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Abstract. We review some of Barry Simon’s central contributions concerning
what is often called exotic spectral properties. These include phenomena such
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1. Introduction

“General wisdom used to say that Schrödinger operators should
have absolutely continuous spectrum plus some discrete point
spectrum, while singular continuous spectrum is a pathology
that should not occur in examples with V bounded.”

The above quote starts Section 10.4 of the 1987 book “Schrödinger Operators”
by Cycon, Froese, Kirsch and Simon [15]. A few lines below, it further states:
“Another correction to the ‘general picture’ is that point spectrum may be dense
in some region of the spectrum rather than being a discrete set.” These statements
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are made as background to the introduction of yet a third exotic spectral phenom-
enon, which is the occurrence of Cantor spectrum, and to the characterization of
absolutely continuous spectrum associated with Cantor spectrum as recurrent.

The book [15] is mostly a summary of a summer school course that Simon gave
in 1982. Section 10.4 mainly discusses ideas that were introduced in the seminal
1981 Avron–Simon paper “Transient and recurrent spectrum” [3] along with some
relevant results of Avron–Simon [5], Bellissard–Simon [11], and Chulaevsky [13].
In particular, the above quotations echo similar statements previously made in [3].

For insight regarding the “general wisdom” of the time, it may be illuminating
to look at the 1978 fourth (and last) volume of “Methods of Modern Mathematical

Physics” by Reed and Simon [49]. This volume is called “Analysis of Operators”
and its Section XIII.6 starts with the following statement: “Spectral analysis of
an operator A concentrates on identifying the five sets σess(A), σdisc(A), σac(A),
σsing(A), σpp(A).” This section is called “The absence of singular continuous spec-

trum I” and it is followed by similarly titled sections up to “The absence of singular

continuous spectrum IV.” These “absence of singular continuous spectrum” sections
occupy roughly 16% of the volume and point at the main role played by singular
continuous spectrum in pre-1978 spectral theory: It was a non-occurring phenom-
enon which complicated life by requiring some effort to prove it did not occur.

The Avron–Simon paper [3] posed a significant challenge to the “general wis-
dom” of its time. First, it extended the above “five sets” by defining four new spec-
tral types (recurrent absolutely continuous, transient absolutely continuous, thick

pure point and thin pure point). Second, it made the prediction that what they
called “extraordinary” spectra (and we call here exotic spectra) “will become more
and more commonly encountered than one might have thought!” Indeed, Avron–
Simon point out this prediction as a potential objection to their choice of the term
“extraordinary.” The fact that their prediction materialized so fully is why we
decided to reject their proposed terminology and adopt “exotic spectra” instead.

The historical background concerning exotic spectra which preceded [3] con-
sisted of several fairly isolated results. In particular, one should mention the 1977
Goldsheid–Molchanov–Pastur [25] proof of Anderson localization [1] (namely, the
occurrence of pure point spectrum with eigenvalues dense in an interval) in a ran-
dom Schrödinger operator. They considered a continuous one-dimensional operator
of the form −∆ + V on L2(R) with a certain type of random potential V.

Even earlier, the Ishii–Pastur theorem (see [15]) indicated that some random
one-dimensional Schrödinger operators have no absolutely continuous spectrum in
spite of their spectrum being an interval (which says they must have either thick
point spectrum or singular continuous spectrum or both). Anderson localization
for discrete Schrödinger operators with i.i.d.r.v. potentials was proven in 1980 by
Kunz–Souillard [43]. Another notable result of the era is Pearson’s seminal 1978
paper [47], which gave an explicit construction of a one-dimensional Schrödinger
operator having purely singular continuous spectrum.

[3] was essentially part of a series of papers concerned mostly with almost
periodic Schrödinger operators that Simon wrote with several coauthors in the
early 1980’s [4, 3, 5, 6, 7, 11, 14, 16, 55, 56]. These works were predated by
the 1975 paper of Dinaburg–Sinai [20], which established absolutely continuous
spectrum for some almost periodic Schrödinger operators, and by several papers of
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Shubin (see [53]). They were paralleled by a number of works by other authors
(e.g., [9, 10, 12, 13, 21, 22, 37, 38, 46, 52]).

The phenomenon of sudden broad interest in almost periodic Schrödinger op-
erators has been named the “almost periodic flu” by Simon and is very nicely
presented in his review paper [54], which is itself often called “the almost peri-
odic flu paper.” [3] seems to have been primarily motivated by the Avron–Simon
discovery [5] of Cantor absolutely continuous spectrum for certain almost periodic
Schrödinger operators, but, while other papers in the series were focused purely on
almost periodic, or very similar, potentials, [3] took a more general perspective: It
looked at the potential implications of the new spectral phenomenon to quantum
mechanics, identified natural mathematical structures which arise in this context
and, most notably, identified the connection between the newly discovered spectral
phenomenon for almost periodic operators and the prior findings of Goldsheid–
Molchanov–Pastur [25] and Pearson [47]. We thus believe that it is [3], more than
any other single work, that marks the beginning of a new era in spectral analysis:
the era of exotic spectra.

We note that by classical inverse spectral theory, one should actually expect
the full spectral richness allowed by measure theory to find its way into Schrödinger
operators. In particular, we have

Theorem 1.1 (Gel’fand–Levitan [24]). Given any finite Borel measure ν on

[a, b] ⊂ R, there exists a continuous half-line Schrödinger operator for which the

spectral measure coincides with ν on [a, b].

Thus, one could argue that the “general wisdom” expecting only “absolutely
continuous spectrum plus some discrete point spectrum” was never really justified.
Indeed, in looking back, it seems to be very much the consequence of mathemat-
ical physicists concentrating their attention on operators arising from atomic and
molecular physics, mathematical problems associated with scattering experiments,
periodic problems, etc., namely, on problems which happen to have such spectra.

The exotic spectra era can thus be at least partially attributed to mathemati-
cal physicists starting to look into some rich problems of modern condensed matter
physics which yield rich spectral phenomena. Indeed, several developments in con-
densed matter physics in the early 1980’s contributed to the growing interest in
almost periodic Schrödinger operators and exotic spectra. The 1980 discovery of
the integer quantum Hall effect by von Klitzing [40] (for which he got the Nobel
Prize in 1985), led to a beautiful theory by Thouless, Kohmoto, Nightingale and
den Nijs [66], which explains the quantization of charge transport in this effect as
connected with certain topological invariants. Central to their theory is the use of
the almost Mathieu operator as a model for Bloch electrons in a magnetic field (in
which case the frequency α is proportional to the magnetic flux; see below).

Another strong source of interest in almost periodic problems came from
the 1984 discovery of quasicrystals by Shechtman et al. [48], as almost periodic
Schrödinger operators provide elementary models for electronic properties in such
media. Yet another motivating development occurred in the context of quantum
chaos theory, notably in works of Fishman, Grempel, and Prange [23, 30, 31], as
discrete one-dimensional Schrödinger operators with rich potentials (and, in par-
ticular, almost periodic ones) appeared in studies of dynamics of some elementary
quantum models and, in particular, in studies aimed towards distinguishing quan-
tum from classical dynamics in chaotic systems.
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Interestingly, while the above developments in physics certainly contributed to
broader interest in problems connected with exotic spectra, the timeline doesn’t
point to a simple scenario of mathematical physicists following the footsteps of
physicists. Anderson localization was discovered in 1958 [1] and has been an active
field of research by condensed matter physicists throughout the 1960’s and 1970’s,
yet the Goldsheid–Molchanov–Pastur paper [25] came only in 1977. On the other
hand, the “almost periodic flu” was in full motion before the above developments
in physics that made it all the more interesting.

It is also interesting to note that Pearson’s example [47] of a one-dimensional
Schrödinger operator having purely singular continuous spectrum isn’t directly con-
nected with anything that has been of much interest to physics. The same is true
for quite a few other models that have been considered in the context of exotic spec-
tra. Thus, it appears that at least some of the exotic spectra era is associated with
the willingness of spectral analysts, largely headed by Simon, to look at problems
that are interesting from a mathematical perspective and to loosen some of the ties
with physics. The fact that the “almost periodic flu” was very soon followed by
discoveries that made it more interesting from a physics perspective than what one
might have initially thought is an intriguing historical sidelight.

Another important phase in the field of exotic spectra came with Simon’s “sin-
gular continuous spectrum revolution” which started around 1994. The core of this
revolution has been the realization that singular continuous spectrum is a much
more common phenomenon than what was previously thought and that it is, in
fact, a generic phenomenon for broad classes of operators. In particular, the rev-
olution supplied numerous new examples for operators with singular continuous
spectrum. The revolution started with the three papers [19, 36, 61] by Simon
and coauthors, along with Gordon’s work [27, 28], which independently obtained
roughly the same results as [19] a little earlier (also see the announcement paper
[17], which summarizes the central findings of [19, 36, 61]). These papers soon
inspired many more works by Simon and coauthors, as well as by others.

Alongside the central theme of identifying more and more operators with sin-
gular continuous spectrum, some of the focus (e.g., in [18, 44]) has also been on
improving the understanding of singular continuous spectrum itself, namely, on is-
sues such as the implications of such spectra to dynamical properties of quantum
systems, natural ways of distinguishing different types of singular continuous spec-
trum, etc. While the main spike of the revolution can be timed, roughly, to the
1994–1996 period, related work continued throughout the 1990’s and continues to
this day.

Simon’s work in the area of exotic spectra occupies roughly fifty-five research
papers written in the 1981–1999 period. They make up a vast collection of results,
and this article makes no attempt to achieve any sort of systematic coverage of
all this work. Instead, we focus on a relatively small subset of these results, which
tend to emphasize certain aspects of Simon’s work and/or to fit in certain historical
contexts. Many of Simon’s important contributions to the subject have been left
out.

The rest of this paper is organized as follows. In Section 2 we discuss the
almost periodic flu, in Section 3 we review some of Simon’s central contributions to
thick point spectrum and in Section 4 we discuss the singular continuous spectrum
revolution.
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2. The Almost Periodic Flu

Simon’s 1982 review paper [54] starts with the following:

“In many years, flu sweeps the world. The actual strain varies
from year to year; some years it has been Hong Kong flu, some
years swine flu. In 1981, it was the almost periodic flu!”

The paper then moves to counting specific contributions by Avron and Simon
[4, 3, 5, 6, 7], Bellissard and Testard [12], Bellissard et al. [9], Chulaevsky [13],
Johnson [37], Moser [46], Johnson and Moser [38], and Sarnak [52].

This colorful opening led to the phenomenon of sudden broad interest in almost
periodic Schrödinger operators becoming known as the “almost periodic flu” and
to [54] becoming known as the “almost periodic flu paper.” The flu paper came in
the midst of the actual flu season and was closely followed by additional important
developments such as Kotani theory [41, 55] and the paper by Deift–Simon [16]
that built upon it.

The first of Simon’s flu season papers was the Avron–Simon paper [3], which
has already been mentioned above. The central theme of this paper has been to
extend the scope of spectral analysis by making the following definitions of new
spectral types. Given a self-adjoint operator A on a separable Hilbert space H and
ψ ∈ H, we denote by µψ the spectral measure for A and ψ. It is the unique Borel
measure on R obeying

〈ψ, f(A)ψ〉 =

∫

f(x) dµψ(x)

for any bounded Borel function f . We further denote by µ̂ψ the Fourier transform
of µψ, namely,

µ̂ψ(t) ≡

∫

e−itx dµψ(x) .

Avron-Simon [3] defined the transient subspace, Htac, by

Htac = {ψ | µ̂ψ ∈ L1} ,

where · denotes closure. This should be be compared with the well-known fact that

the absolutely continuous subspace, Hac, obeys Hac = {ψ | µ̂ψ ∈ L2} . Since |µ̂ψ(t)|2

coincides with the quantum mechanical survival probability of ψ, Htac is a closed
subspace of Hac which is made of vectors that have the fastest escape rate from their
original position under the Schrödinger time evolution. The recurrent subspace, Hr,
is then defined by Hr = H⊥

tac, and the recurrent absolutely continuous subspace,
Hrac, by Hrac = H⊥

tac ∩Hac. Corresponding spectra are defined by σtac(A) = σ(A ↾

Htac) and σrac(A) = σ(A ↾ Hrac). σtac is called transient absolutely continuous

spectrum and σrac is called recurrent absolutely continuous spectrum.
Avron–Simon showed that Htac = PeiHac, where Pei is the spectral projection

on the essential interior of the essential support of the absolutely continuous part
of the spectral measure class of A. This implies that the absolutely continuous
spectrum of the free Laplacian (on L2(Rd) or ℓ2(Zd)) and of similar problems such
as periodic Schrödinger operators and atomic Hamiltonians is purely transient. If,
however, A has nowhere dense spectrum, then σtac = ∅, and so any absolutely
continuous spectrum of operators having Cantor spectrum is purely recurrent.

[3] also provided the following distinction between thin and thick point spec-
trum (σpp denotes the closure of the set of eigenvalues): λ ∈ σpp is said to be in
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the thin point spectrum if (λ− ǫ, λ+ ǫ) ∩ σpp is countable for some ǫ > 0. λ is said
to be in the thick point spectrum if (λ − ǫ, λ + ǫ) ∩ σpp is uncountable for every
ǫ > 0. Avron–Simon showed that the thin point spectrum is countable and the
thick point spectrum is a perfect set (namely, a closed set with no isolated points)
which is empty if and only if σpp is countable.

Additional central flu season results by Simon and coauthors included the fol-
lowing:

The Avron–Simon paper [5] studied one-dimensional Schrödinger operators
with limit periodic potentials, namely, potentials which are norm-limits of peri-
odic potentials. A typical example (for the continuous Schrödinger operator case)
is V (x) =

∑∞
j=1 aj cos(x/2j) with

∑∞
j=1 |aj | <∞. They considered the space of all

such potentials with the ℓ∞ (namely, operator norm) topology and proved that for
a dense Gδ set of such potentials the spectrum must be a Cantor set. Moreover, for
a dense set, the spectrum must be both a Cantor set and purely absolutely contin-
uous and it is thus purely recurrent absolutely continuous. Similar results also hold
for some subsets of limit periodic potentials. We note that roughly the same results
were independently obtained around the same time by Chulaevsky [13] and that a
partial result (Cantor spectrum for a dense set) was also independently obtained
by Moser [46].

The Avron–Simon paper [6] studied the almost Mathieu operator, which is the
discrete Schrödinger operator Hλ,α,θ on ℓ2(Z) given by

(Hλ,α,θψ)(n) = ψ(n+ 1) + ψ(n− 1) + λ cos(2παn+ θ)ψ(n) .

They showed, by utilizing a result of Gordon [26], that if |λ| > 2 and α is a
Liouville number (namely, an irrational for which there is a sequence of rationals
obeying |α− pn/qn| < n−qn) then Hλ,α,θ has purely singular continuous spectrum
for Lebesgue a.e. θ. This provided a second concrete example (after Pearson’s [47])
for a Schrödinger operator with purely singular continuous spectrum.

The Avron–Simon paper [7] and Craig–Simon paper [14] focused on the general
theory of almost periodic Schrödinger operators and particularly on the spectrum,
Lyapunov exponent and density of states. These papers prove many fundamental
results (some of which were also independently obtained by others around the same
time). Among the results are a rigorous proof of the Thouless formula γ(E) =
∫

ln |E−E′| dk(E′), which connects the Lyapunov exponent γ(E) with the density of
states dk(E), subharmonicity of the Lyapunov exponent and log-Hölder continuity
of the density of states. [7] also had some results for the almost Mathieu operator,
including a rigorous version of the Aubry duality [2] saying that for irrational α,
σ(α, λ) = (λ/2)σ(α, 4/λ), where σ(α, λ) is the spectrum of Hλ,α,θ (it is independent
of θ).

The Bellissard–Simon paper [11] provided the first rigorous result concerning
Cantor spectrum for the almost Mathieu operator. They showed that σ(α, λ) is a
Cantor set for a dense Gδ set of pairs (α, λ). (It is known by now that the spectrum
of Hλ,α,θ is a Cantor set whenever α is irrational, as first conjectured in 1964 by
Azbel [8].)

The Deift–Simon paper [16] built on Kotani theory [41], a version of which for
discrete Schrödinger operators has been worked out by Simon in [55]. The Deift–
Simon paper obtained several fundamental results for ergodic one-dimensional
Schrödinger operators, most of which concern the absolutely continuous spec-
trum and its essential support, which, by Kotani theory, coincides with the set
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{E | γ(E) = 0}. One of their results is the remarkable inequality (we give the ver-
sions of the results for discrete Schrödinger operators)

dk

dE

∣

∣

∣

∣

{E | γ(E)=0}

≥
1

2π sin(πk)

which says that the restriction of dk
dE

to the set {E | γ(E) = 0} is bounded from

below by the value of dk
dE

for the free Laplacian at corresponding values of the
integrated density of states. It also implies

|{E | γ(E) = 0}| ≤ 4 ,

where | · | denotes Lebesgue measure. Another result is the averaged boundedness
of absolutely continuous spectrum eigenfunctions, more explicitly, the existence, for
Lebesgue a.e. E ∈ {E | γ(E) = 0}, of two linearly independent solutions u± of the
corresponding Schrödinger equation, each of which is the complex conjugate of the
other, normalized to have Wronskian −2i and obeying

lim
L→∞

1

L

L
∑

n=1

|u±(n)|2 ≤ 2π
dk

dE
.

Yet another result of [16] is the mutual singularity of the singular parts of spectral
measures for different realizations of an ergodic potential.

The paper which can be naturally considered as Simon’s last flu season paper is
[56], which studies the Maryland model. This is the discrete Schrödinger operator

H̃λ,α,θ on ℓ2(Z) given by

(H̃λ,α,θψ)(n) = ψ(n+ 1) + ψ(n− 1) + λ tan(παn + θ)ψ(n) .

The same name is also used for the multidimensional analog on ℓ2(Zd) of this opera-

tor. H̃λ,α,θ was discovered by Fishman–Grempel–Prange [23, 30] (in the University
of Maryland, from which it got its name) and has the remarkable property of being
roughly precisely solvable. It exhibits singular continuous spectrum if α is a Liou-
ville number and thick pure point spectrum (the spectrum as a set equals R for
any irrational α) with precisely computable eigenvalues if α is an irrational with
typical Diophantine properties. The point spectrum result extends also to the mul-
tidimensional case. [56] extended and made rigorous some of the original results of
the Maryland team. Similar work was done independently around the same time
by Figotin–Pastur [21].

Aside from Simon being the leading worker on almost periodic spectral theory
around the flu season (in terms of having the largest volume of results), he also had
great impact on the field in terms of drawing the map for future progress. The flu
paper [54] had a list of thirteen open problems and conjectures, of which five were
devoted to the almost Mathieu operator and the rest were more general. Some of
these were also repeated in Simon’s 1984 “Fifteen problems in mathematical physics”
paper [57]. These problems helped to inspire a considerable amount of ongoing work
in the 24 years that passed since [54]. The community of contributors to the field
has been quite diverse, ranging from well-established world-class mathematicians
to young entrants who were in various stages between starting kindergarten to
finishing high school when [54] was written.

While probably no period since the spike of the flu season in 1981–1982 matched
the level of almost periodic activity of that time, the overall progress made since
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then is quite vast. In particular, most of the original open problems of [54] are
solved by now (although certainly not all of them). Some of the conjectures turned
out to be false! Considerable progress in the field continues as we write.

3. Thick Point Spectrum

Thick point spectrum tends to largely coincide with the phenomenon of Ander-
son localization [1]. The most central family of operators for which this phenom-
enon has been studied consists of various random multidimensional Schrödinger
operators (with or without magnetic fields). Anderson’s paper [1] gave some free-
dom regarding what may be rightfully called “the Anderson model.” For simplicity
of exposition, we use the name Anderson model for the (semi-concrete) random
operator Hω on ℓ2(Zd) given by

Hω = ∆ +
∑

n∈Zd

λn(ω)〈δn, · 〉δn ,

where the λn(ω)’s are independent, identically distributed random variables
(i.i.d.r.v.) with uniform distribution in an interval and {δn}n∈Zd is the natural
basis of ℓ2(Zd). Various variants and analogs have also been considered, including
variants with different distributions, analogous continuous Schrödinger operators
on L2(Rd), discrete operators with more than just next-near neighbor interactions,
etc. While all of the results discussed below for “the Anderson model” are valid
for more general families of random operators, the precise range of validity tends
to be different for different results. We will thus keep things simple by discussing
results almost exclusively for the above semi-concrete Hω. We say that an Ander-
son model operator Hω is “strongly coupled” if the interval over which the λn(ω)’s
are distributed is “large.”

Anderson localization has been the first exotic spectral phenomenon to be dis-
covered (both by physicists and in terms of proving rigorous mathematical results)
and also the one which has drawn the most attention (the largest number of work-
ers and papers) over the years. In a sense, one can say that the field of exotic
spectra has been largely dominated by Anderson localization. Unlike almost peri-
odic Schrödinger operators and the singular continuous spectrum revolution that
we discuss in the next section, where the current state of those fields would be hard
to imagine without Simon’s crucial contributions, Simon’s involvement in studies
of Anderson localization was relatively minor and it is likely that the current state
of the field would have been similar to what it is even without him. Nevertheless,
Simon had quite a few papers and results involving point spectrum and Anderson
localization and some of them are very important. The purpose of this section is
to point out a small subset of these results.

Probably the most famous of Simon’s contributions to Anderson localization is
the 1986 Simon–Wolff criterion obtained by Simon–Wolff in [65]. It says that an
Anderson model Hamiltonian Hω has only point spectrum in an energy interval I,
for a.e. ω, if and only if

∑

n∈Zd

|〈δn, (Hω − E − i0)−1δ0〉|
2 <∞

for a.e. ω and Lebesgue a.e. E ∈ I. For this to hold, the distribution of the λn(ω)’s
need not be uniform in an interval, but it does need to be absolutely continuous
with respect to the Lebesgue measure. The Simon–Wolff criterion thus reduces
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the problem of establishing Anderson localization to proving appropriate square
summability of resolvent matrix elements. This provides considerable simplification
to many proofs of Anderson localization, and the Simon–Wolff criterion continues
to play an important role in many settings of proving Anderson localization.

Another notable result is the absence of ballistic motion for point spectrum
proven by Simon in [58]. It says that if H is a discrete Schrödinger operator on
ℓ2(Zd), X2 is the squared position operator on this space, namely, (X2ψ)(n) =
n2ψ(n), and H has only point spectrum, then for any vector ψ in the domain of
|X |,

1

t2
〈ψ, eiHtX2e−iHtψ〉 → 0

as t → ∞. This shows that operators with purely point spectrum cannot induce
ballistic propagation of initially localized wavepackets. (Note that ballistic mo-
tion is always an upper bound on the propagation rate of wavepackets for discrete
Schrödinger operators, regardless of spectral properties.) [58] also obtained similar
results for continuous Schrödinger operators on L2(Rd), as long as the potential is
sufficiently close to being bounded from below.

Yet another notable result was given in Simon’s paper [60] on cyclic vectors in
the Anderson model. This paper established that for the Anderson model Hω, with
probability one, each of the δn vectors is a cyclic vector for the restriction of Hω to
its pure point subspace. In particular, this says that the δn vectors are cyclic vectors
forHω whenever it has only point spectrum and that all of the point spectrum ofHω

must be simple (namely, the probability of Hω having any degenerate eigenvalues
is zero).

The final set of results we discuss in this section is from the work of del Rio–
Jitomirskaya–Last–Simon [18]. They have shown, by constructing an explicit ex-
ample, that from the fact that a Schrödinger operator has only point spectrum with
exponentially localized eigenvectors, one cannot conclude anything for the growth
rate of 〈ψ, eiHtX2e−iHtψ〉 beyond the absence of strict ballistic motion as discussed
above. That is, for such an operator one can still have

lim sup
t→∞

1

t2−ǫ
〈ψ, eiHtX2e−iHtψ〉 = ∞

for any ǫ > 0. Since the Anderson model is known to exhibit dynamical localization
(namely, 〈ψ, eiHωtX2e−iHωtψ〉 is bounded with probability one), this called for
extending the understanding of its precise spectral characteristics. To achieve this
goal, [18] introduced the following definitions: A self-adjoint operator A on ℓ2(Zd)
is said to have SULE (Semi-Uniformly Localized Eigenvectors) if it has only point
spectrum and there exists a constant γ > 0 such that for any b > 0, there exists a
constant C(b) > 0, such that for any eigenvector ψs of A one can find n(s) ∈ Z

d,
so that

|〈δk, ψs〉| ≤ C(b)eb|n(s)|−γ|k−n(s)|

for all k ∈ Z
d. A is said to exhibit SUDL (Semi-Uniform Dynamical Localization)

if there exists a constant γ̃ > 0, such that for any b > 0, there exists a constant
C̃(b) > 0, so that

lim sup
t

|〈δn, e
−itAδℓ〉| ≤ C̃(b)eb|ℓ|−γ̃|n−ℓ|.

[18] proved that SULE implies SUDL and that SUDL, along with simple spectrum,
implies SULE. In particular, for operators on ℓ2(Zd) with simple spectrum, SULE
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⇔ SUDL. It also proved that a sufficiently strongly coupled Anderson model Hω

exhibits SUDL and thus it also has SULE. Some additional results of [18] are
discussed in Section 4 below.

4. The Singular Continuous Spectrum Revolution

Simon’s singular continuous spectrum revolution started around 1994, when he
discovered that singular continuous spectrum is a much more common phenomenon
than what was previously thought, and proved results establishing it as a topologi-
cally generic phenomenon for many classes of operators. The initial results inspired
much more work by Simon and coauthors, as well as by others, and within a few
years the landscape concerning operators with singular continuous spectrum was
drastically changed.

The most notable paper of the revolution is probably Simon’s paper [61], which
is sometimes called “the Wonderland paper,” following how Simon named one of
its central theorems. This paper focused on general self-adjoint operators and its
central results provide conditions for topological families of operators to exhibit
singular continuous spectrum for dense Gδ sets. The most central theorem of [61]
is probably the following:

Theorem 4.1 (Simon’s Wonderland theorem). Let X be a complete metric

space of self-adjoint operators in which convergence implies strong resolvent con-

vergence. Suppose

(a) {A | A has purely absolutely continuous spectrum} is dense in X;

(b) {A | A has purely point spectrum} is dense in X.

Then for a dense Gδ set of A’s, A has only singular continuous spectrum.

An illuminating corollary of Theorem 4.1 is that in a natural topological sense,
a generic strongly coupled Anderson model operator has only singular continuous
spectrum (as opposed to having only point spectrum with probability one). More
precisely, if the exact same set of potentials of the Anderson model is considered
with the natural product topology rather than as a probability space, then for a
dense Gδ set of potentials in this topology, the corresponding operator has only
singular continuous spectrum.

Another notable paper is the del Rio–Makarov–Simon paper [19], which studied
the genericity of singular continuous spectrum in the context of rank one perturba-
tions (see [59]). Its central result, which was also independently obtained a little
earlier by Gordon [27, 28], is the following:

Theorem 4.2. Let A be a self-adjoint operator with a cyclic vector ϕ. Suppose

[a, b] ⊂ σ(A) and σac(A) ∩ [a, b] = ∅. Then for a dense Gδ set of λ’s, A+ λ〈ϕ, · 〉ϕ
has purely singular continuous spectrum on (a, b).

An important corollary of Theorem 4.2 (which also uses the cyclicity of δn vec-
tors in the Anderson model discussed in Section 3) is that if one considers a typical
realization of the strongly coupled Anderson model Hω, which has only point spec-
trum, and continuously changes the value of the potential at a single point of Z

d,
then for a dense Gδ set of potential values at this point, the corresponding operator
has only singular continuous spectrum. In particular, this says that the phenome-
non of Anderson localization is extremely unstable, since the point spectrum can be
converted into singular continuous spectrum by making arbitrarily small changes
to the value of the potential at a single point.
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The third paper of the trio which started the revolution is the Jitomirskaya–
Simon paper [36], which studied genericity of singular continuous spectrum in the
almost periodic context. They proved the following:

Theorem 4.3. For |λ| > 2 and any irrational α, there is a dense Gδ set of θ’s
for which the almost Mathieu operator on ℓ2(Z), given by

(Hλ,α,θψ)(n) = ψ(n+ 1) + ψ(n− 1) + λ cos(2παn+ θ)ψ(n) ,

has only singular continuous spectrum.

Theorem 4.3 can be considered as an almost periodic analog of Theorem 4.2,
since there are many other similarities between making rank one perturbations and
changing realizations within the hull of one-dimensional almost periodic potentials.
We note that the actual central result of [36] ensured the absence of eigenvalues,
for an appropriate Gδ set in the hull, for any even almost periodic potential. The
application to the almost Mathieu operator with |λ| > 2 is done in order to ensure
the absence of absolutely continuous spectrum.

Another major paper of the revolution was the del Rio–Jitomirskaya–Last–
Simon paper [18]. Some of its results were already discussed in Section 3. A
central role in [18] was played by the fact that singular continuous spectra can be
naturally decomposed into many spectral sub-types by using Hausdorff measures
and dimensions. The measure-theoretic foundations for such decompositions go
back at least to the works of Rogers–Taylor [50, 51] and they were introduced
into spectral theory by Last [44], who was impacted by the singular continuous
spectrum revolution along with Guarneri’s seminal papers on quantum dynamics
[32, 33] and Avron–Simon [3].

Recall that for any subset S of R and α ∈ [0, 1], the α-dimensional Hausdorff
measure, hα, is given by

hα(S) ≡ lim
δ→0

inf
δ-covers

∞
∑

ν=1

|bν |
α ,

where a δ-cover is a cover of S by a countable collection of intervals, S ⊂
⋃∞
ν=1 bν ,

such that for each ν the length of bν is at most δ. hα is an outer measure on R

whose restriction to Borel sets is a Borel measure. h1 coincides with the Lebesgue
measure and h0 is the counting measure, such that the family {hα | 0 ≤ α ≤ 1} can
be viewed as a way of continuously interpolating between the counting measure
and the Lebesgue measure. Given any nonempty set S ⊆ R, there exists a unique
α(S) ∈ [0, 1], called the Hausdorff dimension of S, such that hα(S) = 0 for any
α > α(S), and hα(S) = ∞ for any α < α(S).

The following basic notions and facts stem from the Rogers–Taylor theory [50,

51]: Given α, a measure µ is called α-continuous (αc) if µ(S) = 0 for every set S
with hα(S) = 0. It is called α-singular (αs) if it is supported on some set S with
hα(S) = 0. µ is said to be one-dimensional (od) if it is α-continuous for every α < 1.
It is said to be zero-dimensional (zd) if it is α-singular for every α > 0. A measure
µ is said to have exact dimension α if, for every ǫ > 0, it is both (α− ǫ)-continuous
and (α+ ǫ)-singular. Given a (positive, finite) measure µ and α ∈ [0, 1], one defines

Dα
µ(x) ≡ lim sup

ǫ→0

µ((x− ǫ, x+ ǫ))

(2ǫ)α
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and T∞ ≡ {x |Dα
µ(x) = ∞}. The restriction µ(T∞ ∩ · ) ≡ µαs is α-singular, and

µ((R \ T∞) ∩ · ) ≡ µαc is α-continuous. Thus, each measure decomposes uniquely
into an α-continuous part and an α-singular part: µ = µαc + µαs.

Consider now a separable Hilbert space H and a self-adjoint operatorH . By let-
ting Hαc ≡ {ψ |µψ is α-continuous} and Hαs ≡ {ψ |µψ is α-singular}, one obtains
a decomposition H = Hαc ⊕Hαs, of H into mutually orthogonal closed subspaces
which are invariant under H . The α-continuous spectrum (σαc) and α-singular
spectrum (σαs) are then naturally defined as the spectra of the restrictions of H to
the corresponding subspaces. Thus, the standard spectral theoretical scheme which
uses the Lebesgue decomposition of a Borel measure into absolutely-continuous,
singular-continuous, and pure-point parts can be extended to include further de-
compositions with respect to Hausdorff measures. As described in [44], the full
picture is richer, and for every dimension α ∈ (0, 1), there is a natural unique de-
composition (of finite Borel measures and thus also of H) into five parts: one below
the dimension α, one above it, and three within it—of which the middle one is
absolutely-continuous with respect to hα.

A major focus in [18] was rank one perturbations and attempting to understand
the above discussed instability of Anderson localization under such small pertur-
bations. While [18] showed that it is fully possible for a rank one perturbation
to change the spectral type all the way from point spectrum to one-dimensional
spectrum, it also established some spectral semi-stability for the Anderson model
(in fact, for any self-adjoint operator on ℓ2(Zd) that has SULE).

Explicitly, [18] showed that the singular continuous spectrum which is obtained
in the Anderson model by changing the value of the potential at a single point
must be purely zero-dimensional (namely, the spectral measures are supported on
a set of zero Hausdorff dimension). This implies that if one focuses on the spectral
dimension rather than on distinguishing point spectrum from continuous spectrum,
the situation appears to be stable, since changing the value of the potential at a
single point never changes the fact that the spectrum is zero-dimensional. This
semi-stability result was given two proofs in [18]. One obtained it directly as a
spectral result, while the other deduced it (using results of [44]) as a corollary of a
dynamical result controlling the growth rate of 〈ψ, eiHtX2e−iHtψ〉. That is, while
〈ψ, eiHtX2e−iHtψ〉 cannot be bounded if H has continuous spectrum, [18] shows
that if H is obtained from an operator with SULE by changing the value of the
potential at a single point, then 〈ψ, eiHtX2e−iHtψ〉 cannot grow with t faster than
logarithmically.

Another interesting result in [18] is the fact that if an ergodic operator on
ℓ2(Zd) has what they called ULE (Uniformly Localized Eigenvectors), which means
that all its eigenvectors can be fitted by shifting under a single exponential envelope,
then this localization property is stable and there cannot be any potential in the
support of the corresponding ergodic measure for which the spectrum is continuous.
Thus, while the occurrence of singular continuous spectrum in the Anderson model
is a zero-probability event, it is nevertheless saying something important about
the probabilistic problem: With probability one, the Anderson model doesn’t have
ULE (and so its localization properties cannot be much stronger than SULE).

Another interesting paper of the revolution was Simon’s paper [63], which stud-
ied, among other things, singular continuous spectrum of one-dimensional sparse
barrier potentials. These include, in particular, the potential used by Pearson [47]
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to construct the first explicit example with purely singular continuous spectrum.
[63] proves that whenever such potentials are sufficiently sparse, the corresponding
spectrum must be purely one-dimensional (namely, the spectral measure gives no
weight to sets of Hausdorff dimension less than one). This roughly says that the
singular continuous spectrum in Pearson’s example [47] is one-dimensional. This
should be contrasted with results of Last [44] and Jitomirskaya–Last [35] saying
that all of the singular continuous spectrum which occurs for the almost Math-
ieu operator with coupling |λ| > 2 is purely zero-dimensional (this is roughly an
almost periodic analog of the above discussed semi-stability result of [18] for the
Anderson model). Thus, while the first concrete example of a Schrödinger operator
with purely singular continuous spectrum had purely one-dimensional spectrum,
the second example (of Avron–Simon [6]) had zero-dimensional spectrum.

To briefly mention a few more of Simon’s revolution era results: Hof–Knill–
Simon [34] established purely singular continuous spectrum for generic subsets
in several families of discrete one-dimensional Schrödinger operators with poten-
tials taking finitely many values. Simon–Stolz [64] established singular continuous
spectrum for sufficiently sparse one-dimensional barrier potentials with growing
barriers. Simon [62] proved the generic occurrence of purely singular continuous
spectrum for certain topological families of graph Laplacians and Laplace–Beltrami
operators. Gordon–Jitomirskaya–Last–Simon [29] established a new version of the
Aubry duality for the almost Mathieu operator and proved that at the critical cou-
pling |λ| = 2, it has purely singular continuous spectrum for Lebesgue a.e. pair
α, θ.

Last–Simon [45] obtained some fundamental results for spectral analysis of
one-dimensional Schrödinger operators, which yielded new proofs for many known
results as well as important new results. Their results include characterizations
of the absolutely continuous spectrum in terms of the behavior of eigenfunctions
and transfer matrices, from which they also deduce that the absolutely continuous
spectrum must be contained in the intersection of absolutely continuous spectra
of a natural family of limiting operators. Among the applications of these results
are a proof that the absolutely continuous spectrum of almost periodic Schrödinger
operators is constant everywhere on the hull (which was also independently obtained
around the same time by Kotani [42]), and the absence of absolutely continuous
spectrum for strongly coupled (namely, any |λ| > 2) discrete potentials of the form
V (n) = λ cos(nβ) with any β > 1.

Kiselev–Last–Simon [39] used modified Prüfer and EFGP transforms to study
one-dimensional Schrödinger operators with decaying potentials. Among their re-
sults is a variant of Pearson’s result [47] yielding purely singular continuous spec-
trum for suitable decaying sparse barrier potentials. They also obtain singular
continuous spectrum with precisely computable fractional spectral Hausdorff di-
mensions for certain random decaying potentials.
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