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Abstract
This paper discusses a possible derivation of Einstein’s field equations of general 
relativity through Newtonian mechanics.  It shows that taking the proper perspective on 
Newton’s equations will start to lead to a curved space time which is basis of the general 
theory of relativity.  It is important to note that this approach is dependent upon a 
knowledge of general relativity, with out that, the vital assumptions would not be 
realized.

Note: A number inside of a double square bracket, for example [[1]], denotes an endnote 
found on the last page.



1. Introduction
The purpose of this paper is to show a way to rediscover Einstein’s General Relativity.  It 
is done through analyzing Newton’s equations and making the conclusion that space-time 
must not only be realized, but also that it must have curvature in the presence of matter 
and energy.

2. Principal of Least Action

We want to show here the Lagrangian action of limiting motion of Newton’s second law 
(F=ma). We start with a function q mapping    to   n space of n dimensions and we 
equip it with a standard inner product. 

 
   q :→ (n ,(⋅,⋅))  (1)

We take a function (q) between q0 and q1 and look at the ds of a section of the curve.  We 
then look at some properties of this function (q). We see that the classical action of the 
functional (L) of q is equal to ∫ds, L denotes the systems Lagrangian.

 
  
L[q] = ds∫  (2)

We expand out the ∫ds in (2) and find 

 
  
L[q] = ds = (dq,dq) ∫∫ = dt dq

dt
,
dq
dt

⎛
⎝⎜

⎞
⎠⎟∫  (3)

Which is the inner product of two velocity vectors.

 
   

dt ( q, q)∫  (4)

Now we set t = t(s), where t is our old parameter and t(s) is our new parameter, to show 

that L is parameter invariant.  To do this we look at the inner product of
  q .  Which leads 

us to

   (q,q) = 2πR  (5)

Then we find:

 
  
q(t) = R

cos2πt
sin2πt

⎛
⎝⎜

⎞
⎠⎟

 (6)



We add the time dimension of q(t) because we want to work with the idea of space-time 
so we combine space and time to get an idea of what this will be.  Now we must search 

for the geometric parameter. We do this by taking 
  q  and expand it out. 

 
 
dq
dt

=
dq
ds

ds
dt

 (7a)

 
  
=

dt
ds

ds dq
ds

ds
dt

,
dq
ds

ds
dt

⎛
⎝⎜

⎞
⎠⎟∫  (7b)

 
  
=

dt
ds

ds
dt

dq
ds

,
dq
ds

⎛
⎝⎜

⎞
⎠⎟∫  (7c)

 
  
= ds dq

ds
,
dq
ds

⎛
⎝⎜

⎞
⎠⎟∫  (7d)

This is our normalized geometric parameter

 
  

dq
ds

,
dq
ds

⎛
⎝⎜

⎞
⎠⎟
= 1  (8)

This is true for every s. Now it is important to solve the variation problem (I say it is 
important to solve the variation problem because I have prior knowledge that this leads us 
in the right direction), which simply put is finding curves with the smallest slopes to 
tangents (smallest variation in the function). To do this we take a function f(x) and say 
(we use x for the general case but we will switch it to q later)

   f (x) = f (x 0+δx)  (9)

From this we add

   +δx − f ' (x)  (10a)

And

   +σ (δx2 )  (10b)

We see this and we have an idea, the Larangian of q and the change in q   (δq) gives us a 

solution to the variation problem. So we claim that with a Taylor expansion. 



   L[q + δq]=
!

L[q]+σ (δq2 )  (11a)

If we calculate this out we find

 
   
L[q] = dt(q, q)∫  (11b)

 
   
= dtL(q + δq(q + δq)i )∫  (11c)

 
   
= dt[(q + q) +

∂L
∂q∫ δq +

∂L
∂q

δ q +σ (δq,d q)]  (11d)

It is apparent that this works iff:

 
   

dt(∂L
∂q

−
d
dt

(
∂L
∂q

δ q)) = 0∫  (11e)

Thus

 
   
0 = dtδ q ∂L

∂q
−

d
dt

∂L
∂ q

1
⎛
⎝⎜

⎞
⎠⎟
+
∂L
∂ q

δq
⎛

⎝⎜
⎞

⎠⎟∫
t=0

t=1

 (11f)

We then find the Euler- Lagrange equation.

                    
   

∂L
∂q

−
d
dt

∂L
∂ q

= 0             [[1]] (11g)

Because 

 
   

∂L
∂q

−
d
dt

∂L
∂ q

=
d
dt

m q = 0  (12)

The Euler-Lagrange equation of minimized action just decreases the motion of Newton’s 

equation thus
   q = 0 . Now we claim that if t=1 then 

 
  

dt  f (t)g(t) = 0∫  (13)

This is true for every f(t)

For example

 
    = ( q, q)  (14)

If we say that t=0, then g(t)= 0 and we once again see that 



 
   

∂L
∂q

−
d
dt

∂L
∂ q

= 0  (15)

Now we use geometric paratization 

 
  

dq
dt

,
dq
dt

⎛
⎝⎜

⎞
⎠⎟
= 1  (16a)

   Or

 
   ( q, q) = 1  (16b)

Which is true for every (t).  We use our paratization to find:

 
   

∂L
∂ q

=
∂ q

∂ ( q, q)
= q  (17)

With properties of q(t)=at + b│a,b ε Rn we see that

 
   

d
dt

∂L
∂ q

= q = 0  (18)

Which shows us that the first time derivative is a horizontal time (this is of course the 
smallest tangent slope possible).

3. Stationary Curves

When we looked at the Larangian we found that the limiting action was 
   q = 0 this means 

that the 1st time-derivative of the function q is a straight line.  We can consider a line to 
be a stationary (or flat) curve, so we can use the properties we found above.
Take the inner product of (u,v)

 
  
(u,v) = u=v

i=1

3

∑  (19)

Where the matrix of g is 



 

 

1 2 0
2 1 0
0 0 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

We write g(u,v) for the general product

   g(u,v) ≡ uT gv  (20)

Such that

  g
T = g  (21)

We get a horizontal u matrix and a vertical v matrix 

 

 

(-u-)(g)
|
v
|

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. We now show this as a product of our function (q), because curved space 

(g) depends on a point on q.

   g(q)(u,v)  (22)

Which can also be written as 

 
  

g(q) abua

ab
∑ vb  (23)

And in stationary (flat) curves.

 
  
g(q) ab= abδ   [[6]]          (24)

If we look again at the functional (L) of our function (q) when compared to what we 
found in (24) we come up with

 
   
L[q] = dt∫ g(q) ab q

a
qb  (25a)

We can remove the root to find the minimal. 

 
   
L[q] = dt[g(q) ab q

a
qb]∫ ≥ 0  (25b)

We now want to add our functional (L) to the change in L,(δL).  We do this in order to 
find the correction components for when the curve of our manifold is not stationary.



 
   
L + δL = [

∂g(q)ab
∂m∫ δqm

qa
qb + 2g(q)

d
dt

(δq)a
qb]  (26)

When we calculate this out we find that. (comma denotes a derivative)

 
   
L + δL = dtδqm∫ [gab , m q

a
qb −

d
dt

(2gmb q
b )]  (27)

Now it starts to get interesting when we see that. 

 
   
L + δL = dtδqm[g ab , m q

a
qb − 2g mb , n q

n )qb − 2g mb q
b]∫  (28)

I say this is interesting because our term in the square brackets equals out to zero. 

 
   0 = g ab ,m q

a
qb − 2(gmb ,n q

n ) qb − 2gmb q
b  (29)

It is important to now write this out as 

 
   
gmbq

b +
1
2

(2gmb,a − gab ,m ) qa
qb = 0  (30a)

Such that 2
  
gmb,a  = 

  
gmb,a +

  
gma,b ,we know that this is zero because we are dealing with 

stationary curves, which is 

 
   
gmbq

b +
1
2

(gmb,a + gma,b − gab,m ) qa
qb = 0  (30b)

In such a way that BB-1 = 1 (B representing a matrix) and gabgbc =  δ
ca for the 

inverses.          
      [[6]]   

We then take (30b) and multiply by  g
nm  we get.  

 
   
qn +

1
2

g nm(gmb,a + gma,b − gmb,n ) qa
qb = 0  (30d)

We now use this to define our correction components, which are Christoffal symbols of 
the second kind. The corrections are meant for tangents spaces to manifolds.  If the 
manifold is curved then we need corrections because the tangent spaces exist in 2 times 
as many dimensions as the manifold.  This is to ensure that the tangent spaces cannot 
intersect. 

 
  ab

n

Γ ≡
1
2

g nm(gmb,a + gma,b − gmb,n )  (31)



In our correction components we see some important properties gab= δab  as well as 

gab=δab also gab,m = 0 and 
  q

n  = 0. We will show an example in polar coordinate system. 

We take a gεRn; where g(r, φ) = (q1,q2) 

 
  
g(r,ϕ ) =

1 0
0 r 2

⎛
⎝⎜

⎞
⎠⎟

 (32)

We now use this with our correction components at different points on our function (q).

 
   
q1 +

ab

1

Γ  qa
qb  (33a)

 
   
q2 +

ab

2

Γ  qa
qb  (33b)

It would be useful at this time to analyze the (r, φ) coordinate system with our functional 
(L). We want to do this because we want to compare stationary curves in Cartesian and 
Polar coordinate systems in order to extract properties of the coordinate systems. 

 
   

dt(r, ϕ )
1 0
0 r 2

⎛
⎝⎜

⎞
⎠⎟∫
r
ϕ

⎛
⎝⎜

⎞
⎠⎟

This works out to be:

 
  

dt(r 2 + r 2ψ 2∫ )  (34)

And because

 
   r

2 ϕ = L  (35)

It follows that 

 
   
dL
dr

= 2r ϕ 2  (36)

And

 
   r − r ϕ 2 = 0  (37)

We look at these and we see that there are some properties to notice. They are important 
because they help us understand motion in polar coordinates.

 
   
dL
d r

= 2 r  (38)



 
  

dL
dϕ

= 0  (39)

 
   

dL
d ϕ

= 2r 2 ϕ  (40)

We then see forming

 
   
r − r L2

r 4 = 0  (41a)

Where

 
   
r =

L
r3  (41b)

Also

 
   2i2r r + ϕ + 2r 2 ϕ = 0  (42)

We then notice that

 
   r − r ϕ ⋅ ϕ = 0  (43)

 
   
ϕ − 2

1
r
r ϕ = 0  (44)

Which describes motion with constant velocity, which for this coordinate system is the 

equivalent of a stationary curve.  From these we find that
 
ϕ =2π, r = 0, ϕ (t) = 2πt and r(t)

= R. Also we should take 

 
  22

1

Γ = r  and 
2

2

Γ =
1
r

where all unrelated r vanish. Now we will continue by calculating some straight lines on 
a sphere, which are called geodesics (thus we are looking for the geodesic equations).  It 
is of interest to do this because we see that on a sphere parallel lines always intersect but 
geodesics do not, so we need a way to make sense of the coordinate changes. We start 
with 

 
  
q(t) = R

cos2πt
sin2πt

⎛
⎝⎜

⎞
⎠⎟

 (45)

and work with this a bit and we see that 



 
   
q, q∫  dt = (2πR)

cos2πt
sin2πt

⎛
⎝⎜

⎞
⎠⎟∫ ,i)dt  (46)

It then follows that this equals 

 
  

2πR
1Γ∫  (47)

if dt = 2πR and t = 0. We shall now write this in terms of our polar coordinate system 
(this is the natural coordinate system for a sphere) and we find that 
 
 

 
   

dt r 2 + r 2 + ϕ 2 ) = dt R2 (2π )2 = 2π∫∫  (48)

where again t= 0. If we look at a sphere we see the coordinate conversion is

 
   x = RiSin(θ)Cos(ϕ )

 
   y = RiSin(θ)Sin(ϕ )

 
   z = RiCos(θ)

Then 

   x
2 + y2 + z2 = ⋅ ⋅ ⋅ = R2

With this we see the matrix 

 
  
gab =

R2 0
0 R2 sin2θ

⎛
⎝⎜

⎞
⎠⎟

where the unit sphere has a matrix 

 
 

1 0
0 sin2θ

⎛
⎝⎜

⎞
⎠⎟

If we say that q1 = θ and q2 =ϕ , and look once again at the functional (L) of our function 

(q), then,

 
   
L[q] = dt( θ , ϕ )

1 0
0 sin2θ

⎛
⎝⎜

⎞
⎠⎟∫
θ
ϕ

⎛
⎝⎜

⎞
⎠⎟

 (49)

Because of the matrix multiplication I showed earlier, we get. 



 
   
L[q] = dt( θ 2 + sin2θ∫ ϕ 2 )  (50)

The term 
  (
θ 2 + sin2θ ϕ 2 ) we will let equal to    (θ,ψ,

  
θ , ϕ ). Now when we look at    

we find out that:

 
  

∂
∂θ

= 2cos(θ)sin(θ) ϕ 2  (51a)

The first time derivative of this is 

 
   
d
dt

∂
∂θ

= 2θ  (51b)

We now find two important properties.  They are important because their consequences 
show us interesting things in Cartesian coordinates when they are converted.

 
  
θ − cos(θ)sin(θ) ϕ 2 = 0  (52)

and 

 
  ϕ sinθ = 0  (53)

which of course shows us that  θ  = 0 and leads us to believe that

 
  

∂L
∂q

= 0  (54)

and

 
   

∂L
∂ ϕ

= 2sinθ ϕ  (55)

This is true when ϕ  is constant, 

which gives us the matrix 

 
  
gab =

gzt ,gzϕ

gϕt ,gzt

⎛

⎝
⎜

⎞

⎠
⎟

4. Differential Geometry

We want to start working with differential geometry because General Relativity is a 
theory that has space-time represented as a manifold.  Differential geometry is of course 
the natural mathematics for a manifold, especially in high dimensions.  Now we 



incorporate the nabla, which is a differential operator. We will take the covariant 
derivative of this to be:

  

 
   
∇
x x = ∂

x x
n +

ab

n

Γ xa
xb = 0  (56)

These differential operators are very useful because as you can see they incorporate the 
correction components that we defined earlier. Now, we have invented this term, 

 
   
(∂
x x

n +
ab

n

Γ xa
xb = 0)

but we need to know what this means in order to understand the covariant derivative of 
our differential operator. We see that

 
   
xn =

d
dt

( xn ) = xm ∂
∂m
xn = xm d

dxm
xn  (57)

but we are missing a connection to our earlier work and it is this

 
  
xm d

dxm
xn = ∂

x x
n  (58)

We then say that in a flat space  Γ ≡ 0 and
   ∂ x x = 0 . This is understandable, seeing that the 

correction components were created to help with the problem of tangent spaces on a 
curved manifold. Our next step will be to look at the parallel transport of x along itself. 
To start we will say that 

   ∇x x = 0  (59)

where
   x = x  (60)
If we take our equation (56) we find that 

 
  
xm∂xa +

ab

n

Γ xaxb = 0  (61)

Now we define the Riemann Curvature tensor to be

 
  
R(x, y)z ≡ ∇x∇ y

⎡⎣ ⎤⎦ z − ∇ x , y⎡⎣ ⎤⎦
x  (62a)

The 
 
∇x∇ y
⎡⎣ ⎤⎦  is the usual commutator of operators (which in this case is R(x,y)z.) 



 
 
∇x∇ y
⎡⎣ ⎤⎦ = ∇x∇ y − ∇ y∇x  (62b)

The Riemann curvature tensor is a tensor field defined by 
  
R(x, y)z = ∇x∇y⎡⎣ ⎤⎦ z − ∇ x , y⎡⎣ ⎤⎦

x

at every point. We also define our vector fields [x,y] to be. 

   [x, y]a ≡ xm∂mY a − Y m∂m X a  (63)

This is a Schrodiner space-time structure.  Now we define the manifold (M) to be the set 

of all points that are locally homomorphic to   n space of n dimension such that 

  u → f → v ⊆ n where v is a chart and   n is an open subset or equal to the chart (v). If 

we take a curve 
   γ :→ M which is like saying that  → n .  Now if we assume 

 γ (0) = ρ then we can say that   → n →  the first mapping is a γ  action and the 

second is a f action we call this
  f γ . This is important when we say

 
   γρ : C∞ (n ) →   (64)

which will work out to

 
   γρ f := ( f γ )  (65)

which with a limit of t=0 work out to

 
   
γρ f :=

d
dt

( f γ ) |t=0  (66)

We now want to put this into nicer looking terms

 
  
df
dxu i

dγ
dt

 (67)

which we will rewrite as 

 
  

dγ
dt

i
∂
∂xu f   (68)

using the chain rule.  

We now recognize the term
 

∂
∂xu

⎛
⎝⎜

⎞
⎠⎟

which using compact notation is ∂u . This is because 

the tangent space of the Manifold has a basis of:



 
   

∂
∂x1 ,

∂
∂x2 ,…,

∂
∂xn

⎛
⎝⎜

⎞
⎠⎟

 
 
∂u ≡

∂
∂xu  (69)

Now we take a vector (x) at a point (p)

  x = xu∂u  (70)

If we then take  f ∈C∞ ( M )) , belonging to the smooth manifold, we get

  xf = xu∂u f = ∂x f  (71)

I now define a tensor to be a multi linear map such that 
   
T :Tp MxTp M ,xx,Tp M → 

where T(x,y,…,z) is linear and   C
∞ ( M ) smooth manifolds, are linear maps. Now we take 

the vector fields x,y and define

 
  

x, y⎡⎣ ⎤⎦ ≡ xy − yx  (72a)

(where square brackets denote the comutator of operators) to be a vector, if we take (72a) 
and use a Lie bracket we find

 
  

x, y⎡⎣ ⎤⎦ f = x( yf ) − y(xf )  (72b)

5. Linear Connections
We use the covariant derivative of the differential operator  (∇) (which is a vector, we do 

this to see the properties of such a vector)  where ∇x f = xf  

We see three properties 

   ∇x
i ( fy) = (∇x f )y + f∇x y  (73)

 
 
∇ fx y = f∇x yi∇x + yZ = ∇x z +∇ y z  (74)

   ∇x ( y + w) = ∇x y +∇x w  (75)

where  ∇x y is again a vector. Now we want to find the components of our tensor so we 

take the vector fields x,y and say 



   T (x, y) = T (xa∂a yb∂b )  (76a)

We can then move xa and yb so 

   X
aY bT (∂a ,∂b )  (76b)

We then define  Tab ≡ T (∂a ,∂b ) , so that ab are our tensor components (we define this just 

to simplify notation). This of course means that

   T (x, y) = X aY bTab  (76c)

We then take our vector  ∇x y and with the knowledge we just gained we say that it is 

equal to

   ∇x y = ∇xa∂a ( yb∂b )  (77a)

Which we could write as 

   X
a (∇∂a (Y b∂b )  (77b)

We want to ignore  ∂b for a moment and look at the term

   x
a (∇∂a yb )  (77c)

which we then expand out to be 

 
  
xa ((∇∂a yb )∂b + yb(∇∂a∂ b )  (77d)

Now we put our correction components in 

   x
a (∂a yb )∂b + xa ybΓb

c
a∂c  (77e)

As we stated earlier    ∇x x = 0 so we now use that with what we found in (77e). This gives 

us 

   x
a∂axc + xaxbΓb

c
a = 0  (78)

Which work iff

 
   x

c + Γb
c

a x
a
xb = 0  (79)

6. Curvature Tensor
The curvature of space-time is found in General Relativity through tensor analysis so 
naturally a curvature tensor is necessary.  So we define our curvature tensor to be 

 
  
R(x, y; z) = [∇x∇y]z − ∇[x , y]z  (80)



The manifold mapping assigns the operator  R(x, y; z) = −R( y,x; z)    [[2]] , so we only 

have to check for linearity in z. We do this by multiplying z by a constant, which will be 
the function (f). We do this by 

 
  
R(x, y, f ; z) = ∇x∇ y ( fz) − ∇ y∇x ( fz) − ∇[x , y]( fz)  (81)

With a few line [[3]] we can prove that it works out to  fR(x, y; z) . This proves linearity 

and shows us that R is indeed a tensor. Now this allows us to move onto torsion. We say 
then

 
  
T (x, y) = ∇x y − ∇ y x − [x, y]  (82)

which for Einstein’s theory we define torsion to be zero  T ≡ 0 which means 

 
  
T( x , y ) = 0  (83)

This also means that  ∇x z = ∇z x  which is important when we write our curvature tensor 

as

 
  
R(x, z;x) = ∇x∇z x − ∇z∇x x − ∇[x ,z]x  (84)

Now because   ∇x x = 0  the terms 
  
(∇z∇x x) and ∇[x ,z]x cancel out, and because  ∇z x = ∇x z  

we write this as 

   R(x, z;x) = ∇x∇x z  (85)

7. 3D Oscillator

We want to start to work towards General Relativity so we need to make connections 
from Newtonian to Einstein Gravity.  We will now look at the 3-D oscillator

 
   z

a = −(∂a∂bv)zb  (86)

It make sense to look at this because if we look at the two particles falling in a 
gravitational field we see tidal acceleration. This looks like an oscillator. Now if we 

assume  x
µ = (x0 ,x1,x2 ,x3)  where   x0 ≡ t  [[4]] and we look at our curve in classical 

(Newtonian) mechanics we would say

 
  γ :→ 3  (87a)



 

  

γ (0) =
x(t)
y(t)
z(t)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (87b)

But now if we introduce the concept of space-time we see our curve γ  to be 

 
  γ
~

:→ 4  (88a)

 

  

γ (t) =

t
x(t)
y(t)
z(t)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (88b)

Now we will reintroduce (85) and write it as 

   (∇x∇x z)a = (R(x, z;x))a  (89)

If we then say that   x = ∂0 we see 

   (R(∂o ,∂b ,∂o ))a zb  (90)

such that

   (∇x∇x z)a = Ra
obozb  (91)

If we look again at the 3-D oscillator 

 
   z

a = −(∂a∂bv)zb  (92)

We see that (92) and (91) look very similar and we get an idea, what if gravity is an effect 
of the curvature of space-time. 

   R
a

obo =
!

− ∂a∂bv  (93)

If we say that   (Δv) is matter density is

 
  

Δv = ℑ
iff

 (94)



  R
a

obo = ℑ  (95)

For this to work we sum over the indices (Einstein summation convention) to say that 

 
 

−∂a∂bV = ℑ
ab
∑  (96)

and iff

 
 

Ra
bcd = Rbd

ac
∑  (97)

This means that 

  Roo = ℑ  (98)

which is the Ricci tensor, and here represents Newtonian gravity in geometric form.  This 
tells us that the curvature of space-time is geometrically, what Newtonian gravity looks 
like. 

8. Einstein Tensor
We will look at our Ricci curvature tensor and we say that this is nice, but what I would 
really like to see is the Einstein tensor. We will start by saying that Roo(98) can also be 
written as Rab. And then we must find the metric tensor. To do this we look again at a ds 
but this time of a tensor, which is also known as a Riemann metric (once again I will use 
a hand waving technique and say that we do this because we already know it will work). 

We use what is called a generalized Pythagorean theorem. Our metric in a Newtonian   3  

space has a matrix 

  

g11 g21 g31

g12 g22 g32

g13 g23 g33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

which will work out to be 

   ds2 = g11dx2
2 + g12dx1dx2 + g13dx1dx3 + g21dx2dx1 + g22dx2

2 + g23dx2dx3 + g31dx3dx1 + g32dx3dx2 + g33dx3
2

  (99)
If we are in Euclidean space where 

  gab = δab  (100)

then we use the usual form of Pythagorean theorem

   ds2 = dx1
2 + dx2

2 + dx3
2  (101)

which means that our metric matrix is diagonal with values at (g11,g22,g33) and all other 
elements are zero. Now we need to have the component known as scalar curvature so we 
define it as 



  R ≡ g abRab  (102)

We can now create the Einstein tensor  Gab which is  

 
  
Gab = Rab −

1
2

Rgab  (103)

9. Field Equation
Now that we have found the Einstein tensor we are getting very close to unlocking all of 
his general theory of relativity. To start we will say

  Gab =κ Tab  (104)

Where Tab is the stress-energy tensor this can be written as

 
  
Gab = Rab −

1
2

Rgab =κ Tab  (105)

We work with this a bit and come up with

 
  
Rab =

1
2

gabR +k Tab =
1
2

(2Tab − gabTab )  (106)

which we will write as

 
  
1
2
κ[2Tab + (T a

b + T i
j )]  (107)

which simplifies to

 
  
1
2
κ (Tab + T i

j )  (108)

Finally we say that 

 
  
Rab =

1
2
κρ  (109)

where ρ  is matter density. If we then say that k=8π (this is a large hand wave but a 

necessary one) we get an idea

   Rab =
!

4πρ  (110)

This will give us numerical values, and because we said that Gab= κ Tab  (101) we can say



   Gab = 8πTab  (111)

This is the Einstein field equation, it encompasses 16 partial differential equations, which 
describe gravitational effects. But because Gab and Tab are symmetric it reduces to 10 
differential equations and adds 4 differential identities (this fact is of no consequence to 
this paper but I think that it is interesting to understand Einstein’s work and how he 

discovered it).   Next we add a Lorenz transformation Λgab .  Einstein set this equal to 

zero when he created the cosmological constant.

      Gab + Λgab = 8πTab        (112)

10. Conclusion

 We find that using and accelerated reference frame with Newton’s equations we can find 
the curvilinear coordinates.  These are indeed very much like the curvature equations of 
general relativity.  Using the principal of equivalence we can work in this matter to arrive 
at the field equation of general relativity.  
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[[1]]. We find this to be true by looking at the principal of least action

   

L = T −V = 1+ x + x2

2
+

x3

6
+

= dt dqi

dt
(t), dq

dt
(t) = dt(q, q)

0

1

∫
0

1

∫
L + δL = dt(q + δq,(q + δq))∫
= dt∫

∂L
∂q

δq +
∂L
∂q

d
dt

(q)
⎛
⎝⎜

⎞
⎠⎟
+ dt(q, q)∫

= dt∫
∂L
∂q

δq −
d
dt

∂L
∂q

δq
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
−

∂L
∂q

δq
⎡

⎣
⎢

⎤

⎦
⎥

= dtδq ∂L
∂q

−
d
dt

∂L
∂q

⎛
⎝⎜

⎞
⎠⎟∫

=>
∂L
∂q

−
d
dt

∂L
∂ q

= 0

[[2]]. 

  

R(x, y; z) = ∇ x∇ y
⎡⎣ ⎤⎦ z − ∇ x , y⎡⎣ ⎤⎦

z

= −[∇ y∇ x ]z +∇ [ y ,x] z

= −R( y,x; z)

[[3]].



  

R(x, y, f ; z) = ∇ y∇ x ( fz) − ∇ x∇ y ( fz) − ∇ [x , y]( fz)

= ∇ y ( f∇ x z + (xf )z) − ∇ x ( f∇ y z + ( yf )z) + f∇ [x , y] z + ([x, y] f )z

= fR(x, y)z + ( y(xf ) − x( yf ) + [x, y] f )z
= fR(x, y; z)

This idea is indeed strange because our curvature tensor is made up of covariant 
derivatives that are not linear operators over the ring of smooth functions.

[[4]]
We say that xu is the parameters of the manifold. In this case it is a 4 manifold of 
(x0,x1,x2,x3) where x0=t

[[5]]
This is true if the parameter of our manifold is xu=(x1,x2,x3,…,xn)

[[6]] δab is the Krocknecker delta which is used for orthonormality 1 for a=b, 0 for a≠ b.


