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Abstract. Let W be a finite reflection group acting orthogonally on Rn, P be the
Chevalley polynomial mapping determined by an integrity basis of the algebra of W -
invariant polynomials, and h be the highest degree of the coordinate polynomials in P .
There exists a linear mapping: Cr(Rn)W 3 f 7→ F ∈ C[r/h](Rn) such that f = F ◦ P ,
continuous for the natural Fréchet topologies. A general counterexample shows that this
result is the best possible. The proof by induction on h uses techniques of division by linear
forms and a study of compensation phenomenons. An extension to P−1(Rn) of invariant
formally holomorphic regular fields is needed.

1. Introduction

Let W be a finite subgroup of O(n) generated by reflections. A theorem of Chevalley
([6]) states that the algebra of W -invariant polynomials is generated by n algebraically
independent W -invariant homogeneous polynomials, say the basic invariants or an integrity
basis. A W -invariant complex analytic function may be written as a complex analytic
function of the basic invariants ([18]). Glaeser’s theorem ([10]) shows that real W -invariant
functions of class C∞, may be expressed as C∞ functions of the basic invariants. In finite
class of differentiability, Newton’s theorem in class Cr ([2]) dealt with symmetric functions
and as a consequence with the Weyl group of An. This particular case shows a loss of
differentiability as already did Whitney’s even function theorem ([19]) which established
the result for the Weyl group of A1. A first attempt to study Chevalley’s theorem in finite
class of differentiability may be found in the first part of [4] where the best result was
obtained for the Weyl groups of An and Bn by a method which was on the right track but
needed an additional ingredient to deal with the general case.

Here we give for any reflection group a result which is the best possible as shown by a
general counter example. Let p1, . . . , pn be the basic invariants, we define the ‘Chevalley’
mapping P : Rn 3 x 7→ P (x) = (p1(x), . . . , pn(x)) ∈ Rn. The loss of differentiability is
governed by the highest degree of the basic invariant polynomials. More precisely we have:

Theorem 1: Let W be a finite group generated by reflections acting orthogonally on
Rn and let f be a W -invariant function of class Cr on Rn. There exists a function F
of class C[r/h] on Rn such that f = F ◦ P , where P is the Chevalley polynomial mapping
associated with W and h is the highest degree of the coordinate polynomials in P , equal to
the greatest Coxeter number of the irreducible components of W .

Keywords : Chevalley theorem, finite groups generated by reflections, finite Coxeter
groups, Whitney functions of class Cr, formally holomorphic Whitney fields, Whitney
extension theorem.

Classification: 57R45, 51F15, 58A20, 58A35.
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2. The Chevalley mapping

The reader familiar with these questions may omit this section. Proofs and detailed
study may be found in [5], [8], or [11].

Since a change of basic invariants is an invertible polynomial map on the target,
theorem 1 does not depend on the choice of the set of basic invariants, and we will choose
the most convenient one.

When W is reducible, it is a direct product of its irreducible components, say W =
W 1 × . . . × W s and we may write Rn as an orthogonal direct sum Rn0 ⊕ Rn1 ⊕ . . . ⊕
Rns where Rn0 is the subspace of W -invariant vectors and for i = 1, . . . , s, W i is an
irreducible finite Coxeter group acting on Rni . We will choose coordinates that fit with
this orthogonal direct sum. If w = w1 . . . ws ∈ W with wi ∈ W i, 1 ≤ i ≤ s we have
w(x) = w(x0, x1, . . . , xs) = (x0, w1(x1), . . . , ws(xs)) for all x ∈ Rn. The direct product of
the identity on Rn0 and of Chevalley mappings P i associated with W i acting on Rni , 1 ≤
i ≤ s, is a Chevalley map P = Id0×P 1× . . .×P s associated with the action of W on Rn.

For an irreducible W (or for an irreducible component) we will assume that the degrees
kis of the coordinate polynomials pis are in increasing order: 2 = k1 ≤ . . . ≤ kn = h,
Coxeter number of W . In the reducible case, we will denote by h the maximal Coxeter
number (or highest degree of the coordinate polynomials) of the irreducible components.

Let R be the set of reflections different from identity in W . The number of these
reflections is R# = d =

∑n
i=1(ki−1). For each τ ∈ R, let λτ be a linear form the kernel of

which is the hyperplane Hτ = {x ∈ Rn|τ(x) = x}. The jacobian of P is JP = c
∏

τ∈R λτ

for some constant c 6= 0. The critical set is the union of the Hτ when τ runs through R.
A Weyl Chamber C is a connected component of the regular set. The other connected

components are obtained by the action of W and the regular set is
⋃

w∈W w(C). There is a
stratification of Rn by the regular set, the reflecting hyperplanes Hτ and their intersections.
The mapping P induces an analytic diffeomorphism of C onto the interior of P (Rn) and
an homeomorphism that carries the stratification from the fundamental domain C onto
P (Rn).

The Chevalley mapping, which is neither injective nor surjective, is proper and sepa-
rates the W -orbits ([17]). This mapping is the restriction to Rn of a complex W -invariant
mapping from Cn onto ([12]) Cn, still denoted by P .
On its regular set, the complex P is a local analytic isomorphism. Its critical set is the
union of the complex hyperplanes Hτ = {z ∈ Cn|τ(z) = z}, kernels of the complex forms
λτ . The critical image is the algebraic set {u ∈ Cn|∆(u) = J2

P (z) = 0}, on which P carries
the stratification.

Finally, there are only finitely many irreducible finite Coxeter groups defined by their
connected graph types. Even when these groups are Weyl groups of roots systems or Lie
algebras, we will follow the general usage and denote them with upper case letters.

3. Whitney Functions and r-regular, m-continuous jets

The reader familiar with these questions may skip this section. A complete study may
be found in [18].
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A jet of order m ∈ N, on a locally closed set E ⊂ Rn is a collection A = (ak) k∈Nn

|k|≤m

of real valued functions ak continuous on E. At each point x ∈ E the jet A determines
a polynomial Ax(X), and we sometimes speak of polynomial fields instead of jets ([13]).
As a function, Ax acts upon vectors x′ − x tangent to Rn at x. To avoid introducing the
notation T r

xA, we write somewhat inconsistently:

Ax : x′ 7→ Ax(x′) =
∑

k

1
k!

ak(x) (x′ − x)k.

By formal derivation of A of order q ∈ Nn, | q |≤ m we get jets of the form (aq+k)|k|≤m−|q|
inducing polynomials

(DqA)x(x′) =
(

∂|q|A
∂xq

)

x

(x′) = aq(x) +
∑
k>q
|k|≤m

1
(k − q)!

ak(x) (x′ − x)k−q.

For | q |≤ r ≤ m, we put:

(RxA)q(x′) = (DqA)x′(x′)− (DqA)x(x′).

Definition 1. Let A be an m-jet on E. For r ≤ m,A is r-regular on E, if and only
if for all compact set K in E, for (x, x′) ∈ K2, and for all q ∈ Nn with | q |≤ r, it satisfies
the Whitney conditions.

(Wr
q ) (RxA)q(x′) = o(| x′ − x |r−|q|), when | x− x′ |→ 0.

Remark. Even if m > r there is no need to consider the truncated field Ar in stead of
A in the conditions (Wr

q ). Actually (RxAr)q(x′) and (RxA)q(x′) differ by a sum of terms
[ak(x)/(k − q)!] (x′ − x)k−q, with ak uniformly continuous on K and |k| − |q| > r − |q|.

The space of r-regular jets of order m on E, is naturally provided with the Fréchet
topology defined by the family of semi-norms:

‖A‖r,m
Kn

= sup
x∈Kn
|k|≤m

| 1
k!

ak(x) | + sup
(x,x′)∈K2

n
x6=x′,|k|≤r

( | (RxA)k(x′) |
| x− x′ |r−|k|

)

where Kn runs through a countable exhaustive collection of compact sets of E. Provided
with this topology the space of r-regular, m-continuous polynomial fields on E is a Fréchet
space denoted by Er,m(E). If r = m, Er(E) is the space of Whitney fields of order r or
Whitney functions of class Cr on E.

Theorem 2. Whitney extension theorem ([20]). The restriction mapping of the space
Er(Rn) of functions of class Cr on Rn to the space Er(E) of Whitney fields of order r on
E, is surjective. There is a linear section, continuous when the spaces are provided with
their natural Fréchet topologies.
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The Whitney regularity property of the image P (Rn) is a likely conjecture but
since there is no proof available, we need an extension of the invariant regular fields to
P−1(Rn) ⊂ Cn.

Let E be a closed subset of Cn ' R2n, we consider jets A on E with complex valued
coefficients ak. They induce in z ∈ E the polynomials:

Az(X,Y ) =
∑

|k|+|l|≤m

1
k!l!

ak,l(z) XkY l ∈ C[X, Y ].

We define the Fréchet space Er(E;C) of complex valued Whitney functions of class Cr.

Definition 2.[13] [18] A Whitney function A ∈ Er(E;C) is formally holomorphic if
it satisfies the Cauchy-Riemann equalities:

i
∂A

∂Xj
=

∂A

∂Yj
, j = 1, ..., n.

Let Z = (Z1, . . . , Zn), Zj = Xj + iYj , j = 1, . . . . , n. The field A is formally holomor-

phic if and only if
∂A

∂Zj

= 0, j = 1, ..., n. Thus for all z ∈ E the polynomial Az belongs to

C[Z] and is of the form Az(Z) =
∑

k

1
k!

ak(z)Zk.

The algebra of formally holomorphic Whitney functions of class Cr on the (locally)
closed set E of Cn ([13], [18]) will be denoted by Hr(E). It is a closed sub-algebra of
Er(E;C) and therefore a Fréchet space when provided with the induced topology. In
practice we define the semi-norms ‖A‖Kn

r on Hr(E) by the same formulas as in Er(E;R),
only using moduli instead of absolute values.

To take advantage of compensation phenomenons, it may be convenient to consider
Fréchet spaces Hr,m(E) of formally holomorphic r-regular jets of order m ≥ r on E.

Definition 3. A real form ([15]) or real situated subspace ([13], [18]) of Cn is a real
vector subspace E of real dimension n such that E ⊕ iE = Cn.

A real form is a real subspace ES = {z ∈ Cn|Sz = z}, where S is an anti-involution.
Example. For any involution α, Γα = {z ∈ Cn|zα(j)=zj , j=1,...,n} is a real form of Cn

defined by the anti-involution z 7→ α(z).

Let W be a finite reflection group acting orthogonally on Rn and P be its Chevalley
polynomial mapping as above. Since P is defined over R (its coefficients are real), P−1(Rn)
is the union of real forms ΓSw ⊂ Cn, where w runs through the involutions of W and Sw

is the anti-involution defined by Sw(u + iv) = wu− iwv.

Let f ∈ Cr(Rn)W be a W -invariant function of class Cr, it induces on Rn a W -
invariant Whitney field of order r and by complexification a formally holomorphic field in
Hr(Rn)W which will still be denoted by f . By using Whitney’s extension theorem, one
may show ([2]) that there is a linear and continuous extension:

Hr(Rn)W 3 f 7→ f̃ ∈ Hr(P−1(Rn))W .
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4. Some multiplication and division properties.

Lemma 2. Let Γ be a finite union of real forms of Cn, A be in Hr(Γ), and Q be a
polynomial (s− 1)-flat on S. Let z ∈ Γ and z0 ∈ S ∩ Γ, then for all q ∈ Nn, | q |≤ r:

(Rz0QA)q(z) = (DqQA)z(z)− (DqQA)z0(z) ∈ o(| z − z0 |r−|q|+s).

Moreover QA ∈ Hr+s(S ∩Γ) and is (s− 1)-flat on S ∩Γ ([9]). For all compact K ⊂ S ∩Γ,
there exists a numerical constant c such that ‖QA‖r+s

K ≤ c‖Q‖r+s
K ‖A‖r

K .

Proof. Let z0 ∈ S ∩ Γ. For all z ∈ Γ, all q ∈ Nn, | q |≤ r, and p ≤ q, we consider:

(DpQ)z(z)(Dq−pA)z(z)− (DpQ)z0(z)(Dq−pA)z0(z).

By Taylor’s formula for polynomials (DpQ)z(z) = (DpQ)z0(z), and this difference is:

(DpQ)z(z)
[
(Dq−pA)z(z)− (Dq−pA)z0(z)

]
.

By assumption (Dq−pA)z(z) − (Dq−pA)z0(z) ∈ o(| z − z0 |r−|q|+|p|), and for |p| < s
(DpQ)z(z) ∈ O(| z− z0 |s−|p|). The product is in o(| z− z0 |r−|q|+s) either because |p| < s
and r − |q|+ |p|+ s− |p| = r − |q|+ s or because |p| ≥ s and r − |q|+ |p| ≥ r − |q|+ s.

The behavior of (Rz0QA)q(z) is now a consequence of Leibniz’ derivation formula.

Actually QA ∈ Hr,r+s. On S ∩ Γ since |p| < s ⇒ (DpQ)z0(z0) = 0, in the derivatives
of QA of order ≤ r + s the only derivatives of A that are not multiplied by a derivative of
Q that vanishes, are of order ≤ r. Then the above estimates show that when |q| ≤ r + s,
the field QA satisfies Whitney conditions Wr+s

q on S ∩ Γ.
This was already noticed in [9]: when multiplying a field r1-regular and (s1 − 1)-flat

by a field r2-regular and (s2− 1)-flat on S ∩Γ, the product is min(r1 + s2, r2 + s1)-regular
and (s1 + s2 − 1) flat (here r1 = r, s1 = 0, r2 = +∞, s2 = s). ♦

Example. Let Q be an homogeneous polynomial of degree s. It vanishes at the origin
with all its derivatives of order ≤ s− 1. If A ∈ Hr(Γ), for all z ∈ Γ and q ∈ Nn, | q |≤ r:

(R0QA)q(z) = (DqQA)z(z)− (DqQA)0(z) ∈ o(| z |r+s−|q|).

The same result holds if instead of a product QA we have a sum
∑n

i=1 QiAi, with homo-
geneous polynomials Qi of degree si ≥ s and the Ai ∈ Hr(Γ). ♦

Let us recall the following division lemma:
Lemma 3. [2] Let Γ be a finite union of real forms of Cn, and λ 6= 0 be a complex

linear form with kernel H. If A ∈ Hr(Γ) is such that Az(Z) is divisible by λz(Z) whenever
z ∈ Γ ∩H then there exists a field B ∈ Hr−1(Γ) such that Ar = (λB)r. For all compact
K ⊂ Γ, there exists a constant c such that ‖B‖r−1

K ≤ c‖A‖r
K

Actually B ∈ Hr(Γ \H) and if | s |= r, then λ(z)(DsB)z(z) tends to zero with λ(z).

Remark. The lemma still holds if we replace Γ by a locally closed subspace such as
the intersection of Γ and one or several hyperplanes H ′

i, distinct from H. ♦
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The proof of lemma 3 relies upon a consequence of the mean value theorem that will
be instrumental in what follows:

Lemma 4.([13], [18]) Let Γ be a finite union of real forms of Cn, E ⊆ Γ be a locally
closed subset, ∆ 6= 0 be a polynomial, and X = {x ∈ Cn | ∆(x) = 0}). If f ∈ Hr(E \X)
is r-continuous on E, then f ∈ Hr(E).

Let Γ be a finite union of real forms of Cn, and (λτ )τ∈D be D# = d non zero complex
linear forms with kernels (Hτ )τ∈D. The hyperplanes (Hτ )τ∈D and their intersections
induce a stratification on Γ. Let Sp be a stratum, connected component of the intersection
of Γ and exactly p of these hyperplanes, say (Hτ )τ∈Bp , B#

p = p. The border Sp \ Sp is a
union

⋃
Sp+l of strata of lower dimensions, containing Sd = Γ ∩ (

⋂
τ∈D Hτ ). Using these

notations we have:

Lemma 5. For i = 1, . . . , n, let Ai be in Hr(Γ) and Qi be an homogeneous polynomial
(sp−1)-flat on Sp and (sp+l−1)-flat on each of the Sp+l, where p+l−sp+l is an increasing
function of l. Assume that A =

∑n
i=1 QiAi = (

∏
τ∈D λτ )C, meaning that:

∀U ⊆ D, Az(Z)is divisible by
∏

τ∈U
λτ (Z) when z ∈ Γ ∩ (

⋂

τ∈U
Hτ ).

Then the field C which is in Hr+sp−p(Sp) is in Hr+sd−d(Sp).

Remarks. We may have p = 0. The strata of type S0 are open and s0 = 0 if the Qi

are not all 0.
The situation described in Example 5.2. below may be used as an illustration for the

proof.

Proof. By lemma 2,
∑n

i=1 QiAi is in Hr+sp(Sp) and more generally in Hr+sp+l(Sp+l).
By lemma 3, the field C is in Hr+sp−p(Sp) and in Hr+sp+l−(p+l)(Sp+l). We are just to
show the continuity on Sp of the coefficients of order ≤ r + sd − d in C.

Let Sp+q be one of the strata of largest dimension in Sp \Sp, and let Bq with B#
q = q,

be the subset of D such that Sp+q is a connected component of the intersection of Γ and
the hyperplanes (Hτ )τ∈Bp∪Bq , but no other. We may have q = 1 but not necessarily
since the addition of one hyperplane may automatically entail the addition of some more.
Nevertheless Sp+q = (Sp ∪ Sp+q) ∩Hτ for any τ ∈ Bq.

We put: A = (
∏

τ∈Bp
λτ )(

∏
τ∈Bq

λτ )(
∏

τ∈D\(Bp∪Bq) λτ ) C and we define the fields C1

and B by: C1 = (
∏

τ∈D\(Bp∪Bq) λτ ) C, B = (
∏

τ∈Bq
λτ ) C1.

On Sp, B is in Hr+sp−p and so are C and C1. On Sp+q, C and C1 are in Hr+sp+q−(p+q).
Let z0 be the orthogonal projection on Sp+q of some z ∈ Γ, and α be a derivation of

order |α| ≤ r, then by lemma 2: DαAz(z)−DαAz0(z) ∈ o(| z − z0 |r+sp+q−|α|).
In particular, if |π| = p, by Leibniz derivation formula:

DπAz(z)−DπAz0(z) = [
∏

τ∈Bp

λτ (z)][DπBz(z)−DπBz0(z)] + . . .

. . . + k [Bz(z)−Bz0(z)] ∈ o(| z − z0 |r+sp+q−p).
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for some constant k 6= 0.
In the remaining part of the proof we assume that z is in Sp. With this assumption, for
all τ ∈ Bp, λτ (z) = 0 and we get that Bz(z)−Bz0(z) ∈ o(| z − z0 |r+sp+q−p).

Definition 4.([14], [13], [18]) Two closed sets E and F of an open set Ω ⊂ Rn are
1-regularly separated if either E ∩ F is empty or if for all x0 ∈ E ∩ F there exists a
neighborhood U of x0 and a constant C > 0 such that for all x ∈ U ,

d(x,E) + d(x, F ) ≥ C d(x,E ∩ F ).

or equivalently, a constant C1 > 0 such that for all x ∈ U ∩ E, d(x, F ) ≥ C1 d(x,E ∩ F ).
Any two linear subspaces are regularly separated. In particular E = Γ ∩ (

⋂
τ∈Bp

Hτ )
and any Fτ = Hτ , τ ∈ Bq are 1-regularly separated.
The regular separation brings the existence of a constant c such that:

∀τ ∈ Bq, |z − z0| ≤ c d(z, Hτ ) = c1|λτ (z)|.

Therefore, since Bz(z) − Bz0(z) = [
∏

τ∈Bq
λτ (z)][C1

z (z) − C1
z0

(z)] ∈ o(| z − z0 |r+sp+q−p),
we get that C1

z (z)− C1
z0

(z) ∈ o(| z − z0 |r+sp+q−(p+q)).

Let us assume by induction that for | l | ≤ k − 1 < r + sp+q − (p + q) :

DlC1
z (z)−DlC1

z0
(z) ∈ o(| z − z0 |r+sp+q−(p+q)−|l|).

For j, |j| = k, we have: DjBz(z) − DjBz0(z) ∈ o(| z − z0 |r+sp+q−p−k), and by Leibniz
derivation formula:

[
∏

τ∈Bq

λτ (z)](DjC1
z (z)−DjC1

z0
(z))+

+
∑

k−q≤|ji|=k−l≤k−1

aq−l[
∏

q−l

λτ (z)](DjiC1
z (z)−DjiC1

z0
(z)) ∈ o(| z − z0 |r+sp+q−p−k).

The [
∏

q−l λτ (z)] stand for Dj−ji(
∏

τ∈Bq
λτ )(z), up to a constant factor included in aq−l.

Applying the induction assumption to the derivations Dji of order ≤ k − 1, we see that
each term of the sum is in o(| z− z0 |r+sp+q−(p+q)−(k−l)+q−l) = o(| z− z0 |r+sp+q−p−k) and
thus, that the first term also is. Then, using the regular separation as above, we obtain:

DjC1
z (z)−DjC1

z0
(z) ∈ o(| z − z0 |r+sp+q−(p+q)−k).

This completes the induction, and shows that the coefficients of C1 of order ≤ r + sp+q −
(p + q) are continuous in z0, and their continuity on Sp+q brings that they are continuous
on Sp ∪ Sp+q.
Proceeding in the same way we get an analogous result for each stratum S′p+q′ of highest
dimension in Sp \Sp. We then proceed with the strata of highest dimension of Sp+q−Sp+q

and each of the S′p+q′ − S′p+q′ , and so on until we reach Sd.
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Now the global (r + sd − d)-continuity on Sp is clear and entails the global (r + sd − d)-
regularity by lemma 4 (with E = Sp and ∆ =

∏
τ∈D\Bp

λτ ). ♦

5. Proof of Theorem 1.

We consider an invariant function f ∈ Cr(Rn)W . The formally holomorphic field
induced by f on Rn has a linear and continuous extension f̃ ∈ Hr(P−1(Rn))W .

- Pointwise solution.
Lemma 6. ([4]) For all W -invariant, formally holomorphic Whitney function f̃ ∈

Hr(P−1(Rn)) , there exists on Rn a formally holomorphic field of polynomials F̃ of degree
at most r such that for all z ∈ P−1(Rn), f̃z = (F̃P (z) ◦ P )r

z.

Proof. On the complement of Γ ∩ ⋃
τ∈RHτ in Γ, the mapping P is a local analytic

isomorphism and this yields the construction of F̃ = (f̃ ◦ P−1)r, unambiguously since
both f̃ and P are W -invariant. On the regular image of P , F̃ is r-regular and verifies
f̃r = (F̃ ◦ P )r.

Let x ∈ Γ∩(
⋃

τ∈RHτ ) and let Wx be the isotropy subgroup of W at x. The polynomial
f̃x is Wx-invariant since for all w0 ∈ Wx ⊂ W : f̃x(X) = f̃w0x(w0X) = f̃x(w0X) where the
first equality results from the W -invariance of the field f̃ and the second from w0x = x.
As a consequence, f̃x is a polynomial in the basic invariants v = (v1, . . . , vn) of the subal-
gebra of Wx-invariant polynomials, and we have f̃x = Q ◦ v.

There exists a neighborhood of x in Cn which does not meet any of the hyperplanes Hτ

but those containing x. In this neighborhood we may write P = q ◦ v for some polynomial
q, since P is Wx-invariant. Up to a multiplicative constant the jacobian of q at v(x) is the
product

∏
λs(x)6=0 λs and q is an analytic isomorphism in a neighborhood of v(x).

We define the jet at P (x) by F̃P (x) = [Q ◦ q−1]r to get:

[F̃ ◦ P ]rx = [(Q ◦ q−1)r ◦ (q ◦ v)]rx = [(Q ◦ q−1) ◦ (q ◦ v)]rx = (Q ◦ v)x = f̃x.

Remark. When the isotropy subgroup of x0 is W itself, ∀w ∈ W, f̃x0(X) =
f̃wx0(wX) = f̃x0(wX). So, f̃x0(X) is W -invariant and of the form f̃x0(X) = Q0(P (X)).
The polynomial Q0 = F̃P (x0) of weight r is of degree [r/h] in the invariant polynomial p of
highest degree h. The result announced in theorem 1 fits with the formal computation. ♦

- The induction.
When h = 2, theorem 1 is Whitney’s even function theorem.
By induction assume that theorem 1 holds when h ≤ K − 1, and let us show that it

still holds when h = K. For the proof as well as the induction assumption we will use the
formally holomorphic field form of theorem 1: Let f̃ be in Hr(P−1(Rn))W , there exists F̃
in H[r/h](Rn) such that f̃ = (F̃ ◦ P )r.

Assume that h = K and consider f̃ ∈ Hr(P−1(Rn))W . By lemma 6 there exists F̃
on Rn such that f̃ = (F̃ ◦ P )r. The field F̃ is r-regular on the complement of the critical
image {u ∈ Cn | ∆(u) = 0}. Since the discriminant ∆ is a polynomial, by Lemma 4 it will
be sufficient to prove that F̃ is [r/h]-continuous on Rn to get its [r/h]-regularity.
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Since P is proper the continuity of any F̃α ◦ P , entails the continuity of F̃α. So let us
check the continuity of the F̃α ◦ P when | α |≤ [r/h]. Clearly F̃0 ◦ P = f̃0 is continuous.
For the first derivatives, it is natural to consider the partial derivatives of f̃ , and get the
system:

(I)

(
∂f̃

∂z

)
=

( (
∂pi

∂zj

)
1≤i≤n
1≤j≤n

) (
∂F̃

∂p
◦ P

)
.

If we show that the loss of differentiability from f̃ = F̃ ◦ P to
∂F̃

∂p
◦ P when solving (I) is

of h = K units, applying the same process to g̃j = ∂F̃
∂pj

◦ P instead of f̃ = F̃ ◦ P , at the

next step there will again be a loss of differentiability of h units. An induction would show

that for |α| ≤ [
r

h
] with h = K, the derivatives ∂|α|F̃

∂pα ◦ P are continuous on P−1(Rn) and

that the derivatives ∂|α|F̃
∂pα of F̃ are continuous on Rn. By lemma 4, F̃ would then be in

H[r/h](Rn) and induced by a function F of class C[r/h] with h = K.

Conclusion: to complete the proof, we just have to show that there is a loss of differentia-

bility of h = K units when solving (I), and that ∂F̃
∂pj

◦ P ∈ Hr−h(P−1(Rn)).

- Solving (I)

We may choose bases in which the jacobian matrix of P is block diagonal. The upper
block is the identity n0 × n0, while the others are the jacobian matrices of the mappings
P i associated with the irreducible components W i. When solving system (I) it is sufficient
to study the system for each block. The loss of differentiability is determined by the block
that brings the greatest one. Therefore we may and will assume from now on that W is
an irreducible Coxeter group acting on Rl with h = K.

We consider the l × l-dimensional system associated with this Coxeter group:

(I′)

(
∂f̃

∂z

)
=

( (
∂pi

∂zj

)
1≤i≤l
1≤j≤l

) (
∂F̃

∂p
◦ P

)
.

Using Cramer’s method, we multiply both sides by the comatrix of the system and since
the jacobian determinant is c (

∏

τ∈R
λτ ), we have :

(II′)

{
c (

∏

τ∈R
λτ )

∂F̃

∂pj
◦ P =

l∑

i=1

(−1)i+jMi,j
∂f̃

∂zi.
, j = 1 . . . , l

From (II’) we see that ∀τ ∈ R, if λτ (z) = 0 the polynomial

(
l∑

i=1

(−1)i+jMi,j
∂f̃

∂zi

)

z

(Z) is

divisible by λτ (Z).
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The minors Mi,j are homogeneous polynomials of degree sj =
∑

1≤u≤l,u 6=j

(ku − 1) ≥ s =

∑

1≤u≤l−1

(ku − 1) and the field
l∑

i=1

(−1)i+jMi,j
∂f̃

∂zi
is in Hr−1,r−1+s(P−1(Rl)).

Actually Mi,j is the jacobian of the polynomial mapping:

(z1, . . . , zi−1, zi+1, . . . , zl; zi) 7→ (p1(z), . . . , pj−1(z), pj+1(z), . . . , pl(z); zi).

This mapping is invariant by the sub group Wi of W that leaves invariant the ith coordinate
axis in Rl, say R ei ([3]). This sub group Wi is generated by the subset Ri ⊂ R of the
reflections it contains. These are the reflections α in W such that α(ei) = ei, about the
hyperplanes Hα containing ei(*). The Mi,j , j = 1, . . . , l, as jacobians of Wi-invariant
polynomial mappings are polynomial multiples of (

∏
τ∈Ri

λτ ).

Example. 5.1. The reflections contained in W (Bl) are the reflections about the hy-
perplanes of equations xi ± xj = 0, 1 ≤ i < j ≤ l and xi = 0, 1 ≤ i ≤ l. Their number is
R# = l(l − 1) + l = l2. The hyperplanes containing e1 are those such that x1 does not
appear in their equation, say the hyperplanes of equations xi ± xj = 0, 2 ≤ i < j ≤ l and
xi = 0, 2 ≤ i ≤ l. Their number is R#

1 = (l − 1)(l − 2) + (l − 1) = (l − 1)2, and the M1,j

are polynomial multiples of
∏

2≤m<k≤l(x
2
k − x2

m). ♦
- Stratification.

On the reciprocal image P−1(Rl), there is a natural stratification determined by the
hyperplanes Hτ and their intersections. Each stratum is characterized by the forms which
vanish on it. The points of a stratum are stabilized by the same isotropy group, subgroup
of W generated by the reflections about the hyperplanes containing the stratum. In what
follows a stratum Sp is a connected component of the intersection of Γ and exactly p
reflecting hyperplanes. The different possible isotropy subgroups and strata types may
be determined from the Dynkin diagram. The stratum of dimension 0 is the origin. The
strata of dimension 1 are those determined by removing only one point in the Dynkin
diagram, they are strata Sp such that their closure is Sp = Sp ∪ {0}. At the other end the
strata of dimension n are the connected components of the regular set in Γ.

Example. 5.2. The reflections contained in H3 are reflections about the planes of
equations zi = 0, 1 ≤ i ≤ 3 and τz1 ± τ−1z2 ± z3 = 0, τz2 ± τ−1z3 ± z1 = 0, and
τz3 ± τ−1z1 ± z2 = 0 where τ is the golden ratio; d = R# = 3 + 4 × 3 = 15. Using the
fundamental invariants given in [16] and computing with Maple, we see that the 2 × 2
minors of the jacobian are homogeneous polynomials of degree at least 6, of the form
zizjQk with an irreducible Qk.

Let us consider the real form R3 itself. The number of linear factors vanishing at x0

is 0 on the 3 dimensional strata (regular set), and 1 on the 2 dimensional strata (contained
in one and only one plane). For the one dimensional strata there are several possibilities:

(*) The description of Wi given in [4] was not accurate. Although not essential to the
reasoning it was misleading. The explicit computations were correct and gave the best
result for the loss of differentiability in the case of An and Bn.
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- 2 linear forms vanish. The one dimensional strata S2 are the connected components
of intersections of the form {xi = 0} ∩ {xj = 0} after removing the origin. The isotropy
subgroup is A1 ×A1. Observe that this subgroup is reducible.

- 3 on the intersections of type {x2 = 0}∩ {τ−1x1± x2− τx3 = 0} after removing the
origin. The isotropy subgroup is A2.

- 5 on the intersections of type {x3 = 0} ∩ {τ−1x1 − x2 ± τx3 = 0} after removing
the origin, since this intersection is also contained in x1 − τx2 ± τ−1x3 = 0. The isotropy
subgroup is I2(5).

In each case it is clear that if we take the intersection of the above planes and one
more, then all the linear forms vanish and we get the origin which is the intersection of
the 15 reflecting planes, S15 = {0} where the isotropy subgroup is H3 itself.
If we consider real forms other than Rn the situation is slightly different, since the con-
ditions for belonging to this real form may interfere with the equations of the reflecting
hyperplanes. Then some of the reflection subgroups may not be isotropy sub groups
for any point of such real forms. For instance let us consider A4 and the real form
Γ = {z ∈ C5|z1 = z2, z3 = z4, z5 = z5}. If z ∈ Γ is in the hyperplane z1 = z3, it
will automatically be in the hyperplane z2 = z4. ♦

- Compensation by the Mi,j .

Let us observe that for an irreducible Coxeter group:

h = kl =
∑

1≤j≤l

(kj − 1)−
∑

1≤j≤l−1

(kj − 1) + 1,

where
∑

1≤j≤l

(kj − 1) is the number d = R# of reflections in W which is also the number of

linear forms in the jacobian, and
∑

1≤j≤l−1

(kj − 1) is the least degree s of the minors Mi,j .

If W is reducible, the formula holds for each irreducible component and h = 1 + d− s
for any component with the greatest Coxeter number. Also observe that the formula holds
in presence of parameters.

Back to the proof, by the induction assumption, if the isotropy subgroup of z 6= 0 is
Wz with Coxeter number hz ≤ K − 1, F̃ is of class H[r/hz ] in a neighborhood of P (z). We
have hz = 1 + dz − sz, where dz is the number of linear forms λτ vanishing at z, and the
minors Mi,j are sz − 1 flat at z.

Example. 5.3 a) In the case of W (B4), on S9 = {x|x1 = x2 = x3 = 0, x4 > 0}, we
have Wx = W (B3), and dx = 9. The Mi,j are polynomial multiples of products of the
form xixjxk

∏
(xi ± xj)(xj ± xk)(xk ± xi). Their degree with respect to x1, x2, x3 is at

least sx = 4. The loss of differentiability when solving (I’) is 1 + 9− 4 = 6, as expected for
W (B3).

b) In the case of H3, there is no compensation on the strata of dimension 3 or 2.
On the strata of dimension 1 of type S2, dx = 2, say x1 and x2 vanish for instance, but
we have either x1 or x2 (or both) in factor in the Mi,j . So dx = 2, sx = 1, the loss of
differentiability when solving (I’) is 1 + (2 − 1) = 2, showing a compensation with h = 2,
that does not appear for A1.
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On the strata of type S3 or S5, using Maple to get the Mi,j we can see that they vanish
on these strata, but some do not vanish on any reflecting plane containing the stratum.
For instance:

M3,3 = 3(15 + 7
√

5) x1x2[2x4
1 − 2(5−

√
5) x2

2x
2
1

+(3−
√

5) x4
2 + (

√
5− 5) x4

3 + 2(5− 3
√

5) x2
3x

2
1 + 4

√
5 x2

3x
2
2].

vanish on S5 = {x3 = 0} ∩ {τ−1x1 − x2 ± τx3 = 0}(∩{x1 − τx2 ± τ−1x3 = 0}), but no λτ

vanishing on S5 is a factor in M3,3.
In both cases sx = 1, and the loss of differentiability when solving (I’) is 1 + (3 − 1) = 3
on S3 and 1 + (5− 1) = 5 on S5, as expected. ♦

- End of the proof.
Let z be a regular point in some stratum of dimension n, say S ⊂ P−1(Rn). The

l∑

i=1

(−1)i+jMi,j
∂f̃

∂zi.
are in Hr−1(S) and the ∂F̃

∂pj
◦P also are since (

∏

τ∈R
λτ ) does not vanish

on S. On any stratum Sp of positive dimension in S\S, the induction assumption gives that
∂F̃
∂pj

◦P ∈ Hr−1+sp−p(Sp), where 1−sp +p is the Coxeter number of the isotropy subgroup

of the points in Sp, p is the number of hyperplanes containing Sp, and Mi,j is at least sp−1
flat on this stratum. If Sp+q ⊂ Sp, the isotropy group of the points z ∈ Sp is a subgroup
of the isotropy group of the z′ ∈ Sp+q. Therefore hz = 1 + dz − sz ≤ hz′ = 1 + dz′ − sz′ ,
so that p− sp ≤ p + q − sp+q.
The homogeneous polynomials Mi,j of degree at least s are s− 1 flat at the origin, inter-
section of the R# = d hyperplanes, and d − sd = K + 1 is larger than hz + 1 = dz − sz

for any z 6= 0. Lemma 5 applies to the closure of each connected component of the regular
set and gives the result we were seeking for in order to complete the proof:

∂F̃

∂pj
◦ P ∈ Hr−1−d+s(P−1(Rn)), 1 + d− s = h = K. ♦

All the operations from f ∈ Cr(Rn)W up to F ∈ C[r/h](Rn) are linear, and continuous
when using the natural Fréchet topologies (*). Then Chevalley’s theorem in class Cr may
be reworded as:

Theorem 1’. Let W be a finite group generated by reflections acting orthogonally on
Rn, P the Chevalley polynomial mapping associated with W , and h = kn the highest degree
of the coordinate polynomials in P (equal to the greatest Coxeter number of the irreducible
components of W ). There exists a linear and continuous mapping:

Cr(Rn)W 3 f → F ∈ C[r/h](Rn)

such that f = F ◦ P .

(*) Using a modulus of continuity in the Whitney conditions we could follow it from ‖f‖r

to ‖F‖[r/h].
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7. Counter Example.

Let us give a counter example which applies to almost every finite reflection group.
Clearly it is sufficient to consider essential irreducible groups.

We consider F : Rn → R defined by F (y) = ys+α
n for some integer s and an α ∈]0, 1[.

F is of class Cs but not of class Cs+1 in any neighborhood of the origin. Let P be the
Chevalley mapping associated with some finite irreducible Coxeter group W acting on Rn

and consider the composite mapping F ◦ P (x) = ps+α
n (x). We study the differentiability

of this mapping when pn(x) = 0. It turns out that for most of the Coxeter groups this
happens only when x = 0.

Disregarding Dn, for any other group, there exists ([16]) an invariant set of linear
forms {L1, . . . , Lv} the kernels of which intersect only at the origin, and such that for i =
1, . . . , n, pi(X) =

∑v
j=1[Lj(X)]ki with kis as determined in [7]. With the two exceptions

of A2n and I2(2p + 1), kn is even and therefore pn(x) vanishes only at the origin. We
will not study these two exceptional cases, but the result is known to be optimal for An

(including A2 = I2(3)) and a fairly general counter example is given in [1] for symmetric
functions. As usual, Dn does not follow the general line but pn(x) =

∑n
1 x

2(n−1)
i and the

results of the general case apply.
We have pn(x) =

∑v
1[Li(x)]kn , and since |Li(x)| ≤ ai|x|, i = 1, . . . , v for some

numerical constants ai, we have the estimate |pn(x)| ≤ (
∑v

1 akn
i )|x|kn = A|x|kn .

Analogously, since |D1Li(x)| ≤ bi for some numerical constants bi, we get:

|Djpn(x)| ≤
v∑
1

bj
i

(
kn

j

)
|Li(x)|kn−j = Bj |x|kn−j .

The derivatives of the composite mapping ps+α
n (x) are given by Faa di Bruno’s formula:

Dkps+α
n (x) =

∑ k!
µ1! . . . µq!

(Dpys+α
n )(P (x))

(D1pn(x)
1!

)µ1
. . .

(Dqpn(x)
q!

)µq
,

where the sum is over all the q-tuples (µ1, . . . µq) ∈ Nq such that 1µ1 + . . .+ qµq = k, with
p = µ1 + . . . + µq. There are constants C(µ1,...,µq) such that:

|(D1pn(x)
1!

)µ1
. . .

(Dqpn(x)
q!

)µq | ≤ C(µ1,...,µq)|x|(kn−1)µ1+...+(kn−q)µq = C(µ1,...,µq)|x|knp−k,

and therefore constants A(µ1,...µq) and A such that:

|Dkps+α
n (x)| ≤

∑
A(µ1,...µq)|x|kn(s+α−p)|x|knp−k ≤ A|x|kns+knα−k.

This shows that the derivatives of order k ≤ kns tend to 0 at the origin while the derivatives
of order kns + 1 will not if α < 1/kn. This means that the composite mapping f = F ◦ P
is of class Ckns but not of class Ckns+1 at x = 0 and it factors through F which is of class
Cs and not of class Cs+1. The loss of differentiability is as given in theorem 1 and cannot
be reduced.
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Norm. Sup. (4) 5 (1972), 435-458.
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(1976).
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