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Abstract : In the 70’s, Nekhorochev proved that for an analytic nearly integrable
Hamiltonian system, the action variables of the unperturbed Hamiltonian remain nearly
constant over an exponentially long time with respect to the size of the perturbation,
provided that the unperturbed Hamiltonian satisfies some generic transversality condition
known as steepness. Recently, Guzzo has given examples of exponentially stable integrable
Hamiltonians which are non steep but satisfy a weak condition of transversality which
involves only the affine subspaces spanned by integer vectors.
We generalize this notion for an arbitrary integrable Hamiltonian and prove the

Nekhorochev’s estimates in this setting. The point in this refinement lies in the fact
that it allows to exhibit a generic class of real analytic integrable Hamiltonians which are
exponentially stable with fixed exponents.
Genericity is proved in the sense of measure since we exhibit a prevalent set of inte-

grable Hamiltonian which satisfy the latter property. This is obtained by an application
of a quantitative Sard theorem given by Yomdin.
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I Introduction :

One of the main problem in Hamiltonian dynamic is the stability of motions in nearly-
integrable systems (for example : the n-body planetary problem). The main tool of inves-
tigation is the construction of normal forms (see [2] or [5] for an introduction and a survey
about these topics).
This yields two kinds of theorems :
i) Results of stability over infinite times provided by K.A.M. theory which are valid

for solutions with initial conditions in a Cantor set of large measure but no information is
given on the other trajectories. Rüssmann ([21], see also [3] for a survey) has given a min-
imal non degeneracy condition on the unperturbed Hamiltonian to ensure the persistence
of invariant tori under perturbation. Namely, the image of the gradient map associated to
the integrable Hamiltonian should not be included in an hyperplane and this condition is
generic among real analytic real-valued functions.
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ii) On the other hand, Nekhorochev ([14], [15]) have proved global results of stability
over open sets of the following type :
Definition I.1. (exponential stability)
Consider an open set Ω ⊂ Rn, an analytic integrable Hamiltonian h : Ω −→ R and

action-angle variables (I, ϕ) ∈ Ω× Tn where T = R/Z.
For an arbitrary ρ > 0, let Oρ be the space of analytic functions over a complex

neighborhood Ωρ ⊂ C2n of size ρ around Ω × Tn equipped with the supremum norm ||.||ρ
over Ωρ.

We say that the Hamiltonian h is exponentially stable over an open set Ω̃ ⊂ Ω if there
exists positive constants ρ, C1, C2, a, b and ε0 which depend only on h and Ω̃ such that :

i) h ∈ Oρ.
ii) For any function H(I, ϕ) ∈ Oρ such that ||H − h||ρ = ε < ε0, an arbitrary

solution (I(t), ϕ(t)) of the Hamiltonian system associated to H with an initial action I(t0)
in Ω̃ is defined over a time exp(C2/ε

a) and satisfies :

||I(t)− I(t0)|| ≤ C1ε
b for |t− t0| ≤ exp(C2/ε

a) (E)

a and b are called stability exponents.

Remark I.2. : Along the same lines, the previous definition can be extended to an
integrable Hamiltonian in the Gevrey class (see [13]).

In this paper, we prove that such a property of stability is generic according to the
following :

Theorem I.3. (Genericity of exponential stability)
Consider an arbitrary real analytic integrable Hamiltonian h defined on a neighborhood

of the closed ball B
(n)

R of radius R centered at the origin in Rn.
For almost any Ω ∈ Rn, the integrable Hamiltonian hΩ(x) = h(I)−Ω.I is exponentially

stable with the exponents :

a =
b

2 + n2
and b =

1

2(2 + (2n)n)
.

In order to introduce the problem, we begin by a typical example of non exponentially
stable integrable Hamiltonian : h(I1, I2) = I

2
1 − I

2
2 . Indeed, a solution of the perturbed

system governed by h(I1, I2) + ε sin (I1 + I2) with an initial actions located on the first
diagonal (I1(0) = I2(0)) admits a drift of the actions (I1(t), I2(t)) on a segment of length
1 over a timespan of order 1/ε. Actually, with this example, we have the fastest possible
drift of the action variables according to the magnitude ε of the perturbation.
The important feature in this example which has to be avoided in order to ensure

exponential stability is the fact the gradient ∇h(I1, I1) remains orthogonal to the first
diagonal.
Equivalently, the gradient of the restriction of h on this first diagonal is identically

zero.
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Nekhorochev ([14], [15]) have introduced the class of steep functions where this problem
is avoided. This property of steepness will be specified in section II but this kind of function
can be characterized by the following simple geometric criterion :

Theorem I.4. ([17])
A real analytic real valued function without critical points is steep if and only its

restriction to any proper affine subspace admits only isolated critical points.

In this setting, Nekhorochev proved the following :

Theorem I.5. ([14], [15])
If h is real analytic, non-degenerate (|∇2h(I)| 6= 0 for any I ∈ Ω) and steep then h is

exponentially stable.

The fundamental difference between our result of stability and the generic theorems
of stability which can be ensured with Nekhorochev’s original work is the fixed value of the
exponents a and b in our theorem I.3.
Indeed, the set of steep functions is generic among sufficiently smooth functions. For

instance, we have seen that the function x2 − y2 is not steep but it can be easily showed
that x2 − y2 + x3 is steep and, usually, a given function can be transformed in a steep
function by adding higher order terms. Actually, let Jr(n) be the space of r-jets of the C∞

real-valued function of n variables, Nekhorochev ([14]) proved that the non-steep functions
admit a r-jet in an algebraic set of Jr(n) with a codimension which goes to infinity as r
goes to infinity. The point is that theorem I.5. allows to find a generic set of exponentially
stable integrable Hamiltonian but with exponents of stability which are arbitrary small
since they are related to the steepness indices (see theorem II.2). Therefore, one cannot
obtain uniform exponents of stability for a generic set of integrable Hamiltonian.
Here, according to our theorem I.3, fixed stability exponents are obtained on a measure-

theoretic generic set. Actually, we exhibit a set of exponentially stable integrable Hamil-
tonian which is prevalent according to the terminology of Hunt, Sauer and Yorke ([8]) or
Kaloshin ([9]). The precise definition of prevalence will be given in the third section of this
paper.
Different prevalent properties of dynamical systems have been proved in ([8], [9], [10],

[18]) but, up to the author knowledge, there is only one result of this kind for nearly
integrable Hamiltonian system due to Perez-Marco ([19]) who proved that the Birkhoff’s
normal forms are convergent or divergent for a generic set of nearly-integrable Hamiltonian.
Nevertheless, he uses a stronger notion of genericity than prevalence (see section III of the
paper).

In order to prove our main theorem I.3., the paper is organized as follow.
In the second section, we state a result of exponential stability (theorem II.5.) under

a strictly weaker assumption than steepness which involves only affine subspaces spanned
by integer vectors. These affine subspaces will be called rational subspaces in the sequel.
Actually, a necessary condition for exponential stability was given in [17] since for a

real analytic integrable Hamiltonian which admits a restriction to a rational subspace with
an accumulation of critical points, one can build arbitrary small perturbations which leads
to a polynomial speed of drift of the action variables. On the other hand, the fact that these
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restrictions admits only isolated critical points is not a sufficient condition for exponential
stability but there exists a large set of exponentially stable integrable Hamiltonian which
are non-steep along an affine subspace spanned by irrational vectors. Indeed, Guzzo ([7])
has given such examples of integrable Hamiltonians : if h(I1, I2) = I

2
1 − δI

2
2 where δ is the

square of a Diophantine number then its isotropic direction is the line directed by (1,
√
δ)

and this allows to prove that h is exponentially stable.

We generalize this property for an arbitrary integrable Hamiltonian by introducing
a condition of Diophantine steepness which is sufficient to ensure exponential stability
(theorem II.5). This latter result is proved along the lines of a previous paper ([16]), for
the convenience of the reader its proof is given in the appendix.

In the third section, we show that a set of Diophantine-steep functions with fixed
indices is generic in a measure theoretic sense (〈〈prevalent〉〉 ) among sufficiently smooth
functions defined over a relatively-compact subset in Rn.
Actually, by an application of the usual Sard’s theorem, one can see easily that the

Morse functions are prevalent in the Banach space
(
C2
(
B
(n)

R ,R
)
, ||.||C2

)
where B

(n)

R is

the closed ball of radius R centered at the origin in Rn (see section III).
Our prevalent set of Diophantine steep functions with fixed indices will be obtained

by introducing the class of Diophantine Morse function (definition III.1.). We prove its

prevalence in
(
Ck
(
B
(n)

R ,R
)
, ||.||Ck

)
for k = 2n+2 (theorem III.2.7.) thanks to reasonings

similar to those used for the classical Morse functions but we have to substitute the Sard’s
theorem by a quantitative Morse-Sard theory developed by Yomdin ([22], [23]).

Moreover, we show that the Diophantine Morse functions are Diophantine steep with
indices equal to two, hence this class of functions yields the desired prevalent set of inte-
grable Hamiltonians.

II Results of stability with a Diophantine steepness condition

In order to specify the problem, we first give the original definition of a steep function
and its consequence :

Definition II.1. ([14], [15], [17])
Consider an open set Ω in Rn, a real analytic function f : Ω −→ R is said to be steep at

a point I ∈ Ω along an affine subspace Λ which contains I if there exists constants C > 0,
δ > 0 and p > 0 such that along any continuous curve Γ in Λ connecting I to a point at a
distance r < δ, the norm of the projection of the gradient ∇f(x) onto the direction of Λ is
greater than Crp at some point Γ(t∗) with ||Γ(t)− I|| ≤ r for all t ∈ [0, t∗].
The constants (C, δ) and p are respectively called the steepness coefficients and the

steepness index.

Under the previous assumptions, the function f is said to be steep at the point I ∈ Ω
if, for every m ∈ {1, . . . , n− 1}, there exist positive constants Cm, δm and pm such that f
is steep at I along any affine subspace of dimension m containing I uniformly with respect
to the coefficients (Cm, δm) and the index pm.

Finally, a real analytic function f is steep over a domain P ⊆ Rn with the steepness
coefficients (C1, . . . , Cn−1, δ1, . . . , δn−1) and the steepness indices (p1, . . . , pn−1) if there
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are no critical points for f in P and f is steep at any point I ∈ P uniformly with respect
to these coefficients and indices.

For instance, convex functions are steep with all the steepness indices equal to one. On
the other hand, f(x, y) = x2−y2 is a typical non steep function but by adding a third order
term (e.g. y3) we recover steepness. Moreover, this definition is minimal since a function
can be steep along all subspaces of dimension lower than or equal to m < n−1 and not steep
for a subspace of dimension l greater thanm (consider the function f(x, y, z) = (x2−y)2+z
at (0, 0, 0) along all the lines and along the plane z = 0).
Also, a quadratic form is steep if and only if it is sign definite.

Then, one can prove the following :

Theorem II.2. ([14], [15], [16])
If h is real analytic, non-degenerate (|∇2h(I)| 6= 0 for any I ∈ P) and steep then h is

exponentially stable with the exponents :

a = b =
1

(2n− 1)p1 . . . pn−1 + 1
,

hence a and b depend only of the steepness indices.

Now, we can state the weaker definition of a Diophantine steep function.
For m ∈ {1, . . . , n}, we denote by GraffR(n,m) the m-dimensional affine Grassman-

nian over B
(n)

R ⊂ Rn (i.e. : the set of affine subspaces of dimension m in Rn which intersect

the closed ball B
(n)

R of radius R > 0 around the origin) and GraffKR (n,m) ⊂ GraffR(n,m)
is the set of rational subspaces of dimension m in Rn whose direction is spanned by integer
vectors of length ||~k||1 = |k1|+ . . .+ |kn| ≤ K for a given K ∈ N∗.

Definition II.3.
A differentiable function f defined on a neighborhood of B

(n)

R ⊂ Rn is said to be
(γ, τ)−Diophantine steep with two positive constants γ and τ , if for any m ∈ {1, . . . , n},
there exists an index pm ≥ 1 and coefficients Cm > 0, δm > 0 such that along any affine
subspace Λm ∈ GraffKR (n,m) and any continuous curve Γ from [0, 1] to Λm ∩ BR with

||Γ(0)− Γ(1)|| = r ≤ δm
γ

Kτ
, we have :

∃t∗ ∈ [0, 1] such that






||Γ(0)− Γ(t)|| ≤ r for all t ∈ [0, t∗]
∣
∣
∣
∣
∣
∣Proj−→Λm(∇f(γ(t∗)))

∣
∣
∣
∣
∣
∣ ≥ Cmr

pm
(1)

where
−→
Λm is the direction of Λm.

Remark II.4. : (i) The space Rn is itself the only element of Graff1R(n, n). Therefore,
along any arc in BR of length r ≤ δnγ, there exists a point where the norm of the gradient
∇f is greater or equal to Cnrpn (the projection is reduced to the identity in this case).
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(ii) With no loss of generality, we will assume that the coefficients (C1, . . . , Cn) are
equal to one. Indeed, the problem can always be reduced to this case by using steepness
indices slightly greater than the optimal ones.

We now describe the regularity of the perturbed Hamiltonian.
Consider a nearly integrable Hamiltonian H(I, ϕ) = h(I) + εf(I, ϕ) where (I, ϕ) ∈

Rn × Tn with T = R/Z are action-angle variables of the integrable Hamiltonian h.
We assume that H is analytic around a fixed complex neighborhood Vr,sP ⊂ C2n of

a real domain P = BR × Tn ⊂ Rn × Tn where BR is the ball of radius R centered at the
origin and :

Vr,sP = Vr (BR)×Ws (T
n) =

{
(I, ϕ) ∈ C2n such that dist(I,BR) ≤ r and

<e(ϕ) ∈ Tn ; Maxj∈{1,... ,n} |=m(ϕj)| ≤ s

}

(2)

with 1 > r > 0, s > 0 and the distance to BR given by the Euclidean norm in Cn.

Let ||.||r,s be the sup norm (L∞) for real or vector-valued functions defined and
bounded over Vr,sP. We assume that ||f ||r,s ≤ 1 and that ε is a small parameter.
The Jacobian and the Hessian matrix are also assumed to be uniformly bounded with

respect to the norm on the operators, also denoted by ||.||, induced by the Euclidean
norm, i.e. :

∃M > 1, such that ||∂Ih(I)||r,s ≤M and
∣
∣
∣
∣∂2Ih(I)

∣
∣
∣
∣
r,s
≤M for all I ∈ Vr(BR). (3)

Under the previous assumptions, we can state the following result which will be proved
in the appendix :

Theorem II.5.
Let H(I, ϕ) = h(I) + εf(I, ϕ) be a nearly integrable Hamiltonian analytic on the

complex neighborhood Vr,sP ⊂ C2n defined in (2) with an integrable part h(I) which is
(γ, τ)−Diophantine steep.
Consider

β =
1

2(1 + nnp1 . . . pn−1)
; a =

β

1 + τ
; b =

β

pn

there exists a positive constant C which depend on n, M , R, s and τ but not on ε and
γ such that for a small enough perturbation ε ≤ C Inf

(
γ1/a, γ1/b

)
and for any orbit of

the perturbed system with initial conditions (I(t0), ϕ(t0)) ∈ BR × Tn far enough from the
boundary of BR, we have :

||I(t)− I(t0)|| ≤ (n+ 1)
2εb for |t| ≤ exp

(
s

6
ε−a

)

.

Remark II.6. : (i) In this study, there was no attempt for a sharp value of the expo-
nents a and b as in [16], but we focus our attention on the most direct proof of the stability
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result in the Diophantine steep case. Actually, our ultimate goal is the existence of a uni-
form exponent of stability valid for a generic set of integrable Hamiltonian. The question
of optimality is not very relevant in this problem since we use very general estimates and
do not exploit the specificity of a given Hamiltonian.
(ii) The fact that the exponents of stability are independent of γ is crucial for our

subsequent reasonings. On the other hand, the upper bound on the size of the perturbation
in this theorem (II.5) depends of γ, this is reminiscent of KAM theory where the latter
quantities depend of

√
γ.

The proof of this theorem II.5 is based on reasonings already given in a previous paper
([16]) which rely on the construction of local resonant normal forms along each trajectory
of the perturbed system together with the use of simultaneous Diophantine approximation
as in Lochak’s proof ([11]) of Nekhorochev’s estimates. But this study ([16]) is generalized
in three directions. First, we substitute the original Nekhorochev’s condition of steepness
by our weak assumption of Diophantine steepness given above. Moreover, thanks to a
construction of the non-resonant sets directly in the frequency space, we can remove the
non degeneracy condition on the frequency map (

∣
∣∇2h

∣
∣ 6= 0) assumed in [16]. Finally,

according to the remark II.4., our integrable Hamiltonian h can admit critical points I
(while∇h(I) 6= 0 was assumed in [16]) provided that h satisfies a global steepness condition
on the full space Rn. This last point is reminiscent of the notion of symmetrically steep
(or S-steep) function considered by Nekhorochev ([14]).

III Genericity of Diophantine steepness among smooth functions

Firstly, any linear form h(I) = ω.I with a (γ, τ)-Diophantine vector ω ∈ Rn is Dio-
phantine steep with indices and coefficients equal to one. Hence, a linear form is almost
always Diophantine steep while it cannot be steep according to our definition II.1.
At second order, one can prove that a quadratic form is almost always Diophantine

steep with indices equal to 2 (it can be shown that for any quadratic form q(I) = tIAI, for
any τ > n2 and for almost all λ ∈ R, there exists γ > 0 such that the modified quadratic
form qλ(I) =

tIAI + λ||I||2 is (γ, τ)-Diophantine steep).
We see that at first and second order, the set of Diophantine steep functions is much

wider than the initial class of steep functions.

Starting from these examples, we look for a full measure set of Diophantine steep
functions in the space of Ck real-valued function defined on an open set in Rn.
Actually, a set in an infinite dimensional space which is invariant by translation can

be of zero measure only if it is a trivial set (see [8]). For this reason, Christensen [4], Hunt,
Sauer and Yorke ([8]), Kaloshin ([9]) have introduced a weak notion of full measure set in
an infinite dimensional space called prevalence which corresponds to the usual property
in a finite dimensional space. In its simplest setting, a set P is said to be shy if there
exists a finite dimensional subspace F called a probe space such that any affine subspace
of direction F intersects P along a zero measure set for the usual Lebesgue measure on this
subspace. A set is prevalent if its complement is shy. Stronger notions of prevalence can
be defined (see [8], [9], [18] or [19]). For instance, Perez-Marco ([19]) considers sets which
intersects any finite-dimensional affine subspace along a full measure set with respect to
the finite-dimensional Lebesgue measure.
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An example of prevalent set is given by the Morse functions in the Banach space(
C2
(
B
(n)

R ,R
)
, ||.||C2

)
where B

(n)

R is the closed ball of radius R centered at the origin in

Rn. Indeed, for any function f ∈ C2
(
B
(n)

R ,R
)
, by an application of Sard’s theorem on

the gradient map ∇f one can prove that for almost any linear form ω ∈ L (Rn,R), the
function fω = f + ω is Morse and the probe space is given by the linear forms. The
modified function fω is called a morsification of f (see [1] and [6]).

Here we look for a set P of Diophantine steep functions with fixed indices (in order
to obtain fixed exponents of stability according to the theorem II.5) which is prevalent in

Ck
(
B
(n)

R ,R
)
for a certain k ∈ N∗.

As it was mentioned, this will be obtained by introducing the class of Diophantine

Morse functions (definition III.1.1.) and proving its prevalence in C2n+2
(
B
(n)

R ,R
)
thanks

to the quantitative Morse-Sard theory developed by Yomdin ([22], [23]) together with
reasonings similar to those used for the usual Morse functions. Moreover, we show that
the Diophantine Morse functions are Diophantine steep with indices equal to two and these
later ingredients yield our main theorem I.3.

Finally, according to Yomdin, our estimates derived in the theorems III.2.4 and III.2.5
should be useful to locate the nearly-critical points of a generic mapping (i.e. : the problem
of the 〈〈organizing center〉〉 , see [24, p. 296]).

III.1 Diophantine Morse functions

Definition III.1.1.
We denote by Gr(n,m) the set of all vectorial subspaces of dimension m in Rn and,

for K ∈ N∗, GrK(n,m) ⊂ Gr(n,m) is the set of vectorial subspaces in Rn spanned by
integer vectors of length ||~k||1 = |k1| + . . . + |kn| ≤ K, moreover Gr(n) = ∪nm=1Gr(n,m)
and GrK(n) = ∪nm=1GrK(n,m).
A twice differentiable function f ∈ C2 (Rn,R) defined on a neighborhood of the closed

ball B
(n)

R ⊂ Rn of radius R centered at the origin is said to be (γ, τ)−Diophantine Morse
with two positive constants γ and τ if, for any K ∈ N∗, any m ∈ {1, . . . , n} and any
Λ ∈ GrK(n,m), there exists (e1, . . . , em) (resp. (f1, . . . , fn−m)) an orthonormal basis of
Λ (resp. of Λ⊥) such that the function

fΛ(α, β) := f (α1e1 + . . .+ αmem + β1f1 + . . .+ βn−mfn−m) , (4)

which is twice differentiable on a neighborhood of B
(n)

R , satisfies :

∀(α, β)∈B
(n)

R we have

∣
∣
∣
∣

∣
∣
∣
∣
∂fΛ

∂α
(α, β)

∣
∣
∣
∣

∣
∣
∣
∣>
γ

Kτ
or

∣
∣
∣
∣

∣
∣
∣
∣
∂2fΛ

∂α2 |(α,β)
(η)

∣
∣
∣
∣

∣
∣
∣
∣>
γ

Kτ
||η|| (∀η ∈ Rm).

The link between the Diophantine Morse functions and the Diophantine steep functions
is given in the following :
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Theorem III.1.2.
With the previous notations, if a differentiable function f ∈ C3 (Rn,R) defined on a

neighborhood of the closed ball B
(n)

2R ⊂ R
n is (γ, τ)−Diophantine Morse for some positive

constants γ and τ , then f is (γ, τ)−Diophantine steep over BR with the coefficients Cm=1,
δm =

1
2M and the indices pm = 2 for m ∈ {1, . . . , n}.

Remark III.1.3. : Our definition of Diophantine Morse function relies on the choice
of an orthonormal basis in any subspaces Λ ∈ GrK(n) and the eigenvalues of the Hessian
matrix which are extrinsic. But the property of Diophantine steepness involves only the
norm of the gradient ∇f since

∣
∣
∣
∣

∣
∣
∣
∣
∂fΛ

∂α
(α, β)

∣
∣
∣
∣

∣
∣
∣
∣ = ||ProjΛ (∇f (α1e1 + . . .+ αmem + β1f1 + . . .+ βn−mfn−m))||

which does not depend of the considered orthonormal basis.

Proof : Consider f ∈ C3 (Rn,R) with ||f ||C3 ≤ M for some M ≥ 1 over B
(n)

2R such
that ∣

∣
∣
∣

∣
∣
∣
∣
∂fΛ

∂α
(α, β)

∣
∣
∣
∣

∣
∣
∣
∣ >

γ

Kτ
or

∣
∣
∣
∣

∣
∣
∣
∣
∂2fΛ

∂α2 |(α,β)
(η)

∣
∣
∣
∣

∣
∣
∣
∣ >

γ

Kτ
||η|| (∀η ∈ Rm)

for all (α, β) ∈ B
(m)

R ×B
(n−m)
R with Λ ∈ GrK(n,m).

Then, for any continuous curve Γ : [0, 1] −→ B
(m)

R of length r ≤ Inf
(

γ
2MKτ , 1

)
, we

have either :
i)
∣
∣
∣
∣
∣
∣∂fΛ∂α (Γ(0), β)

∣
∣
∣
∣
∣
∣ > γ

Kτ
> r ≥ r2.

ii) otherwise, for α ∈ Rm such that ||α− Γ(0)|| < γ
2MKτ we have :

∣
∣
∣
∣

∣
∣
∣
∣
∂2fΛ

∂α2 |(α,β)
−
∂2fΛ

∂α2 |(Γ(0),β)

∣
∣
∣
∣

∣
∣
∣
∣ <

γ

2Kτ

and

∣
∣
∣
∣

∣
∣
∣
∣
∂2fΛ

∂α2 |(Γ(0),β)
(η)

∣
∣
∣
∣

∣
∣
∣
∣ >

γ

Kτ
||η|| =⇒

∣
∣
∣
∣

∣
∣
∣
∣
∂2fΛ

∂α2 |(α,β)
(η)

∣
∣
∣
∣

∣
∣
∣
∣ >

γ

2Kτ
||η|| for all η ∈ Rm.

The mean value theorem gives
∣
∣
∣
∣
∣
∣∂fΛ∂α (α, β)−

∂fΛ
∂α
(Γ(0), β)

∣
∣
∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣∂
2fΛ
∂α2 |(α∗,β)

(α− Γ(0))
∣
∣
∣
∣
∣
∣

for some α∗ on the segment which connect Γ(0) and α, it implies :

∣
∣
∣
∣

∣
∣
∣
∣
∂fΛ

∂α
(α, β)−

∂fΛ

∂α
(Γ(0), β)

∣
∣
∣
∣

∣
∣
∣
∣ ≥

γ

2Kτ
||α− Γ(0)|| ≥ ||α− Γ(0)||2

hence, we can ensure at least a variation of size r2 on the norm
∣
∣
∣
∣
∣
∣∂fΛ∂α (Γ(t), β)

∣
∣
∣
∣
∣
∣ along any

path Γ of length r ≤ Inf
(

γ
2MKτ , 1

)
.

Moreover, the choice of the orthonormal basis (e1, . . . , em) gives

∂fΛ

∂α
(α, β) = ProjΛ (∇f (α1e1 + . . .+ αmem + β1f1 + . . .+ βn−mfn−m))
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hence, for an arbitrary path Γ̃ of length r ≤ Inf
(

γ
2MKτ , 1

)
in the affine subspace x+Λ with

Λ ∈ GrK(n,m) and x ∈ Λ⊥, there exists t∗ ∈ [0, 1] such that
∣
∣
∣
∣
∣
∣ProjΛ

(
∇f

(
Γ̃(t∗)

))∣∣
∣
∣
∣
∣ ≥ r2

and we can always choose this time t∗ such that
∣
∣
∣
∣
∣
∣Γ̃(t)− Γ̃(0)

∣
∣
∣
∣
∣
∣ < r for all t ∈ [0, t∗].

Finally, any rational subspace spanned by integer vectors of lengths bounded by K ∈

N∗ can be seen as the sum x+ Λ for some x ∈ Λ⊥ ∩B
(n)

R with the direction Λ ∈ GrK(n).
Hence, the definition of Diophantine steepness for f over BR is satisfied with the

coefficients Cm = 1, δm =
1
2M and the index pm = 2 for m ∈ {1, . . . , n}.I

III.2 Quantitative Morse-Sard theory and applications
Now, an application of a quantitative version of Sard’s theorem due to Yomdin ([22])

allows to show that, for a fixed τ > 0 which is large enough, any sufficiently smooth
function f ∈ Cp (Rn,R) can be transformed into a (γ, τ)−Diophantine Morse function by
adding almost any linear form.
We recall the main results of this Yomdin’s theory along the lines of a recent expository

book of Yomdin and Comte ([23]).

For k, m and n ∈ N∗ such that m ≤ n, consider a mapping g ∈ Ck+1 (Rn,Rm) defined

on a neighborhood of the closed ball B
(n)

R ⊂ Rn for some radius R > 0 with the bound

||g||Ck+1 =M≥ 1 for the usual C
k+1-norm over Ck+1

(
B
(n)

R ,R
m
)
.

With the previous assumptions, the quantity Rk(g) =
M
k!
Rk+1 bounds the Taylor

remainder term at order k over the closed ball B
(n)

R .
For any matrix A ∈ M(m,n)(R) with 1 ≤ m ≤ n, the ordered singular values of A

(i.e. : the eigenvalues of tAA) are denoted 0 ≤ λ1(A) ≤ . . . ≤ λm(A) and, for any x ∈ B
(n)

R ,
the singular values of dg(x) are denoted λi(x) with i ∈ {1, . . . ,m}. In other word, dg(x)
maps the unit ball in Rn onto the ellipsoid of principal axes 0 ≤ λ1(x) ≤ . . . ≤ λm(x) in
Rm.
For λ = (λ1, . . . , λm) with 0 ≤ λ1 ≤ . . . ≤ λm, the set Σ

(
g, λ,B

(n)

R

)
of λ-critical

points and the set Δ
(
g, λ,B

(n)

R

)
of λ-critical values are defined as :

Σ
(
g, λ,B

(n)

R

)
= {x ∈ B

(n)

R such that λi(x) ≤ λi, for i = 1, . . . ,m}

and Δ
(
g, λ,B

(n)

R

)
= g

(
Σ
(
g, λ,B

(n)

R

))
.

Finally, for any relatively compact subset A in Rn, we denote by M(ε,A) the minimal
number of closed balls of radius ε in Rn covering A.

The cornerstone of the quantitative Sard theory is the following :
Theorem III.2.1. ([22], [23, theorem 9.2])
With the previous notations and assumptions, with λ0 = 1 and λ = (λ1, . . . , λm), we

have :

M
(
ε,Δ

(
g, λ,B

(n)

R

))
≤ ce

m∑

j=0

λ0λ1 . . . λj

(
R

ε

)j
for ε ≥ Rk(g)
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M
(
ε,Δ

(
g, λ,B

(n)

R

))
≤ ci

m∑

j=0

λ0λ1 . . . λj

(
R

ε

)j (
Rk(g)

ε

)n−j
k+1

for ε ≤ Rk(g)

where ci > 0 and ce > 0 depend only on n, m and k.

Corollary III.2.2.
With the previous notations and assumptions, for any ε ∈]0, 1[, we have :

M
(
ε,Δ

(
g, λ,B

(n)

R

))
≤ C

m∑

j=0

λ0λ1 . . . λj

(
1

ε

)n+kj
k+1

where C > 0 depend only on M, R, n, m and k.

If Neighε(A) = ∪x∈AB(x, ε) for a set A ⊂ Rm then Neighε
(
Δ
(
g, λ,B

(n)

R

))
can be

covered by M
(
ε,Δ

(
g, λ,B

(n)

R

))
balls of radius 2ε and, for the m-dimensional Lebesgue

measure, we have :

Vol
(
Neighε

(
Δ
(
g, λ,B

(n)

R

)))
≤ V (m)(2ε)mM

(
ε,Δ

(
g, λ,B

(n)

R

))

where V (m) is the volume of the m-dimensional unit ball, finally :

Vol
(
Neighε

(
Δ
(
g, λ,B

(n)

R

)))
≤ C̃

m∑

j=0

λ0λ1 . . . λj

(
1

ε

)n+kj
k+1 −m

for some constant C̃ which depends only onM, R, n, m and k.

Corollary III.2.3.

For δ ∈]0, 1[ and ε = δ
k+1
k , we denote

Δδ = Δ
(
g, (δ,M, . . . ,M), B

(n)

R

)
and Δ̃δ = Neighε (Δδ)

and we have the bounds :
i) Vol

(
Δ̃δ

)
≤ Cδ

k+1−n
k where C > 0 depends only on M, R, n, m and k.

ii) for k = 2n, we have Vol
(
Δ̃δ

)
≤ Cδ

n+1
2n .

Proof : Since ε ∈]0, 1[, we have :

Vol
(
Δ̃δ

)
≤ C̃εm−

n
k+1 + C̃

m∑

j=1

Mj−1δεm−
n+kj
k+1 ≤ C̃

(

εm−
n
k+1 +

Mm − 1

M− 1
δεm−

n+km
k+1

)

and m ≥ 1 implies Vol
(
Δ̃δ

)
≤ C1ε

(k+1)m−n
k+1 + C2δε

m−n
k+1 ≤ C1ε

k+1−n
k+1 + C2δε

1−n
k+1 .

Finally, the choice ε = δ
k+1
k yields Vol

(
Δ̃δ

)
≤ Cδ

k+1−n
k and k = 2n allows to obtain

the second estimate.I
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Theorem III.2.4.
For κ ∈]0, 1[ and g ∈ C2n+1

(
B
(n)

R ,R
m
)
with ||g||C2n+1 =M≥ 1, there exists a subset

Cκ ⊂ Rm such that

Vol (Cκ) ≤ C
√
κ (with the constant C considered in the previous corollary)

and, for any ω ∈ Rm\Cκ, the function gω(x) = g(x)− ω satisfies at any point x ∈ B
(n)

R :

||gω(x)|| > κ or ||dgω(x)ζ|| > κ||ζ|| (∀ζ ∈ R
n).

Proof : We choose Cκ = Δ̃δ with δ = κ
n
n+1 , hence :

Vol (Cκ) ≤ Cδ
n+1
2n = C

√
κ.

Now, with our bound on ||g||C2n+1 , we have λi(x) ≤ M for any i ∈ {2, . . . ,m} and

any x ∈ B
(n)

R , hence :

Δδ={x ∈ B
(n)

R such that λ1(x) ≤ δ}={x ∈ B
(n)

R such that ∃ζ ∈ R
n with ||dg(x)ζ|| ≤ δ||ζ||}

Moreover ε = δ
2n+1
2n = κ

2n+1
2n+2 > κ with κ < 1, then ||gω(x)|| ≤ κ implies ||gω(x)|| < ε

and g(x) /∈ Δδ since Dist(ω,Δδ) ≥ ε, hence ||dg(x)ζ|| > δ||ζ|| for all ζ ∈ Rn.
Finally δ = κ

n
n+1 > κ yields :

||dgω(x)ζ|| = ||dg(x)ζ|| > δ||ζ|| > κ||ζ|| (∀ζ ∈ R
m)

and we obtain the second estimate.I

We consider now the constants γ > 0, τ > 0 and an arbitrary function f ∈ C2n+2 (Rn,R)

defined on a neighborhood of the closed ball B
(n)

R ⊂ Rn with the bound ||f ||C2n+2 =M≥ 1.
The previous theorem III.2.4. allows to bound the measure of the set of values Ω ∈ Rn

such that the modified function f(x)− Ω.x is not (γ, τ)−Diophantine Morse.
More specifically, for any (K,n,m) ∈ N3 with 1 ≤ m ≤ n and any subspace Λ ∈

GrK(n,m), thanks to the choice of an orthonormal basis in Λ and Λ
⊥, the function fΛ

defined in (4) admits the upper bound ||∂αfΛ||C2n+1 ≤ ||f ||C2n+2 =M for the usual C2n+1-

norm over C2n+1
(
B
(n)

R ,R
m
)
.

Theorem III.2.5.
Consider ν ∈ N∗, K ∈ N∗ and Λ ∈ GrK(n,m), there exists a subset C

(ν)
Λ ⊂ B(n)ν where

B(n)ν is the open ball of radius ν centered at the origin in Rn with :

Vol
(
C(ν)Λ

)
≤ C

(ν)

m

√
γ

Kτ
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where the constant C
(ν)

m depends only of n, m,M, R and ν such that, for any Ω ∈ B
(n)
ν \C

(ν)
Λ

the modified function fΩ(x) = f(x)− Ω.x satisfies at any point x ∈ B
(n)

R :

∣
∣
∣
∣∂αf(Λ,Ω)(α, β)

∣
∣
∣
∣ ≥

γ

Kτ
or
∣
∣
∣
∣∂2αf(Λ,Ω)(α, β)η

∣
∣
∣
∣ ≥

γ

Kτ
||η|| (∀η ∈ Rm)

(the function f(Λ,Ω) is defined with respect to fΩ along the lines of fΛ with respect to f in
the definition of a Diophantine Morse function).

Proof : We apply the latter theorem III.2.4. with the constant κ = γ/Kτ on the
function g(α, β) = ∂αfΛ(α, β) ∈ C2n+1 (Rn,Rm) in order to obtain a nearly critical set
Cκ ⊂ Rm.
Then, for Ω ∈ Rn such that ProjΛ(Ω) = ω1e1+. . .+ωmem with ω = (ω1, . . . , ωm) /∈ Cκ,

the function fΩ(x) = h(x)−Ω.x satisfies ∂αf(Λ,Ω)(α, β) = ∂αfΛ(α, β)−ω = gω(α, β) and :

||gω(α, β)|| =
∣
∣
∣
∣∂αf(Λ,Ω)(α, β)

∣
∣
∣
∣ ≥

γ

Kτ
or ||dgω(α, β)ζ|| ≥

γ

Kτ
||ζ|| (∀ζ ∈ Rn)

but the differential ∂2αf(Λ,Ω)(α, β) = ∂
2
αfΛ(α, β) is the restriction of dg to the subspace

Rm × {0} ⊂ Rn and admits the same lower bound on its singular values as dg = dgω.
Next, we consider the set :

C(ν)Λ =
{
Ω ∈ B(n)ν such that ProjΛ(Ω) = ω1e1 + . . .+ ωmem with ω = (ω1, . . . , ωm) ∈ Cκ

}

then we have the estimate

Vol
(
C(ν)Λ

)
= Vol

(
Proj−1Λ (Cκ) ∩ B

(n)
ν

)
≤ Vol

(
B(n)ν

)
Vol (Cκ) ≤ V (n)ν

nC

√
γ

Kτ

where V (n) is the volume of the unit ball in Rn and C is the constant in theorem III.2.4.
computed for a function g ∈ C2n+1 (Rn,Rm) which depends only of M, R, n and m,
finally :

Vol
(
C(ν)Λ

)
= C

(ν)

m

√
γ

Kτ

where the constant C
(ν)

m depends only of n, m,M, R, ν.I

Theorem III.2.6.
Consider an arbitrary constant τ > 2(n2 + 1) and a function f ∈ C2n+2

(
B
(n)

R ,R
)

defined on a neighborhood of the closed ball B
(n)

R ⊂ Rn. Then, for almost any Ω ∈ Rn

there exists γ > 0 such that the function fΩ(x) = f(I)− Ω.I is (γ, τ)−Diophantine Morse

over B
(n)

R .

Proof : For any ν ∈ N∗ and K ∈ N∗, we consider the set C(ν)K = ∪nm=1∪Λ∈GrK(n,m)C
(ν)
Λ

by an application of the latter theorem III.2.5, we obtain :

Vol
(
C(ν)K

)
≤

n∑

m=1

Card (GrK(n,m))C
(ν)

m

√
γ

Kτ
≤

(
n∑

m=1

C
(ν)

m

)

Kn
2

√
γ

Kτ
.
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Now, for a fixed γ > 0, the set C(ν)γ = ∪K∈N∗C
(ν)
K satisfies

Vol
(
C(ν)γ

)
≤

(
n∑

m=1

C
(ν)

m

)(
∑

K∈N∗

Kn
2−τ/2

)
√
γ

and this upper bound is convergent with our assumption on τ .

For C(ν) = ∩γ>0C
(ν)
γ we have Vol

(
C(ν)

)
= 0 and C = ∪ν∈N∗C(ν) satisfies Vol (C) = 0.

Finally, for any Ω ∈ Rn\C, the function fΩ(x) = f(x) − Ω.x is (γ, τ)−Diophantine

Morse over B
(n)

R for some γ > 0 and we can choose τ = 2n2 + 3 > 2(n2 + 1).I

Corollary III.2.7. (Prevalence of the Diophantine Morse functions)
The set of (γ, 2n2 + 3)-Diophantine Morse functions for some γ > 0 is prevalent in

C2n+2 (Rn,R).

Proof : In the previous theorem III.2.6, we can choose τ = 2n2 + 3 > 2(n2 + 1) and,
for almost any Ω ∈ Rn\C, the function fΩ(x) = f(x) − Ω.x is (γ, τ)−Diophantine Morse

over B
(n)

R for some γ > 0.
This is exactly from the definition of a prevalent set with the probe space given by

the linear forms.I

III.3. End of the proof of the main result (theorem I.3.) :

Going back to the dynamic, our result of exponential stability (theorem II.5.) together
with the prevalence of Diophantine Morse functions (corollary III.2.7.) imply that for
an arbitrary real analytic integrable Hamiltonian h and for almost all linear form ω ∈
L (Rn,R), the modified Hamiltonian hω(x) = h(x)+ω(x) is exponentially stable with fixed
exponents of stability (since the latter quantities depend only of the steepness indices).
Indeed, for almost any Ω ∈ Rn there exists γ > 0 such that the integrable Hamiltonian

hΩ(I) = h(I) + Ω.I is (γ, τ)−Diophantine Morse with τ = 3 + 2n2.
Hence, according to the theorem III.1.2. the integrable Hamiltonian hΩ is (γ, 3 +

2n2)−Diophantine steep with indices equal to two and finally the theorem II.5. ensures
that hΩ is exponentially stable with the desired exponents.I

Appendix : Exponential stability with a Diophantine steepness condition

A.I Description of our proof

Our proof is based on the following simple algebraic property. Let ω ∈ Rn be a rational
vector, i.e. : ω is a multiple of a vector with integer components. In such a case, the scalar
products |k.ω| for k ∈ Zn such that k.ω 6= 0 admit a lower bound ` > 0. Then, let ω ∈ Rn

be a rational vector and K ∈ N∗ a positive integer, there exists a small neighborhood V
of ω which depends on K such that

|k.ω′| ≥
`

2
for any ω′ ∈ V and all k ∈ Zn\ < ω >⊥ with ||k||1 = |k1|+ . . .+ |kn| ≤ K.

Moreover, if we find a second rational vector ω̃ ∈ V , then the scalar products |k.ω̃|
admit a uniform lower bound for all k ∈ Zn\{< ω >⊥ ∩ < ω̃ >⊥} and ||k||1 ≤ K.
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If ω and ω̃ are linearly independent, we have also Dim
(
< ω >⊥ ∩ < ω̃ >⊥

)
= n− 2.

Alongt these lines, we can ensure that if we find a sequence (ω1, . . . , ωn) of close
enough rational vectors which are linearly independent (i.e. : (ω1, . . . , ωn) form a basis of
Rn), then all the scalar products |k.ωn| admit a uniform lower bound for k ∈ Zn and
||k||1 < K with K ∈ N∗.
Now, consider a trajectory of the perturbed system starting at a time t0 which admits

an increasing sequence of times t0 ≤ t1 ≤ . . . ≤ tn for some constant K ∈ N∗ such that
each frequency vector ∇h(I(tk)) is close to a rational vector ωk for each k ∈ {1, . . . , n}.
Assume that (ω1, . . . , ωn) is a basis of Rn composed of rational vectors which are close
enough one to one another to satisfy the previous algebraic property with the constant
K. Then, I(tn) is located in a resonance-free area up to some finite order and a local
integrable normal form can be built up to an exponentially small remainder, this allows to
confine the actions.
Our result of stability (theorem II.5) is proved by abstract nonsense in the following

way. Assume that a solution of the perturbed system starting at an initial time t0 admits
a drift of the action variables over an exponentially long time. Then, the Diophantine
steepness of the integrable Hamiltonian ensures that for a small enough perturbation, the
sequence of times (t1, . . . , tn) and the basis (ω1, . . . , ωn) can be build recursively. Hence
the actions are confined which gives the desired contradiction.
The closeness of ∇h(I(tk)) to ωk for k ∈ {1, . . . , n} is given by an application of a

classical theorem of Dirichlet about simultaneous Diophantine approximation which yields
a minimal rate of approximation of an arbitrary vector by rational one. This last argument
gives an upper bound on the orderK of normalization which can be carried out and imposes
our value of the stability exponents a and b.

A.II Normal forms.

In order to avoid cumbersome expressions, we use the notations u 4∗ v (resp. u ∗4 v,
u �∗ v, u ∗� v) if there is 0 < C ≤ 1 such that u < Cv (resp. uC < v, u = Cv or uC = v)
and the constant C depends only on the dimension n, the bound M , the radius R, the
analyticity width s and the exponent τ but not on the small parameters ε and γ.
We consider the perturbed Hamiltonian H holomorphic over the domain Vr,sP defined

in (2).

Let Λ be a sublattice of Zn and K ∈ N∗. A subset D ⊂ BR ⊂ Rn is said to be
(α,K)-non-resonant modulo Λ if at every point I ∈ D, we have :

|k.∇h(I)| = |k.ω(I)| ≥ α for all I ∈ D and k ∈ ZnK\Λ

where ZnK = {k ∈ Z
n such that ||k||1 ≤ K} with a fixed K ∈ N∗.

In the neighborhood of such a set D, the perturbed Hamiltonian H can be put in a Λ-
resonant normal form h+ g+ f∗ where the Fourier expansion of g contains only harmonics
in ZnK ∩ Λ while the remainder f∗ is a small general term.
More specifically, we will consider the set

Vr,sD = Vr (D)×Ws (T
n) =

{
(I, ϕ) ∈ C2n such that dist(I,D) ≤ r and

<e(ϕ) ∈ Tn ; Maxj∈{1,... ,n} |=m(ϕj)| ≤ s

}
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equipped with the supremum norm ||.||r,s for real or vector-valued functions defined and
bounded over Vr,sD.
With these notations, we have :

Lemma A.II.1 (normal form, [20])
Suppose that D ⊂ BR is (α,K)-non-resonant modulo Λ and that the following inequal-

ities hold :

ε 4∗
αr

K
; r 4∗ Min

(
α

K
,R

)

;
6

s
≤ K. (A.1)

Then we can define an holomorphic, symplectic transformation Φ : Vr∗,s∗D 7−→ Vr,sD
where r∗ =

r
2 , s∗ =

s
6 which is one-to-one and real-valued for real variables such that the

pull-back of H by Φ is a Λ-resonant normal form H◦Φ = h+ g+ f∗ up to a remainder f∗
with

||g||r∗,s∗ ∗4 ε and ||f∗||r∗,s∗ ∗4 ε exp

(

−
sK

6

)

.

Moreover, ||ΠI ◦ Φ− IdI ||r∗,s∗ 4∗ r/6 uniformly over Vr∗,s∗D where ΠI denotes the
projection onto the action space and IdI is the identity in the action space. Hence :

Vr/3D ⊂ ΠI (Φ (Vr∗,s∗D)) ⊂ V2r/3D.

Corollary A.II.2.
With the notations of the previous lemma, consider a solution of the normalized system

governed by H ◦ Φ and a time tk ∈ R. Let λk be the affine subspace which contains I(tk)
and whose direction Λ⊗ R is the vector space spanned by Λ, then

dist (I(t), λk) = ||I(t)− λk|| ∗4 ε for |t− tk| ≤ exp

(
sK

6

)

and |t| < T∗ (A.2)

where T∗ is the time of escape of Vr∗,s∗D.

Proof : We denote by Q the orthogonal projection on < Λ >⊥. Since H ◦ Φ is in
Λ-resonant normal form, we have d

dt
Q(I(t)) = −Q (∂ϕf∗) and by Cauchy inequality :

||I(t)− λk|| ≤ ||Q (I(t)− I(tk))|| ≤ ||Q (∂ϕf∗(I, ϕ))||r∗,s∗ |t− tk| ∗4 6
ε

s

provided that |t− tk| ≤ exp
(
sK
6

)
.I

A.III Nearly periodic tori, non-resonant areas and approximation.

A vector ω ∈ Rn is said to be rational if there is t > 0 such that tω ∈ Zn, in which
case T = Inf{t > 0 / tω ∈ Zn} is called the period of ω.
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Definition and theorem A.III.1
Consider % > 0 and ω ∈ Rn\{0} a rational vector of period T , the set

B%(ω) = {I ∈ BR such that ||∇h(I)− ω|| < %}

is called a nearly periodic torus.
For K > 0 and % > 0 such that 2K%T < 1, the set B%(ω) is ( 12T ,K)-non-resonant

modulo the Z-module Λ spanned by ZnK∩ < ω >
⊥.

Proof :
Lemma A.III.2 Let Ω be the hyperplane < ω >⊥, then for all k ∈ Zn\Ω we have

|k.ω| ≥ 1/T .

Proof : We have |k.ω| = 1
T |k.T ω| =

1
T |k.α| for some α ∈ Z

n and |k.α| 6= 0 since
k /∈< α >⊥=< ω >⊥.
Hence |k.α| ≥ 1 and |k.ω| ≥ 1

T . I

Then, since ω 6= 0, we can ensure that dim(Λ) = n− 1 and for all I∈B%(ω) :

∀k∈ZnK\Λ, we have |k.∇h(I)| ≥ |k.ω| − |k| ||∇h(I)− ω|| ≥
1

T
−K%>

1

2T
.

with our threshold in the lemma. I

Now, for an integer m ∈ {1, . . . , n}, consider a decreasing sequence of positive real
numbers %1 ≥ . . . ≥ %m and m rational vectors (ω1, . . . , ωm) in Rn with respective periods
(T1, . . . , Tm) such that

||ωj+1 − ωj || ≤ %j for all j ∈ {1, . . . ,m− 1}.

We denote by Ωj the hyperplanes 〈ωj〉
⊥
and by Ij the sets Ω1 ∩ . . . ∩ Ωj , for j ∈

{1, . . . ,m}.
Consider a positive constant K then the Z-module (resp. the R-vector space) spanned

by ZnK ∩ Ij is denoted by Λj (resp. Λj ⊗ R).
Lemma A.III.3
With the previous notations, if

2(m− j + 1)K%jTj < 1 (∀j∈{1, . . . ,m}) (A.3)

then the nearly periodic tori :

Bj = {I ∈ BR such that ||∇h(I)− ωj || < (m− j + 1)%j}

are
(
1
2Tj
,K
)
-non-resonant modulo Λj for j ∈ {1, . . . ,m}.

Proof : Consider j ∈ {2, . . . ,m} and I ∈ Bj , since the sequence (%l)1≤l<j is decreas-
ing, we have ||ωl − ωj || ≤ %l + . . .+ %j−1 ≤ (j − 1− l)%l for all l ∈ {1, . . . , j − 1} and the
assumption ||∇h(I)− ωj || ≤ (m− j + 1)%j yields :

||∇h(I)− ωl|| ≤ (m− l)%l ≤ (m− l + 1)%l for all l ∈ {1, . . . , j − 1}.
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Then, the argument of the previous lemma (A.III.2) ensures that, for all I ∈ Bj

∀l ∈ {1, . . . , j} , ∀k ∈ ZnK\Ωl we have |k.∇h(I)| ≥
1

Tl
− (m− l + 1)K%l ≥

1

2Tl

with the thresholds (A.3).
Hence, for all k ∈ ZnK\Λj , the scalar products |k.∇h(I)| are lowered by

1
2Tj
for any

I ∈ Bj .I

In the sequel, we will need the following direct corollary of Dirichlet’s theorem on
simultaneous Diophantine approximation (see Lochak, [11]) :
Lemma A.III.4
For any x ∈ Rn and any Q ∈ N∗, there exists a rational vector x∗ of period T which

satisfies

||x∗ − x|| ≤

√
n− 1

T Q
1
n−1

with
1

||x||∞
≤ T ≤

Q

||x||∞
(A.4)

for the Euclidean norm ||.|| and the maximum of the components ||.||∞.

Proof :
We can renumber the indices in such a way that x = ξ(±1, x′) for some x′ ∈ Rn−1

and ξ = ||x||∞.
The question is now reduced to an approximation in Rn−1. Indeed, Dirichlet’s theorem

yields q ∈ N∗ and l′ ∈ Zn−1 such that 1≤ q < Q and ||qx′ − l′||∞ ≤ Q
− 1
n−1 .

If x∗ = ξ

(

±1,
l′

q

)

, we have :

||x∗ − x||∞ ≤
ξ

q
Q−

1
n−1 =⇒ ||x∗ − x|| ≤

√
n− 1

ξ

q
Q−

1
n−1

for the euclidean norm.

One checks easily that x∗ is a rational vector of period T =
q

ξ
which satisfies the

desired claim.I

A.IV Fitted sequence.

We first prove that the existence of a sequence of rational vectors described in the
previous section along a trajectory implies that the actions are confined. Then, in the
next sections, we show that a drift of the action variables implies the existence of such a
sequence which gives a contradiction.
Hence, the theorem II.5 of exponential stability would be proved.

We study the perturbed system governed by the Hamiltonian H holomorphic over the
domain Vr,sP defined in (2).
For 1 ≤ m ≤ n, let (ω1, . . . , ωm) be a sequence of rational vectors.
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As previously, for j ∈ {1, . . . ,m} we define Ωj = 〈ωj〉
⊥
and Ij = Ω1 ∩ . . . ∩ Ωj ; let

also Λj be the Z-module spanned by ZnK ∩ Ij , and finally dj = dim (Λj ⊗ R).

Definition A.IV.1. (fitted sequence)

For m ∈ {1, . . . , n}, consider an integer K ≥
6m

s
.

A sequence of rational vectors (ω1, . . . , ωm) is called a fitted sequence of order K for
a solution (I(t), ϕ(t)) with an initial time t0 if there exists :

1) an increasing sequence of times such that

t0 ≤ t1 ≤ . . . ≤ tm ≤ t0 + exp (sK/6) ;

2) a decreasing sequence of radii R ≥ r0 ≥ . . . ≥ rm ;
3) a decreasing sequence of domains :

Dk = {I ∈ Dk−1 such that ||∇h(I)− ωk−1|| < 4M(m− k + 1)rk} and Pk = Dk × T
n

for k ∈ {1, . . . ,m} with D0 = BR.
4) holomorphic, symplectic transformations Φk : Vr(k)∗ ,sk

Dk 7−→ Vrk,sk−1Dk where(
r
(k)
∗ , sk

)
=
(
rk
2 ,

s
6k

)
which are one-to-one and real-valued for real variables with :

||ΠI ◦ Φk − IdI ||r(k)∗ ,sk4∗
rk

6
for k ∈ {1, . . . ,m}.

Then, the application Ψ−1k = Φ1 ◦ . . . ◦Φk is defined over Dk×T
n and we assume that

H ◦ Ψ−1k is in Λk−resonant normal form up to a remainder of order ε exp(−sK/6) as in
our lemma A.II.1.
In the sequel, we will denote by I(k) = πI ◦ Ψk(I, ϕ) the averaged actions under the

transformation Ψk and Δk =
∣
∣
∣
∣I(k) − I

∣
∣
∣
∣
r
(k)
∗ ,sk
, hence Δk 4∗ r1+. . .+rk for k ∈ {1, . . . ,m}.

Finally, the following three properties should hold :

(i)
∣
∣
∣
∣
∣
∣∇h(I(k−1)(tk))− ωk

∣
∣
∣
∣
∣
∣ ≤Mrk for k ∈ {1, . . . ,m} with I

(0) = I ;

(ii)
∣
∣
∣
∣
∣
∣I(k)(t)− I(k)(tk)

∣
∣
∣
∣
∣
∣ ≤ rk for t ∈ [tk, tk+1] with k ∈ {0, . . . ,m− 1};

(iii) The dimensions (d1, . . . , dm) satisfies : d1 > . . . > dj > . . . > dm = 0.

Theorem A.IV.2.
Consider a trajectory which admits a fitted sequence of order K.
If I(t0) ∈ BR/2 and the threshold ε 4∗ rm is satisfied, then we have :

||I(t)− I(t0)|| ≤ (n+ 1)
2r0 for t0 ≤ t ≤ t0 + exp(sK/6). (A.5)
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Remark A.IV.3. : We make this construction going forward in time but the same
results are valid backward in time.

Proof : Firstly, we have ||I(t)− I(t0)|| ≤ r0 < (m+ 1)2r0 for t ∈ [t0, t1] and

Δk 4∗ r1 + . . .+ rk =⇒ Δk 4∗ kr1 for k ∈ {1, . . . ,m}

which implies that for all t ∈ [tk, tk+1] :

||I(t)− I(tk)|| ≤
∣
∣
∣
∣
∣
∣I(t)− I(k)(t)

∣
∣
∣
∣
∣
∣+
∣
∣
∣
∣
∣
∣I(k)(t)− I(k)(tk)

∣
∣
∣
∣
∣
∣+
∣
∣
∣
∣
∣
∣I(k)(tk)− I(tk)

∣
∣
∣
∣
∣
∣

≤2Δk + rk 4∗ 2kr1 + rk (∀k ∈ {1, . . . , n− 1}).

Finally, Ψm contains a neighbourhood of I(tm) and cast the considered Hamiltonian
H to an integrable one up to a perturbation of magnitude ε exp(−sK/6) since dm is equal
to 0.

Hence, H ◦ Ψ−1m
(
I(m), ϕ(m)

)
= hm

(
I(m)

)
+ fm

(
I(m), ϕ(m)

)
and an application of

Cauchy’s inequality on the real domain Pm yields :

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∂fm

∂ϕ(m)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Pm

∗4
ε

sm
exp

(
− sK6

)
.

Then, for t ∈ [tm, t0 + exp (sK/6)], the threshold ε 4∗ rm implies :

∣
∣
∣
∣
∣
∣I(m)(t)− I(m)(tm)

∣
∣
∣
∣
∣
∣ ≤ |t− tm|

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∂fm

∂ϕ(m)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Pm

≤ rm

hence :

||I(t)− I(tm)|| ≤
∣
∣
∣
∣
∣
∣I(t)− I(m)(t)

∣
∣
∣
∣
∣
∣+
∣
∣
∣
∣
∣
∣I(m)(t)− I(m)(tm)

∣
∣
∣
∣
∣
∣+
∣
∣
∣
∣
∣
∣I(m)(tm)− I(tm)

∣
∣
∣
∣
∣
∣

≤2Δm + rm 4∗ 2mr1 + rm

=⇒ ||I(t)− I(t0)|| ≤ ||I(t)− I(tm)||+ ||I(tm)− I(tm−1)||+ . . .+ ||I(t1)− I(t0)||

≤ 2(Δm + . . .+Δ1) + rm + rm−1 + . . .+ r1 + r0

4∗ 2[m+ (m− 1) + . . .+ 1]r1 +mr1 + r0 4∗ (m+ 1)
2r0 since r1 ≥ r0,

and this yields the required inequality since m ≤ n.I

A.V Formal construction of a fitted sequence.

Here, we assume that there is a high enough density of rational vectors and look for the
relations which should be satisfied by the parameters ε, τ , γ, K, s, the radii (R, r0, . . . , rm)
and the periods (T1, . . . , Tm) to ensure the existence of a sequence fitted to a trajectory
which admits a drift of the action variables thanks to our Diophantine steepness condition.
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Lemma A.V.1.
Consider two constants 0 < τ , 0 < γ < 1, an integer K ≥ 6n/s and a solution of

the perturbed system with some initial condition (I(t0), ϕ(t0)) in BR/2 × Tn such that the
action variables admit the following drift :

∃t∗ ∈ [t0, t0 + exp(cK)] with ||I(t∗)− I(t0)|| = (n+ 1)
2r0

for 0 < r0 <
R

2(n+ 1)2
.

A sequence (ω1, . . . , ωm) of rational vectors is a fitted sequence of order K for the con-
sidered solution if the radii (r1, . . . , rm) and the periods (T1, . . . , Tm) satisfy the following
relations :

(i) r1 <
γ

Kτ
;

(ii) ε 4∗
1

2M

(
rk

2

)ρk
for k ∈ {1, . . . ,m− 1} where we denote ρk = pdk ;

(iii) rk+1 <
1

6M

(rk
2

)ρk
for k ∈ {1, . . . ,m− 1} ;

(iv) 8M(m− k + 1)KrkTk < 1 for k ∈ {1, . . . ,m};

(v) The thresholds (A.1) are satisfied with the parameters ε,K, rk and αk =
1

2Tk
.

Proof :

First step : We assume the existence of a T1-periodic rational vector ω1 such that∣
∣
∣
∣∇h(I(k)(t1))− ω1

∣
∣
∣
∣ ≤ Mr1 for a given time t1 ∈ [t0, t0 + exp (sK/6)] which will be

determined explicitely in the next section.
Consider the domain D1 = {I ∈ BR such that ||∇h(I)− ω1|| < 4Mmr1}. With our

threshold (iv) in this lemma, D1 is
(
1
2T1
,K
)
-non-resonant modulo Λ1. Then the last

condition of the lemma A.V.1 implies the existence of a normalization Φ1 with respect to
Λ1 from Vr(1)∗ ,s1

D1 to Vr1,s0D1 and Ψ1 = Φ
−1
1 is the desired transformation.

Iterative step : Assume that an increasing sequence of times t0 ≤ t1 ≤ . . . ≤ tk <
t0 + exp(cK) and a sequence of periodic vectors (ω1, . . . , ωk) with respective periods
(T1, . . . , Tk) which satisfy the assumptions of a fitted sequence have been built up to
order k ∈ {1, . . . , n− 1}.
We denote the projection ProjΩk = Proj−→Λk (resp. Proj〈ωk〉) by Qk (resp. Q̃k).

According to the corollary A.II.2., one can see that the normalized actions I(k) satisfy :

∣
∣
∣
∣
∣
∣I(k)(t)− I(k)(tk)−Qk

(
I(k)(t)− I(k)(tk)

)∣∣
∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣Q̃k

(
I(k)(t)− I(k)(tk)

)∣∣
∣
∣
∣
∣ ∗4 ε (A.6)

for t ∈ [tk, Inf (t0 + exp(cK); t∗k)] where t
∗
k is the time of escape of Dk.
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If
∣
∣
∣
∣Qk

(
I(k)(t)−I(k)(tk)

)∣∣
∣
∣<
rk
2
for all t∈ ]tk, t0 + exp(cK)[, the inequality (A.6) and

the second threshold of the lemma A.V.1 imply

∣
∣
∣
∣
∣
∣I(k)(t)− I(k)(tk)

∣
∣
∣
∣
∣
∣ ≤

1

2M

(
rk

2

)ρk
+
rk

2
≤ rk since rk < 1, ρk ≥ 1 and M ≥ 1.

Then, as in the proof of the theorem A.IV.2., we have :

||I(t)− I(tk)|| ≤ 2Δk + rk 4∗ 2(r1 + . . .+ rk) + rk for all t∈ ]tk, t0 + exp(cK)[

which yields

||I(t∗)− I(t0)|| ≤ 2(Δ1 + . . .+Δk) + r1 + . . .+ rk + r0 4∗ (k + 1)
2r0 < (n+ 1)

2r0

while, we assumed ||I(t∗)− I(t0)|| = (n+ 1)2r0.
Hence, there is an escape time

t∗k∈ ]tk, t0 + exp(cK)[ with
∣
∣
∣
∣
∣
∣Qk

(
I(k)(t∗k)−I

(k)(tk)
)∣∣
∣
∣
∣
∣=
rk

2
.

Since I(k)(tk) +Qk
(
I(k)(t)− I(k)(tk)

)
is a continuous path in the subspace

λk = I
(k)(tk) + Λk ⊗ R, the steepness of h yields tk+1 ∈ [tk, t∗k] such that :






∣
∣
∣
∣
∣
∣Proj−→Λk

(
∇h
(
I(k)(tk) +Qk

(
I(k)(tk+1)− I

(k)(tk)
)))∣∣

∣
∣
∣
∣ ≥

(
rk

2

)ρk
,

∣
∣
∣
∣
∣
∣Qk

(
I(k)(t)− I(k)(tk)

)∣∣
∣
∣
∣
∣ ≤
rk

2
for all t ∈ [tk, tk+1].

(A.7)

Moreover, the inequality (A.6) and our second threshold in the lemma A.V.1. together
with ρk ≥ 1 imply :

∣
∣
∣
∣
∣
∣∇h

(
I(k)(tk+1)

)
−∇h

(
I(k)(tk)+Qk

(
I(k)(tk+1)−I

(k)(tk)
))∣∣
∣
∣
∣
∣≤
M

2M

(
rk

2

)ρk
=
1

2

(
rk

2

)ρk

and

(A.7) =⇒
∣
∣
∣
∣
∣
∣Qk

(
∇h
(
I(k)(tk+1)

))∣∣
∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣Proj−→Λk

(
∇h
(
I(k)(tk+1)

))∣∣
∣
∣
∣
∣ ≥
1

2

(
rk

2

)ρk

In the same way, (A.6) and (A.7) allow to prove that :

∣
∣
∣
∣
∣
∣Qk

(
I(k)(t)− I(k)(tk)

)∣∣
∣
∣
∣
∣ ≤
rk

2
=⇒

∣
∣
∣
∣
∣
∣I(k)(t)− I(k)(tk)

∣
∣
∣
∣
∣
∣ ≤ rk for all t ∈ [tk, tk+1].
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Finally, we assume the existence of a Tk+1-periodic rational vector ωk+1 such that∣
∣
∣
∣∇h(I(k)(tk+1))− ωk+1

∣
∣
∣
∣ ≤Mrk+1 which implies :

||ωk − ωk+1|| ≤
∣
∣
∣
∣
∣
∣ωk −∇h(I

(k−1)(tk))
∣
∣
∣
∣
∣
∣+
∣
∣
∣
∣
∣
∣∇h(I(k−1)(tk))−∇h(I

(k)(tk))
∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣∇h(I(k)(tk))−∇h(I

(k)(tk+1))
∣
∣
∣
∣
∣
∣++

∣
∣
∣
∣
∣
∣∇h(I(k)(tk+1))− ωk+1

∣
∣
∣
∣
∣
∣

=⇒ ||ωk − ωk+1|| ≤ 3Mrk +Mrk+1 ≤ 4Mrk. (A.8)

Moreover, the third threshold of the lemma A.V.1. implies that

∣
∣
∣
∣
∣
∣Qk

(
∇h(I(k)(tk+1))− ωk+1

)∣∣
∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣
∣∇h(I(k)(tk+1))− ωk+1

∣
∣
∣
∣
∣
∣ ≤Mrk+1 <

M

6M

(rk
2

)ρk

and

||Qk (ωk+1)|| ≥
∣
∣
∣
∣
∣
∣Qk

(
∇h
(
I(k)(tk+1)

))∣∣
∣
∣
∣
∣−
∣
∣
∣
∣
∣
∣Qk

(
∇h(I(k)(tk+1))− ωk+1

)∣∣
∣
∣
∣
∣ ≥
1

3

(
rk

2

)ρk

hence ωk+1 is not orthogonal to the previous rational vectors and dk+1 < dk.
Consider the domain

Dk+1 = {I ∈ Dk such that ||∇h(I)− ωk+1|| < 4M(m− k)rk+1} ,

the inequality (A.8), our threshold (iv) in the definition of a fitted sequence and the lemma

A.III.3 with the distances %k = 4Mrk ensure that Dk+1 is
(

1
2Tk+1

,K
)
-non-resonant modulo

Λk+1.
Finally, the last threshold (v) and the lemma A.II.1 implies the existence of a normal-

ization Φk+1 with respect to Λk+1 from Vr(k+1)∗ ,sk+1
Dk+1 to Vrk+1,skDk+1 and the desired

transformation is given by Ψk+1 = Φ
−1
k+1 ◦Ψk.I

A.VI. Complete construction of a fitted sequence.

Here, we tackle the problem of Diophantine approximation of the frequency vectors(
∇h(I(t1)),∇h(I(1)(t2), . . . ,∇h(I(n−1)(tn))

)
which was the missing ingredient in the pre-

vious section.

Lemma A.V.2.
Consider two constants 0 < τ , 0 < γ < 1, an integer K ≥ 6n/s and a solution of

the perturbed system with some initial condition (I(t0), ϕ(t0)) in BR/2 × Tn such that the
action variables admit the following drift :

∃t∗ ∈ [t0, t0 + exp(cK)] with ||I(t∗)− I(t0)|| = (n+ 1)
2r0

for 0 < r0 <
R

2(n+ 1)2
.
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Assume that :

0 < r0 < Inf

(

γ,
R

2(n+ 1)2

)

; r1 ≤
rρ00
4M

where we denote ρ0 = pn

then, in the previous construction of a fitted sequence, for all sequence of strictly positive
constants (Q1, . . . , Qm) there exists a Tk-periodic rational vector ωk which satisfy :

∣
∣
∣
∣
∣
∣∇h(I(k−1)(tk))− ωk

∣
∣
∣
∣
∣
∣ ≤

√
n− 1

TkQ
1
n−1

k

with
1

M
≤ Tk ≤

4Qk
(n+ 1)rρ00

for k ∈ {1, . . . ,m} (A.9)

Proof : With our drift of the actions variable, the Diophantine steepness assumption
together with r0 ≤ γ ≤ 1 and ρ0 = pn ≥ 1 allow to find a time t1 ∈ [0, t∗] such that :

||∇h(I (t1))|| ≥

(
1

2
(n+ 1)2r0

)ρ0
≥
1

2
(n+ 1)2rρ00

and ||I(t)− I(t0)|| ≤ 1
2 (n+ 1)

2r0 for all t ∈ [t0, t1].
Moreover, with our bound M ≥ 1 on the norm of the Hessian matrix, we obtain :

||∇h(I)|| ≥
(n+ 1)2

4
rρ00 for all ||I − I (t1) || ≤

(n+ 1)2

4M
rρ00 ≤

(n+ 1)2

4
r0.

In the regular case, we remove this first step since we can use a uniform lower bound
on the gradient ∇h(I).

Now, we can ensure that for any I ∈ B
(
I(t1),

(n+1)2

4M rρ00

)
we have :

n+ 1

4
rρ00 ≤

||∇h(I)||
n

≤ ||∇h(I)||∞ ≤ ||∇h(I)|| ≤M

and the lemma A.III.4 applied to x = ∇h(I(t)) implies that for any Q > 0, there exists a
rational vector ω of period T which satisfy :

||ω −∇h(I)|| ≤

√
n− 1

T Q
1
n−1

with
1

M
≤ T ≤

4Q

(n+ 1)rρ00
(A.10)

Then, a repeat of the arguments in the proof of the theorem A.IV.2. shows that for
k ∈ {1, . . . , n} :

∣
∣
∣
∣
∣
∣I(k)(t)− I(t1)

∣
∣
∣
∣
∣
∣ ≤ (k + 1)2r1 if tk ≤ t ≤ tk+1with tm+1 = t0 + exp(sK/6)

and r1 ≤
rρ00
4M
implies that I(tk) ∈ B

(
I(t1),

(n+1)2

4M r0

)
for all k ∈ {1, . . . ,m}, hence (A.10)

implies (A.9).I

In the sequel, for a fitted sequence of length m, we will denote :

π0 = 1 and πk = pd1 . . . pdk where dj = dim (Λj ⊗ R) and k ∈ {1, . . . ,m}. (A.11)

With the previous lemmas, one can prove the following :
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Theorem A.V.3.
There exists a sufficiently small positive constant C such that for an arbitrary trajec-

tory of the perturbed system which admits a drift of the action variables as in the previous
lemmas, if :

β =
1

2(1 + nnp1 . . . pn−1)
; a =

β

1 + τ
; b =

β

ρ0
and ε < Cγ1/a, ε < Cγ1/b (A.12)

then one can find a fitted sequence of length m ∈ {1, . . . , n− 1} for the considered orbit.
The parameters of this sequence are

K = E
[
ε−a
]
+1 and r0 = ε

b ; rk+1 =

√
n− 1

M

εβn
kπk

Tk+1
for any k ∈ {0, . . . ,m− 1} (A.13)

where E [x] is the integer part of x ∈ R.

Proof : Our parameter K, the radii (r1, . . . , rm) and the periods (T1, . . . , Tm) should
satisfy the following :

Summary of the thresholds

(i) 1 ∗4 K ; (ii) r0 <
R

2(n+ 1)2
; (iii) 0 < r0 < Inf

(

γ,
R

2(n+ 1)2

)

; (iv) r1 <
γ

Kτ
;

(v) ε 4∗ rρkk for k ∈ {1, . . . ,m− 1} ;

and for k ∈ {1, . . . ,m} :

(vi) rk 4∗ r
ρk−1
k−1 ; (vii) εTkK 4∗ rk ; (viii) KTkrk 4∗ 1.

Here, we apply the lemma A.V.2. with the bounds

Qk+1 = ε
−(n−1)βnkπk for k ∈ {0, . . . ,m− 1},

hence, we have the upper bounds Tk+1 ≤
4

n+ 1
ε−β−(n−1)βn

kπk on the periods.

With the choice of parameters (A.12) and (A.13), all the previous thresholds are
satisfied and there exists a fitted sequence for the considered trajectory for a small enough
perturbation.I

A.VII End of the proof of the stability theorem (II.5.)

We now check that the inequality ε 4∗ rm is satisfied with our choice of parameters
(A.12) and (A.13), hence theorem A.IV.2 implies :

||I(t)− I(t0)|| ≤ (n+ 1)
2r0 for t0 ≤ t 4∗ t0 + exp(sK/6)
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while we assumed the existence of an escape time :

t∗ ∈ [t0, t0 + exp(cK)] with ||I(t∗)− I(t0)|| = (n+ 1)
2r0.

This contradiction ensures the confinement of the action variables over an exponen-

tially long time : exp

(
s

6
K

)

which is greater than exp

(
s

6
ε−a
)

with our choice of K.

This fulfill the proof of the theorem II.5. I
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