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Abstract. Parabolic equation with non-Lipschitz nonlinearity is con-
sidered. Peano-type existence theorem is proved. New class of parabolic
equations that have analytic solutions is obtained.

1. Introduction

This paper is devoted to quasi-linear parabolic equations with a non-
Lipschitz nonlinearity. In the classical setup a quasi-linear initial value par-
abolic problem has the form

ut = f(t, u,∇ku) + Au, u |t=0= û. (1.1)

Here A is a linear elliptic operator of order n and the term ∇ku symbolizes
the derivatives of u up to order k. Besides this, equation (1.1) must be
provided with the boundary conditions.

If the function û belongs to a suitable space, the mapping f is Lipschitz
in a certain sense and k < n then problem (1.1) has a unique local-in-
time solution. This simple observation easily follows from the contracting
mapping principle.

There is a vast literature devoted to local and global existence theorems
for different quasi-linear parabolic equations. But all the known results have
at least two common points. First, they use Lipschitz-type conditions for
the mapping f (or for its approximations) and second, they are based on
the assumption that k < n.

At first glance both of these points are seemed to be independent from
each other. Actually if we suppose that the Lipschitz-type conditions are
fulfilled then to get existence theorem we have to assume that k < n.
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If we reject the Lipschitz hypothesis then we obtain a large class of equa-
tions that are also free from the second assumption but have an existence
theorem.

This effect takes place not only for parabolic equations. If we consider
the Cauchy-Kowalewski problem in the non-Lipschitz setup [10] then there
are equations such that the order of derivatives in the right side is greater
than in the left one but the solution exists.

Such a type problems do not belong to the classical partial differential
equations but to the functional-differential equations and the differential
equations with nonlocal terms.

The main mathematical tool we use is a locally convex space version of
the Schauder fixed point theorem and theory of scales of Banach spaces.
Another approaches to the abstract parabolic problems in the Lipschitz
setup contain in [1], [3].

2. Main theorem

Consider a scale of Banach spaces {Es, ‖ · ‖s}s>0 such that all the embed-
dings Es+δ ⊆ Es, δ > 0 are completely continuous and

‖ · ‖s ≤ ‖ · ‖s+δ. (2.1)

The parameter s may not be necessarily run through all the positive real
numbers. We do not use the spaces Es with big s and one can assume for
example that s ∈ (0, 1). It is just for simplicity’s sake that we consider
s > 0.

Let Bs(r) be an open ball of the space Es with radius r and center at the
origin.

Introduce constants C, T, R > 0, α ≥ 0.
Let A : Es+δ → Es be a bounded linear operator. Assume that this

operator generates a strongly continuous semigroup eAt : Es → Es, t ≥ 0
such that for any u ∈ Es+δ and for any v ∈ Es the following formulas are
valid

lim
h→0+

∥∥∥1
h

(
eAh − idEs+δ

)
u−Au

∥∥∥
s

= 0, ‖eAtv‖s ≤ C‖v‖s. (2.2)

Definition 1. The semigroup eAt is said to be parabolic if there exists a
constant γ > 1 such that for any δ, t > 0, δγ < t we have

‖eAtu‖s+δ ≤ C‖u‖s. (2.3)

Suppose a function f : (0, T ]×Bs+δ(R) → Es to be continuous and such
that if (s+δ)γ < t ≤ T and u ∈ Bs+δ(R) then the following inequality holds

‖f(t, u)‖s ≤ C

δα
. (2.4)

A case when

‖f(t, u)‖s ≤ C

tβδα
, β > 0
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is rather usual but since δγ < t this case reduces to (2.4): C/(tβδα) ≤
C/δβγ+α.

Consider a problem

ut = f(t, u) + Au, (2.5)

u |t=0 = 0. (2.6)

The sense of initial condition (2.6) will be clear in the sequel.
Now we give a definition.

Definition 2. We shall say that problem (2.5) is parabolic if the semigroup
eAt is parabolic and

χ =
α

γ
< 1.

Let a space E1(T ), T > 0 be given by the formula

E1(T ) =
⋂

0<sγ<τ<T

C1((τ, T ), Es). (2.7)

This space consists of all functions u that map any number t ∈ (0, T ) to the
element u(t) ∈ ⋂

0<sγ<t Es and the restriction u |(τ,T ) belongs to the space
C1((τ, T ), Es) for all s ∈ (0, τ1/γ).

Theorem 1. Suppose that problem (2.5) is parabolic. Then there exists a
constant T∗ > 0 such that this problem has a solution u(t) ∈ E1(T∗), and
for any constant c ∈ (0, 1) one has

‖u(t)‖ct1/γ → 0 as t ↘ 0. (2.8)

The constant T∗ depends only on C, α, γ.

The proof of theorem 1 contains in sections 4, 5.
In the next section to illustrate the effect discussed in the Introduction,

theorem 1 is applied to a nonlocal parabolic problem. To compare our result
with the known one we also consider the Navier-Stokes equation.

If A is the classical Laplace operator and the parabolic equation is con-
sidered in a suitable domain then γ = 2 and the inequality from formula
(2.7) takes the form 0 < s2 < τ .

The parameter s symbolizes a spatial variable, so that this inequality
specifies the parabolic domain in the plane (τ, s). This endows the term
”parabolic equation” with the new sense.

The main difficulty one encounters while using theorem 1 is to obtain
estimate (2.3). The general scheme to prove this inequality is as follows.
First one must estimate the heat kernel say with the help of the Gaussian
upper bounds (see for example [4] and references therein) then use the same
argument as in the proof of lemma 1 (see below).

Let us remark that if Es = Rm, ‖ · ‖s = | · |, s > 0 and A = 0 then
theorem 1 generalizes classical Peano’s theorem to the case when the right
side of the equation satisfies (2.4) with s = δ = (t/3)1/γ .
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3. Applications

In the sequel we denote all the inessential positive constants by the same
letter c.

Let Tm = Rm/(2πZ)m be the m−dimensional torus. All the technique
developed below can be transferred almost literally to the case of the problem
with zero boundary conditions on the m−dimensional cube.

By x = (x1, . . . , xm) denote an element of Rm.
Let Tm

s = {z = x + iy ∈ Cm | x ∈ Tm, |yj | < s, j = 1, . . . , m} be the
complex neighborhood of the torus Tm.

Define a set Es, s > 0 as follows Es = C(Tm
s )

⋂O(Tm
s ). Here O(Tm

s )
stands for the set of analytic functions in Tm

s .
The set Es is a Banach space with respect to the norm ‖u‖s = maxz∈Tm

s
|u(z)|.

By the Montel theorem the embeddings Es+δ ⊂ Es, δ > 0 are completely
continuous. By definition put E0 = C(Tm).

Let ∆ stands for the standard Laplace operator

∆ =
m∑

j=1

∂2
j , ∂j =

∂

∂xj
.

Lemma 1. There exists a positive constant c such that for any u ∈ Es, s ≥
0 the following inequality holds

‖et∆u‖s+δ ≤ c exp
(δ2

4t

)
‖u‖s, t, δ > 0.

The constant c depends only on m.

Proof. The assertion of the lemma easily follows from the well-known for-
mula:

(et∆u)(x) =
1

(4πt)m/2

∫

R
e−(ξ1−x1)2/(4t) dξ1 . . .

∫

R
e−(ξm−xm)2/(4t) dξmu(ξ).

In all these integrals one must shift the contour of integration to the complex
plane and then the desired inequality follows from the standard estimates.

¤

By lemma 1 the semigroup et∆ is parabolic with γ = 2.

Lemma 2. Take a constant ρ ∈ (0, 1/2]. For any ε ∈ (0, 2ρ) there is a
positive constant c = c(ε) such that if u ∈ Es+δ then

‖∆−ρ∂ju‖s ≤ c

δ1−2ρ+ε
‖u‖s+δ, s ≥ 0, δ > 0, (3.1)

‖∆ρu‖s ≤ c

δ2ρ+ε
‖u‖s+δ. (3.2)

Proof. Let us prove formula (3.1). Using the standard facts on Sobolev’s
spaces we have

‖∆−ρ∂ju‖s ≤ c‖∆−ρ∂ju‖Hε,p(Tm
s ) ≤ c‖u‖Hε+1−2ρ,p(Tm

s ), εp > 2m.
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Then the desired result follows from the interpolation formula and the
Cauchy inequality:

‖u‖Hε+1−2ρ,p(Tm
s ) ≤ c‖u‖ε+1−2ρ

H1,p(Tm
s )
‖u‖2ρ−ε

Lp(Tm
s ), ‖u‖H1,p(Tm

s ) ≤
c

δ
‖u‖s+δ.

Formula (3.2) is derived in the same way. ¤

Proposition 1 ([9]). For any constants a ≥ r ≥ 0 one has

‖et∆u‖Ha(Tm) ≤
c

t(a−r)/2
‖u‖Hr(Tm).

If a > m/2 then ‖u‖0 ≤ c‖u‖Ha(Tm).

The first of the following two examples illustrates the effect described in
the Introduction, the second one is to compare our result with the known
one.

3.1. Integro-differential parabolic equation. Let us focus our attention
on a one dimensional (m = 1) system.

Consider a problem

ut = ‖∆nu‖λ
L2(T) + ∆u, u |t=0= û(x) =

∑

|k|≥2

eikx

|k|1/2 log |k| ∈ L2(T). (3.3)

Here λ is a positive parameter, n ∈ N.
Parabolic equations with right side depending on Lp norms of the un-

known function arise in the theory of incompressible viscous fluid [7].
Let us show that if nλ < 1 (non-Lipschitz case) then problem (3.3) has a

solution in the sense of theorem 1.
After the change of variable u = et∆û + v our problem takes the form

vt = f(t, v) + ∆v, v |t=0= 0, f(t, v) = ‖∆net∆û + ∆nv‖λ
L2(T). (3.4)

So that one has |f(t, v)| ≤ c(‖et∆û‖λ
H2n(T) +‖∆nv‖λ

L2(T)). Then using propo-
sition 1 we obtain ‖et∆û‖H2n(T) ≤ ct−n‖û‖L2(T). The Cauchy inequality
gives

‖∆nv‖L2(T) ≤ c‖∆nv‖s ≤ cδ−2n‖v‖s+δ, δ > 0.

Combining these inequalities with each other and taking into account that
(s + δ)2 < t we have

|f(t, v)| ≤ cδ−2nλ(‖û‖λ
L2(T) + ‖v‖λ

s+δ).

Thus χ = nλ and if nλ < 1 then by theorem 1 the problem has at least one
analytic solution.

Consider the case λ = 1 (Lipschitz case) and let for simplicity n = 1.
Denote by uk the Fourier coefficients of a function u: u(x) =

∑
k∈Z uke

ikx.

Notice that the norm of L2(T) can be presented as follows

‖u‖2
L2(T) = c

∑

k∈Z
|uk|2.
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Then separating the variables in problem (3.3) we obtain

u0 = c

∫ t

0

( ∑

|k|≥2

|k|3e−2ξ|k|2

(log |k|)2
) 1

2
dξ, (3.5)

uk = 0, if |k| = 1,

uk =
e−t|k|2

|k|1/2 log |k| , if |k| ≥ 2.

It is not difficult to show that
( ∑

|k|≥2

|k|3e−2ξ|k|2

(log |k|)2
) 1

2 ≥ − c

ξ log ξ
, ξ ∈ (0, 1).

So that the integral in formula (3.5) does not exist and thus there are no
solutions in this case.

3.2. 3-D Navier-Stokes equation. In this section we use the Einstein
summation convention.

Consider the Navier-Stokes equation in the divergence free setup. After
Leray’s projection the Navier-Stokes equation takes the well-known form

(uk)t = Ak
l ∂j(ujul) + ∆uk, Ak

l = (∆−1∂k∂l − δkl),

uk |t=0 = ûk ∈ Hr(T3),
(3.6)

where δkl = 1 for k = l and 0 otherwise; k, l, j = 1, 2, 3.
From [6], [5] it follows that if r = 1/2 then problem (3.6) has a solution

ui(t, x) which is regular in the spatial variables for all t ∈ (0, T∗). Here T∗
is a small positive constant.

Let us show that by theorem 1 the analytic solution exists for all r > 1/2.
This indicates that in terms of paper [1] theorem 1 allows us to carry out
only the subcritical case. This is no surprise since theorem 1 is too general.

Assume a parameter ρ ∈ (0, 1/2) to be close 1/2 and let us change the
variable in (3.6): uk = et∆ûk + ∆ρvk. Then the problem have the form

vk
t = fk(t, v) + ∆vk, vk |t=0= 0,

here

fk(t, v) = Ak
l ∂j∆−ρ(et∆ûjet∆ûl + et∆ûj∆ρvl + ∆ρvjet∆ûl + ∆ρvj∆ρvl).

Estimate the function f term by term. Using lemma 2 we have

‖Ak
l ∂j∆−ρ(∆ρvj∆ρvl)‖s ≤ c

δε+1−2ρ

3∑

j,l=1

‖∆ρvj∆ρvl‖s+δ/2

≤ c

δε+1−2ρ

3∑

j,l=1

‖∆ρvj‖s+δ/2‖∆ρvl‖s+δ/2 ≤
c

δε+1+2ρ

3∑

j,l=1

‖vj‖s+δ‖vl‖s+δ.
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Now one must choose the parameters ε > 0, ρ ∈ (0, 1/2) such that

ε + 1 + 2ρ
2

< 1. (3.7)

Let us estimate another term of the function f by using lemmas1, 2 and
proposition 1 ((s + δ)2 < t):

‖Ak
l ∂j∆−ρ(et∆ûjet∆ûl)‖s ≤ c

δ1+ε−2ρ

3∑

j,l=1

‖et∆ûj‖s+δ‖et∆ûl‖s+δ

≤ c

δ1+ε−2ρ

3∑

j,l=1

‖et∆/2ûj‖0‖et∆/2ûl‖0

≤ c

δ1+ε−2ρ

3∑

j,l=1

‖et∆/2ûj‖Ha(T3)‖et∆/2ûl‖Ha(T3)

≤ c

δ1+ε−2ρta−r

3∑

j,l=1

‖ûj‖Hr(T3)‖ûl‖Hr(T3),

here a > 3/2. We need to have

1 + ε− 2ρ

2
+ a− r < 1. (3.8)

In the same manner we obtain

‖Ak
l ∂j∆−ρ(et∆ûj∆ρvl)‖s ≤ c

δε+1t(a−r)/2

3∑

j,l=1

‖ûj‖Hr(T3)‖vl‖s+δ.

Thus there must be
ε + 1 + a− r < 2. (3.9)

It is not difficult to show that for any r > 1/2 there exist the small parameter
ε > 0, the parameter a close to 3/2 from above and the parameter ρ close
to 1/2 from below such that inequalities (3.7), (3.8), (3.9) are fulfilled.

4. Preliminaries in functional analysis

In this section we collect several facts from functional analysis. These
facts will be useful in the section 5 when we prove theorem 1.

Consider the spaces

C([τ, T ], Eµτ1/γ ), 0 < µ < 1, 0 < τ < T

with standard norms. Now we construct the projective limit of these spaces.
Define a space E(T ) as follows

E(T ) =
⋂

0<µ<1

⋂

0<τ<T

C([τ, T ], Eµτ1/γ ).
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There is another equivalent definition of the space E(T ):

E(T ) =
⋂

0<sγ<τ<T

C([τ, T ], Es).

Being endowed with a collection of seminorms

‖u‖τ,µ = max
τ≤ξ≤T

‖u(ξ)‖µτ1/γ , u ∈ E(T ) (4.1)

the space E(T ) becomes a locally convex topological space.
These seminorms obviously satisfy the following inequalities

‖u‖τ,µ ≤ ‖u‖τ,µ+δ, δ > 0, (4.2)

‖u‖τ,rµ ≤ ‖u‖rγτ,µ, 0 < r ≤ 1. (4.3)

Indeed, formula (4.2) follows from (2.1) directly. Formula (4.3) is a result
of the estimate

‖u‖τ,rµ = max
τ≤ξ≤T

‖u(ξ)‖µ(rγτ)1/γ ≤ max
rγτ≤ξ≤T

‖u(ξ)‖µ(rγτ)1/γ = ‖u‖rγτ,µ.

Formulas (4.2), (4.3) imply that the space E(T ) is first countable: the
topology of this space can be defined by the seminorms (4.1) only with
µ, τ ∈ Q.

Recall the Arzela-Ascoli theorem [8]:

Theorem 2. Let H ⊂ C([0, T ], X) be a set in the space of continuous
functions with values in a Banach space X. Assume that the set H is closed,
bounded, uniformly continuous and for every t ∈ [0, T ] the set {u(t) ∈ X} is
a compact set in the space X. Then the set H is a compact set in the space
C([0, T ], X).

Now we shall establish an analogue of this result.

Proposition 2. Suppose that a set K ⊂ E(T ) is closed. Then K is a
compact set if the following two conditions are fulfilled.

The set K is bounded.
For any ε > 0 and for any τ ∈ (0, T ), µ ∈ (0, 1) there exists a constant

δ > 0 such that if t′, t′′ ∈ [τ, T ], |t′ − t′′| < δ then

sup
u∈K

‖u(t′)− u(t′′)‖µτ1/γ < ε.

(This means that K is a uniformly continuous set.)

First prove a lemma.

Lemma 3. Let {vj} ⊆ K be a sequence. Then for any τ ∈ (0, T ) the
sequence {vj} contains a subsequence that is convergent in all the norms
‖ · ‖τ,µ, µ ∈ (0, 1).

Proof. Indeed, take an increasing sequence µk → 1, µ1 > 0 and fix any
value of τ ∈ (0, T ). Since the sequence {vj} is bounded and uniformly
continuous in C([τ, T ], Eµ2τ1/γ ) then by theorem 2 it contains a subsequence
{v1

j } that is convergent in C([τ, T ], Eµ1τ1/γ ).
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Further since the sequence {v1
j } is bounded and uniformly continuous in

C([τ, T ], Eµ3τ1/γ ) one can pick a subsequence {v2
j } ⊆ {v1

j } such that the
sequence {v2

j } is convergent in C([τ, T ], Eµ2τ1/γ ) etc.
By inequality (4.2) the diagonal sequence {vj

j} converges in all the norms
‖ · ‖τ,µ, µ ∈ (0, 1) with this fixed τ . ¤

Proof of proposition 2. A set P = Q
⋂

(0, T ) is countable. So we can
number its elements as follows P = {τi}i∈N.

We must show that any sequence {uj} ⊆ K contains a convergent subse-
quence {ujk

}.
By lemma 3 there is a subsequence {u1

j} ⊆ {uj} that is convergent in all
the norms ‖ ·‖τ1,µ µ ∈ (0, 1). By the same argument there is a subsequence
{u2

j} ⊆ {u1
j} that is convergent in all the norms ‖ · ‖τ2,µ µ ∈ (0, 1) etc.

The diagonal sequence {uj
j} is convergent in all the norms ‖ · ‖τk,µ, k ∈

N, µ ∈ (0, 1).
By inequality (4.3) the sequence {uj

j} is convergent in all the norms ‖ ·
‖τ,µ, τ ∈ (0, T ), µ ∈ (0, 1).

Proposition 2 is proved.

Lemma 4. Let X, Y be Banach spaces. Suppose that Aa : X → Y, a′ >
a > 0 is a collection of bounded linear operators such that for each x ∈ X
we have

sup
a′>a>0

‖Aax‖Y < ∞, ‖Aax‖Y → 0 as a → 0.

Then for any compact set B ⊂ X it follows that

sup
x∈B

‖Aax‖Y → 0 as a → 0.

This result is a direct consequence of the Banach-Steinhaus theorem [8].
Let us recall a generalized version of the Schauder fixed point theorem.

Theorem 3 ([2]). Let W be a closed convex subset of the locally convex
space E. Then a compact continuous mapping f : W → W has a fixed point
û i.e. f(û) = û.

5. Proof of Theorem 1

By definition put

W (T∗) = {u ∈ E(T∗) | ‖u‖τ,ν ≤ R, 0 < τ < T∗, 0 < ν < 1}.
The constant T∗ > 0 will be defined.

We want to find a fixed point of a mapping

F (u) =
∫ t

0
eA(t−ξ)f(ξ, u(ξ)) dξ.

Then we show that this fixed point is the desired solution to problem (2.5).
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Lemma 5. If the constat T∗ is small enough then the mapping F takes the
set W (T∗) to itself.

Proof. Let constants t, s be taken as follows 0 < s < t1/γ , t ≤ T∗. Suppose
u ∈ W (T∗) then estimate a function v(t) = F (u) :

‖v(t)‖s ≤
∫ t

0
‖eA(t−ξ)f(ξ, u(ξ))‖s dξ = X + Y, (5.1)

here we use the notation

X =
∫ t−sγ

0
‖eA(t−ξ)f(ξ, u(ξ))‖s dξ, Y =

∫ t

t−sγ

‖eA(t−ξ)f(ξ, u(ξ))‖s dξ.

To estimate X take constants ε and µ such that

0 < ε <
s

t1/γ
< µ < 1. (5.2)

The constant ε is assumed to be small and the constant µ is assumed to be
close to 1.

Let the variables δ and δ′ be given by the formulas

δ = s− εξ1/γ , δ′ = ξ1/γ(µ− ε).

Taking into account that ξ ∈ (0, t − sγ ] we see that the variables δ, δ′ are
positive and

s− δ > 0, s− δ + δ′ < ξ1/γ , δ < (t− ξ)1/γ . (5.3)

The inequality in the middle implies that

u(ξ) ∈ Bs−δ+δ′(R) (5.4)

and thus the term X is estimated as follows

X ≤ C

∫ t−sγ

0
‖f(ξ, u(ξ))‖s−δ dξ ≤ C2

∫ t−sγ

0

1
δ′α

dξ

≤ C2

(µ− ε)α

∫ t−sγ

0

dξ

ξχ
=

C2

(1− χ)(µ− ε)α
(t− sγ)1−χ. (5.5)

We shall estimate the term Y .
Introduce a function ψ by the formula

ψ(y) = y1/γ + (1− y)1/γ − 1.

The function ψ is positive on the interval (0, 1). Define a constant I as
follows

I =
∫ 1

0

dy

(ψ(y))α
.

Let the constant µ be as above. We redefine the variables δ, δ′ by the for-
mulas

δ = µ(t− ξ)1/γ , δ′ = µξ1/γ + δ − s.

Now the variable ξ belongs to the interval [t − sγ , t] and thus the variables
δ, δ′ are positive and satisfy inequalities (5.3).
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It is only not trivial to show that the variable δ′ is positive. Let us prove
this. Indeed,

δ′ = µξ1/γ + µ(t− ξ)1/γ − s = t1/γ
(
µy1/γ + µ(1− y)1/γ − s

t1/γ

)
, (5.6)

here and below we use the notation y = ξ/t. Form (5.6) it follows that

δ′ > t1/γµψ(y). (5.7)

By the same argument as above, inclusion (5.4) is fulfilled with the new δ
and δ′.

We are ready to estimate the term Y . By (5.7) it follows that

Y ≤ C

∫ t

t−sγ

‖f(ξ, u(ξ))‖s−δ dξ ≤ C2

∫ t

t−sγ

dξ

δ′α

≤ C2t1−χ

µα

∫ 1

1−sγ/t

dy

(ψ(y))α
≤ C2I

µα
t1−χ. (5.8)

Now the assertion the of lemma follows from formulas (5.1), (5.5) and (5.8).
¤

Corollary 1. Formulas (5.5), (5.8) imply that if 0 < sγ < t ≤ T∗ and
v(t) = F (u), u ∈ W (T∗) then

‖v(t)‖s ≤ c2t
1−χ,

here c2 is a positive constant independent on u, t, s.

Lemma 6. The set F (W (T∗)) is precompact in E(T∗).

Proof. By proposition 2 it is sufficient to prove that the set F (W (T∗)) is
uniformly continuous.

Take a function u ∈ W (T∗) and let v(t) = F (u). We must show that if
t′, t′′ ≥ τ, τ ∈ (0, T∗) then for any µ ∈ (0, 1) one has

sup
u∈W (T∗)

‖v(t′)− v(t′′)‖µτ1/γ → 0, as |t′ − t′′| → 0.

Indeed, for definiteness assume that t′′ > t′ then

v(t′′)− v(t′) =
∫ t′′

t′
eA(t′′−ξ)f(ξ, u) dξ

+
(
eA(t′′−t′) − idEs

)∫ t′

0
eA(t′−ξ)f(ξ, u) dξ, sγ < τ. (5.9)

Choose a positive constant δ such that (s + δ)γ < τ and using formula (2.2)
estimate the first term from the right side of this formula

∥∥∥
∫ t′′

t′
eA(t′′−ξ)f(ξ, u) dξ

∥∥∥
s
≤ C

∫ t′′

t′
‖f(ξ, u)‖s dξ ≤ C2

∫ t′′

t′

dξ

δα

=
C2

δα
(t′′ − t′).
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So that the first term in the right side of (5.9) is vanished uniformly.
Consider a set

U =
⋃

τ≤t′≤T∗

{∫ t′

0
eA(t′−ξ)f(ξ, u) dξ | u ∈ W (T∗)

}
.

By lemma 5 the set U is bounded in any space Eµ′τ1/γ with 1 > µ′ > µ thus
it is compact in Eµτ1/γ . By lemma 4 we get

sup
w∈U

‖eA(t′′−t′)w − w‖µτ1/γ → 0, as t′′ − t′ → 0.

This shows that the second term in the right side of formula (5.9) is vanished
uniformly. ¤
Corollary 2. The set F (W (T∗)) is uniformly continuous with respect to the
variable t.

Lemma 7. The mapping F : W (T∗) → W (T∗) is continuous with respect to
the topology of the space E(T∗).

Proof. Suppose a sequence {vl} ⊂ W (T∗) to be convergent to the element
v ∈ W (T∗) as l → ∞. We need to show that for any sγ < τ < T∗ the
sequence

sup
τ≤t≤T∗

∥∥∥
∫ t

0
eA(t−ξ)f(ξ, vl(ξ)) dξ −

∫ t

0
eA(t−ξ)f(ξ, v(ξ)) dξ

∥∥∥
s

vanishes as l →∞.
By corollary 2 the sequence

{∫ t

0
eA(t−ξ)f(ξ, vl(ξ)) dξ

}
(5.10)

is uniformly continuous on the interval [τ, T∗]. The uniform convergence
of such a sequence is equivalent to its pointwise convergence [8]. Thus it is
sufficient to prove that sequence (5.10) is convergent in Es for each t ∈ [τ, T∗].

Fix t ∈ [τ, T∗] and let constants ε, µ satisfy inequality (5.2). Then using
the argument of lemma 5 write

∥∥∥
∫ t

0
eA(t−ξ)(f(ξ, vl(ξ))− f(ξ, v(ξ))) dξ

∥∥∥
s

≤
∫ t−sγ

0
‖f(ξ, vl(ξ))− f(ξ, v(ξ))‖εξ1/γ dξ

+
∫ t

t−sγ

‖f(ξ, vl(ξ))− f(ξ, v(ξ))‖s−µ(t−ξ)1/γ dξ. (5.11)

Since the function f is continuous, for a fixed ξ we have:

‖f(ξ, vl(ξ))− f(ξ, v(ξ))‖εξ1/γ → 0, ξ ∈ [0, t− sγ ],

‖f(ξ, vl(ξ))− f(ξ, v(ξ))‖s−µ(t−ξ)1/γ → 0, ξ ∈ [t− sγ , t], as l →∞.
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Moreover by formulas (5.5), (5.8) both of these expressions are majorized
with the L1-integrable function:

‖f(ξ, vl(ξ))− f(ξ, v(ξ))‖εξ1/γ ≤ ‖f(ξ, vl(ξ))‖εξ1/γ + ‖f(ξ, v(ξ))‖εξ1/γ

≤ 2C2

(µ− ε)αξχ
,

and

‖f(ξ, vl(ξ))− f(ξ, v(ξ))‖s−µ(t−ξ)1/γ ≤ 2C2

tχµα(ψ(ξ/t))α
.

Therefore by the Dominated convergence theorem the integrals in the right
side of (5.11) are vanished as l →∞. ¤

So by theorem 3 and lemmas 5, 6, 7 we obtain a fixed point of the mapping
F , say u:

F (u) = u ∈ W (T∗).
Let us show that this fixed point is the desired solution to problem (2.5).
Suppose that t, t + h > sγ . First consider the case h > 0. Differentiate the
function u(t) explicitly:

ut(t) = lim
h→0

h−1
( ∫ t+h

0
eA(t+h−ξ)f(ξ, u(ξ)) dξ −

∫ t

0
eA(t−ξ)f(ξ, u(ξ)) dξ

)

= lim
h→0

h−1

∫ t+h

t
eA(t+h−ξ)f(ξ, u(ξ)) dξ

+ lim
h→0

h−1(eAh − idEs)
∫ t

0
eA(t−ξ)f(ξ, u(ξ)) dξ. (5.12)

Lemma 5 implies that
∫ t
0 eA(t−ξ)f(ξ, u(ξ)) dξ ∈ Es′ with sγ < s′γ < t, t+h

hence formula (2.2) gives

h−1(eAh − idEs)
∫ t

0
eA(t−ξ)f(ξ, u(ξ)) dξ → A

∫ t

0
eA(t−ξ)f(ξ, u(ξ)) dξ (5.13)

in Es as h → 0.
Let us prove that

h−1

∫ t+h

t
eA(t+h−ξ)f(ξ, u(ξ)) dξ → f(t, u(t)) (5.14)

in Es as h → 0.
Indeed, observe that

h−1

∫ t+h

t
eA(t+h−ξ)f(ξ, u(ξ)) dξ − f(t, u(t))

= h−1
(∫ t+h

t
eA(t+h−ξ)(f(ξ, u(ξ))− f(t, u(t))) dξ

+
∫ t+h

t
(eA(t+h−ξ) − idEs)f(t, u(t)) dξ

)
.
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The first integral in the right side of this formula is estimated as follows:

∥∥∥
∫ t+h

t
eA(t+h−ξ)(f(ξ, u(ξ))− f(t, u(t))) dξ

∥∥∥
s

≤ Ch max
t≤ξ≤t+h

‖f(ξ, u(ξ))− f(t, u(t))‖s = o(h).

Since the semigroup eAt is strongly continuous for the second integral we
get

∥∥∥
∫ t+h

t
(eA(t+h−ξ) − idEs)f(t, u(t)) dξ

∥∥∥
s

≤ h max
t≤ξ≤t+h

‖(eA(t+h−ξ) − idEs)f(t, u(t))‖s = o(h).

If h < 0 then instead of formula (5.12) one must use the following expres-
sion

ut(t) = lim
h→0

h−1
(
(idEs − e−Ah)

∫ t+h

0
eA(t+h−ξ)f(ξ, u(ξ)) dξ

−
∫ t

t+h
eA(t−ξ)f(ξ, u(ξ)) dξ

)
.

In this case only the proof of the formula

lim
h→0

h−1(idEs − e−Ah)
∫ t+h

0
eA(t+h−ξ)f(ξ, u(ξ)) dξ

= A

∫ t

0
eA(t−ξ)f(ξ, u(ξ)) dξ

differs from the previous argument.
Let us prove this formula. Obviously we have

(idEs − e−Ah)
∫ t+h

0
eA(t+h−ξ)f(ξ, u(ξ)) dξ

= (idEs − e−Ah)u(t) + (idEs − e−Ah)(u(t + h)− u(t)). (5.15)

The set

V =
{ u(t + h)− u(t)
‖u(t + h)− u(t)‖s′

∣∣∣h ∈ (h′, 0)
}

with h′ < 0 close to zero is bounded in Es′ , sγ < s′γ < t+h′. Consequently
V is a compact set in Es. By lemma 4 the set

(A−h −A)V, A−h =
1
h

(
idEs − e−Ah

)

is bounded in Es and thus the set A−hV is also bounded.
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Thus taking into account that the function u(t) is continuous we yield
∥∥∥1
h

(
idEs − e−Ah

)
(u(t + h)− u(t))

∥∥∥
s

= ‖u(t + h)− u(t)‖s′ ·
∥∥∥A−h

u(t + h)− u(t)
‖u(t + h)− u(t)‖s′

∥∥∥
s

= o(1).

For the second term of the right side of (5.15) this implies

‖(idEs − e−Ah)(u(t + h)− u(t))‖s = o(h).

The first term of the right side of formula (5.15) is estimated as follows

‖(idEs − e−Ah)u(t)− hAu(t)‖s = o(h).

Substituting formulas (5.13) and (5.14) to (5.12) we see that the function
u is a solution to equation (2.5).

Formula (2.8) follows from corollary 1.
Theorem 1 is proved.
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