, ·]′ = [·, ·] = (J ·, ·)E , and the boundary

operator Γ′ to be equal to the operator Γ = JαΓ0. Note that the metric [·, ·] = [·, ·]′ is positive if the
operator B is dissipative.

Now we are ready to calculate the characteristic function of the operator AB that corresponds to the
chosen boundary spaces and operators. Let z ∈ ρ(A∗

B) be a complex number and f ∈ D(AB). Then from
the equality gz = (A∗

B − zI)−1(AB − zI)f we obtain

ABf −A∗
Bgz = z(f − gz)

which due to inclusions AB ⊂ A∗, A∗
B ⊂ A∗ shows that the vector f−gz belongs to the linear set ker(A∗−zI).

By the Weyl function definition (1.10) the following equality holds for each z ∈ ρ(A∗
B), f ∈ D(AB)

M(z)Γ0(f − gz) = Γ1(f − gz)

Since f ∈ D(AB) and gz ∈ D(A∗
B), the right hand side here can be rewritten in the form BΓ0f − B∗Γ0gz,

and after elementary regrouping we obtain

(M(z) −B)Γ0f = (M(z) −B∗)Γ0gz

By virtue of Theorem 1.2 the operator (M(z) −B∗) is boundedly invertible for z ∈ ρ(A∗
B). Therefore,

Γ0gz = (B∗ −M(z))−1(B −M(z))Γ0f

and due to (1.15),

Γ′gz = JαΓ0gz = Jα(B∗ −M(z))−1(B −M(z))Γ0f

= Jα(B∗ −M(z))−1
[
B∗ −M(z) + (B −B∗)

]
Γ0f

= Jα
[
I + 2i(B∗ −M(z))−1BI

]
Γ0f = Jα

[
I + i(B∗ −M(z))−1αJα

]
Γ0f

=
[
IE + iJα(B∗ −M(z))−1α

]
JαΓ0f =

[
IE + iJα(B∗ −M(z))−1α

]
Γf

so that finally for any f ∈ D(AB) and z ∈ ρ(A∗
B) the following equality holds

Γ′(A∗
B − zI)−1(AB − zI)f =

[
IE + iJα(B∗ −M(z))−1α

]
Γf.

Now the comparison with the definition (1.13) yields that the characteristic function ΘAB (·) : E → E
corresponding to the boundary operators and spaces chosen above is given by the formula

ΘAB (z) = IE + iJα(B∗ −M(z))−1α|E , z ∈ ρ(A∗
B) (1.16)

Similar calculations can be found in [Ko2].
A few remarks are in order. Following the schema followed above, it is easy to compute the characteristic

function ΘB(·) of the operator B. Indeed, for x, y ∈ H

ΨB(x, y) =
1
i

[
(Bx, y)H − (x,By)H

]
=

1
i

(
(B −B∗)x, y

)
H = 2(BIx, y)H = (Jαx, αy)E ,

Ψ−B∗(x, y) = ΨB(x, y)

so that we can choose the space E = closR(BI) as a boundary space of the operators B and −B∗ , see (1.14),
and assume the boundary operators for B and −B∗ to be the mapping of the vector x ∈ H into Jαx ∈ E.
Computations, similar to those conducted above, lead to the following expression for the characteristic
function ΘB(·) of operator B:

ΘB(z) = IE + iJα(B∗ − zI)−1α|E
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Remark 1.8. Comparison with (1.16) shows that the characteristic function ΘAB of the extension AB

can be formally obtained by the substitution of zI in the expression for characteristic function ΘB of the
“parameter” operator B with the Weyl function M(z) of the operator A. Or more formally,

ΘAB(z) = ΘB(M(z)), z ∈ ρ(B∗) ∩ ρ(A∗
B).

This interesting formula can be traced back to the paper of B. Pavlov [P1].

Remark 1.9. Values of the characteristic operator function ΘAB (·) in the upper half plane C+ are J-
contractive operators in E, i.e. for ϕ ∈ E(

JΘAB (z)ϕ,ΘAB (z)ϕ
)
E
≤ (Jϕ, ϕ)E , z ∈ ρ(A∗

B) ∩ C+ (1.17)

This result follows from the general contractive property of characteristic functions of linear operators ob-
tained in [St1]. It is remarkable that the proof cited below does not require the knowledge of characteristic
function itself. Its contractiveness follows directly from its definition.

Theorem 1.3. [St1] Let L, L′, Γ, Γ′ be the boundary spaces and boundary operators for the operators L
and −L∗ respectively as described in Definition 1.6, [·, ·], [·, ·]′ be the metrics in L, L′, and ΘL(·) be the
characteristic function of L, see Definition 1.7. Then the following equality holds

[ϕ,ϕ1] − [ΘL(z)ϕ,ΘL(ζ)ϕ1]′ =
1
i
(z − ζ̄)(Ωzϕ,Ωζϕ1)H (1.18)

where z, ζ ∈ ρ(L∗), ϕ,ϕ1 ∈ L, and operator Ωz, z ∈ ρ(L∗) is uniquely defined as the map Ωz : Γf �→
f − (L∗ − zI)−1(L− zI)f , f ∈ D(L).

Proof. By polarization identity it is sufficient to show that (1.18) is valid for z = ζ, ϕ = ϕ1. Standard
density arguments allow us to prove the statement of the Theorem only for the dense set of vectors {ϕ} in
L, for which there exist f ∈ D(L), such that ϕ = Γf . Let ϕ be such a vector and f ∈ D(L) satisfies the
condition Γf = ϕ. Let gz be the vector (L∗ − zI)−1(L − zI)f . Note that gz ∈ D(L∗), (Lf, gz) = (f, L∗gz),
and Lf − L∗gz = z(f − gz). Then

(z − z̄)(Ωzϕ,Ωzϕ)H = (z − z̄)(ΩzΓf,ΩzΓf) = (z − z̄)(f − gz, f − gz)

=
(
z(f − gz), f − gz

)− (f − gz, z(f − gz)
)

=
(
Lf − L∗gz, f − gz

)− (f − gz, Lf − L∗gz)
)

= (Lf, f) + (L∗gz, gz) − (f, Lf) − (gz, L
∗gz) =

(
(Lf, f) − (f, Lf)

)− ((−L∗gz, gz) − (gz ,−L∗gz)
)

so that

1
i
(z − z̄)(Ωzϕ,Ωzϕ)H = ΨL(f, f) − Ψ−L∗(gz, gz) = [Γf,Γf ]− [Γ′gz,Γ′gz]′

= [Γf,Γf ] − [ΘL(z)Γf,ΘL(z)Γf ]′ = [ϕ,ϕ] − [ΘL(z)ϕ,ΘL(z)ϕ]′.

The proof is complete.

From (1.18) and the representation of the boundary spaces of operators AB, −A∗
B described above we

conclude
(Jϕ, ϕ)E − (JΘAB (z)ϕ,ΘAB (z)ϕ)E = (2 Im z)‖Ωzϕ‖2

which proves (1.17).

Remark 1.10. If the extension parameter B is a dissipative operator from B(H), then the corresponding
extension AB is a closed dissipative operator and its resolvent set ρ(AB) includes the lower half plane C−.
The conjugate operator (AB)∗ is an extension of A corresponding to the operator B∗, see the Theorem 1.1,
so that the upper half plane C+ consists of the regular points of A∗

B . Since B is dissipative, the involution
operator J defined in (1.14) is in fact the identity operator on E. Moreover, the metric of the boundary
spaces L, L′ is positively defined, hence the space L is a Hilbert space. It follows from (1.17) that in this
case values of the characteristic function ΘAB (z), z ∈ C+ are contractive operators from B(E):

‖ΘAB(z)ϕ‖E ≤ ‖ϕ‖E, z ∈ C+, B ∈ B(H) is dissipative. (1.19)
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Remark 1.11. Let z ∈ C+. According to Theorem 1.2, the imaginary part of the operator M(z) is
positive. In other words, values of the function M(z) are dissipative operators in B(E). Assume B = iIH.
This operator is dissipative, so is the corresponding extension AiI . Since B∗ = −iIH, E = H, J = IH,
α = (2|BI |)1/2 =

√
2IH, the characteristic function (1.16) can be written as

ΘAiI (z) = IH + 2i
(− iIH −M(z)

)−1 =
(
M(z) − iI

)(
M(z) + iI

)−1
.

We see that for z ∈ C+ the contractive function ΘiI(z) and the Herglotz function M(z) are related to each
other via Cayley transform. In fact, operator function ΘAiI is a characteristic function of the Hermitian
operator A as defined in [St2].

2 Functional model

In this Section a symmetric variant of model for a non-selfadjoint non-dissipative a.s extension of the Her-
mitian operator A is constructed.

Let B ∈ B(H) and AB be the corresponding a.s. extension of A. Question of simultaneous simplicity of
operators B and AB was formulated in [S], and the author is unaware of any results which would shed light
on the intricate relationship between selfadjoint parts of B and A+. In the following it is always assumed
that both B and AB are simple operators. Further, by virtue of Theorem 1.1, AB is maximal and the
resolvent set of AB is non-empty: ρ(AB) 
= ∅. The conjugate operator (AB)∗ is simple and maximal as well.
It coincides with the extension of A parametrized by B∗ : (AB)∗ = AB∗ . The characteristic function ΘAB(·)
is analytic on ρ(A∗

B) with values in B(E) and J-contractive on ρ(A∗
B) ∩ C+, see (1.16), (1.17) and (1.14)

for the notation.
Assume that the operator B = BR + iBI , where BR := (1/2)(B + B∗), BI := (1/2i)(B − B∗), is

not dissipative so that J 
= IE . Along with operator B = BR + iJ α2

2 consider a dissipative operator
B+ := BR + i|BI | = BR + iα2

2 and let AB+ be the corresponding a.s. extension of A. Then the operators
B+ and AB+ are both dissipative, B+ is bounded, and as shown in [Na], B+ is simple. As mentioned above,
these observations alone do not guarantee simplicity of AB+ . Nevertheless, AB+ is simple. This fact follows
from the Theorem 2.1 below and explicit relationship between Cayley transformations of AB and AB+ found
in [MV] in more general setting. Namely, it follows from [MV] that selfadjoint parts of AB and AB+ coincide.
The same result can be obtained by methods developed in the system theory [Ar].

Finally, due to dissipativity the lower half plane C− consists of the regular points of AB+ and similarly,
C+ ⊂ ρ(A∗

B+
).

According to Remarks 1.9 and 1.10, values of characteristic functions of two extensions AB , AB+ are
J-contractive and contractive operators respectively in ρ(A∗

B)∩C+. It turns out that these values are related
via so called Potapov-Ginzburg transformation [AI]. This observation was first made in [Na] for additive
perturbations of a selfadjoint operator and in [MV] for the general case. (Cf. [Ar] for an alternative, but
equivalent approach.) We formulate this relationship in the special situation of almost solvable extensions
of a Hermitian operator and sketch a simple proof based on findings of [Na].

Theorem 2.1. The characteristic functions Θ := ΘAB , S := ΘAB+
of two simple maximal a.s exten-

sions AB, AB+ of the Hermitian operator A corresponding to the extension parameters B,B+ ∈ B(H),
where B = BR + iBI, B+ = BR + i|BI | are related to each other via following Potapov-Ginzburg transfor-
mation.

Θ(z) = (X− +X+S(z)) · (X+ +X−S(z))−1,

Θ(z) = −(X+ − S(z)X−)−1 · (X− − S(z)X+),

S(z) = (X− +X+Θ(z)) · (X+ +X−Θ(z))−1,

S(z) = −(X+ − Θ(z)X−)−1 · (X−Θ(z)X+)−1

Θ(ζ) = (X+ +X−[S(ζ̄)]∗) · (X− +X+[S(ζ̄)]∗)−1,

Θ(ζ) = −(X− − [S(ζ̄)]∗X+)−1 · (X+ − [S(ζ̄)]∗X−),

[S(ζ̄)]∗ = (X+ +X−Θ(ζ)) · (X− +X+Θ(ζ))−1,

[S(ζ̄)]∗ = −(X− − Θ(ζ)X+)−1 · (X+ − Θ(ζ)X−)

(2.1)
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Here z ∈ ρ(A∗
B)∩C+, ζ ∈ ρ(A∗

B)∩C− and X± := (IE ±J)/2 are two complementary orthogonal projections
in the space E.

Proof. The existence of Potapov-Ginzburg transformation S of a J-contractive operator Θ and formulae (2.1)
can be found in the literature ([AI], [Ar]). On the other hand, it has been shown in the paper [Na] that
the characteristic functions of two bounded operators B = BR + iBI and B+ = BR + i|BI | are related via
Potapov-Ginzburg transformation. Taking into account Remark 1.8 we arrive at the Theorem’s assertion.

In what follows we will use the simplified notation Θ, S introduced in the Theorem 2.1 for the character-
istic functions ΘAB and ΘAB+

, respectively. Note that due to Remark 1.10, the analytic operator functions
S(z) and S∗(ζ) := [S(ζ̄)]∗ are contractive if z ∈ C+, ζ ∈ C−. Moreover, there exist non-tangential strong
boundary values almost everywhere on the real axis: S(k) := s−limε↓0 S(k+iε), S∗(k) := s−limε↓0 S∗(k−iε),
a.e. k ∈ R. These boundary values are contractive and mutually conjugate operators for almost all k ∈ R

([NF]).

2.1 Symmetric form of Sz.Nagy-Foiaş model

The functional model of a dissipative operator can be derived from the B. Sz.-Nagy-C.Foiaş model for
the contraction, whose Cayley transform it represents [NF]. An independent approach was given in the
framework of acoustic scattering by P. Lax and R. Phillips [LP]. In our narrative we will use an equivalent
model construction known as symmetric model as given by B. Pavlov in [P3], [P4] and and elaborated further
in the paper [Na].

Let A be the minimal selfadjoint dilation of the simple dissipative operator AB+ . In other words, the
operator A = A ∗ is defined on a wider space H ⊃ H such that (cf. [NF])

PH(A − zI)−1|H = (AB+ − zI)−1, z ∈ C−
PH(A − zI)−1|H = (A∗

B+
− zI)−1, z ∈ C+

(2.2)

and H := span{(A −zI)−1H : z ∈ C±}. Here PH : H → H is the orthogonal projection from the dilation
space H onto H . The dilation A can be chosen in many ways. Following [P3], [P4], we will use the
dilation space in the form of orthogonal sum H := D− ⊕H ⊕D+, where D± := L2(R±, E). The space H
is naturally embedded into H : H → 0 ⊕H ⊕ 0, whereas spaces D± are embedded into L2(E) = D− ⊕D+.
The dilation representation offered in the next Theorem is a straightforward generalization of B. Pavlov’s
construction [P5]. Its form was announced in [Pe] without a proof. (See [S], [K] for more general approach.)

Define a linear operator A by formula

A

⎛⎝v−u
v+

⎞⎠ =

⎛⎝ iv′−A∗u
iv′+

⎞⎠ ,
⎛⎝v−u
v+

⎞⎠ ∈ D(A ), (2.3)

where domain D(A ) consists of vectors (v−, u, v+) ∈ H , such that v± ∈ W 1
2 (R±, E) and u ∈ D(A∗) satisfy

two “boundary conditions”:
Γ1u−B+Γ0u = αv−(0)
Γ1u−B∗

+Γ0u = αv+(0)

}
(2.4)

Here boundary values v±(0) ∈ E are well defined according to imbedding theorems for spaces W 1
2 (R±, E).

Remark 2.1. There is a certain “geometrical” aspect of conditions (2.4). Indeed, the left hand side of
relations (2.4) are vectors from H, whereas vectors on the right hand side belong to the potentially “smaller”
space E ⊂ H. Since the vector v±(0) ∈ E can be chosen arbitrarily, it means that for (v−, u, v+) ∈ D(A ).

R (Γ1u−B+Γ0u) = R (Γ1u−B∗
+Γ0u

)
= E

Remark 2.2. By termwise substraction we obtain from (2.4):

(B+ −B∗
+)Γ0u = iα2Γ0u = α(v+(0) − v−(0)).
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Standard arguments based on the functional calculus for bounded selfadjoint operator α combined with facts
that R(α) is dense in E and v±(0) ∈ E yields:

iαΓ0u = v+(0) − v−(0), (v−, u, v+) ∈ D(A ). (2.5)

Remark 2.3. Let G be a set of vectors u ∈ D(A∗) such that (v−, u, v+) ∈ D(A ) with some v± ∈ D±. It is
clear that G includes D(AB+) ∪ D(A∗

B+
). Indeed, if for example v−(0) = 0 in (2.4), then we conclude that

u ∈ D(AB+), whereas v+(0) can be chosen appropriately in order to satisfy the second condition (2.4). The
same argument applied to the case v+(0) = 0 shows that D(A∗

B+
) ⊂ G .

Now we can formulate main theorem concerning selfadjoint dilation of AB+ . For notational convenience
let us introduce following four operators

Y± : y± �→ iy′±, D(Y±) := W 1
2 (R±, E)

Y0
± : y± �→ iy′±, D(Y0

±) :=
◦
W 1

2 (R±, E),

where W 1
2 ,

◦
W 1

2 are usual Sobolev spaces [AF]. Direct computation shows that (Y±)∗ = (Y0
±) and ρ(Y+) =

ρ(Y0−) = C+, ρ(Y−) = ρ(Y0
+) = C−.

Theorem 2.2. Operator A is a minimal selfadjoint dilation of the dissipative operator AB+ . The resolvent
of A is given by following formulae:

(A − zI)−1

⎛⎝h−h0

h+

⎞⎠ =

⎛⎝ ψ−(ξ)
(AB+ − z)−1h0 − γ(z)(B+ −M(z))−1αψ−(0)

(Y0
+ − z)−1h+ + e−izξ

{
iαΓ0(AB+ − z)−1h0 + S∗(z̄)ψ−(0)

}
⎞⎠ , z ∈ C−

(A − zI)−1

⎛⎝h−h0

h+

⎞⎠ =

⎛⎝(Y0
− − z)−1h− + e−izξ

{− iαΓ0(A∗
B+

− z)−1h0 + S(z)ψ+(0)
}

(A∗
B+

− z)−1h0 − γ(z)(B∗
+ −M(z))−1αψ+(0)

ψ+(ξ)

⎞⎠ , z ∈ C+

where (h−, h0, h+) ∈ H , ψ± := (Y± − z)−1h±, z ∈ C±.

Proof. Let U := (v−, u, v+) ∈ D(A ). Then

(A U ,U) − (U ,A U)
= (iv′−, v−) + (A∗u, u) + (iv′+, v+) − (v−, iv′−) − (u,A∗u) − (v+, iv′+)

= i

∫ 0

−∞
(v′−v̄− + v−v̄′−)dk + i

∫ +∞

0

(v′+v̄+ + v+v̄
′
+)dk + (A∗u, u) − (u,A∗u)

= i‖v−(0)‖2 − i‖v+(0)‖2 + (Γ1u,Γ0u) − (Γ0u,Γ1u).

By substitution Γ1u from (2.4) and (2.5) we obtain for two last summands

(Γ1u,Γ0u) − (Γ0u,Γ1u)
= (αv−(0) +B+Γ0u,Γ0u) − (Γ0u, αv+(0) +B∗

+Γ0u)
= (v−(0), αΓ0u) − (αΓ0u, v+(0))
= (v−(0), (−i)[v+(0) − v−(0)]) − ((−i)[v+(0) − v−(0)], v+(0))

= i(v−(0), v+(0)) − i‖v−(0)‖2 + i‖v+(0)‖2 − i(v−(0), v+(0))

= i‖v+(0)‖2 − i‖v−(0)‖2.
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Finally,
(A U ,U) − (U ,A U) = 0, U ∈ D(A ),

therefore A is Hermitian.
Further, it is easy to see on ground that ‖ψ±(0)‖E ≤ C‖ψ±‖W 1

2 (R±,E) that operators defined by the right
hand sides of formulae for resolvent of A in the Theorem’s statement are bounded for corresponding z ∈ C±.
If we show that they yield vectors that belong to the domain of operator A and they indeed describe inverse
operators for A − zI, it would mean that Hermitian operator A is closed and its deficiency indices equal
zero. Hence A is selfadjoint.

Let z ∈ C− be a complex number and V := (ṽ−, ũ, ṽ+) be a vector from the right hand side of the
corresponding resolvent equality under consideration. The first and third component of V obviously belong
to the Sobolev spaces W 1

2 (R±, E). We need to verify first that V satisfies boundary conditions (2.4).

(Γ1 −B+Γ0)ũ

= (Γ1 −B+Γ0)
[
(AB+ − z)−1h0 − γ(z)(B+ −M(z))−1αψ−(0)

]
= −(Γ1 −B+Γ0)γ(z)(B+ −M(z))−1αψ−(0)

= −(M(z)−B+)(B+ −M(z))−1αψ−(0) = αψ−(0) = αṽ−(0)

where we used equalities Γ1γ(z) = M(z) and Γ0γ(z) = IH, see (1.8), (1.11).
Further,

(Γ1 −B∗
+Γ0)ũ

= (Γ1 −B∗
+Γ0)
[
(AB+ − z)−1h0 − γ(z)(B+ −M(z))−1αψ−(0)

]
= (Γ1 −B+Γ0)ũ+ iα2Γ0

[
(AB+ − z)−1h0 − γ(z)(B+ −M(z))−1αψ−(0)

]
= αψ−(0) + iα2Γ0(AB+ − z)−1h0 − iα2(B+ −M(z))−1αψ−(0)

= iα2Γ0(AB+ − z)−1h0 + α
[
I − iα(B+ −M(z))−1α

]
ψ−(0)

= α
[
iαΓ0(AB+ − z)−1h0 + S∗(z̄)ψ−(0)

]
= αṽ+(0)

Thus, both conditions (2.4) are satisfied. Now consider (A − zI)V for z ∈ C−. Since ṽ− = (Y− − z)−1h−
and ṽ+ = (Y0

+ − z)−1h+ + e−izξṽ+(0) it is easy to see that (Y± − z)ṽ± = h±. Inclusions AB+ ⊂ A∗ and
R(γ(z)) ⊂ ker(A∗ − zI) help to compute the middle component (A∗ − z)ũ:

(A∗ − z)
[
(AB+ − z)−1h0 − γ(z)(B+ −M(z))−1αψ−(0)

]
= h0

Thus, (A − zI)(A − zI)−1 = I.
In order to check correctness of the equality (A − zI)−1(A − zI) = I, let U := (v−, u, v+) ∈ D(A ) and

z ∈ C− be a complex number. Then

(A − zI)−1(A − zI)U = (A − zI)−1

⎛⎝(Y− − zI)v−
(A∗ − zI)u

(Y+ − zI)v+

⎞⎠
=

⎛⎝ v−(ξ)
(AB+ − z)−1(A∗ − z)u− γ(z)(B+ −M(z))−1αv−(0)

v0
+(ξ) + e−izξ

{
iαΓ0(AB+ − z)−1(A∗ − z)u+ S∗(z̄)v−(0)

}
⎞⎠

where v0
+(ξ) := (Y0

+ − zI)−1(Y+ − zI)v+.
We need to show first that the middle component here coincides with u. Note that vector Ψ(z) :=

(AB+ − zI)−1(A∗ − zI)u − u belongs to ker(A∗ − zI), therefore the expression [γ(z)]−1Ψ(z) represents an
element Γ0Ψ(z) from H. Now we can rewrite the middle component as follows:

u+ γ(z)
[
Γ0Ψ(z) − (B+ −M(z))−1αv−(0)

]
= u+ γ(z)(B+ −M(z))−1

[
(B+ −M(z))Γ0Ψ(z) − αv−(0)

]
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By the definition (1.10) of Weyl function M(·) and the first of conditions (2.4), the expression in square
brackets can be rewritten as

(B+Γ0 − Γ1)Ψ(z) − (Γ1 −B+Γ0)u = B+Γ0(Ψ(z) + u) − Γ1(Ψ(z) + u).

The only thing left is the observation that Ψ(z) + u belongs to the domain D(AB+), hence this expression
equals zero.

Because v+(ξ) = v0
+(ξ) + e−izξv+(0), in order to check correctness of the expression for the third compo-

nent in the computations above we only need to show that

iαΓ0(AB+ − z)−1(A∗ − z)u+ S∗(z̄)v−(0) = v+(0)

Recalling that S∗(z̄) = I − iα(B+ − M(z))−1α, v−(0) = v+(0) − iαΓ0u (see (1.16), (2.5)) and utilizing
notation Ψ(z) once again, we obtain

iαΓ0(AB+ − z)−1(A∗ − z)u+ S∗(z̄)v−(0)

= iαΓ0(Ψ(z) + u) + v+(0) − iαΓ0u− iα(B+ −M(z))−1αv−(0)

= v+(0) + iαΓ0Ψ(z) − iα(B+ −M(z))−1αv−(0)

= v+(0) + iα(B+ −M(z))−1
[
(B+ −M(z))Γ0Ψ(z)− αv−(0)

]
.

It was shown at the previous step that the expression in square brackets is equal to zero.
The resolvent formula in the case z ∈ C+ is verified analogously.
Finally, dilation equalities (2.2) are obvious for operators (A − zI)−1. Minimality of dilation A follows

from the relation

span{(A − zI)−1H : z ∈ C±} = span

⎧⎨⎩
⎛⎝ e−iz+ξαΓ0(A∗

B+
− z+)−1H

(AB+ − z−)−1H + (A∗
B+

− z+)−1H

e−iz−ξαΓ0(AB+ − z−)−1H

⎞⎠ : z± ∈ C±

⎫⎬⎭ ,
properties of exponents in L2(R±), and density of sets{

αΓ0(A∗
B+

− z)−1H : z ∈ C+

}
,
{
αΓ0(AB+ − z)−1H : z ∈ C−

}
in E. This density is a simple consequence of the fact that E is a boundary space and αΓ0 is a boundary
operator for AB+ , A∗

B+
as defined in Section 1.3.

The proof is complete.

The spectral mapping that maps dilation A into the multiplication operator f �→ k · f on some L2-space
gives the model representation of the dissipative operator AB+ :

PH(k − z)−1|H ∼= (AB+ − zI)−1, z ∈ C−, k ∈ R

PH(k − z)−1|H ∼= (A∗
B+

− zI)−1, z ∈ C+, k ∈ R

}
(2.6)

Following [P3], [P4], [Na] we arrive at the model Hilbert space H = L2

(
I S∗

S I

)
by the factorization

against elements with zero norm and subsequent completion of the linear set {(�gg) : g̃, g ∈ L2(R, E)} of
two-components E-valued vector functions with respect to the norm∥∥∥∥(g̃g

)∥∥∥∥2
H

:=
∫

R

〈(
I S∗

S I

)(
g̃

g

)
,

(
g̃

g

)〉
E⊕E

dk (2.7)

Note that in general the completion operation makes it impossible to treat individual components g̃, g of a
vector

(
�g
g

) ∈ H as regular L2-functions. However, two equivalent forms of the H-norm∥∥∥∥(g̃g
)∥∥∥∥2

H

= ‖Sg̃ + g‖2
L2(E) + ‖∆∗g‖2

L2(E) = ‖g̃ + S∗g‖2
L2(E) + ‖∆g̃‖2

L2(E) ,
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where ∆ :=
√
I − S∗S and ∆∗ :=

√
I − SS∗ show that for each

(
�g
g

) ∈ H expressions Sg̃ + g, g̃ + S∗g, ∆g̃,
and ∆∗g are in fact usual square summable vector-functions from L2(E).

Subspaces in H

D+ :=
(
H+

2 (E)
0

)
, D− :=

(
0

H−
2 (E)

)
, H := H� [D+ ⊕ D−]

where H±
2 (E) are Hardy classes of E-valued vector functions analytic in C±, are mutually orthogonal.2 The

subspace H can be described explicitly:

H =
{(

g̃

g

)
∈ H : g̃ + S∗g ∈ H−

2 (E), Sg̃ + g ∈ H+
2 (E)

}
Orthogonal projection PH from H onto H is defined by the following formula

PH

(
g̃

g

)
=
(
g̃ − P+(g̃ + S∗g)
g − P−(Sg̃ + g)

)
, g̃, g ∈ L2(E)

where P± are the orthogonal projections from L2(E) onto Hardy classes H±
2 (E).

Following Lemma is a version of the corresponding result from [Na].

Lemma 2.4. Let u ∈ H. Linear mappings

u �→ αΓ0(A∗
B+

− z)−1u, u �→ αΓ0(AB+ − ζ)−1u

are bounded operators from H into classes H+
2 (E), H−

2 (E), respectively, with the norms less then
√

2π, i.e.
for u ∈ H the following estimates hold

‖αΓ0(A∗
B+

− z)−1u‖H+
2 (E) ≤

√
2π‖u‖,

‖αΓ0(AB+ − ζ)−1u‖H−
2 (E) ≤

√
2π‖u‖

Proof. For a given vector u ∈ H and ζ ∈ C−, ζ = k − iε, k ∈ R, ε > 0 denote gζ := (AB+ − ζ)−1u. Then
since B+ = BR + iα2

2 and gζ ∈ D(AB+ ), so that B+Γ0gζ = Γ1gζ , we obtain

i‖αΓ0(AB+ − ζ)−1u‖2 = i‖αΓ0gζ‖2 = i(α2Γ0gζ,Γ0gζ)

=
(
i
α2

2
Γ0gζ ,Γ0gζ

)
−
(

Γ0gζ, i
α2

2
Γ0gζ

)
=
((

BR + i
α2

2

)
Γ0gζ ,Γ0gζ

)
−
(

Γ0gζ,
(
BR + i

α2

2

)
Γ0gζ

)
= (B+Γ0gζ ,Γ0gζ) − (Γ0gζ , B+Γ0gζ) = (Γ1gζ ,Γ0gζ) − (Γ0gζ ,Γ1gζ)

= (A∗gζ, gζ) − (gζ , A
∗gζ) =

(
AB+gζ , gζ

)− (gζ , AB+gζ

)
=
(
AB+(AB+ − ζ)−1u, (AB+ − ζ)−1u

)− ((AB+ − ζ)−1u,AB+(AB+ − ζ)−1u
)

=
(
u, (AB+ − ζ)−1u

)− ((AB+ − ζ)−1u, u
)

+ (ζ − ζ̄)‖gζ‖2

Here we used inclusion AB+ ⊂ A∗ and Green formula (1.3). The remaining part of proof reproduces
corresponding reasoning of paper [Na]. Let Et, t ∈ R be the spectral measure of the selfadjoint dilation A .
Then

1
2
‖αΓ0(AB+ − ζ)−1u‖2 =

1
2i
[(
u, (A − ζ)−1u

)− ((A − ζ)−1u, u
)
+ (ζ − ζ̄)‖gζ‖2

]
=

1
2i
(
[(A − ζ̄)−1 − (A − ζ)−1]u, u

)− ε‖gζ‖2 = ε
∥∥(A − ζ)−1u

∥∥2 − ε‖(AB+ − ζ)−1u‖2

= ε
∥∥(A − k + iε)−1u

∥∥2 − ε‖(AB+ − k + iε)−1u‖2

= ε

∫
R

1
(t− k)2 + ε2

d(Etu, u) − ε‖(AB+ − k + iε)−1u‖2

2Analytic functions from vector-valued Hardy classes H±
2 (E) are equated with their boundary values existing almost every-

where on the real axis. These boundary values form two complementary orthogonal subspaces in L2(R, E) = H+
2 (E)⊕H−

2 (E).
(See [RR] for details.)
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By Fubini theorem,

1
2

∫
R

‖αΓ0(AB+ − k + iε)−1u‖2dk =

=
∫

R

{
ε

∫
R

1
(t− k)2 + ε2

d(Etu, u)
}
dk − ε

∫
R

‖(AB+ − k + iε)−1u‖2dk

=
∫

R

{
ε

∫
R

1
(t− k)2 + ε2

dk

}
d(Etu, u)− ε

∫
R

‖(AB+ − k + iε)−1u‖2dk

= π

∫
R

d(Etu, u) − ε

∫
R

‖(AB+ − k + iε)−1u‖2dk = π‖u‖2 − ε

∫
R

‖(AB+ − k + iε)−1u‖2dk

Hence,

‖αΓ0(AB+ − ζ)−1u‖2
H−

2 (E)
= sup

ε>0

∫
R

‖αΓ0(AB+ − k + iε)−1u‖2dk ≤ 2π‖u‖2

Another statement of the Lemma is proven analogously.

It follows from the properties of Hardy classes H±
2 that for each u ∈ H there exist L2-boundary values

of the analytic vector-functions αΓ0(A∗
B+

− zI)−1u and αΓ0(AB+ − ζI)−1u almost everywhere on the real
axis. For these limits we will use the notation:

αΓ0(A∗
B+

− k − i0)−1u := lim
ε↓0

αΓ0(A∗
B+

− (k + iε))−1u,

αΓ0(AB+ − k + i0)−1u := lim
ε↓0

αΓ0(AB+ − (k − iε))−1u,

u ∈ H and almost all k ∈ R.

(2.8)

Note that the point set on the real axis where these limits exist depends on the vector u ∈ H . Moreover,
the left hand side in (2.8) does not define any operator functions on the real axis R. These expressions can
only be understood as formal symbols for the limits that appear on the right hand side.

In accordance with [Na], introduce two linear mappings F± : H → L2(R, E)

F+ : (v−, u, v+) �−→ − 1√
2π

αΓ0(AB+ − k + i0)−1u+ S∗(k)v̂−(k) + v̂+(k)

F− : (v−, u, v+) �−→ − 1√
2π

αΓ0(A∗
B+

− k − i0)−1u+ v̂−(k) + S(k)v̂+(k)

where (v−, u, v+) ∈ H , and v̂± are the Fourier transforms of functions v± ∈ D±. By virtue of Paley-Wiener
theorem, v̂± ∈ H±

2 (E), see [RR]. The distinguished role of mappings F± is revealed in the next Theorem.

Theorem 2.3. There exists an unique mapping Φ from the dilation space H onto the model space H with
the properties:

1. Φ is an isometry.

2. g̃ + S∗g = F+h, Sg̃ + g = F−h, where
(
�g
g

)
= Φh, h ∈ H

3. For z /∈ R

Φ ◦ (A − zI)−1 = (k − z)−1 ◦ Φ,

where A is the minimal selfadjoint dilation of the operator AB+

4. ΦH = H, ΦD± = D±

Property (3) means that Φ maps A into the multiplication operator on the space H; therefore, the
dissipative operator AB+ is mapped into its model representation as required in (2.6).

The proof of Theorem is carried out at the end of this Section.
Computation of functions F±h, h ∈ H can be further simplified. More precisely, there exists a formula

which allows one to avoid the calculation of the resolvent of the dissipative operator AB+ . To that end we
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recall the definition (1.6) of operator A∞ given earlier. There exists a certain “resolvent identity” for A∞
and AB+ , which we will obtain next.

Let ζ ∈ C−. Then the equation (AB+ −ζ)φ = h has an unique solution for each h ∈ H . We can represent
this solution in the form of sum φ = f + g, where g := (A∞ − ζ)−1h and f ∈ ker(A∗ − ζ). Obviously,
f = [(AB+ − ζ)−1 − (A∞ − ζ)−1]h. Since φ ∈ D(AB+) and Γ0g = 0, we have

0 = (Γ1 − B+Γ0)φ = Γ1(f + g) −B+Γ0f = M(ζ)Γ0f + Γ1g −B+Γ0f

Hence, Γ1g = (B+ −M(ζ))Γ0f and since 0 ∈ ρ(B+ −M(ζ)), we obtain

Γ0f = (B+ −M(ζ))−1Γ1g.

The left hand side can be rewritten in the form

Γ0f = Γ0(f + g) = Γ0φ = Γ0(AB+ − ζ)−1h

Now, by the definition of g,

Γ0(AB+ − ζI)−1h = (B+ −M(ζ))−1Γ1(A∞ − ζI)−1h

Since vector h ∈ H is arbitrary, it follows that

Γ0(AB+ − ζI)−1 = (B+ −M(ζ))−1Γ1(A∞ − ζI)−1, ζ ∈ C− (2.9)

Similar computations yield the formula for the conjugate operator A∗
B+

:

Γ0(A∗
B+

− zI)−1 = (B∗
+ −M(z))−1Γ1(A∞ − zI)−1, z ∈ C+ (2.10)

Substituting (2.9) and (2.10) into the definitions of functions F±h, h ∈ H we arrive at the result (h ∈ H ,
k ∈ R):

F+h = − 1√
2π

lim
ε↓0

α(B+ −M(k − iε))−1Γ1(A∞ − (k − iε))−1h

F−h = − 1√
2π

lim
ε↓0

α(B∗
+ −M(k + iε))−1Γ1(A∞ − (k + iε))−1h

(2.11)

For each h ∈ H these limits exist for almost any k ∈ R and represent two square integrable vector-functions.
The advantage of formulae (2.11) becomes apparent when, for example, the space H is finite dimensional.

In this case all computations are reduced to the calculation of the resolvent of the selfadjoint operator A∞
and the matrix inversion problem for the matrix-valued function (B+ −M(z)), z ∈ C−3.

Taking into account that Γ1(A∞ − zI)−1 = γ∗(z̄), we obtain from (2.9) and (2.10) following relations.
They will be used in the proof of Theorem 2.3.

Γ0(AB+ − ζI)−1 = (B+ −M(ζ))−1γ∗(ζ̄), ζ ∈ C−
Γ0(A∗

B+
− zI)−1 = (B∗

+ −M(z))−1γ∗(z̄), z ∈ C+

}
(2.12)

At last, for the sake of completeness, we formulate the theorem that describes the resolvent of operator
AB+ in the upper half plane. Its proof is based solely on the Hilbert resolvent identities and can be found in
[AP]. It is curious to notice that in contrast with similar results of the next Section, the vectors on the right
hand side of these formulae already belong to space H , making application of projection PH redundant. In
the notation below we customarily identify initial and model spaces and operators whose unitary equivalence
is established by the isometry Φ in hope that it will not lead to confusion.

Theorem 2.4. For
(
�g
g

) ∈ H

(AB+ − zI)−1

(
g̃

g

)
= (k − z)−1

(
g̃ − [S(z)]−1(Sg̃ + g)(z)

g

)
, z ∈ C+

(A∗
B+

− ζI)−1

(
g̃

g

)
= (k − ζ)−1

(
g̃

g − [S∗(ζ̄)]−1(g̃ + S∗g)(ζ)

)
, ζ ∈ C−

Here (Sg̃+ g)(z) and (g̃+S∗g)(ζ) are values of the analytical continuation of the functions Sg̃+ g ∈ H+
2 (E)

and g̃ + S∗g ∈ H−
2 (E) into complex points z ∈ C+, ζ ∈ C−, respectively.

3Recall that (B∗
+ − M(z̄))−1 =

�
(B+ − M(z))−1

�∗
, z ∈ C−
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The remaining part of this Section outlines principal steps of the proof of Theorem 2.3 in the form of a
few Propositions.

Introduce a linear set in H by the formula

W :=

⎧⎨⎩
n∑

j=1

aj(A − ζjI)−1v− +
m∑

s=1

bs(A − zsI)−1v+, v± ∈ D±

⎫⎬⎭ , (2.13)

where ζj ∈ C−, zs ∈ C+, aj , bs ∈ C, j = 1, 2, . . . n <∞, s = 1, 2, . . .m <∞.

Proposition 2.5. Set W is dense in the dilation space H .

This Proposition is equivalent to the completeness of incoming and outgoing waves of Lax-Phillips the-
ory [LP], or completeness of incoming and outgoing eigenfunctions of continuous spectra of the dilation [P4].

Proof. Since s − limt→∞ ± it(A ± itI)−1 = IH , the inclusion D+ ⊕D− ⊂ W is obvious. Hence, W ⊥ ⊂ H .
Further, (A − zI)−1W ⊂ W and A is selfadjoint. It follows that W and W ⊥ are invariant subspaces of
A . Noticing that AB+ is simple and A |W ⊥ = AB+ |W ⊥ since A is the dilation of AB+ , we conclude that
W ⊥ = {0}.

Introduce a linear set W as projection of W onto H . According to Theorem 2.2,

W =

⎧⎨⎩
n∑

j=1

ajγ(ζj)(B+ −M(ζj))−1αψj +
m∑

s=1

bsγ(zs)(B∗
+ −M(zs))−1αφs

⎫⎬⎭ ,
where ζj ∈ C−, zs ∈ C+, ψj , φs ∈ E, aj , bs ∈ C, j = 1, 2, . . . n <∞, s = 1, 2, . . .m <∞.

Corollary 2.6. The set W is dense in H.

Following example of [Na], we define the spectral mapping Φ : H → H initially on the dense set
(D−,W , D+) in H . Let V := (v−, v0, v+) ∈ (D−,W , D+), where

v0 :=
∑

j

ajγ(ζj)(B+ −M(ζj))−1αψj +
∑

s

bsγ(zs)(B∗
+ −M(zs))−1αφs (2.14)

in the notation introduced earlier. Let us define the mapping Φ as follows

Φ :

⎛⎝v−v0
v+

⎞⎠ �→
(
v̂+ + i√

2π

[∑
j

aj

k−ζj
S∗(ζ̄j)ψj +

∑
s

bs

k−zs
φs

]
v̂− − i√

2π

[∑
j

aj

k−ζj
ψj +

∑
s

bs

k−zs
S(zs)φs

] ) (2.15)

Here v̂± are Fourier transforms of functions v± ∈ L2(R±, E). Our task is to prove that so defined map Φ
possesses all the properties stated in Theorem 2.3.

First of all, observe that the mapping satisfying conditions (1) and (2) is unique. It follows directly from
the definition of the norm in H. (See (2.7).) Secondly, equalities ΦD± = D± for mapping (2.15) hold true
by virtue of Paley-Wiener theorem. Moreover, since Fourier transform v± �→ v̂± is isometric, restrictions
Φ|D± are isometries onto D±.

Proposition 2.7. In notation of Corollary 2.6

Φ(0,W , 0) ⊂ H

Proof. We need to show that vectors on the right hand side of (2.15) where v± = 0 are orthogonal to D±.
Due to linearity and linear independence, it is sufficient to show that for each j = 1, 2, . . . n and s = 1, 2, . . .m
vectors

1
k − ζj

(
S∗(ζ̄j)ψj

−ψj

)
,

1
k − zs

(
φs

−S(zs)φj

)
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are orthogonal to (H+
2 (E), H−

2 (E)) in H. Let h± ∈ H±
2 (E) be two vector functions, so that (h+, h−) ∈

(H+
2 (E), H−

2 (E)). Then omitting index j, we have for ζ ∈ C−(
1

k − ζ

(
S∗(ζ̄)ψ
−ψ

)
,

(
h+

h−

))
H

=
(
(k − ζ)−1S∗(ζ̄)ψ, (h+ + S∗h−)

)
L2(E)

− ((k − ζ)−1ψ, (Sh+ + h−)
)
L2(E)

=
(
(k − ζ)−1S∗(ζ̄)ψ, h+

)
L2(E)

− ((k − ζ)−1ψ, Sh+

)
L2(E)

= −
(
S∗(k) − S∗(ζ̄)

k − ζ
ψ, h+

)
L2(E)

= 0.

Similarly, for z ∈ C+ (
1

k − z

(
φ

−S(z)φ

)
,

(
h+

h−

))
H

=
(
S(k) − S(z)

k − z
φ, h−

)
L2(E)

= 0.

Here we used inclusions (k − ζ)−1 ∈ H+
2 , (k − z)−1 ∈ H−

2 and analytical continuation of bounded operator
functions S and S∗ to the upper and lower half planes correspondingly. The proof is complete.

Later it will be shown that Φ maps the space H on the whole H isometrically, therefore Φ(0,W , 0) is
dense in H.

Proposition 2.8. Almost everywhere on the real axis(
I S∗

S I

)
ΦV =

(
F+V

F−V

)
where V = (v−, v0, v+) ∈ (D−,W , D+).

Proof. The statement is obviously true if V belongs to the set D− ⊕ 0 ⊕D+. We only need to consider the
case V = (0, v0, 0) with v0 ∈ W , see (2.14). Arguments of linearity and independence of terms in (2.14)
show that it is sufficient to verify the statement only when each sum consists of just one element. Using
definitions of F± we reduce the claim to the following equalities where indices are omitted for convenience:

iαΓ0(AB+ − k + i0)−1
[
aγ(ζ)(B+ −M(ζ))−1αψ + bγ(z)(B∗

+ −M(z))−1αφ
]

=
a

k − ζ
[S∗(ζ̄) − S∗(k)]ψ +

b

k − z
[I − S∗(k)S(z)]φ

iαΓ0(A∗
B+

− k − i0)−1
[
aγ(ζ)(B+ −M(ζ))−1αψ + bγ(z)(B∗

+ −M(z))−1αφ
]

= − a

k − ζ
[I − S(k)S∗(ζ̄)]ψ +

b

k − z
[S(k) − S(z)]φ

Regrouping terms we come to four relations to be proven for almost all k ∈ R:

−S
∗(k) − S∗(ζ̄)
k − ζ

ψ = iαΓ0(AB+ − k + i0)−1γ(ζ)(B+ −M(ζ))−1αψ

I − S∗(k)S(z)
k − z

φ = iαΓ0(AB+ − k + i0)−1γ(z)(B∗
+ −M(z))−1αφ

−I − S(k)S∗(ζ̄)
k − ζ

ψ = iαΓ0(A∗
B+

− k − i0)−1γ(ζ)(B+ −M(ζ))−1αψ

S(k) − S(z)
k − z

φ = iαΓ0(A∗
B+

− k − i0)−1γ(z)(B∗
+ −M(z))−1αφ

(2.16)

Let λ = k−iε, k ∈ R, ε > 0. Then, since S∗(λ̄) = I−iα(B+−M(λ))−1α andM(λ)−M(ζ) = (λ−ζ)γ∗(λ̄)γ(ζ)
(see (1.16) and Theorem 1.2):

S∗(λ̄) − S∗(ζ̄) = −iα(B+ −M(λ))−1α+ iα(B+ −M(ζ))−1α

= iα(B+ −M(λ))−1
[− (B+ −M(ζ)) + (B+ −M(λ))

]
(B+ −M(ζ))−1α

= −iα(B+ −M(λ))−1
[
M(λ) −M(ζ)

]
(B+ −M(ζ))−1α

= −i(λ− ζ)α(B+ −M(λ))−1γ∗(λ̄)γ(ζ)(B+ −M(ζ))−1α
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Now the first relation of (2.12) yields:

−S
∗(λ̄) − S∗(ζ̄)
λ− ζ

ψ = iαΓ0(AB+ − λI)−1γ(ζ)(B+ −M(ζ))−1αψ

In accordance with the limiting procedure (2.8), we obtain the first formula in (2.16) as ε ↓ 0.
Similarly,

I − S∗(λ̄)S(z) = iα(B+ −M(λ))−1α− iα(B∗
+ −M(z))−1α

+ i2α(B+ −M(λ))−1α2(B∗
+ −M(z))−1α

= iα(B+ −M(λ))−1
[
(B∗

+ −M(z)) − (B+ −M(λ)) + iα2
]
(B∗

+ −M(z))−1α

= iα(B+ −M(λ))−1
[
M(λ) −M(z)](B∗

+ −M(z))−1α

The last expression was calculated at the previous step. The same line of reasoning applied to this case
proves correctness of the second formula in (2.16) for almost all k ∈ R.

Two last relations in (2.16) are verified analogously. Finally, the statement of the Proposition is valid on
the whole space H due to uniqueness of mapping satisfying conditions (1), (2) of Theorem 2.3. The proof
is complete.

Proposition 2.9. Operator Φ defined in (2.15) is an isometry from the dilation space H to the model
space H.

Due to this Proposition the mapping (2.15) is uniquely extended to the isometry from the whole space
H into H. In what follows we will use the same symbol Φ for this extension.

Proof. It is sufficient to prove that restriction of Φ to the space H is an isometry. To that end compute
norm of the vector Φ(0, v0, 0) in H. Denote V = (0, v0, 0), where v0 is defined in (2.14). Then, slightly
abusing the notation, we have

‖ΦV ‖2
H =
((

I S∗

S I

)
ΦV ,ΦV

)
L2⊕L2

=
((

F+V

F−V

)
,ΦV

)
L2⊕L2

=

((
F+v0
F−v0

)
,

( i√
2π

[∑
j

aj

k−ζj
S∗(ζ̄j)ψj +

∑
s

bs

k−zs
φs

]
− i√

2π

[∑
j

aj

k−ζj
ψj +

∑
s

bs

k−zs
S(zs)φs

]))
L2⊕L2

Since F+v0 ∈ H−
2 (E), F−v0 ∈ H+

2 (E), (k − ζj)−1 ∈ H+
2 , and (k − zs)−1 ∈ H−

2 , we obtain by the residue
method that

‖ΦV ‖2
H =

i√
2π

[∑
s

b̄s
(
F+v0, (k − zs)−1φs

)
L2(E)

−
∑

j

āj

(
F−v0, (k − ζj)−1ψj

)
L2(E)

]
=

i√
2π

[
2πi
∑

s

b̄s((F+v0)(z̄s), φs)E + 2πi
∑

j

āj((F−v0)(ζ̄j), ψj)E

]
=
∑

s

b̄s(αΓ0(AB+ − z̄s)−1v0, φs) +
∑

j

āj(αΓ0(A∗
B+

− ζ̄j)−1v0, ψj)

It follows from (2.12) that

‖ΦV ‖2
H =
∑

s

b̄s(α(B+ −M(z̄s))−1γ∗(zs)v0, φs) +
∑

j

āj(α(B∗
+ −M(ζ̄j))−1γ∗(ζj)v0, ψj)

=
(
v0,
∑

j

ajγ(ζj)(B+ −M(ζj))−1αψj +
∑

s

bsγ(zs)(B∗
+ −M(zs))−1αφs

)
= ‖v0‖2.

Thus, Φ is an isometry from H to H.

Proposition 2.10.
Φ ◦ (A − zI)−1 = (k − z)−1 ◦ Φ, z /∈ R
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Proof. The statement is a consequence of Proposition 2.9, property (2) of the Theorem 2.3, which is proven
in Proposition 2.8, and equalities

F± ◦ (A − zI)−1 = (k − z)−1 ◦ F±, z /∈ R

to be established. For (h−, h0, h+) ∈ H and z ∈ C+ denote as (h′−, h
′
0, h

′
+) the vector (A −zI)−1(h−, h0, h+).

Since
h± =

(
i
d

dξ
− z
)
h′±,

by exercising integration by parts, we obtain for Fourier transforms ĥ′±, ĥ±:

(k − z)ĥ′± = ĥ± ± i√
2π
h′±(0).

Then, according to the definition of F− and Theorem 2.2,

F−(h′−, h
′
0, h

′
+)

= − 1√
2π
αΓ0(A∗

B+
− k − i0)−1h′0 + ĥ′−(k) + S(k)ĥ′+(k)

= − 1√
2π
αΓ0(A∗

B+
− k − i0)−1[(A∗

B+
− z)−1h0 − γ(z)(B∗

+ −M(z))−1αh′+(0)]

+
1

k − z

[
(ĥ− + Sĥ+) +

i√
2π

(Sh′+(0) − h′−(0))
]

=
1

k − z
F−(h−, h0, h+) +

1
k − z

1√
2π
αΓ0(A∗

B+
− z)−1h0

+
1√
2π
αΓ0(A∗

B+
− k − i0)−1γ(z)(B∗

+ −M(z))−1αh′+(0)

+
1

k − z

i√
2π

[
h′+(0) − h′−(0) + iα(B∗

+ −M(k + i0))−1αh′+(0)
]

We need to show that the sum of last three terms is equal to zero. To that end we consider the sum of
the first and the third summands at the non-real point λ = k + iε, k ∈ R, ε > 0, λ 
= z. Substitute
h′+(0) − h′−(0) = iαΓ0h

′
0 and h′0 = (A∗

B+
− zI)−1h0 − γ(z)(B∗

+ −M(z))−1αh′+(0) and conduct necessary
computations.

1
λ− z

1√
2π

[
αΓ0(A∗

B+
− z)−1h0 − αΓ0h

′
0 − α(B∗

+ −M(λ))−1αh′+(0)
]

=
1

λ− z

1√
2π

[
αΓ0γ(z)(B∗

+ −M(z))−1αh′+(0) − α(B∗
+ −M(λ))−1αh′+(0)

]
= − 1

λ− z

1√
2π
α(B∗

+ −M(λ))−1 [M(λ) −M(z)] (B∗
+ −M(z))−1αh′+(0)

= − 1√
2π
α(B∗

+ −M(λ))−1γ∗(λ̄)γ(z)(B∗
+ −M(z))−1αh′+(0)

= − 1√
2π
αΓ0(A∗

B+
− λI)−1γ(z)(B∗

+ −M(z))−1αh′+(0),

where at the last step we employed relation (2.12). According to Lemma 2.4, this vector function is analytic
in the upper half plane λ ∈ C+. More precisely, it belongs to the Hardy class H+

2 (E). The only thing left is
to observe that its boundary values as ε ↓ 0 annihilate the second term in the expression for F−(h′−, h

′
0, h

′
+)

above.
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Now we turn to the lengthier computation of F+(A − zI)−1(h−, h0, h+).

F+(A − zI)−1(h−, h0, h+) = F+(h′−, h
′
0, h

′
+)

= − 1√
2π
αΓ0(AB+ − k + i0)−1h′0 + S∗(k)ĥ′−(k) + ĥ′+(k)

= − 1√
2π
αΓ0(AB+ − k + i0)−1[(A∗

B+
− z)−1h0 − γ(z)(B∗

+ −M(z))−1αh′+(0)]

+
1

k − z

[
(S∗ĥ− + ĥ+) +

i√
2π

(h′+(0) − S∗h′−(0))
]

Let λ = k− iε, k ∈ R, ε > 0 be a number in the lower half plane. Let us compute vectors h′+(0)−S∗(λ̄)h′−(0)
and αΓ0(AB+ − λ)−1(A∗

B+
− z)−1h0. Using Theorem 2.2, we have

h′+(0) − S∗(λ̄)h′−(0)

= h′+(0) − S∗(λ̄)
[− iαΓ0(A∗

B+
− z)−1h0 + S(z)h′+(0)

]
=
(
I − S∗(λ̄)S(z)

)
h′+(0) + iS∗(λ̄)αΓ0(A∗

B+
− z)−1h0

= i(λ− z)αΓ0(AB+ − λ)−1γ(z)(B∗
+ −M(z))−1αh′+(0) + iS∗(λ̄)αΓ0(A∗

B+
− z)−1h0

where at the last step we make use of computations for I − S∗(λ̄)S(z) conducted in the proof of Propo-
sition 2.8. Note that almost everywhere on the real axis there exist boundary values of both sides of this
formula as ε ↓ 0.
With the help of Theorem 1.2 and relations (2.12) we obtain

αΓ0(AB+ − λ)−1(A∗
B+

− z)−1h0

= α(B+ −M(λ))−1Γ1(A∞ − λ)−1
[
(A∞ − z)−1 + γ(z)(B∗

+ −M(z))−1γ∗(z̄)
]
h0

= (λ− z)−1α(B+ −M(λ))−1Γ1

[
(A∞ − λ)−1 − (A∞ − z)−1

]
h0

+ α(B+ −M(λ))−1γ∗(λ̄)γ(z)(B∗
+ −M(z))−1γ∗(z̄)h0

= (λ− z)−1αΓ0(AB+ − λ)−1h0

+ (λ− z)−1α(B+ −M(λ))−1
[− (B∗

+ −M(z)) + (M(λ) −M(z))
]
(B∗

+ −M(z))−1γ∗(z̄)h0

= (λ− z)−1αΓ0(AB+ − λ)−1h0 − (λ− z)−1α(B+ −M(λ))−1
[
B+ −M(λ) − iα2

]
(B∗

+ −M(z))−1γ∗(z̄)h0

= (λ− z)−1αΓ0(AB+ − λ)−1h0 − (λ− z)−1
[
I − iα(B+ −M(λ))−1α

]
α(B∗

+ −M(z))−1γ∗(z̄)h0

= (λ− z)−1αΓ0(AB+ − λ)−1h0 − (λ− z)−1S∗(λ̄)αΓ0(A∗
B+

− z)−1h0

Again, both sides of this relation have boundary values almost everywhere on the real axis, since they
both belong to the Hardy class H−

2 (E). Passing ε ↓ 0, substitute obtained results to the calculations of
F+(h′−, h

′
0, h

′
+) started above.

F+(A − zI)−1(h−, h0, h+)

= − 1√
2π
αΓ0(AB+ − k + i0)−1(A∗

B+
− z)−1h0 +

1√
2π
αΓ0(AB+ − k + i0)−1γ(z)(B∗

+ −M(z))−1αh′+(0)

+
1

k − z
(S∗ĥ− + ĥ+) +

1
k − z

i√
2π

×

×
[
i(k − z)αΓ0(AB+ − k + i0)−1γ(z)(B∗

+ −M(z))−1αh′+(0) + iS∗(k)αΓ0(A∗
B+

− z)−1h0

]
=

1
k − z

[
− 1√

2π
αΓ0(AB+ − k + i0)−1h0 + S∗ĥ− + ĥ+

]
+

1
k − z

1√
2π

[
S∗(k)αΓ0(A∗

B+
− z)−1h0 − S∗(k)αΓ0(A∗

B+
− z)−1h0

]
= (k − z)−1F+(h−, h0, h+).

The desired equality is established. Finally, the case z ∈ C− can be considered analogously. The proof is
complete.
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Proposition 2.11. The isometrical operator Φ maps H onto H.

Proof. As specified above, we use the same symbol Φ for the closure of the mapping defined in (2.15). We
only need to show that R(Φ) coincides with the whole space H. It is already known that Φ maps D−⊕0⊕D+

onto D+ ⊕ D− isometrically and the linear set ∨λ/∈R(A − λI)−1(D− ⊕ 0 ⊕ D+) is dense in H . Owing to
Proposition 2.10, this set is mapped by the isometry Φ into the set ∨λ/∈R(k−λ)−1(D+ ⊕D−), which is dense
in (L2(E), L2(E)). By the definition of norm in H, this set is dense in H. The range of an isometry is a
closed subspace, and that observation completes the proof.

2.2 Naboko-Vasyunin model of non-selfadjoint non-dissipative operator

In the paper [Na] S. Naboko proposed a solution to the problem of the functional model construction for a
non-selfadjoint non-dissipative operator. His method was revisited later in the work [MV] where it was taken
as a foundation for the functional model of an arbitrary bounded operator. The key idea of this approach
is to use the Sz.Nagy-Foiaş model of a dissipative operator that is “close” in a certain sense to the initial
operator and to describe the properties of the latter in this model space. It turned out that such dissipative
operator can be pointed to in a very natural, but not obvious, way. Namely, one arrives at that operator by
replacing the imaginary part of the initial non-dissipative operator with its absolute value. In other words,
the “close” dissipative operator for A + iV , where A = A∗ and V = V ∗ is A-bounded operator with the
relative bound lesser than 1, is the operator A + i|V |. Similar results are obtained in [MV] for a bounded
operator considered as an additive perturbation of an unitary one.

The theory developed in [Na] becomes inapplicable in the general situation of an unbounded non-
dissipative operator, since it could not be represented as a sum of its real and imaginary parts with the
imaginary part relatively bounded. The Makarov-Vasyunin schema [MV] still holds its value in this case
and could be employed for the model construction, provided that one works with the Cayley transform of
the initial unbounded operator. However, in applications to problems arising in physics, the computational
complexity and inherited inconvenience of Cayley transforms makes this method less attractive than the
direct approach of [Na].

Almost solvable extensions of a Hermitian operator are an example when the functional model can be
constructed by the method of paper [Na] without resorting to the Cayley transform. In this section we will
use notation introduced earlier and explain how to obtain the formulae for the resolvent (AB − zI)−1 acting
on the Sz.Nagy-Foiaş model space of the “close” dissipative operator AB+ . Essentially, all the computations
are based on some relationships between the resolvents (AB − zI)−1 and (AB+ − zI)−1, quite similar to the
identities between the resolvents of operators A∞ and AB+ obtained in the previous Section.

Let ζ ∈ ρ(AB)∩C−, φ ∈ D(AB) and (AB−ζI)φ = h. We will represent φ as a sum of two vectors φ = f+g,
where f ∈ ker(A∗ − ζI) and g = (AB+ − ζI)−1h. Noting that Γ1φ = BΓ0φ and Γ1g = B+Γ0g we obtain:

0 = Γ1φ−BΓ0φ = (Γ1 − BΓ0)(f + g)
= Γ1f −BΓ0f + Γ1g −BΓ0g = M(ζ)Γ0f −BΓ0f +B+Γ0g −BΓ0g

= (M(ζ) − B) Γ0f + (B+ −B)Γ0g

Therefore, Γ0f = (B −M(ζ))−1 (B+ −B)Γ0g, so that for Γ0φ = Γ0f + Γ0g we have

Γ0φ =
[
I + (B −M(ζ))−1 (B+ −B)

]
Γ0g

Now we apply the operator α to both sides of this equation and recall that

φ = (AB − ζI)−1h, g = (AB+ − ζI)−1h, B+ −B = iαX−α

where X− = (IE − J)/2. Thus for each h ∈ H :

αΓ0(AB − ζI)−1h =
[
I + iα (B −M(ζ))−1 αX−]αΓ0(AB+ − ζI)−1h

Similar computations with the operators B and B+ interchanged yield equality

αΓ0(AB+ − ζI)−1h =
[
I − iα (B+ −M(ζ))−1

αX−]αΓ0(AB − ζI)−1h
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Introduce an analytic operator-function Θ−(ζ), ζ ∈ C−

Θ−(ζ) := I − iα (B+ −M(ζ))−1
αX−

= X+ + S∗(ζ̄)X−, ζ ∈ C−

}
(2.17)

where X+ = (IE + J)/2 and S(·) is the characteristic function of the operator AB+ as defined in the
Theorem 2.1. The second equality (2.17) can be easily verified with the help of representation (1.16) for the
characteristic function of an a.s. extension and the identity X+ +X− = IE . Indeed, from (1.16) we obtain

X+ + S∗(ζ̄)X− = X+ + [IE − iα(B+ −M(ζ))−1α]X−

= X+ +X− − iα(B+ −M(ζ))−1αX− = Θ−(ζ).

The preceding formulae now can be rewritten in the form of operator equalities:

αΓ0(AB+ − ζI)−1 = Θ−(ζ)αΓ0(AB − ζI)−1, ζ ∈ C−
αΓ0(AB − ζI)−1 = Θ−1

− (ζ)αΓ0(AB+ − ζI)−1, ζ ∈ C− ∩ ρ(AB)

}
(2.18)

The inverse function Θ−1
− (·) = [Θ−(·)]−1 has the form similar to (2.17):

Θ−1
− (ζ) = I + iα (B −M(ζ))−1 αX−

= X+ + Θ∗(ζ̄)X−, ζ ∈ C− ∩ ρ(AB)
(2.19)

where Θ is the characteristic function of AB .
Now we turn to the similar, but lengthier, computations for the resolvents of the operators AB and AB+

in the upper half plane. For z ∈ C+ ∩ ρ(A∗
B) and h ∈ H we represent the vector φ ∈ D(A∗

B+
) such that

(A∗
B+

− zI)φ = h in the form φ = f + g, where f ∈ ker(A∗ − zI) and g = (A∗
B − zI)−1h. Then

0 = (Γ1 −B∗
+Γ0)φ =

(
M(z) −B∗

+

)
Γ0f + (B∗ −B∗

+)Γ0g

Therefore,
Γ0f =

(
B∗

+ −M(z)
)−1 (B∗ −B∗

+)Γ0g = i
(
B∗

+ −M(z)
)−1

αX−αΓ0g

and
Γ0φ = Γ0f + Γ0g =

[
I + i

(
B∗

+ −M(z)
)−1

αX−α
]
Γ0g

After substitution of φ = (A∗
B+

− zI)−1h and g = (A∗
B − zI)−1h we obtain

αΓ0(A∗
B+

− zI)−1h =
[
I + iα

(
B∗

+ −M(z)
)−1

αX−]αΓ0(A∗
B − zI)−1h

Since this identity is valid for each h ∈ H , in particular, for h ∈ R(AB − zI) it follows that on the
domain D(AB)

αΓ0(A∗
B+

− zI)−1(AB − zI)

=
[
I + iα

(
B∗

+ −M(z)
)−1

αX−]× J · JαΓ0(A∗
B − zI)−1(AB − zI)

Noting that JαΓ0(A∗
B−zI)−1(AB−zI)f = Θ(z)JαΓ0f for any f ∈ D(AB) by the definition of characteristic

function (see calculations preceding (1.16)), we arrive at the formulae

αΓ0(A∗
B+

− zI)−1(AB − zI) =
[
I + iα

(
B∗

+ −M(z)
)−1

αX−]× JΘ(z)JαΓ0

and, if z ∈ C+ ∩ ρ(AB)

αΓ0(A∗
B+

− zI)−1 =
[
I + iα

(
B∗

+ −M(z)
)−1

αX−]JΘ(z)JαΓ0(AB − zI)−1
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Denote Θ+ the operator function from the right hand side and compute it.

Θ+(z) =
[
I + iα

(
B∗

+ −M(z)
)−1

αX−]JΘ(z)J

=
[
I + iα

(
B∗

+ −M(z)
)−1

αX−]J[I + iJα (B∗ −M(z))−1
α
]
J

= I + iα
(
B∗

+ −M(z)
)−1

αX− + iα (B∗ −M(z))−1
αJ

+ (i)2α
(
B∗

+ −M(z)
)−1

αX−α (B∗ −M(z))−1
αJ

= I + iα
(
B∗

+ −M(z)
)−1 [−X− (B∗ −M(z)) +

(
B∗

+ −M(z)
)

+ iαX−α
]
(B∗ −M(z))−1 αJ

= I + 2iα
(
B∗

+ −M(z)
)−1 [−X− (B∗ −M(z)) +B∗ −M(z)

]
(B∗ −M(z))−1

αJ

= I + iα
(
B∗

+ −M(z)
)−1

X+αJ = X− +
[
I + iα

(
B∗

+ −M(z)
)−1

α
]
X+

= X− + S(z)X+

Therefore,
αΓ0(A∗

B+
− zI)−1(AB − zI) = Θ+(z)αΓ0, z ∈ C+

where Θ+(z) = I + iα
(
B∗

+ −M(z)
)−1

αX+ = X− + S(z)X+

}
(2.20)

Values of operator-function Θ+(z) are invertible operators if z ∈ C+ ∩ ρ(AB); simple computations show
that

Θ−1
+ (z) = I − iα (B −M(z))−1

αX+ = X− + Θ∗(z̄)X+, (2.21)

Finally we obtain the counterpart for (2.18):

αΓ0(A∗
B+

− zI)−1 = Θ+(z)αΓ0(AB − zI)−1, z ∈ C+

αΓ0(AB − zI)−1 = Θ−1
+ (z)αΓ0(A∗

B+
− zI)−1, z ∈ C+ ∩ ρ(AB)

}
(2.22)

Now we can compute how the spectral mappings F± translate the resolvent of the operator AB into the
“model” terms. For λ0 ∈ C− ∩ ρ(AB), ζ ∈ C− and h ∈ H with the assistance of (2.18) we have

αΓ0(AB+ − ζI)−1(AB − λ0I)−1h

= Θ−(ζ)αΓ0(AB − ζI)−1(AB − λ0I)−1h

= (ζ − λ0)−1Θ−(ζ)αΓ0[(AB − ζI)−1 − (AB − λ0I)−1]h
= (ζ − λ0)−1

[
αΓ0(AB+ − ζI)−1 − Θ−(ζ)αΓ0(AB − λ0I)−1

]
h

= (ζ − λ0)−1
[
αΓ0(AB+ − ζI)−1 − Θ−(ζ)Θ−1

− (λ0)αΓ0(AB+ − λ0I)−1
]
h

Assume ζ = k−iε, k ∈ R, ε > 0. We obtain the expression for F+(AB−λ0I)−1h when ε→ 0. (See definitions
of F± after the Lemma 2.4.) Taking into account assertion (2) of the Theorem 2.3 and noting that boundary
values Θ−(k− i0) of the bounded analytic operator-function Θ− exist in the strong operator topology almost
everywhere on the real axis (see (2.17)), we deduce from the formula above that for (g̃, g) = Φh, k ∈ R:[

F+(AB − λ0I)−1h
]
(k)

= (k − λ0)−1
[
(g̃ + S∗g)(k − i0) − Θ−(k − i0)Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]
.

The model representations of functions F−(AB−λ0I)−1h and F±(AB−µ0I)−1h, where µ0 ∈ C+∩ρ(AB)
are computed quite similarly and below we sum up all these formulae:

F+(AB − λ0I)−1h =
1

k − λ0

[
(g̃ + S∗g)(k) − Θ−(k)Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]

F−(AB − λ0I)−1h =
1

k − λ0

[
(Sg̃ + g )(k) − Θ+(k)Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]

F+(AB − µ0I)−1h =
1

k − µ0

[
(g̃ + S∗g)(k) − Θ−(k)Θ−1

+ (µ0)(Sg̃ + g )(µ0)
]

F−(AB − µ0I)−1h =
1

k − µ0

[
(Sg̃ + g )(k) − Θ+(k)Θ−1

+ (µ0)(Sg̃ + g )(µ0)
]
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where h ∈ H , (g̃, g) = Φh, λ0 ∈ C− ∩ ρ(AB), µ0 ∈ C+ ∩ ρ(AB), and for almost all k ∈ R there exist strong
limits Θ±(k) := s− limε↓0 Θ±(k ± iε).

The main theorem describes the action of operator AB in the model space H = L2

(
I S∗

S I

)
of dissipative

operator AB+ . As before, for the notational convenience we use the same symbols for objects whose unitary
equivalence is established by the isometry Φ.

Theorem 2.5. For λ0 ∈ C− ∩ ρ(AB), µ0 ∈ C+ ∩ ρ(AB), (g̃, g) ∈ H

(AB − λ0I)−1

(
g̃

g

)
= PH(k − λ0)−1

(
g̃

g −X−Θ−1
− (λ0)(g̃ + S∗g)(λ0)

)
(AB − µ0I)−1

(
g̃

g

)
= PH(k − µ0)−1

(
g̃ −X+Θ−1

+ (µ0)(Sg̃ + g )(µ0)
g

)
Here PH is the orthogonal projection from H onto H.

Proof. The proof is identical to the proof of the corresponding result of [Na]. For the most part it is based
on the identities for F±(AB − λ0I)−1, F±(AB − µ0I)−1 obtained earlier.

Let us verify the Theorem’s assertion for λ0 ∈ C− ∩ ρ(AB). The case of the resolvent in the upper half
plane is considered analogously. According to Theorem 2.3 we only need to show that functions (Sg̃′+g′) and
(g̃′ + S∗g′) where (g̃′, g′) is the vector on the right hand side of the corresponding formula satisfy following
conditions

F+(AB − λ0I)−1h = (g̃′ + S∗g′)

F−(AB − λ0I)−1h = (Sg̃′ + g′)

with Φh = (g̃, g). Since(
g̃′

g′

)
= PH(k − λ0)−1

(
g̃

g −X−Θ−1
− (λ0)(g̃ + S∗g)(λ0)

)

=
( �g

k−λ0
− P+

1
k−λ0

[
g̃ + S∗g − S∗X−Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]

g−X−Θ−1
− (λ0)(�g+S∗g)(λ0)

k−λ0
− P− 1

k−λ0

[
Sg̃ + g −X−Θ−1

− (λ0)(g̃ + S∗g)(λ0)
])

=
1

k − λ0

(
g̃ − (g̃ + S∗g)(λ0) + S∗(λ0)X−Θ−1

− (λ0)(g̃ + S∗g)(λ0)
g −X−Θ−1

− (λ0)(g̃ + S∗g)(λ0)

)
,

we have with the help of (2.17) and (2.20)

g̃′ + S∗g′

=
1

k − λ0

[
(g̃ + S∗g) − (g̃ + S∗g)(λ0) + (S∗(λ̄0) − S∗)X−Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]

=
1

k − λ0

[
(g̃ + S∗g) − (Θ−(λ0) − (S∗(λ̄0) − S∗)X−)Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]

=
1

k − λ0

[
(g̃ + S∗g) − Θ−(k)Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]

= F+(AB − λ0I)−1u

and
S̃g′ + g′

=
1

k − λ0

[
(Sg̃ + g) − S(g̃ + S∗g)(λ0) − (I − SS∗(λ̄0))X−Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]

=
1

k − λ0

[
(Sg̃ + g) − (SΘ−(λ0) +X− − SS∗(λ̄0)X−)Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]

=
1

k − λ0

[
(Sg̃ + g) − (SX+ +X−)Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]

=
1

k − λ0

[
(Sg̃ + g) − Θ+(k)Θ−1

− (λ0)(g̃ + S∗g)(λ0)
]

= F+(AB − λ0I)−1u.

The proof is complete.
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Remark 2.12. OperatorsX−Θ−1
− (λ0), X+Θ−1

+ (µ−) in the Theorem 2.5 can be replaced with X−Θ∗(λ̄0)X−

and X+Θ∗(µ̄0)X+, respectively. For the proof see (2.19), (2.21) and identities X−X+ = X+X− = 0.

Remark 2.13. All assertions of the Theorem 2.5 remain valid if the operator J is formally substituted by
−J or ±IE . Compare with [Na] for details. Following theorem is a consequence of this observation obtained
from the Theorem 2.5 by the substitution J → −J . Note that its claim can be verified independently by
passing on to adjoint operators in the formulae of Theorem 2.5.

Theorem 2.6. For λ0 ∈ C− ∩ ρ(A∗
B), µ0 ∈ C+ ∩ ρ(A∗

B), (g̃, g) ∈ H

(A∗
B − λ0I)−1

(
g̃

g

)
= PH(k − λ0)−1

(
g̃

g −X+Θ(λ0)X+(g̃ + S∗g)(λ0)

)
(A∗

B − µ0I)−1

(
g̃

g

)
= PH(k − µ0)−1

(
g̃ −X−Θ(µ0)X−(Sg̃ + g )(µ0)

g

)
Assuming J = IE in the statement of the Theorem 2.5, we arrive at the Sz.Nagy-Foiaş model of dissipative

operator AB+ , see (2.6) and Theorem 2.4.

Remark 2.14. It is unknown whether the operator A∞ can be efficiently represented in the model space H =

L2

( I S∗

S I

)
. The computations, analogous to the carried out above, fail to yield “resolvent identities” that

could be used for the desired model representation of the operator A∞.

At this point we close our discussion of the functional model of the operator AB and turn to the
illustrations of the developed theory.

3 Examples

In this section we offer two examples of calculation of Weyl function.
The first example is a Hermitian operator that models the finite set of δ-interactions of quantum mechanics

([BF]). A recently published preprint [BMN] offers a description of the boundary triple of this operator in
the case of a single δ-interaction. It does not touch upon more general situation; however, a generalization
to the case considered below is quite evident. The paper [BMN] is not concerned with any questions related
to the functional model of nonselfadjoint extensions.

The second example is the Hermitian operator generated by the differential expression l[y] = −y′′+q(z)y
in L2(0,∞) with a real-valued potential q(x) such that the Weyl limit circle case at infinity is observed.
Explicit construction of the selfadjoint dilation of a dissipative extension of this operator and subsequent
spectral analysis in terms of its characteristic function are carried out in the paper [A1] in complete accordance
with B. Pavlov’s schema.

In this Section we content ourselves with description of convenient boundary triples and computation of
corresponding Weyl functions. The construction of the functional models is not given here, since the model
perspective on any a.s. non-selfadjoint extension of these operators can be easily derived from the exposition
of Section 2.

3.1 Point interactions in R3

Let {xs}n
s=1 (n <∞) be the finite set of distinct points in R3.We define a Hermitian operator A as a closure

of the restriction of Laplace operator −∆ on H = L2(R3) to the set of smooth functions vanishing in the
neighborhood of ∪sxs. It is known ([BF], [P2]), that

D(A) =
{
u ∈W 2

2 (R3) : u(xs) = 0, s = 1, 2, ...n
}

The deficiency indices n±(A) are equal to (n, n). The domain of conjugate operator A∗ is described in the
following Theorem borrowed from [P2].
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Theorem 3.1. The domain D(A∗) of conjugate operator A∗ consists of the functions u ∈ L2(R3)∩W 2
2 (R3 \

∪sxs) with the following asymptotic expansion in the neighborhood of {xs}n
s=1

u(x) ∼ us
−/|x− xs| + us

0 +O(|x − xs|1/2), x→ xs, s = 1, 2, ...n.

For given vectors u, v ∈ D(A∗) the analogue of the second Green’s formula holds:

(A∗u, v)H − (u,A∗v)H =
n∑

s=1

(
us

0v̄
s
− − us

−v̄
s
0

)
It is easy to show that the boundary triple {H,Γ0,Γ1} for the operator A∗ can be chosen in the form

(u ∈ D(A∗)):
H = C

n, Γ0u = (u1
−, u

2
−, . . . u

n
−)T , Γ1u = (u1

0, u
2
0, . . . u

n
0 )T

In order to compute Weyl function corresponding to this boundary triple let us fix a complex number
z ∈ C− ∪ C+ and let yz be a vector from ker(A∗ − zI), so that yz ∈ D(A∗) and −∆yz = zyz. Note that
vector yz is uniquely represented in the form of linear combination

yz(x) =
n∑

s=1

Cs
exp(ik|x− xs|)

|x− xs| ,

where k =
√
z, Im z > 0, and {Cs}n

s=1 are some constants. Noting that in the neighborhoods of points {xs}n
s=1

asymptotically
exp(ik|x− xs|)

|x− xs| ∼ 1
|x− xs| + ik +O(|x − xs|), as x→ xs

and obviously

lim
x→xj

exp(ik|x− xs|)
|x− xs| =

exp(ik|xj − xs|)
|xj − xs| , j 
= s,

we easily compute both vectors Γ0yz, Γ1yz.

Γ0yz = (C1, C2, . . . Cn)T

Γ1yz =

(
ik · C1 +

n∑
s=2

Cs
exp(ik|x1 − xs|)

|x1 − xs| , . . .

. . . ik · Cj +
n∑

s�=j

Cs
exp(ik|xj − xs|)

|xj − xs| , . . .

. . . ik · Cn +
n−1∑
s=1

Cs
exp(ik|xn−1 − xs|)

|xn−1 − xs|

)T

Comparison of these formulae with the definition Γ1yz = M(z)Γ0yz of Weyl function yields its explicit form.
It is a (n× n)-matrix function M(z) = ‖Msj(z)‖n

1 with elements

Msj(z) =
{
ik, s = j
〈s, j〉, s 
= j

where k =
√
z, k ∈ C+ and

〈s, j〉 :=
exp(ik|xs − xj |)

|xs − xj | , s 
= j, s, j = 1, 2, . . . n

Note that the selfadjoint operator A∞ defined as a restriction of A∗ to the set {y ∈ D(A∗) : Γ0y = 0} is
the Laplace operator −∆ in L2(R3) with the domain D(A∞) = W 2

2 (R3). At the same time it is the Friedrichs
extension of operator A. The special role of extension A∞ with regard to the functional model construction
was pointed out in Section 2.
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3.2 Schrödinger operator in the Weyl limit circle case

The second example is the Hermitian operator A defined as a closure in the Hilbert space H = L2(R+) of
the minimal operator generated by differential expression

l[y] = −y′′ + q(x)y (3.1)

on domain C∞
0 (R+). We assume the potential q(x) to be a real-valued continuous function such that for

the expression (3.1) the Weyl limit circle case at infinity is observed. The deficiency indices of A are equal
to (2, 2) and both solutions of equation l[y] = λy are functions from L2(R+) for any λ ∈ C, see [T], [CL].
The conjugate operator A∗ is generated by the same differential expression (3.1) on the class of absolutely
continuous functions y from L2(R+) whose derivatives are locally absolutely continuous and l[y] is square
integrable.

Let v1(x), v2(x), x ∈ R be two linearly independent solutions of the equation l[y] = 0 satisfying conditions
at x = 0:

v1(0) = 1, v′1(0) = 0, v2(0) = 0, v′2(0) = 1,

For our purposes we will use the boundary triple {H,Γ0,Γ1} for the operator A∗ described in [A1]. The
space H is two-dimensional: H = C2, and the mappings Γ0,Γ1 : D(A∗) → C2 are defined as

Γ0y =
(

y′(0)
W [y, v2]

∣∣
∞

)
, Γ1y =

( −y(0)
W [y, v1]

∣∣
∞

)
, y ∈ D(A∗) (3.2)

where W [f, g] := fg′ − f ′g is the Wronsky determinant of two functions f , g from D(A∗).
In order to compute the corresponding Weyl function M(·) let us fix a complex number λ ∈ C+ and let

ψλ, φλ(x) be the solutions of the equation l[y] = λy satisfying

ψλ(0) = 1, ψ′
λ(0) = 0, φλ(0) = 0, φ′λ(0) = 1. (3.3)

Both functions φλ, ψλ are square integrable on the real half axis R+, their Wronsky determinant is indepen-
dent on x ∈ R+ and is equal to one: W [ψλ, φλ] = 1. The functions ψλ, φλ are linearly independent vectors
in L2(R+) and any solution yλ of the equation (A∗−λI)yλ = 0 is their linear combination yλ = C1ψλ+C2φλ

with some constants C1, C2 ∈ C. According to (3.2),

Γ0yλ =
(

y′λ(0)
W [yλ, v2]

∣∣
∞

)
=
(

C2

C1 · W [ψλ, v2]
∣∣
∞ + C2 · W [φλ, v2]

∣∣
∞

)
Γ1yλ =

( −yλ(0)
W [yλ, v1]

∣∣
∞

)
=
( −C1

C1 · W [ψλ, v1]
∣∣
∞ + C2 · W [φλ, v1]

∣∣
∞

)

Let M(λ) = ‖mij(λ)‖ =
(
m11(λ) m12(λ)
m21(λ) m22(λ)

)
be the Weyl function being sought. Since Γ1yλ = M(λ)Γ0yλ

by the definition, the equalities

−C1 = m11(λ) · C2 +m12(λ) ·
{
C1 · W [ψλ, v2]

∣∣
∞ + C2 · W [φλ, v2]

∣∣
∞
}

C1 · W [ψλ, v1]
∣∣
∞ + C2 · W [φλ, v1]

∣∣
∞ =

= m21(λ) · C2 +m22(λ) ·
{
C1 · W [ψλ, v2]

∣∣
∞ + C2 · W [φλ, v2]

∣∣
∞

}
should be valid for any C1, C2 ∈ C. The solution of this linear system is easy to compute:

m11(λ) =
(W [φλ, v2]/W [ψλ, v2]

)∣∣
∞

m12(λ) = (−1)/W [ψλ, v2]
∣∣
∞

m21(λ) = W [ψλ, v1]
∣∣
∞ − (W [φλ, v1]

/W [φλ, v2]
)∣∣

∞ · W [ψλ, v2]
∣∣
∞

m22(λ) =
(W [φλ, v1]/W [φλ, v2]

)∣∣
∞
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Expression for m21(λ) above can be further simplified

m21(λ) = W [φλ, v2]−1 · (W [φλ, v1] · W [ψλ, v2] −W [ψλ, v1] · W [φλ, v2]
)∣∣

∞
=
(W [φλ, v2]|∞

)−1 · lim
b→∞
(
(φλv

′
1 − φ′λv1)(ψλv

′
2 − ψ′

λv2) −

(ψλv
′
1 − ψ′

λv1)(φλv
′
2 − φ′λv2)

)∣∣
b

=
(W [φλ, v2]|∞

)−1 · lim
b→∞
(
φλψ

′
λ(v1v′2 − v′1v2) − φ′λψλ(v1v′2 − v′1v2)

)∣∣
b

=
(W [φλ, v2]|∞

)−1 · lim
b→∞

W [φλ, ψλ]|b · W [v1, v2]|b
= −(W [φλ, v2]|∞

)−1

Finally, for the Weyl function we obtain the formula

M(λ) =
{W [ψλ, v2]

∣∣
∞
}−1
( W [φλ, v2]

∣∣
∞ −1

−1 W [ψλ, v1]
∣∣
∞

)
, λ ∈ C+ (3.4)

There exists another representation of the Weyl function (3.4) derived from the work of M.G.Krein [Kr].
Introduce following functions

D0(x, λ) = −λ
∫ x

0

φλ(s)v2(s)ds

D1(x, λ) = 1 + λ

∫ x

0

φλ(s)v1(s)ds

E0(x, λ) = 1 − λ

∫ x

0

ψλ(s)v2(s)ds

E1(x, λ) = λ

∫ x

0

ψλ(s)v1(s)ds

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.5)

Noticing that Cauchy function of the differential operator − d2

dx2 +q(x) coincides with v1(x)v2(s)−v1(s)v2(x),
after a short computation we conclude that

W [ψλ, v2] = E0(x, λ) W [φλ, v2] = D0(x, λ)
W [ψλ, v1] = −E1(x, λ) W [φλ, v1] = −D1(x, λ)

Consequently, the Weyl function (3.4) can be rewritten in the form

M(λ) =
(
E0(λ)

)−1
(
D0(λ) −1
−1 −E1(λ)

)
, λ ∈ C+

where
D0(λ) := lim

x→+∞D0(x, λ), Ej(λ) := lim
x→+∞Ej(x, λ), j = 0, 1.

These limits exist due to the square integrability of the functions ψλ, φλ, v1, v2, when λ ∈ C+, see (3.5).
Moreover, these limits are entire functions of the variable λ ∈ C.

The selfadjoint operatorA∞ is generated by the expression (3.1) and boundary condition Γ0y =
( y′(0)
W[y,v2]|∞

)
=

0. It is well known that the spectrum of the operator A∞ consists of pure eigenvalues with the multi-
plicity equal to one. By the definition (3.3) the solution ψλ satisfies Γ0ψλ = 0 if the Wronsky determi-
nant W [ψλ, v2] = E0(x, λ) tends to zero as x → ∞. It means that the zeroes of the entire function E0(λ)
in the “denominator” of the Weyl function are the eigenvalues of the operator A∞ with the corresponding
eigenvectors ψλ.
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[Kr] M.G. Krĕın, On the indeterminate case of the Sturm-Liouville boundary problem in the interval (0,∞).
(Russian) Izvestiya Akad. Nauk SSSR. Ser. Mat. 16 (1952). 293–324.

[K] Yu. Kudryashov, Symmetric and selfadjoint dilations of dissipative operators. (Russian) Teor. Funktsĭı,
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