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Abstract. Let Ω be an open domain of class C3 contained in R3, let (L2[Ω])3

be the real Hilbert space of square integrable functions on Ω with values in R3,

and let D[Ω] =
˘
u ∈ (C∞0 [Ω])3 | ∇ · u = 0

¯
. Let H[Ω] be the completion of D

with respect to the inner product of (L2[Ω])3 and let V[Ω] be the completion

of D[Ω] with respect to the inner product of H1[Ω], the functions in H[Ω]

with weak derivatives in (L2[Ω])3. A well-known unsolved problem is the

construction of a sufficient class of functions in H[Ω] (respectively V[Ω]), which

will allow global, in time, strong solutions to the three-dimensional Navier-

Stokes equations. These equations describe the time evolution of the fluid

velocity and pressure of an incompressible viscous homogeneous Newtonian

fluid in terms of a given initial velocity and given external body forces. In

this paper, we prove that, under appropriate conditions, there exists a number

u+, depending only on the domain, the viscosity, the body forces and the

eigenvalues of the Stokes operator, such that, for all functions in a dense set

D contained in the closed ball B(Ω) of radius u+ in V[Ω], the Navier-Stokes

equations have unique strong solutions in C1 ((0,∞), V[Ω]).

Introduction

Let Ω be an open domain of class C3 contained in R3, let (L2[Ω])3 be the real

Hilbert space of square integrable functions on Ω with values in R3, let D[Ω] be
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{u ∈ (C∞0 [Ω])3 | ∇ · u = 0}, let H[Ω] be the completion of D[Ω] with respect

to the inner product of (L2[Ω])3, and let V[Ω] be the completion of D[Ω] with

respect to the inner product of H1[Ω], the functions in H[Ω] with weak derivatives

in (L2[Ω])3. The global in time classical Navier-Stokes initial-value problem (for

Ω ⊂ R3, and all T > 0) is to find functions u : [0, T ]×Ω → R3, and p : [0, T ]×Ω →

R, such that

∂tu + (u · ∇)u− ν∆u +∇p = f(t) in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω,

u(t,x) = 0 on (0, T )× ∂Ω (in the distributional sense),

u(0,x) = u0(x) in Ω.

(1)

The equations describe the time evolution of the fluid velocity u(x, t) and the

pressure p of an incompressible viscous homogeneous Newtonian fluid with constant

viscosity coefficient ν in terms of a given initial velocity u0(x) and given external

body forces f(x, t).

Purpose

Let P be the (Leray) orthogonal projection of (L2[Ω])3 onto H[Ω] and define

the Stokes operator by: Au =: −P∆u, for u ∈ D(A) ⊂ H2[Ω], the domain of A.

The purpose of this paper is to prove that there exists a number u+, depending

only on A, f , ν and Ω, such that, for all functions in D = D(A3/2) ∩ B(Ω), where

D(A3/2) is the domain of A3/2 and B(Ω) is the closed ball of radius u+ in V(Ω),

the Navier-Stokes equations have unique strong solutions in u ∈ L∞loc[[0,∞); V(Ω)]∩

C1[(0,∞); V(Ω)]. We discuss this problem in H(Ω)], in another paper.
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Preliminaries

In terms of notation and conventions, we follow Sell and You [SY]. In order to

simplify our proofs, we always assume that all functions u,v are in D(A3/2) and

we let c = max{ci}, where ci is one of nine positive constants that appear on pages

363-367 in [SY]. It will also be convenient to use the fact that the norms of V[Ω]

and V[Ω]−1 are equivalent to their respective graph norms relative to H[Ω]. It is

known that A is a positive linear operator with compact resolvent. It follows that

the fractional powers A1/2 and A−1/2 are well defined. Moreover, it is also known

(cf. [SY], [T1]) that the norms
∥∥A1/2u

∥∥
H[Ω]

and
∥∥A−1/2u

∥∥
H[Ω]

are equivalent to

the corresponding norms induced by the Sobolev space (H1[Ω])3, so that:

(2) ‖u‖V[Ω] ≡
∥∥∥A1/2u

∥∥∥
H[Ω]

and ‖u‖V[Ω]−1 ≡
∥∥∥A−1/2u

∥∥∥
H[Ω]

.

In addition, it is known that A is an isomorphism from D(A) onto−−−→ H[Ω], and

from V[Ω] onto−−−→ V[Ω]−1. Furthermore, the embeddings V[Ω] → H[Ω] → V[Ω]−1 are

compact and the operator A−1 is a bounded compact map from H[Ω] onto D(A).

Applying the Leray projection to equation (1), with B(u,u) = P(u · ∇)u, we can

recast equation (1) in the standard form:

∂tu = −νAu−B(u,u) + Pf(t) in (0, T )× Ω,

u(t,x) = 0 on (0, T )× ∂Ω,

u(0,x) = u0(x) in Ω,

(3)

where we have used the fact that the orthogonal complement of H[Ω] relative to

(L2[Ω])3 is {v : v = ∇q, q ∈ (H1[Ω])3} to eliminate the pressure term (see Galdi

[GA] or [SY, T1]).
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We will use the following inequalities from [SY], pages 363-367. (We use their

numbering for easy reference.) Equation (61.8)

‖Aαu‖2H > λ2α
1 ‖u‖2H .(4)

Equation (61.26)∥∥∥A−1/2B(u,v)
∥∥∥

H
6 c5 ‖u‖1/4

H

∥∥∥A1/2u
∥∥∥3/4

H
‖v‖1/4

H

∥∥∥A1/2v
∥∥∥3/4

H

6 c5λ
−1/4
1

∥∥∥A1/2u
∥∥∥

H

∥∥∥A1/2v
∥∥∥

H
6 cλ

−1/4
1

∥∥∥A1/2u
∥∥∥

H

∥∥∥A1/2v
∥∥∥

H
,

⇒
∥∥∥A−1/2B(u,u)

∥∥∥
H

6 cλ
−1/4
1 ‖u‖2V .

(5)

We can use equation (61.21):

‖B(u,v)‖H 6 c1 ‖Au‖1/4
H

∥∥∥A1/2u
∥∥∥3/4

H
‖Av‖1/4

H

∥∥∥A1/2v
∥∥∥3/4

H

and the fact that λ
−3/4
1 ≤ λ

−1/4
1 , along with equation (61.8) to get that:

|〈B(u,v),w〉V| = |〈B(u,v),Aw〉H|

6 c1

∥∥∥A1/2u
∥∥∥3/4

H
‖Au‖1/4

H

∥∥∥A1/2v
∥∥∥3/4

H
‖Av‖1/4

H ‖Aw‖H

6 c1λ
−3/4
1 ‖Au‖H ‖Av‖H ‖Aw‖H 6 cλ

−1/4
1 ‖Au‖H ‖Av‖H ‖Aw‖H .

(6)

Using the fact that

〈[B(u,u)−B(v,v)] ,u− v〉V

= 1
2 〈[B(u− v,u) + B(u− v,v)] ,A(u− v)〉H ,

(7)

we have from equation (6) that:

〈[B(u,u)−B(v,v)] ,u− v〉V

6 cλ
−1/4
1 ‖A(u− v)‖2H {‖Au‖H + ‖Av‖H} .

(8)

Definition 1. We say that the operator J(·, t) is (for each t)

(1) 0-Dissipative if 〈J(u, t),u〉V ≤ 0.
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(2) Dissipative if 〈J(u, t)− J(v, t),u− v〉V ≤ 0.

(3) Strongly dissipative if there exists a constant α > 0 such that

〈J(u, t)− J(v, t),u− v〉V ≤ −α ‖u− v‖2V .

Theorem 2 below is essentially due to Browder [B], see Zeidler [Z, Corollary

32.27, page 868 and Corollary 32.35, page 887], while Theorem 3 is from Miyadera

[M, p. 185, Theorem 6.20], and is a modification of the Crandall-Liggett Theorem

[CL] (see the appendix to the first section of [CL]) .

Theorem 2. Let B[Ω] be a closed, bounded, convex subset of V[Ω]. If J(·, t) :

B[Ω] → V[Ω] is closed and strongly dissipative for each fixed t ≥ 0, then, for each

b ∈ B[Ω], there is a u ∈ B[Ω] with J(u, t) = b ( the range Ran[J(·, t)] ⊃ B[Ω]).

Theorem 3. Let { A(t), t ∈ I = [0,∞)} be a family of operators defined on V[Ω]

with domains D(A(t)) = D independent of t. We assume that D = D ∩ B[Ω] is a

closed convex set (in an appropriate topology):

(1) The operator A(t) is the generator of a contraction semigroup for each

t ∈ I.

(2) The function A(t)u is continuous in both variables on I × D.

Then, for every u0 ∈ D, the problem ∂tu(t,x) = A(t)u(t,x), u(0,x) = u0(x), has

a unique solution u(t,x) ∈ C1(I; D).

M-Dissipative Conditions

We assume that f(t) ∈ L∞[[0,∞); V(Ω)] and is Lipschitz continuous in t, with

‖f(t)− f(τ)‖V ≤ d |t− τ |θ , d > 0, 0 < θ < 1. We can rewrite equation (3) in the
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form:

∂tu = νAJ(u, t) in (0, T )× Ω,

J(u, t) = −u− ν−1A−1B(u,u) + ν−1A−1Pf(t).

(9)

Approach

We begin with a study of the operator J(·, t), for fixed t, and seek conditions

depending on A, ν, Ω and f(t) which guarantee that J(·, t) is m-dissipative for each

t. Clearly J(·, t) : D(A) onto−−−→ D(A) and, since νA = νP[−∆] is a closed positive

(m-accretive) operator, so that −A generates a linear contraction semigroup, we

expect that νAJ(·, t) will be m-dissipative for each t.

Theorem 4. For t ∈ I = [0,∞) and, for each fixed u, J(u, t) is Lipschitz con-

tinuous, with ‖J(u, t)− J(u, τ)‖V ≤ d′ |t− τ |θ, where d′ = dν−1(λ1)−1, d is the

Lipschitz constant for the function f(t) and λ1 is the first eigenvalue of A.

Proof. For fixed u,

‖J(u, t)− J(u, τ)‖V = ν−1
∥∥A−1[Pf(t)− Pf(τ)]

∥∥
V

≤ dν−1(λ1)−1 |t− τ |θ = d′ |t− τ |θ .

We have used the fact that A is unbounded, and every function h(t) ∈ V(Ω)

has an expansion in terms of the eigenfunctions of A, so that A−1 h(t) =∑∞
k=1 λ−1

k hk(t)ek(x), and, from here, it is easy to see that
∥∥A−1 h(t)

∥∥
V ≤

λ−1
1 ‖ h(t)‖V. (It is well known that the eigenvalues of A are positive and increasing

(see Temam [T2]).) �
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Main Results

Theorem 5. Let f = supt∈R+ ‖Pf(t)‖H < ∞, then there exists a positive constant

u+, depending only on f , A, ν and Ω, such that for all u, with ‖u‖V ≤ u+, J(·, t)

is strongly dissipative.

Proof. The proof of our first assertion has two parts. First, we require that the

nonlinear operator J(·, t) be 0-dissipative, which gives us an upper bound u+, in

terms of the norm (e.g., ‖u‖V 6 u+ ). We then use this part to show that J(·, t) is

strongly dissipative on the closed ball, B = {u ∈ V(Ω) : ‖u‖V 6 u+}.

Part 1) From equation (7), we have

〈J(u, t),u〉V = −〈u,u〉V − ν−1
〈
A−1B(u,u) + A−1Pf(t),u

〉
V

6 −‖u‖2V + ν−1
∥∥A−1B(u,u)

∥∥
V ‖u‖V + ν−1

∥∥A−1Pf(t)
∥∥

V ‖u‖V

= −‖u‖2V + ν−1
∥∥∥A−1/2B(u,u)

∥∥∥
H
‖u‖V + ν−1

∥∥∥A−1/2Pf(t)
∥∥∥

H
‖u‖V

Using
∥∥A−1/2B(u,u)

∥∥
H 6 cλ

−1/4
1

∥∥A1/2u
∥∥2

H and
∥∥A−1/2Pf(t)

∥∥
H 6 λ

−1/2
1 f, we

have that

〈J(u, t),u〉V 6 −‖u‖2V + ν−1cλ
−1/4
1 ‖u‖2V ‖u‖V + ν−1λ

−1/2
1 f ‖u‖V

= −‖u‖2V + ν−1cλ
−1/4
1 ‖u‖3V + ν−1λ

−1/2
1 f ‖u‖V 6 0

⇒

‖u‖V

{
ν−1cλ

−1/4
1 ‖u‖2V − ‖u‖V + ν−1λ

−1/2
1 f

}
6 0.

Since ‖u‖V > 0, we can solve to get that:

u± = 1
2νλ

1/4
1 c−1

{
1±

√
1− [4cf

/
λ

3/4
1 ν2]

}
= 1

2νλ
1/4
1 c−1

{
1±

√
1− γ

}
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Since we want real distinct solutions, we must require that

γ = 4cf
/

λ
3/4
1 ν2 < 1 ⇒ λ

3/4
1 ν2 > 4cf ⇒ ν > 2λ

−3/8
1 (cf)1/2.

It follows that if Pf 6= 0, then u− < u+, and our requirement that J is 0-dissipative

implies that

‖u‖V − u+ 6 0, ‖u‖V − u− > 0.

This means that, whenever u− 6 ‖u‖V 6 u+, 〈J(u, t),u〉V 6 0. (It is clear that

when Pf(t) = 0, u− = 0, and u+ = νλ
1/4
1 c−1.)

Part 2): Now, for any u,v ∈ V(Ω) with max( ‖u‖V , ‖v‖V) ≤ u+, we have that

〈J(u, t)− J(v, t),u− v〉V = −‖u− v‖2V + 1
2ν−1

〈
A−1 {B[(u− v),u] + B[(u− v),v]} , (u− v)

〉
V

6 −‖u− v‖2V + 1
2ν−1 ‖u− v‖V (

∥∥A−1B[(u− v),u]
∥∥

V +
∥∥A−1B[(u− v),v]

∥∥
V)

6 −‖u− v‖2V + 1
2c(νλ

1/4
1 )−1 ‖u− v‖2V (‖u‖V + ‖v‖V)

6 −‖u− v‖2V + c(νλ
1/4
1 )−1 ‖u− v‖2V (u+)

= −‖u− v‖2V + c(νλ
1/4
1 )−1 ‖u− v‖2V

(
1
2νλ

1/4
1 c−1

{
1 +

√
1− γ

})
= − 1

2 ‖u− v‖2V
{

1−
√

1− γ
}

= −α ‖u− v‖2V , α = 1
2

{
1−

√
1− γ

}
.

It follows that J(x, t) is strongly dissipative. �

Let B(Ω) = {u ∈ V(Ω) : ‖u‖V 6 u+} , B + (Ω) =
{
u ∈ V(Ω) :

∥∥A1/2u
∥∥

V 6 u+

}
and B + + (Ω) = {u ∈ V(Ω) : ‖Au‖V 6 u+}. We now show that Ran(I−βνAJ) ⊃

B(Ω), β > 0.
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Theorem 6. The operator A(t) = νAJ(·, t) is closed, dissipative and jointly contin-

uous in u and t. Furthermore, for each t ∈ R+ and β > 0, Ran[I −βA(t)] ⊃ B[Ω],

so that A(t) is m-dissipative on B++.

Proof. Since J(·, t) is strongly dissipative and closed on V[Ω], it follows from The-

orem 6 that Ran[J(·, t)] ⊃ B[Ω].

To show that A(t) = νAJ(·, t) is dissipative, first note that for u,v ∈ B+, and

using equation (8), we have

1
2

∣∣∣〈A1/2B(u− v,v),A1/2(u− v)
〉

H
+

〈
A1/2B(u− v,u),A1/2(u− v)

〉
H

∣∣∣
6 1

2cλ
−1/4
1 ‖A(u− v)‖2H (‖Au‖H + ‖Av‖H) .

Using this result, we have that

〈A(t)u−A(t)v,u− v〉V = −ν
∥∥∥A1/2(u− v)

∥∥∥2

V

− 1
2

〈
A1/2B(u− v,u) + A1/2B(u− v,v),A1/2(u− v)

〉
H

6 −ν
∥∥∥A1/2(u− v)

∥∥∥2

V
+ 1

2λ
−1/4
1 c ‖A(u− v)‖2H (‖Au‖H + ‖Av‖H)

= ν
∥∥∥A1/2(u− v)

∥∥∥2

V

[
−1 + 1

2cν−1λ
−1/4
1

(∥∥∥A1/2u
∥∥∥

V
+

∥∥∥A1/2v
∥∥∥

V

)]
6 1

2ν
∥∥∥A1/2(u− v)

∥∥∥2

V

[
−1 + cν−1λ

−1/4
1 u+

]
= 1

2ν
∥∥∥A1/2(u− v)

∥∥∥2

V

[
−1 +

√
1− γ

]
< 0.

It follows that A(t) is dissipative. Since −A is m-dissipative for β > 0, Ran(I +

βA) = V(Ω). As J is strongly dissipative, closed, with Ran[J] ⊃ B[Ω], and J(·, t) :

D(A) onto−−−→ D(A), A(t) is maximal dissipative, and also closed, so that Ran[I −

βA(t)] ⊃ B[Ω]. It follows that A(t) is m-dissipative on B+[Ω] for each t ∈ R+

(since V[Ω] is a Hilbert space). To see that A(t)u is continuous in both variables,

let un,u ∈ B++ , ‖Aun −Au‖V → 0 , with tn, t ∈ I and tn → t. Then (see
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equation (6))

‖A(tn)un −A(t)u‖V 6 ‖A(tn)u−A(t)u‖V + ‖A(tn)un −A(tn)u‖V

= ‖[Pf(tn)− Pf(t)]‖V +
∥∥νA(un − u)− 1

2 [B(un − u,u) + B(un − u,un)]
∥∥

V

6 d |tn − t|θ + ν ‖A(u− v)‖V + 1
2

∥∥∥A1/2B(un − u,u) + A1/2B(un − u,un)
∥∥∥

H

6 d |tn − t|θ + ν ‖A(un − u)‖V + 1
2

∥∥∥A1/2(un − u)
∥∥∥1/4

H
‖A(un − u)‖3/4H [‖Au‖H + ‖Aun‖H]

6 d |tn − t|θ + ν ‖A(un − u)‖V +
∥∥∥A1/2(un − u)

∥∥∥1/4

H
‖A(un − u)‖3/4H u+.

It follows that A(t)u is continuous in both variables. �

Since D = B++ is the closure of D(A3/2)∩B[Ω] equipped with the restriction of

the graph norm of A3/2 induced on D(A3/2), it follows that D is a closed, bounded,

convex set. We now have:

Theorem 7. For each T ∈ R+, t ∈ (0, T ) and u0 ∈ D ⊂ B[Ω], the global in time

Navier-Stokes initial-value problem in Ω ⊂ R3 :

∂tu + (u · ∇)u− ν∆u +∇p = f(t) in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω,

u(t,x) = 0 on (0, T )× ∂Ω,

u(0,x) = u0(x) in Ω.

(10)

has a unique strong solution u(t,x), which is in L2
loc[[0,∞); H2(Ω)] and in

L∞loc[[0,∞); V(Ω)] ∩ C1[(0,∞); V(Ω)].

Proof. Theorem 6 allows us to conclude that when u0 ∈ D, the initial value problem

is solved and the solution u(t,x) is in C1[(0,∞); D(Ω)]. Since D ⊂ H2[Ω], it follows
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that u(t,x) is also in V(Ω), for each t > 0. It is now clear that for any T > 0,

∫ T

0

‖u(t,x)‖2H[Ω] dt < ∞, and sup
0<t<T

‖u(t,x)‖2V[Ω] < ∞.

This gives our conclusion. �

Discussion

It is clear from our results that the stationary problem also has a unique solution

in B+[Ω]. It is also known that, if u0 ∈ V and f(t) is L∞[(0,∞), H], then there is a

time T > 0 such that a weak solution with this data is uniquely determined on any

subinterval of [0, T ) (see Sell and You, page 396, [SY]). Thus, we also have that:

Corollary 8. For each t ∈ R+ and u0 ∈ D the Navier-Stokes initial-value problem

in Ω ⊂ R3 :

∂tu + (u · ∇)u− ν∆u +∇p = f(t) in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω,

u(t,x) = 0 on (0, T )× ∂Ω,

u(0,x) = u0(x) in Ω.

(11)

has a unique weak solution u(t,x) which is in L2
loc[[0,∞); H2(Ω)] and in

L∞loc[[0,∞); V(Ω)] ∩ C1[(0,∞); H(Ω)].

Since we require that our initial data be in H3/2[Ω], the conditions for the Leray-

Hopf weak solutions are not satisfied. However, it was an open question as to

whether these solutions developed singularities, even if u0 ∈ C∞0 [Ω] (see Giga [G],

and references therein). The above Corollary shows that it suffices that u0(x) ∈

H2(Ω)] to insure that the solutions develop no singularities.
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