SUFFICIENCY CLASS FOR GLOBAL (IN TIME) SOLUTIONS TO THE 3D-NAVIER-STOKES EQUATIONS IN \mathbb{V}

T. L. GILL AND W. W. ZACHARY

Abstract

Let Ω be an open domain of class \mathbb{C}^{3} contained in \mathbb{R}^{3}, let $\left(\mathbb{L}^{2}[\Omega]\right)^{3}$ be the real Hilbert space of square integrable functions on Ω with values in \mathbb{R}^{3}, and let $\mathbf{D}[\Omega]=\left\{\mathbf{u} \in\left(\mathbb{C}_{0}^{\infty}[\Omega]\right)^{3} \mid \nabla \cdot \mathbf{u}=0\right\}$. Let $\mathbb{H}[\Omega]$ be the completion of \mathbf{D} with respect to the inner product of $\left(\mathbb{L}^{2}[\Omega]\right)^{3}$ and let $\mathbb{V}[\Omega]$ be the completion of $\mathbf{D}[\Omega]$ with respect to the inner product of $\mathbb{H}^{1}[\Omega]$, the functions in $\mathbb{H}[\Omega]$ with weak derivatives in $\left(\mathbb{L}^{2}[\Omega]\right)^{3}$. A well-known unsolved problem is the construction of a sufficient class of functions in $\mathbb{H}[\Omega]$ (respectively $\mathbb{V}[\Omega]$), which will allow global, in time, strong solutions to the three-dimensional NavierStokes equations. These equations describe the time evolution of the fluid velocity and pressure of an incompressible viscous homogeneous Newtonian fluid in terms of a given initial velocity and given external body forces. In this paper, we prove that, under appropriate conditions, there exists a number \mathbf{u}_{+}, depending only on the domain, the viscosity, the body forces and the eigenvalues of the Stokes operator, such that, for all functions in a dense set \mathbb{D} contained in the closed ball $\mathbb{B}(\Omega)$ of radius \mathbf{u}_{+}in $\mathbb{V}[\Omega]$, the Navier-Stokes equations have unique strong solutions in $\mathbb{C}^{1}((0, \infty), \mathbb{V}[\Omega])$.

Introduction

Let Ω be an open domain of class \mathbb{C}^{3} contained in \mathbb{R}^{3}, let $\left(\mathbb{L}^{2}[\Omega]\right)^{3}$ be the real Hilbert space of square integrable functions on Ω with values in \mathbb{R}^{3}, let $\mathbf{D}[\Omega]$ be
$\left\{\mathbf{u} \in\left(\mathbb{C}_{0}^{\infty}[\Omega]\right)^{3} \mid \nabla \cdot \mathbf{u}=0\right\}$, let $\mathbb{H}[\Omega]$ be the completion of $\mathbf{D}[\Omega]$ with respect to the inner product of $\left(\mathbb{L}^{2}[\Omega]\right)^{3}$, and let $\mathbb{V}[\Omega]$ be the completion of $\mathbf{D}[\Omega]$ with respect to the inner product of $\mathbb{H}^{1}[\Omega]$, the functions in $\mathbb{H}[\Omega]$ with weak derivatives in $\left(\mathbb{L}^{2}[\Omega]\right)^{3}$. The global in time classical Navier-Stokes initial-value problem (for $\Omega \subset \mathbb{R}^{3}$, and all $\left.T>0\right)$ is to find functions $\mathbf{u}:[0, T] \times \Omega \rightarrow \mathbb{R}^{3}$, and $p:[0, T] \times \Omega \rightarrow$ \mathbb{R}, such that

$$
\begin{align*}
& \partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\nu \Delta \mathbf{u}+\nabla p=\mathbf{f}(t) \text { in }(0, T) \times \Omega \\
& \nabla \cdot \mathbf{u}=0 \text { in }(0, T) \times \Omega \tag{1}\\
& \mathbf{u}(t, \mathbf{x})=\mathbf{0} \text { on }(0, T) \times \partial \Omega \text { (in the distributional sense) } \\
& \mathbf{u}(0, \mathbf{x})=\mathbf{u}_{0}(\mathbf{x}) \text { in } \Omega
\end{align*}
$$

The equations describe the time evolution of the fluid velocity $\mathbf{u}(\mathbf{x}, t)$ and the pressure p of an incompressible viscous homogeneous Newtonian fluid with constant viscosity coefficient ν in terms of a given initial velocity $\mathbf{u}_{0}(\mathbf{x})$ and given external body forces $\mathbf{f}(\mathbf{x}, t)$.

Purpose

Let \mathbb{P} be the (Leray) orthogonal projection of $\left(\mathbb{L}^{2}[\Omega]\right)^{3}$ onto $\mathbb{H}[\Omega]$ and define the Stokes operator by: $\mathbf{A u}=:-\mathbb{P} \Delta \mathbf{u}$, for $\mathbf{u} \in D(\mathbf{A}) \subset \mathbb{H}^{2}[\Omega]$, the domain of \mathbf{A}. The purpose of this paper is to prove that there exists a number \mathbf{u}_{+}, depending only on \mathbf{A}, f, ν and Ω, such that, for all functions in $\mathbb{D}=D\left(\mathbf{A}^{3 / 2}\right) \cap \mathbb{B}(\Omega)$, where $D\left(\mathbf{A}^{3 / 2}\right)$ is the domain of $\mathbf{A}^{3 / 2}$ and $\mathbb{B}(\Omega)$ is the closed ball of radius \mathbf{u}_{+}in $\mathbb{V}(\Omega)$, the Navier-Stokes equations have unique strong solutions in $\mathbf{u} \in L_{\mathrm{loc}}^{\infty}[[0, \infty) ; \mathbb{V}(\Omega)] \cap$ $\mathbb{C}^{1}[(0, \infty) ; \mathbb{V}(\Omega)]$. We discuss this problem in $\left.\mathbb{H}(\Omega)\right]$, in another paper.

PRELIMINARIES

In terms of notation and conventions, we follow Sell and You [SY]. In order to simplify our proofs, we always assume that all functions \mathbf{u}, \mathbf{v} are in $D\left(\mathbf{A}^{3 / 2}\right)$ and we let $c=\max \left\{c_{i}\right\}$, where c_{i} is one of nine positive constants that appear on pages 363 -367 in $[\mathrm{SY}]$. It will also be convenient to use the fact that the norms of $\mathbb{V}[\Omega]$ and $\mathbb{V}[\Omega]^{-1}$ are equivalent to their respective graph norms relative to $\mathbb{H}[\Omega]$. It is known that \mathbf{A} is a positive linear operator with compact resolvent. It follows that the fractional powers $\mathbf{A}^{1 / 2}$ and $\mathbf{A}^{-1 / 2}$ are well defined. Moreover, it is also known (cf. [SY], [T1]) that the norms $\left\|\mathbf{A}^{1 / 2} \mathbf{u}\right\|_{\mathbb{H}[\Omega]}$ and $\left\|\mathbf{A}^{-1 / 2} \mathbf{u}\right\|_{\mathbb{H}[\Omega]}$ are equivalent to the corresponding norms induced by the Sobolev space $\left(H^{1}[\Omega]\right)^{3}$, so that:

$$
\begin{equation*}
\|\mathbf{u}\|_{\mathbb{V}[\Omega]} \equiv\left\|\mathbf{A}^{1 / 2} \mathbf{u}\right\|_{\mathbb{H}[\Omega]} \text { and }\|\mathbf{u}\|_{\mathbb{V}[\Omega]-1} \equiv\left\|\mathbf{A}^{-1 / 2} \mathbf{u}\right\|_{\mathbb{H}[\Omega]} \tag{2}
\end{equation*}
$$

In addition, it is known that \mathbf{A} is an isomorphism from $D(\mathbf{A}) \xrightarrow{\text { onto }} \mathbb{H}[\Omega]$, and from $\mathbb{V}[\Omega] \xrightarrow{\text { onto }} \mathbb{V}[\Omega]^{-1}$. Furthermore, the embeddings $\mathbb{V}[\Omega] \rightarrow \mathbb{H}[\Omega] \rightarrow \mathbb{V}[\Omega]^{-1}$ are compact and the operator \mathbf{A}^{-1} is a bounded compact map from $\mathbb{H}[\Omega]$ onto $D(\mathbf{A})$. Applying the Leray projection to equation (1), with $\mathbf{B}(\mathbf{u}, \mathbf{u})=\mathbb{P}(\mathbf{u} \cdot \nabla) \mathbf{u}$, we can recast equation (1) in the standard form:

$$
\begin{align*}
& \partial_{t} \mathbf{u}=-\nu \mathbf{A} \mathbf{u}-\mathbf{B}(\mathbf{u}, \mathbf{u})+\mathbb{P} \mathbf{f}(t) \text { in }(0, T) \times \Omega \\
& \mathbf{u}(t, \mathbf{x})=\mathbf{0} \text { on }(0, T) \times \partial \Omega \tag{3}\\
& \mathbf{u}(0, \mathbf{x})=\mathbf{u}_{0}(\mathbf{x}) \text { in } \Omega
\end{align*}
$$

where we have used the fact that the orthogonal complement of $\mathbb{H}[\Omega]$ relative to $\left(\mathbb{L}^{2}[\Omega]\right)^{3}$ is $\left\{\mathbf{v}: \mathbf{v}=\nabla q, q \in\left(H^{1}[\Omega]\right)^{3}\right\}$ to eliminate the pressure term (see Galdi [GA] or [SY, T1]).

We will use the following inequalities from [SY], pages 363-367. (We use their numbering for easy reference.) Equation (61.8)

$$
\begin{equation*}
\left\|\mathbf{A}^{\alpha} \mathbf{u}\right\|_{\mathbb{H}}^{2} \geqslant \lambda_{1}^{2 \alpha}\|\mathbf{u}\|_{\mathbb{H}}^{2} . \tag{4}
\end{equation*}
$$

Equation (61.26)

$$
\begin{align*}
& \left\|\mathbf{A}^{-1 / 2} \mathbf{B}(\mathbf{u}, \mathbf{v})\right\|_{\mathbb{H}} \leqslant c_{5}\|\mathbf{u}\|_{\mathbb{H}}^{1 / 4}\left\|\mathbf{A}^{1 / 2} \mathbf{u}\right\|_{\mathbb{H}}^{3 / 4}\|\mathbf{v}\|_{\mathbb{H}}^{1 / 4}\left\|\mathbf{A}^{1 / 2} \mathbf{v}\right\|_{\mathbb{H}}^{3 / 4} \\
& \leqslant c_{5} \lambda_{1}^{-1 / 4}\left\|\mathbf{A}^{1 / 2} \mathbf{u}\right\|_{\mathbb{H}}\left\|\mathbf{A}^{1 / 2} \mathbf{v}\right\|_{\mathbb{H}} \leqslant c \lambda_{1}^{-1 / 4}\left\|\mathbf{A}^{1 / 2} \mathbf{u}\right\|_{\mathbb{H}}\left\|\mathbf{A}^{1 / 2} \mathbf{v}\right\|_{\mathbb{H}}, \tag{5}\\
& \Rightarrow\left\|\mathbf{A}^{-1 / 2} \mathbf{B}(\mathbf{u}, \mathbf{u})\right\|_{\mathbb{H}} \leqslant c \lambda_{1}^{-1 / 4}\|\mathbf{u}\|_{\mathbb{V}}^{2} .
\end{align*}
$$

We can use equation (61.21):

$$
\|\mathbf{B}(\mathbf{u}, \mathbf{v})\|_{\mathbb{H}} \leqslant c_{1}\|\mathbf{A} \mathbf{u}\|_{\mathbb{H}}^{1 / 4}\left\|\mathbf{A}^{1 / 2} \mathbf{u}\right\|_{\mathbb{H}}^{3 / 4}\|\mathbf{A} \mathbf{v}\|_{\mathbb{H}}^{1 / 4}\left\|\mathbf{A}^{1 / 2} \mathbf{v}\right\|_{\mathbb{H}}^{3 / 4}
$$

and the fact that $\lambda_{1}^{-3 / 4} \leq \lambda_{1}^{-1 / 4}$, along with equation (61.8) to get that:

$$
\left|\langle\mathbf{B}(\mathbf{u}, \mathbf{v}), \mathbf{w}\rangle_{\mathbb{V}}\right|=\left|\langle\mathbf{B}(\mathbf{u}, \mathbf{v}), \mathbf{A} \mathbf{w}\rangle_{\mathbb{H}}\right|
$$

$$
\begin{align*}
& \leqslant c_{1}\left\|\mathbf{A}^{1 / 2} \mathbf{u}\right\|_{\mathbb{H}}^{3 / 4}\|\mathbf{A} \mathbf{u}\|_{\mathbb{H}}^{1 / 4}\left\|\mathbf{A}^{1 / 2} \mathbf{v}\right\|_{\mathbb{H}}^{3 / 4}\|\mathbf{A} \mathbf{v}\|_{\mathbb{H}}^{1 / 4}\|\mathbf{A} \mathbf{w}\|_{\mathbb{H}} \tag{6}\\
& \leqslant c_{1} \lambda_{1}^{-3 / 4}\|\mathbf{A} \mathbf{u}\|_{\mathbb{H}}\|\mathbf{A} \mathbf{v}\|_{\mathbb{H}}\|\mathbf{A} \mathbf{w}\|_{\mathbb{H}} \leqslant c \lambda_{1}^{-1 / 4}\|\mathbf{A} \mathbf{u}\|_{\mathbb{H}}\|\mathbf{A} \mathbf{v}\|_{\mathbb{H}}\|\mathbf{A} \mathbf{w}\|_{\mathbb{H}} .
\end{align*}
$$

Using the fact that

$$
\begin{align*}
& \langle[\mathbf{B}(\mathbf{u}, \mathbf{u})-\mathbf{B}(\mathbf{v}, \mathbf{v})], \mathbf{u}-\mathbf{v}\rangle_{\mathbb{V}} \tag{7}\\
& \quad=\frac{1}{2}\langle[\mathbf{B}(\mathbf{u}-\mathbf{v}, \mathbf{u})+\mathbf{B}(\mathbf{u}-\mathbf{v}, \mathbf{v})], \mathbf{A}(\mathbf{u}-\mathbf{v})\rangle_{\mathbb{H}}
\end{align*}
$$

we have from equation (6) that:

$$
\begin{aligned}
& \langle[\mathbf{B}(\mathbf{u}, \mathbf{u})-\mathbf{B}(\mathbf{v}, \mathbf{v})], \mathbf{u}-\mathbf{v}\rangle_{\mathbb{V}} \\
& \quad \leqslant c \lambda_{1}^{-1 / 4}\|\mathbf{A}(\mathbf{u}-\mathbf{v})\|_{\mathbb{H}}^{2}\left\{\|\mathbf{A} \mathbf{u}\|_{\mathbb{H}}+\|\mathbf{A} \mathbf{v}\|_{\mathbb{H}}\right\} .
\end{aligned}
$$

Definition 1. We say that the operator $\mathbf{J}(\cdot, t)$ is (for each t)
(1) O-Dissipative if $\langle\mathbf{J}(\mathbf{u}, t), \mathbf{u}\rangle_{\mathbb{V}} \leq 0$.

SUFFICIENCY CLASS FOR GLOBAL (IN TIME) SOLUTIONS TO THE 3D-NAVIER-STOKES EQUATIONS IN \mathbb{B}
(2) Dissipative if $\langle\mathbf{J}(\mathbf{u}, t)-\mathbf{J}(\mathbf{v}, t), \mathbf{u}-\mathbf{v}\rangle_{\mathbb{V}} \leq 0$.
(3) Strongly dissipative if there exists a constant $\alpha>0$ such that

$$
\langle\mathbf{J}(\mathbf{u}, t)-\mathbf{J}(\mathbf{v}, t), \mathbf{u}-\mathbf{v}\rangle_{\mathbb{V}} \leq-\alpha\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}
$$

Theorem 2 below is essentially due to Browder [B], see Zeidler [Z, Corollary 32.27, page 868 and Corollary 32.35, page 887], while Theorem 3 is from Miyadera [M, p. 185, Theorem 6.20], and is a modification of the Crandall-Liggett Theorem [CL] (see the appendix to the first section of [CL]) .

Theorem 2. Let $\mathbb{B}[\Omega]$ be a closed, bounded, convex subset of $\mathbb{V}[\Omega]$. If $\mathbf{J}(\cdot, t)$: $\mathbb{B}[\Omega] \rightarrow \mathbb{V}[\Omega]$ is closed and strongly dissipative for each fixed $t \geq 0$, then, for each $\mathbf{b} \in \mathbb{B}[\Omega]$, there is a $\mathbf{u} \in \mathbb{B}[\Omega]$ with $\mathbf{J}(\mathbf{u}, t)=\mathbf{b}$ (the range Ran $[\mathbf{J}(\cdot, t)] \supset \mathbb{B}[\Omega])$.

Theorem 3. Let $\{\mathcal{A}(t), t \in I=[0, \infty)\}$ be a family of operators defined on $\mathbb{V}[\Omega]$ with domains $D(\mathcal{A}(t))=D$ independent of t. We assume that $\mathbb{D}=D \cap \mathbb{B}[\Omega]$ is a closed convex set (in an appropriate topology):
(1) The operator $\mathcal{A}(t)$ is the generator of a contraction semigroup for each $t \in I$.
(2) The function $\mathcal{A}(t) \mathbf{u}$ is continuous in both variables on $I \times \mathbb{D}$.

Then, for every $\mathbf{u}_{0} \in \mathbb{D}$, the problem $\partial_{t} \mathbf{u}(t, \mathbf{x})=\mathcal{A}(t) \mathbf{u}(t, \mathbf{x}), \mathbf{u}(0, \mathbf{x})=\mathbf{u}_{0}(\mathbf{x})$, has a unique solution $\mathbf{u}(t, \mathbf{x}) \in \mathbb{C}^{1}(I ; \mathbb{D})$.

M-Dissipative Conditions

We assume that $\mathbf{f}(t) \in L^{\infty}[[0, \infty) ; \mathbb{V}(\Omega)]$ and is Lipschitz continuous in t, with $\|\mathbf{f}(t)-\mathbf{f}(\tau)\|_{\mathbb{V}} \leq d|t-\tau|^{\theta}, d>0,0<\theta<1$. We can rewrite equation (3) in the
form:

$$
\begin{align*}
& \partial_{t} \mathbf{u}=\nu \mathbf{A} \mathbf{J}(\mathbf{u}, t) \text { in }(0, T) \times \Omega \\
& \mathbf{J}(\mathbf{u}, t)=-\mathbf{u}-\nu^{-1} \mathbf{A}^{-1} \mathbf{B}(\mathbf{u}, \mathbf{u})+\nu^{-1} \mathbf{A}^{-1} \mathbb{P} \mathbf{f}(t) \tag{9}
\end{align*}
$$

Approach

We begin with a study of the operator $\mathbf{J}(\cdot, t)$, for fixed t, and seek conditions depending on \mathbf{A}, ν, Ω and $\mathbf{f}(t)$ which guarantee that $\mathbf{J}(\cdot, t)$ is m-dissipative for each t. Clearly $\mathbf{J}(\cdot, t): D(\mathbf{A}) \xrightarrow{\text { onto }} D(\mathbf{A})$ and, since $\nu \mathbf{A}=\nu \mathbb{P}[-\Delta]$ is a closed positive (m-accretive) operator, so that $-\mathbf{A}$ generates a linear contraction semigroup, we expect that $\nu \mathbf{A} \mathbf{J}(\cdot, t)$ will be m-dissipative for each t.

Theorem 4. For $t \in I=[0, \infty)$ and, for each fixed $\mathbf{u}, \mathbf{J}(\mathbf{u}, t)$ is Lipschitz continuous, with $\|\mathbf{J}(\mathbf{u}, t)-\mathbf{J}(\mathbf{u}, \tau)\|_{\mathbb{V}} \leq d^{\prime}|t-\tau|^{\theta}$, where $d^{\prime}=d \nu^{-1}\left(\lambda_{1}\right)^{-1}$, d is the Lipschitz constant for the function $\mathbf{f}(t)$ and λ_{1} is the first eigenvalue of \mathbf{A}.

Proof. For fixed \mathbf{u},

$$
\begin{aligned}
& \|\mathbf{J}(\mathbf{u}, t)-\mathbf{J}(\mathbf{u}, \tau)\|_{\mathbb{V}}=\nu^{-1}\left\|\mathbf{A}^{-1}[\mathbb{P} \mathbf{f}(t)-\mathbb{P} \mathbf{f}(\tau)]\right\|_{\mathbb{V}} \\
& \quad \leq d \nu^{-1}\left(\lambda_{1}\right)^{-1}|t-\tau|^{\theta}=d^{\prime}|t-\tau|^{\theta}
\end{aligned}
$$

We have used the fact that \mathbf{A} is unbounded, and every function $\mathbf{h}(t) \in \mathbb{V}(\Omega)$ has an expansion in terms of the eigenfunctions of \mathbf{A}, so that $\mathbf{A}^{-1} \mathbf{h}(t)=$ $\sum_{k=1}^{\infty} \lambda_{k}^{-1} h_{k}(t) \mathbf{e}^{k}(\mathbf{x})$, and, from here, it is easy to see that $\left\|\mathbf{A}^{-1} \mathbf{h}(t)\right\|_{\mathbb{V}} \leq$ $\lambda_{1}^{-1}\|\mathbf{h}(t)\|_{\mathbb{V}}$. (It is well known that the eigenvalues of \mathbf{A} are positive and increasing (see Temam [T2]).)

Theorem 5. Let $f=\sup _{t \in \mathbf{R}^{+}}\|\mathbb{P} \mathbf{f}(t)\|_{\mathbb{H}}<\infty$, then there exists a positive constant \mathbf{u}_{+}, depending only on f, \mathbf{A}, ν and Ω, such that for all \mathbf{u}, with $\|\mathbf{u}\|_{\mathbb{V}} \leq \mathbf{u}_{+}, \mathbf{J}(\cdot, t)$ is strongly dissipative.

Proof. The proof of our first assertion has two parts. First, we require that the nonlinear operator $\mathbf{J}(\cdot, t)$ be 0-dissipative, which gives us an upper bound \mathbf{u}_{+}, in terms of the norm (e.g., $\|\mathbf{u}\|_{\mathbb{V}} \leqslant \mathbf{u}_{+}$). We then use this part to show that $\mathbf{J}(\cdot, t)$ is strongly dissipative on the closed ball, $\mathbb{B}=\left\{\mathbf{u} \in \mathbb{V}(\Omega):\|\mathbf{u}\|_{\mathbb{V}} \leqslant \mathbf{u}_{+}\right\}$.

Part 1) From equation (7), we have

$$
\begin{aligned}
& \langle\mathbf{J}(\mathbf{u}, t), \mathbf{u}\rangle_{\mathbb{V}}=-\langle\mathbf{u}, \mathbf{u}\rangle_{\mathbb{V}}-\nu^{-1}\left\langle\mathbf{A}^{-1} \mathbf{B}(\mathbf{u}, \mathbf{u})+\mathbf{A}^{-1} \mathbb{P} \mathbf{f}(t), \mathbf{u}\right\rangle_{\mathbb{V}} \\
& \leqslant-\|\mathbf{u}\|_{\mathbb{V}}^{2}+\nu^{-1}\left\|\mathbf{A}^{-1} \mathbf{B}(\mathbf{u}, \mathbf{u})\right\|_{\mathbb{V}}\|\mathbf{u}\|_{\mathbb{V}}+\nu^{-1}\left\|\mathbf{A}^{-1} \mathbb{P} \mathbf{f}(t)\right\|_{\mathbb{V}}\|\mathbf{u}\|_{\mathbb{V}} \\
& \quad=-\|\mathbf{u}\|_{\mathbb{V}}^{2}+\nu^{-1}\left\|\mathbf{A}^{-1 / 2} \mathbf{B}(\mathbf{u}, \mathbf{u})\right\|_{\mathbb{H}}\|\mathbf{u}\|_{\mathbb{V}}+\nu^{-1}\left\|\mathbf{A}^{-1 / 2} \mathbb{P} \mathbf{f}(t)\right\|_{\mathbb{H}}\|\mathbf{u}\|_{\mathbb{V}}
\end{aligned}
$$

Using $\left\|\mathbf{A}^{-1 / 2} \mathbf{B}(\mathbf{u}, \mathbf{u})\right\|_{\mathbb{H}} \leqslant c \lambda_{1}^{-1 / 4}\left\|\mathbf{A}^{1 / 2} \mathbf{u}\right\|_{\mathbb{H}}^{2}$ and $\left\|\mathbf{A}^{-1 / 2} \mathbb{P} \mathbf{f}(t)\right\|_{\mathbb{H}} \leqslant \lambda_{1}^{-1 / 2} f$, we have that

$$
\begin{aligned}
& \langle\mathbf{J}(\mathbf{u}, t), \mathbf{u}\rangle_{\mathbb{V}} \leqslant-\|\mathbf{u}\|_{\mathbb{V}}^{2}+\nu^{-1} c \lambda_{1}^{-1 / 4}\|\mathbf{u}\|_{\mathbb{V}}^{2}\|\mathbf{u}\|_{\mathbb{V}}+\nu^{-1} \lambda_{1}^{-1 / 2} f\|\mathbf{u}\|_{\mathbb{V}} \\
& =-\|\mathbf{u}\|_{\mathbb{V}}^{2}+\nu^{-1} c \lambda_{1}^{-1 / 4}\|\mathbf{u}\|_{\mathbb{V}}^{3}+\nu^{-1} \lambda_{1}^{-1 / 2} f\|\mathbf{u}\|_{\mathbb{V}} \leqslant 0 \\
& \Rightarrow \\
& \|\mathbf{u}\|_{\mathbb{V}}\left\{\nu^{-1} c \lambda_{1}^{-1 / 4}\|\mathbf{u}\|_{\mathbb{V}}^{2}-\|\mathbf{u}\|_{\mathbb{V}}+\nu^{-1} \lambda_{1}^{-1 / 2} f\right\} \leqslant 0
\end{aligned}
$$

Since $\|\mathbf{u}\|_{\mathbb{V}}>0$, we can solve to get that:

$$
\mathbf{u}_{ \pm}=\frac{1}{2} \nu \lambda_{1}^{1 / 4} c^{-1}\left\{1 \pm \sqrt{1-\left[4 c f / \lambda_{1}^{3 / 4} \nu^{2}\right]}\right\}=\frac{1}{2} \nu \lambda_{1}^{1 / 4} c^{-1}\{1 \pm \sqrt{1-\gamma}\}
$$

Since we want real distinct solutions, we must require that

$$
\gamma=4 c f / \lambda_{1}^{3 / 4} \nu^{2}<1 \Rightarrow \lambda_{1}^{3 / 4} \nu^{2}>4 c f \Rightarrow \nu>2 \lambda_{1}^{-3 / 8}(c f)^{1 / 2}
$$

It follows that if $\mathbb{P} \mathbf{f} \neq \mathbf{0}$, then $\mathbf{u}_{-}<\mathbf{u}_{+}$, and our requirement that \mathbf{J} is 0-dissipative implies that

$$
\|\mathbf{u}\|_{\mathbb{V}}-\mathbf{u}_{+} \leqslant 0, \quad\|\mathbf{u}\|_{\mathbb{V}}-\mathbf{u}_{-} \geqslant 0
$$

This means that, whenever $\mathbf{u}_{-} \leqslant\|\mathbf{u}\|_{\mathbb{V}} \leqslant \mathbf{u}_{+},\langle\mathbf{J}(\mathbf{u}, t), \mathbf{u}\rangle_{\mathbb{V}} \leqslant 0$. (It is clear that when $\mathbb{P} \mathbf{f}(t)=\mathbf{0}, \mathbf{u}_{-}=\mathbf{0}$, and $\mathbf{u}_{+}=\nu \lambda_{1}^{1 / 4} c^{-1}$.)

Part 2): Now, for any $\mathbf{u}, \mathbf{v} \in \mathbb{V}(\Omega)$ with $\max \left(\|\mathbf{u}\|_{\mathbb{V}},\|\mathbf{v}\|_{\mathbb{V}}\right) \leq \mathbf{u}_{+}$, we have that

$$
\begin{aligned}
& \langle\mathbf{J}(\mathbf{u}, t)-\mathbf{J}(\mathbf{v}, t), \mathbf{u}-\mathbf{v}\rangle_{\mathbb{V}}=-\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}+\frac{1}{2} \nu^{-1}\left\langle\mathbf{A}^{-1}\{\mathbf{B}[(\mathbf{u}-\mathbf{v}), \mathbf{u}]+\mathbf{B}[(\mathbf{u}-\mathbf{v}), \mathbf{v}]\},(\mathbf{u}-\mathbf{v})\right\rangle_{\mathbb{V}} \\
& \leqslant-\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}+\frac{1}{2} \nu^{-1}\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}\left(\left\|\mathbf{A}^{-1} \mathbf{B}[(\mathbf{u}-\mathbf{v}), \mathbf{u}]\right\|_{\mathbb{V}}+\left\|\mathbf{A}^{-1} \mathbf{B}[(\mathbf{u}-\mathbf{v}), \mathbf{v}]\right\|_{\mathbb{V}}\right) \\
& \leqslant-\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}+\frac{1}{2} c\left(\nu \lambda_{1}^{1 / 4}\right)^{-1}\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}\left(\|\mathbf{u}\|_{\mathbb{V}}+\|\mathbf{v}\|_{\mathbb{V}}\right) \\
& \leqslant-\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}+c\left(\nu \lambda_{1}^{1 / 4}\right)^{-1}\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}\left(\mathbf{u}_{+}\right) \\
& \quad=-\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}+c\left(\nu \lambda_{1}^{1 / 4}\right)^{-1}\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}\left(\frac{1}{2} \nu \lambda_{1}^{1 / 4} c^{-1}\{1+\sqrt{1-\gamma}\}\right) \\
& \quad=-\frac{1}{2}\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}\{1-\sqrt{1-\gamma}\} \\
& =-\alpha\|\mathbf{u}-\mathbf{v}\|_{\mathbb{V}}^{2}, \alpha=\frac{1}{2}\{1-\sqrt{1-\gamma}\} .
\end{aligned}
$$

It follows that $\mathbf{J}(\mathbf{x}, t)$ is strongly dissipative.

Let $\mathbb{B}(\Omega)=\left\{\mathbf{u} \in \mathbb{V}(\Omega):\|\mathbf{u}\|_{\mathbb{V}} \leqslant \mathbf{u}_{+}\right\}, \mathbb{B}+(\Omega)=\left\{\mathbf{u} \in \mathbb{V}(\Omega):\left\|\mathbf{A}^{1 / 2} \mathbf{u}\right\|_{\mathbb{V}} \leqslant \mathbf{u}_{+}\right\}$ and $\mathbb{B}_{++}(\Omega)=\left\{\mathbf{u} \in \mathbb{V}(\Omega):\|\mathbf{A} \mathbf{u}\|_{\mathbb{V}} \leqslant \mathbf{u}_{+}\right\}$. We now show that $\operatorname{Ran}(I-\beta \nu \mathbf{A} \mathbf{J}) \supset$ $\mathbb{B}(\Omega), \beta>0$.

SUFFICIENCY CLASS FOR GLOBAL (IN TIME) SOLUTIONS TO THE 3D-NAVIER-STOKES EQUATIONS IN \mathbb{y}

Theorem 6. The operator $\mathcal{A}(t)=\nu \mathbf{A J}(\cdot, t)$ is closed, dissipative and jointly continuous in \mathbf{u} and t. Furthermore, for each $t \in \mathbf{R}^{+}$and $\beta>0$, $\operatorname{Ran}[I-\beta \mathcal{A}(t)] \supset \mathbb{B}[\Omega]$, so that $\mathcal{A}(t)$ is m-dissipative on \mathbb{B}_{++}.

Proof. Since $\mathbf{J}(\cdot, t)$ is strongly dissipative and closed on $\mathbb{V}[\Omega]$, it follows from Theorem 6 that $\operatorname{Ran}[\mathbf{J}(\cdot, t)] \supset \mathbb{B}[\Omega]$.

To show that $\mathcal{A}(t)=\nu \mathbf{A J}(\cdot, t)$ is dissipative, first note that for $\mathbf{u}, \mathbf{v} \in \mathbb{B}_{+}$, and using equation (8), we have

$$
\begin{aligned}
& \frac{1}{2}\left|\left\langle\mathbf{A}^{1 / 2} \mathbf{B}(\mathbf{u}-\mathbf{v}, \mathbf{v}), \mathbf{A}^{1 / 2}(\mathbf{u}-\mathbf{v})\right\rangle_{\mathbb{H}}+\left\langle\mathbf{A}^{1 / 2} \mathbf{B}(\mathbf{u}-\mathbf{v}, \mathbf{u}), \mathbf{A}^{1 / 2}(\mathbf{u}-\mathbf{v})\right\rangle_{\mathbb{H}}\right| \\
& \quad \leqslant \frac{1}{2} c \lambda_{1}^{-1 / 4}\|\mathbf{A}(\mathbf{u}-\mathbf{v})\|_{\mathbb{H}}^{2}\left(\|\mathbf{A} \mathbf{u}\|_{\mathbb{H}}+\|\mathbf{A} \mathbf{v}\|_{\mathbb{H}}\right) .
\end{aligned}
$$

Using this result, we have that

$$
\begin{aligned}
& \langle\mathcal{A}(t) \mathbf{u}-\mathcal{A}(t) \mathbf{v}, \mathbf{u}-\mathbf{v}\rangle_{\mathbb{V}}=-\nu\left\|\mathbf{A}^{1 / 2}(\mathbf{u}-\mathbf{v})\right\|_{\mathbb{V}}^{2} \\
& -\frac{1}{2}\left\langle\mathbf{A}^{1 / 2} \mathbf{B}(\mathbf{u}-\mathbf{v}, \mathbf{u})+\mathbf{A}^{1 / 2} \mathbf{B}(\mathbf{u}-\mathbf{v}, \mathbf{v}), \mathbf{A}^{1 / 2}(\mathbf{u}-\mathbf{v})\right\rangle_{\mathbb{H}} \\
& \leqslant-\nu\left\|\mathbf{A}^{1 / 2}(\mathbf{u}-\mathbf{v})\right\|_{\mathbb{V}}^{2}+\frac{1}{2} \lambda_{1}^{-1 / 4} c\|\mathbf{A}(\mathbf{u}-\mathbf{v})\|_{\mathbb{H}}^{2}\left(\|\mathbf{A} \mathbf{u}\|_{\mathbb{H}}+\|\mathbf{A} \mathbf{v}\|_{\mathbb{H}}\right) \\
& =\nu\left\|\mathbf{A}^{1 / 2}(\mathbf{u}-\mathbf{v})\right\|_{\mathbb{V}}^{2}\left[-1+\frac{1}{2} c \nu^{-1} \lambda_{1}^{-1 / 4}\left(\left\|\mathbf{A}^{1 / 2} \mathbf{u}\right\|_{\mathbb{V}}+\left\|\mathbf{A}^{1 / 2} \mathbf{v}\right\|_{\mathbb{V}}\right)\right] \\
& \leqslant \frac{1}{2} \nu\left\|\mathbf{A}^{1 / 2}(\mathbf{u}-\mathbf{v})\right\|_{\mathbb{V}}^{2}\left[-1+c \nu^{-1} \lambda_{1}^{-1 / 4} \mathbf{u}_{+}\right] \\
& \quad=\frac{1}{2} \nu\left\|\mathbf{A}^{1 / 2}(\mathbf{u}-\mathbf{v})\right\|_{\mathbb{V}}^{2}[-1+\sqrt{1-\gamma}]<0
\end{aligned}
$$

It follows that $\mathcal{A}(t)$ is dissipative. Since $-\mathbf{A}$ is m-dissipative for $\beta>0, \operatorname{Ran}(I+$ $\beta \mathbf{A})=\mathbb{V}(\Omega)$. As \mathbf{J} is strongly dissipative, closed, with $\operatorname{Ran}[\mathbf{J}] \supset \mathbb{B}[\Omega]$, and $\mathbf{J}(\cdot, t)$: $D(\mathbf{A}) \xrightarrow{\text { onto }} D(\mathbf{A}), \mathcal{A}(t)$ is maximal dissipative, and also closed, so that Ran $[I-$ $\beta \mathcal{A}(t)] \supset \mathbb{B}[\Omega]$. It follows that $\mathcal{A}(t)$ is m-dissipative on $\mathbb{B}_{+}[\Omega]$ for each $t \in \mathbf{R}^{+}$ (since $\mathbb{V}[\Omega]$ is a Hilbert space). To see that $\mathcal{A}(t) \mathbf{u}$ is continuous in both variables, let $\mathbf{u}_{n}, \mathbf{u} \in \mathbb{B}_{++},\left\|\mathbf{A} \mathbf{u}_{n}-\mathbf{A} \mathbf{u}\right\|_{\mathbb{V}} \rightarrow 0$, with $t_{n}, t \in I$ and $t_{n} \rightarrow t$. Then (see
equation (6))

$$
\begin{aligned}
& \left\|\mathcal{A}\left(t_{n}\right) \mathbf{u}_{n}-\mathcal{A}(t) \mathbf{u}\right\|_{\mathbb{V}} \leqslant\left\|\mathcal{A}\left(t_{n}\right) \mathbf{u}-\mathcal{A}(t) \mathbf{u}\right\|_{\mathbb{V}}+\left\|\mathcal{A}\left(t_{n}\right) \mathbf{u}_{n}-\mathcal{A}\left(t_{n}\right) \mathbf{u}\right\|_{\mathbb{V}} \\
& =\left\|\left[\mathbb{P} \mathbf{f}\left(t_{n}\right)-\mathbb{P}(t)\right]\right\|_{\mathbb{V}}+\left\|\nu \mathbf{A}\left(\mathbf{u}_{n}-\mathbf{u}\right)-\frac{1}{2}\left[\mathbf{B}\left(\mathbf{u}_{n}-\mathbf{u}, \mathbf{u}\right)+\mathbf{B}\left(\mathbf{u}_{n}-\mathbf{u}, \mathbf{u}_{n}\right)\right]\right\|_{\mathbb{V}} \\
& \leqslant d\left|t_{n}-t\right|^{\theta}+\nu\|\mathbf{A}(\mathbf{u}-\mathbf{v})\|_{\mathbb{V}}+\frac{1}{2}\left\|\mathbf{A}^{1 / 2} \mathbf{B}\left(\mathbf{u}_{n}-\mathbf{u}, \mathbf{u}\right)+\mathbf{A}^{1 / 2} \mathbf{B}\left(\mathbf{u}_{n}-\mathbf{u}, \mathbf{u}_{n}\right)\right\|_{\mathbb{H}} \\
& \leqslant d\left|t_{n}-t\right|^{\theta}+\nu\left\|\mathbf{A}\left(\mathbf{u}_{n}-\mathbf{u}\right)\right\|_{\mathbb{V}}+\frac{1}{2}\left\|\mathbf{A}^{1 / 2}\left(\mathbf{u}_{n}-\mathbf{u}\right)\right\|_{\mathbb{H}}^{1 / 4}\left\|\mathbf{A}\left(\mathbf{u}_{n}-\mathbf{u}\right)\right\|_{\mathbb{H}}^{3 / 4}\left[\|\mathbf{A} \mathbf{u}\|_{\mathbb{H}}+\left\|\mathbf{A} \mathbf{u}_{n}\right\|_{\mathbb{H}}\right] \\
& \leqslant d\left|t_{n}-t\right|^{\theta}+\nu\left\|\mathbf{A}\left(\mathbf{u}_{n}-\mathbf{u}\right)\right\|_{\mathbb{V}}+\left\|\mathbf{A}^{1 / 2}\left(\mathbf{u}_{n}-\mathbf{u}\right)\right\|_{\mathbb{H}}^{1 / 4}\left\|\mathbf{A}\left(\mathbf{u}_{n}-\mathbf{u}\right)\right\|_{\mathbb{H}}^{3 / 4} \mathbf{u}_{+} .
\end{aligned}
$$

It follows that $\mathcal{A}(t) \mathbf{u}$ is continuous in both variables.

Since $\mathbb{D}=\mathbb{B}_{++}$is the closure of $D\left(\mathbf{A}^{3 / 2}\right) \cap \mathbb{B}[\Omega]$ equipped with the restriction of the graph norm of $\mathbf{A}^{3 / 2}$ induced on $D\left(\mathbf{A}^{3 / 2}\right)$, it follows that \mathbb{D} is a closed, bounded, convex set. We now have:

Theorem 7. For each $T \in \mathbf{R}^{+}, t \in(0, T)$ and $\mathbf{u}_{0} \in \mathbb{D} \subset \mathbb{B}[\Omega]$, the global in time Navier-Stokes initial-value problem in $\Omega \subset \mathbb{R}^{3}$:

$$
\begin{aligned}
& \partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\nu \Delta \mathbf{u}+\nabla p=\mathbf{f}(t) \text { in }(0, T) \times \Omega \\
& \nabla \cdot \mathbf{u}=0 \text { in }(0, T) \times \Omega \\
& \mathbf{u}(t, \mathbf{x})=\mathbf{0} \text { on }(0, T) \times \partial \Omega \\
& \mathbf{u}(0, \mathbf{x})=\mathbf{u}_{0}(\mathbf{x}) \text { in } \Omega
\end{aligned}
$$

has a unique strong solution $\mathbf{u}(t, \mathbf{x})$, which is in $L_{\text {loc }}^{2}\left[[0, \infty) ; \mathbb{H}^{2}(\Omega)\right]$ and in $L_{l o c}^{\infty}[[0, \infty) ; \mathbb{V}(\Omega)] \cap \mathbb{C}^{1}[(0, \infty) ; \mathbb{V}(\Omega)]$.

Proof. Theorem 6 allows us to conclude that when $\mathbf{u}_{0} \in \mathbb{D}$, the initial value problem is solved and the solution $\mathbf{u}(t, \mathbf{x})$ is in $\mathbb{C}^{1}[(0, \infty) ; \mathbb{D}(\Omega)]$. Since $\mathbb{D} \subset \mathbb{H}^{2}[\Omega]$, it follows
that $\mathbf{u}(t, \mathbf{x})$ is also in $\mathbb{V}(\Omega)$, for each $t>0$. It is now clear that for any $T>0$,

$$
\int_{0}^{T}\|\mathbf{u}(t, \mathbf{x})\|_{\mathbb{H}[\Omega]}^{2} d t<\infty, \text { and } \sup _{0<t<T}\|\mathbf{u}(t, \mathbf{x})\|_{\mathbb{V}[\Omega]}^{2}<\infty
$$

This gives our conclusion.

DISCUSSION

It is clear from our results that the stationary problem also has a unique solution in $\mathbb{B}_{+}[\Omega]$. It is also known that, if $\mathbf{u}_{0} \in \mathbb{V}$ and $\mathbf{f}(t)$ is $L^{\infty}[(0, \infty), \mathbb{H}]$, then there is a time $T>0$ such that a weak solution with this data is uniquely determined on any subinterval of $[0, T)$ (see Sell and You, page 396, $[\mathrm{SY}]$). Thus, we also have that:

Corollary 8. For each $t \in \mathbf{R}^{+}$and $\mathbf{u}_{0} \in \mathbb{D}$ the Navier-Stokes initial-value problem in $\Omega \subset \mathbb{R}^{3}:$

$$
\begin{align*}
& \partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\nu \Delta \mathbf{u}+\nabla p=\mathbf{f}(t) \text { in }(0, T) \times \Omega \\
& \nabla \cdot \mathbf{u}=0 \text { in }(0, T) \times \Omega \tag{11}\\
& \mathbf{u}(t, \mathbf{x})=\mathbf{0} \text { on }(0, T) \times \partial \Omega \\
& \mathbf{u}(0, \mathbf{x})=\mathbf{u}_{0}(\mathbf{x}) \text { in } \Omega
\end{align*}
$$

has a unique weak solution $\mathbf{u}(t, \mathbf{x})$ which is in $L_{\text {loc }}^{2}\left[[0, \infty) ; \mathbb{H}^{2}(\Omega)\right]$ and in $L_{l o c}^{\infty}[[0, \infty) ; \mathbb{V}(\Omega)] \cap \mathbb{C}^{1}[(0, \infty) ; \mathbb{H}(\Omega)]$.

Since we require that our initial data be in $\mathbb{H}^{3 / 2}[\Omega]$, the conditions for the LerayHopf weak solutions are not satisfied. However, it was an open question as to whether these solutions developed singularities, even if $\mathbf{u}_{0} \in \mathbb{C}_{0}^{\infty}[\Omega]$ (see Giga [G], and references therein). The above Corollary shows that it suffices that $\mathbf{u}_{0}(\mathbf{x}) \in$ $\left.\mathbb{H}^{2}(\Omega)\right]$ to insure that the solutions develop no singularities.

Acknowledgements. Our interest in this problem was stimulated during a joint research project with Professor George Sell which began in 1989. Over the last eighteen years, we have benefited from his friendship, generous sharing of knowledge, encouragement and (constructive) criticism.

References

[B] F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., Vol. 18 part II, Amer. Math. Soc., Providence, RI, 1970.
[CF] P. Constaintin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, ILL, 1988.
[CL] M. Crandall and T. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-293.
[GA] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, 2nd Edition, Vol. II, Springer Tracts in Natural Philosophy, Vol. 39 Springer, New York, 1997.
[G] Y. Giga, Solutions for semilinear parabolic equations in L_{p} and regularity of weak solutions of the Navier-Stokes system, J. Diff. Eq. 62 (1986), 186-212.
[M] I. Miyadera, Nonlinear semigroups, Translations of Mathematical Monographs, Vol. 109, Amer. Math. Soc., Providence, RI, 1977.
[P] A. Pazy, Semigroups of linear operators and applications partial differential equations, Applied Mathematical Sciences Vol. 44, Springer, New York, 1983.
[SY] G. R. Sell and Y. You, Dynamics of evolutionary equations, Applied Mathematical Sciences, Vol. 143, Springer, New York, 2002.
[S] E. M. Stein, Singular integrals and differentiabllity properties of functions, Princeton University Press, Princeton, NJ, 1970.

SUFFICIENCY CLASS FOR GLOBAL (IN TIME) SOLUTIONS TO THE 3D-NAVIER-STOKES EQUATIONS IN 18
[T1] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, AMS Chelsea Pub., Providence, RI, 2001.
[T2] R. Temam, Infinite dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, Vol. 68, Springer, New York, 1988.
[vW] W. von Wahl, The equations of Navier-Stokes and abstract parabolic equations, F. Vieweg und Sohn, Braunschweig, 1985.
[Z] E. Zeidler, Nonlinear functional analysis and its applications, Vol. IIB, Springer, New York, 1985.
(Tepper L. Gill) Department of Electrical Engineering, Howard University, WashingTON DC 20059, USA, E-mail : tgill@howard.edu
(Woodford W. Zachary) Department of Electrical Engineering, Howard University, Washington DC 20059, USA, E-mail : wwzachary@earthlink.net

