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Abstract

We consider the Navier-Stokes equations in the thin 3D domain T2 × (0, ε), where
T2 is a two-dimensional torus. The equation is perturbed by a non-degenerate random
kick-force. We establish that, firstly, when ε ¿ 1 the equation has a unique stationary
measure and, secondly, after averaging in the thin direction this measure converges (as
ε → 0) to a unique stationary measure for the Navier-Stokes equation on T2. Thus,
the 2D Navier-Stokes equations on surfaces describe asymptotic in time and limiting
in ε statistical properties of 3D solutions in thin 3D domains.
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1 Introduction

In this paper we study statistical properties of the Navier-Stokes equations (NSE) perturbed
by a random force in a thin three-dimensional domain. For the sake of definiteness and
for simplicity we consider the case of the free–periodic boundary conditions. Namely, let
Oε = T2×(0, ε), where T2 is the torus T2 = R2/(l1Z×l2Z) and ε ∈ (0, 1]. Let x = (x′, x3) =
(x1, x2, x3) ∈ Oε, and let

u(x) = (u1(x), u2(x), u3(x)), x ∈ Oε,

stands for a vector field on Oε. We consider the NSE in Oε:

∂tu− ν4u +
3∑

j=1

uj∂ju +∇p = f in Oε × (0, +∞), (1.1)

div u = 0 in Oε × (0, +∞) and
∫

Oε

ujdx = 0, j = 1, 2 , (1.2)

u(x, 0) = u0(x) in Oε . (1.3)
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For the second assumption in (1.2) to hold we assume that the force f satisfies the same
relation:

∫
Oε

fjdx = 0, j = 1, 2. The equations are supplemented with the following
boundary conditions:





x′ ∈ T2 (i.e., u is (l1, l2)-periodic with respect to (x1, x2) ),
and
u3|x3=ε = 0, ∂3uj |x3=ε = 0, j = 1, 2,

u3|x3=0 = 0, ∂3uj |x3=0 = 0, j = 1, 2.

(free boundary conditions in the thin direction)

(1.4)

The force f = fω(x, t) is assumed to be a bounded random kick-force:

f =
∞∑

k=0

ηε,ω
k (x)δkT (t) , (1.5)

where T > 0 is a fixed number, δkT (t) is the δ-function in t, concentrated at kT , and the
kicks ηε,ω

k , k ≥ 0, are independent identically distributed bounded random variables in Vε.
Here and below Vε is the space of divergence-free H1-smooth vector fields on Oε, satisfying
(1.2) and (1.4) (see Section 2.1 for the exact definition).

The random kick-forced 2D NSE and similar to them equations, perturbed by random
kick-forces or white in time forces, have been studied recently by many authors, see [8, 14, 2,
7, 13, 15, 16, 17] and references therein. Under suitable hypotheses, concerning the random
force, the existence of a unique stationary measure for the corresponding Markov process
has been established and properties of this measure have been studied. The results obtained
allow to study ergodic properties of this equation and make it possible to justify rigorously
basic hypotheses in the theory of 2D space-periodic turbulence (we refer to the survey in
[13] for details). However all these results deal with two-dimensional models only.

Our main goal in this paper is to extend some of results, available for the 2D case, to
the three-dimensional NSE, much more realistic from the applied point of view. By many
well-known reasons we cannot do it in full generality. Our main restriction is the so-called
“thin domain hypothesis” which allows us to profit from the recent developments in the
theory of PDE in thin domains.

The study of global existence of smooth solutions for the NSE in thin three-dimensional
domains began with the papers of Raugel and Sell [20, 21], who proved global existence
of strong solutions for large initial data and forcing terms in the case of periodic condi-
tions (PP) or mixed conditions (PD), i.e. periodic conditions in the vertical thin direction
and homogeneous Dirichlet conditions on the lateral boundary. After these publications a
number of papers by various authors followed, where the results for (PP) were sharpened
[10, 18, 19] and extended to the cases of Dirichlet [1], and other boundary conditions [22],
as well as to thin spherical domains [23] and thin two-layer domains [4]. See also [11] for
some improvements of all these results for the (PP), (PD) and even for free (FF) boundary
conditions. All these results deal with the force f which is L∞ in time.

In Section 5.1 we use the results from [22] to show that there exist a large set Bε of
admissible initial data u0 in Vε and a large class of admissible kicks ηε,ω

k for which problem
(1.1)–(1.5) possesses a global unique strong solution uω(x, t; u0, ε) for all ε small enough1.

Problem (1.1)–(1.5) is closely related to the 2D NSE on T2 (see, e.g., [11] or [22]). To
describe this relation, for any integrable vector-field u(x) we define its averaging in the thin

1We speak about “large” data in the sense, standard for the theory of the 3D NSE in a thin domain (see,
e.g., [20] or [22]). Namely, initial data u0 and kicks ηε,ω

k are admissible if for any C > 0 there exists ε0 > 0
such that

ε−1

Z

Oε

|∇u0|2 dx ≤ C and ε−1

Z

Oε

|∇ηε,ω
k |2 dx ≤ C for ε ≤ ε0 .

In particular, initial data and kicks with finite C1-norms are admissible.
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direction x3 by the formula

(Mεu)j(x) =
1
ε

∫ ε

0

uj(x′, η) dη, j = 1, 2, (Mεu)3(x) = 0 , (1.6)

where x = (x′, x3) ∈ Oε. The operator Mε defines an orthogonal projector in Vε. So

Vε = MεVε ⊕NεVε , where Nε = I −Mε . (1.7)

Since Mεu is an x3-independent vector function with trivial third component, then it may
be identified with a 2D vector-field on T2. Accordingly, we identify MεVε with the space

Ṽ =
{

u ∈ H1(T2;R2) : div u = 0,

∫

T2
u dx = 0

}
. (1.8)

Using the result from [22] (see Theorem 2.2 below for the exact statement) one can show
that if u0 and ηε,ω

k are admissible and Mεu0 → ṽ0, Mεη
ε,ω
k → ηω

k as ε → 0 for each k and ω,
then

Mεu
ω(x, t; u0, ε) → vω(x′, t) as ε → 0 .

Here uω(x, t; u0, ε) is a strong solution to (1.1)-(1.5) and vω is a solution for the 2D NSE:

∂tv − ν4′v +
2∑

j=1

vj∂jv +∇′p = f̃ in T2 × (0, +∞), (1.9)

div ′v = 0 in T2 × (0, +∞) ;
∫

T2
v(x′, t) dx′ = 0 , (1.10)

v(x′, 0) = ṽ0(x′) in T2 , (1.11)

where f̃ is the 2D kick-force
f̃ =

∑

k

ηω
k (x′) δkT (t) . (1.12)

Here and below the prime indicates that we regard the differential operator as an operator
with respect to the variable x′ = (x1, x2).

In this paper we are concerned with asymptotical in t statistical properties of solutions
for the 3D NSE (1.1)-(1.5) with initial data in the admissible set Bε and with their relations
to statistical properties of solutions for the corresponding 2D problem (1.9)-(1.12).

In our first main result (see Theorem 5.1 and Corollary 5.4) we assume that the kicks
satisfy some non-degeneracy conditions and the estimates 2

|Mεη
ε
k|Ṽ ≤ C(log ε−1)σ, |∇Nεη

ε
k|0,ε ≤ Cε−γ ,

where σ < 1
2 , γ < 1

2 and | · |0,ε is the L2-norm on Oε with respect to the normalised measure
ε−1dx. We prove that for any 0 ≤ τ ≤ T on the set Bε of admissible initial data there exists
a unique Borel measure µτ

ε which attracts exponentially fast distribution of all (admissible)
solutions for the 3D NSE (1.1)-(1.5), evaluated at time t = kT + τ , k → ∞. The measure
µτ

ε is called the stationary measure for the process k → u(·, kT + τ). This result is an 3D
analogy of the corresponding assertion for the 2D NSE.3 Its proof is based on application
of the abstract theorem from [15, 16] (theorem’s statement is given in Section 3). The main
difficulty in applying the theorem is to check that the flow-maps of the free 3D NSE possess

2Note that the second estimate means that the ‘non-2D component’ Nεηε
k(x) of a k-th kick is such that

its gradient may be as big as ε−γ , but the function itself is small and is bounded by ε · ε−γ = ε1−γ .
3The 2D result is first proved in [14], apart from the fact that the rate of convergence is exponential. The

exponential rate of convergence was established in [15, 16] and [17]. Detailed discussion and more references
see in [13].
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the ‘squeezing property’ with respect to a finite number of leading modes, see Theorem 4.2
below.

Theorem 5.1 means that any solution u(x, t) of the 3D NSE defines the exponentially
mixing processes

k → u(·, kT + τ) ∈ Vε, k = 0, 1, . . . ,

parameterized by τ ∈ [0, T ]. The mixing property implies that each solution u satisfies the
Strong Law of Large Numbers:

lim
N→∞

1
N

N−1∑

j=0

f
(
u(·, kT + τ)

)
=

∫
f(u)µτ

ε (du) a.s. ,

and

lim
t→∞

1
t

∫ t

0

f(u(·, s)) ds =
∫

f(u)〈µε〉(du) a.s. , 〈µε〉 =
1
T

∫ T

0

µτ
ε dτ .

Here f is a locally Lipschitz functional on Vε (or on a higher order Sobolev space if the kicks
are sufficiently smooth). The second convergence follows from the first one. Concerning the
first convergence we note that it follows from Theorem 5.1 by exactly the same argument
as in [13], Section 8.

Thus, for flows in a 3D domains Oε, stirred by a non-degenerate kick-force (1.5), our re-
sults justify two basic hypothesis of the statistical hydrodynamics: firstly, statistical proper-
ties of any flow u(t, x) fast approach a unique statistical equilibrium, described by a station-
ary measure, secondly, time-averages of observable quantities coincide with their averages
in ensemble. In particular, the correlation tensor of any flow converges to the correlation
tensor of the stationary measure:

E
(
ui(x, kT + τ)uj(y, kT + τ)

) →
∫

Bε

(
ui(x)uj(y)

)
µτ

ε (du) as k →∞ ,

for any τ ∈ [0, T ], i, j ∈ {1, 2, 3}, x, y ∈ Oε ,

(1.13)

and to calculate the correlation tensor of the measure one can replace the average in ensemble
by average in time.

We also note that the mixing, established in Theorem 5.1, implies that for any functional
f as above the processes N 3 k 7→ f(u(·, kT + τ)) and R 3 t 7→ f(u(·, t)) satisfy the Central
Limit Theorem, cf. [13], Section 9. This result justifies for the 3D flows which we consider
the well known property of the 3D turbulence, stating that on large time-scales observable
quantities behave as Gaussian random variables.

Our second result (see Theorem 5.5 and Corollary 5.7) deals with limiting in ε properties
of the stationary measures µτ

ε . There we assume that the kicks are nondegenerate and satisfy
the estimates

|Mεη
ε
k|Ṽ ≤ C , |∇Nεη

ε
k|0,ε ≤ C ,

where C is a fixed constant. Let us set ϑτ
ε = Mε ◦ µτ

ε (this is a Borel measure on the space
Ṽ , defined by the relations ϑτ

ε (Q) = µτ
ε (M−1

ε (Q)). We show that if Mεη
ε,ω
k converge to ηω

k

as ε → 0 sufficiently fast, then the measures ϑτ
ε converge to the measures ϑτ . Here ϑτ is the

unique stationary measure for the process k → v(·, kT + τ) ∈ Ṽ , where v(x′, t) is a solution
for the kick-forced 2D NSE (1.9), (1.10) with f̃ as in (1.12).

As a consequence of these two results we obtain in Theorem 5.8 that for any admissible
solution u(x, t) of the 3D NSE the distributions of (Mεu)(x′, t) in Ṽ converges uniformly in
t to the distribution of v(x′, t), where v(x′, t) solves the 2D problem (1.9)–(1.12). This result
is much stronger than its deterministic counterpart (recalled in Section 2.1 as Theorem 2.2),
where the convergence is uniform only on finite time-intervals.
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The assertions of Theorems 5.1 and 5.5 jointly show that under the iterated limit first
t →∞ then ε → 0 the statistical properties of solutions for the 3D NSE (1.1)-(1.5) converge
to those, described by the (unique) stationary measures ϑτ for the 2D NSE (1.9)-(1.10).
For example, applying first Theorem 5.1 and next Theorem 5.5 to the energy functional
1
2

∫ |u(x)|2 dx we can prove that

lim
ε→0

lim
k→∞

ε−2

2
E

2∑

j=1

∫

T2

(∫ ε

0

uj(x′, x3, kT + τ) dx3

)2

dx′ =
1
2

∫
eH
|v|2eH ϑτ (dv)

for any solution u of (1.1)-(1.5) with initial data u0 = uε
0 from the admissible set Bε. This

means that the long-time limit of the averaged energy of the horizontal component of the
3D Navier-Stokes flow in Oε can be asymptotically calculated from the corresponding 2D
model by means of the ensemble averaging. Similar relations hold for full 3D energy and
enstrophy. See discussion in Section 7; also see there for more examples.

Finally we note that assertions, similar to Theorems 5.1 and 5.5, remain true with the
same proofs for the randomly kicked NSE in the thin spherical layer S2× (0, ε) (see [23] for
corresponding deterministic results). This boundary-value problem may be used to model
statistical behaviour a planet’s atmosphere: the free boundary condition on the ‘sky’ S2×{ε}
models the effect of gravity which keeps the atmosphere close to the planet, and the free
boundary condition on S2 × {0} models interaction with the surface4.

The paper is organised as follows. In Section 2 we firstly recall the deterministic results
for the 3D NSE (1.1)-(1.4) with a regular force f which we use in the further considerations.
Then we define the kick-forced model, and describe our main hypotheses concerning the
kicks in Assumption (D). In Section 3 we quote an abstract result (see Theorem 3.2) on
random kick-forced evolutions, established in [15, 16]. Section 4 contains the statement of
several assertions which constitute the main ingredients in the application of Theorem 3.2 to
problem (1.1)–(1.5). The proofs are rather technical and defer to Section 6. Our main results
(Theorem 5.1 and Theorem 5.5) are formulated and proved in Section 5. In Section 7 we
discuss some hydrodynamical consequences of our results. In Appendix we briefly describe
spectral properties of the 3D Stokes operator with the boundary conditions (1.4).

Notation. We denote the integral of a function f against a measure µ as
∫

f(u) µ(du), or
as 〈f, µ〉, or as 〈µ, f〉. The symbol ⇀ indicates the weak convergence of Borel measures.
Dξ stands for the distribution of a random variable ξ. A map between Banach spaces is
called locally Lipschitz if its restriction to any bounded subset of the domain of definition
is Lipschitz.

Acknowledgement. We are thankful to the London Mathematical Society for the financial
support of the visit of the first author to Edinburgh, when our research started.

2 The model

Our main goal in this section is to describe the random kick-forced 3D model. We start
with a short survey of known deterministic results.

2.1 Deterministic 3D Navier-Stokes equations
on a thin domain

In this subsection we introduce the main functional spaces and collect several known results
concerning the 3D NSE (1.1)-(1.4) with a regular force f . We mainly follow the approach
presented in [22].

4If we replace the free boundary condition on S2 × {0} by the non-slip condition uS2×{0} = 0, then the
analog of Theorem 5.1 remains true, while the limit in Theorem 5.5 trivialises since now the solution goes
to zero with ε in an appropriate norm (by the same argument as in Theorem 5.1 in [22]).
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Let Wε be the space of divergence-free vector fields u = (uj)j=1,2,3 on Oε such that

u ∈ [
H2(Oε)

]3
,

∫

Oε

ujdx = 0, j = 1, 2,

and condition (1.4) is satisfied. Let Vε (respectively, Hε) be the closure of Wε in
[
H1(Oε)

]3
(respectively, in

[
L2(Oε)

]3). We denote by | · |ε the L2-norm in Hε and provide Vε with the
norm

‖u‖ε ≡ |∇u|ε = [aε(u, u)]1/2
,

where

aε(u, v) =
3∑

j=1

∫

Oε

∇uj · ∇vj dx.

We denote by Aε the Stokes operator, defined as an isomorphism from Vε onto its dual V ′
ε

by the relation
(Aεu, v)V,V ′ = aε(u, v), u, v ∈ Vε .

This operator extends to Hε as a linear unbounded operator with the domain D(Aε) = Wε.
Let Πε be the Leray projector on Hε in (L2(Oε))3. Then

(Aεu)(x) = (−Πε∆u)(x), x ∈ Oε,

for every u ∈ D(Aε) = Wε.
Now we consider the trilinear form

bε(u, v, w) =
3∑

j,l=1

∫

Oε

uj ∂jvl wl dx, u, v ∈ D(Aε), w ∈ (L2(Oε))3.

It defines the bilinear operator Bε : Vε 7→ Vε
′ by the formula

(Bε(u, v), w)Vε,V ′ε = bε(u, v, w), u, v, w ∈ Vε.

Now the system (1.1)–(1.4) can be written in the form

u′ + νAεu + Bε(u, u) = f, u(0) = u0. (2.1)

The following result concerning this system is known.

Theorem 2.1 ([22]) Assume that u0 ∈ Vε, f ∈ L∞(R+; Hε) and

‖u0‖ε + sup
t
|f(t, ·)|ε ≤ R(ε) , (2.2)

where R(ε) satisfies
lim
ε→0

εθ0R(ε) = 0 (2.3)

with some θ0 ∈ (0, 1/2). Then there exists a positive constant ε0 = ε0(R), depending on
the parameters of problem (1.1)–(1.4), such that for ε ∈ (0, ε0], problem (1.1)–(1.4) has a
strong solution

u ∈ C([0, T ); Vε) ∩ L2((0, T ); Wε), ∀T > 0.

This solution is unique in the class of weak Leray solutions.
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Let us consider the 2D NSE (1.9)-(1.11). Clearly

if v(x, t) is a solution of (1.9)-(1.11), then u(x′, x3, t) = (v1, v2, 0)t(x′, t)

satisfies (1.1)-(1.4), where f = (f̃ , 0) and u0 = (ṽ0, 0).
(2.4)

On the contrary, let u(x, t) be a solution of (1.1)-(1.3). Then the 2D vector-field Mεu (see
(1.6)) converges to a solution of (1.9)-(1.10) when ε → 0. To state the corresponding result
we define the space Ṽ as in the Introduction (see (1.8)) and define the space H̃ as the
L2-space of divergence-free vector functions on T2 with zero mean-value.

Theorem 2.2 ([22]) Let the hypotheses of Theorem 2.1 be in force. Assume in addition
that ‖Mεu0‖eV and supt∈R |Mεf(t)| eH are bounded uniformly in ε and that there exist f̃ ∈
L∞(R+; H̃) and ṽ0 ∈ Ṽ such that

lim
ε→0

Mεf(t) = f̃(t) for a.e. t , and lim
ε→0

Mεu0 = ṽ0

in the sense of weak convergence in H̃. Then for any T > 0 we have

lim
ε→0

Mεu(·) = v(·) in C([0, T ]; H̃) ∩ L2((0, T ); Ṽ ), (2.5)

where v(t) solves the 2D NSE (1.9)–(1.11).

Theorem 2.1 allows to define the flow-maps ST
ε , T ≥ 0:

ST
ε : {‖u0‖ε ≤ R(ε)} → Vε, ST

ε u0 = u(T ),

where u(t) solves the NSE (1.1)–(1.4) with f ≡ 0. Well known properties of the NSE (see
[5]) imply that for any T > 0 and k ∈ N

the map ST
ε : {‖u0‖ε ≤ R(ε)} → Vε ∩Hk(Oε;R3) is Lipschitz. (2.6)

We denote by {ST
0 , T ≥ 0} the flow-maps of the 2D NSE (1.9)-(1.11) with f̃ ≡ 0. They

are continuous in Ṽ and extend to continuous transformations of H̃. Due to (2.4),

ST
ε |eV = ST

0 ∀T , ∀ ε .

Similar to (2.6), for any T > 0 and k ∈ N we have

the map ST
0 : H̃ → H̃ ∩Hk(T2;R2) is locally Lipschitz. (2.7)

2.2 Random kick-forced 3D NS model

In this subsection we describe our model. We consider problem (1.1)–(1.4) with a random
external force which is a generalised vector-function of the form

f(x, t) =
∞∑

k=1

ηε
k(x) δkT (t) , ηk ∈ Hε ∀ k , (2.8)

where T > 0 is fixed and δkT (t) is a δ-function concentrated at kT . Forces of this form
are called kick-forces, and the functions ηε

k(x) are called kicks. Corresponding solutions of
(1.1)–(1.4) are discontinuous in t. We normalise them to be continuous from the right. Then
the solution u of the problem (1.1)-(1.4) is

• a solution of the free (unforced) NSE for t 6= kT , k ∈ Z,
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• at t = kT it has the jump ηε
k(x).

So the dynamics of the kick-forced NS model can be described by the following relations:

u(x, 0) = u0(x),
u(x, (k + 1)T ) = ST

ε u(x, kT ) + ηε
k+1(x) for k = 0, 1, 2, . . . ,

u(x, kT + τ) = Sτ
ε u(x, kT ) if 0 ≤ τ < T , k = 0, 1, 2, . . . .



 (2.9)

We refer to [13, Sect.2.6] for some details concerning description of a kick model, based on
the 2D NS equations.

Our main hypothesis concerning the kicks {ηε
k} is the following:

(D) The kicks ηε
1, η

ε
2, . . . depend on ε and are Vε-valued random variables, independent

and identically distributed, defined on a probability space (Ω,F ,P). Using the basis
{eλj , eΛε

j
, j ≥ 1} (see Appendix) we write them in the form

ηε
k = ηε,ω

k =
∑

j

bε
jξ

ε,ω
jk eλj

(x) +
∑

j

b̂ε
j ξ̂ε,ω

jk eΛε
j
(x) . (2.10)

Here bε
j , b̂ε

j are non-negative real numbers and ξε
jk, ξ̂ε

jk are independent (scalar) random
variables such that

Dξε
jk = pε

j(x) dx , Dξ̂ε
jk = p̂ε

j(x) dx

(Dξ stands for the distribution of a random variable ξ). The random variables and
the densities satisfy the following properties:

• pε
j(x) = pε

j(x) = 0 for all |x| ≥ 1 and for every ε and j;

• each pε
j and p̂ε

j is a function of bounded total variation;

• for each γ > 0 and every j and ε we have
∫ γ

−γ

pε
j(x) dx > 0 ,

∫ γ

−γ

p̂ε
j(x) dx > 0 .

Example: each ξε
jk (each ξ̂ε

jk) is a random variable, uniformly distributed on a segment
[aj , bj ] (on [âj , b̂j ]), where −1 ≤ aj < 0 < bj ≤ 1 and −1 ≤ âj < 0 < b̂j ≤ 1.

Remark 2.3 For a fixed ε the hypotheses, imposed on the kicks, are exactly the same as
in Condition (D) in [15, 16] but written with respect to the basis {eλj , eΛε

j
, j ≥ 1}.

Due to the first assumption in (D), concerning the densities pε
j and p̃ε

j , without loss of
generality we can assume that the random variables |ξε

jk| and |ξ̂ε
jk| are bounded by 1 for all

ω. Therefore relations (8.2) and (8.4) imply that

‖Mεη
ε
k‖2ε ≤ ε

∑
(bε

j)
2 =: εBε , ‖Nεη

ε
k‖2ε ≤ ε

∑
(b̂ε

j)
2 =: εB̂ε , (2.11)

for every ε, k and ω, where Mε is defined by (1.6) and Nε = I −Mε.
Our main goal in this paper is to show that the kick evolution in (2.9) is well defined on

some large subset of Vε and to study its statistical properties.
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3 Preliminaries on random kick models

Let H be a separable Hilbert space with a norm ‖ · ‖ and an orthogonal basis {ej}. Assume
that B is a closed bounded subset of H containing the origin, and S : B 7→ B is a mapping,
satisfying the following conditions:

(A) There exists positive constants γ < 1 and C such that

‖Su‖ ≤ γ‖u‖ and ‖Su1 − Su2‖ ≤ C‖Su1 − Su2‖

for all u, u1, u2 ∈ B.

(B) There exists a sequence {bj} of nonnegative numbers such that

∞∑

j=1

b2
j‖ej‖2 < ∞

and SB +K ⊂ B , where

K =



u =

∞∑

j=1

ujej : |uj | ≤ bj for all j ≥ 1



 .

(C) The set SB is compact and there exists N ∈ N such that

‖(I − PN )(Su1 − Su2)‖ ≤ 1
2
‖u1 − u2‖ for all u1, u2 ∈ B,

where PN is the orthogonal projector on the space Span {e1, . . . , eN}.

Remark 3.1 Assumption (A) is a bit stronger than (A) in [15, 16]. However it is formulated
on a bounded subset of the space H. The invariance property in our version of (B) is different
from the corresponding requirement in [15, 16], where some kind of dissipativity is assumed.
We do not need any dissipativity hypotheses because we consider dynamics in the bounded
invariant set B. As for (C), the papers [15, 16] assume that this relation holds with the
factor 1/2 replaced by qN , where qN → 0 as N → ∞. In this form the assumption also
implies the compactness of the set SB which is needed for the existence of an invariant
measure. However the analysis in [15, 16] shows that if we already know the existence of an
invariant measure, then for its uniqueness it suffices to require (C) with qN = 1/2 (see the
proof of Lemma 3.2 in [15]).

Now we consider a sequence {ηk} of i.i.d. random variables in H, defined on a probability
space (Ω,F ,P), having the form

ηk = ηω
k =

∑

j

bjξ
ω
jk ej , k = 1, 2, . . . . (3.1)

The coefficients bj ≥ 0 are the same as in Assumption (B) and ξjk are independent random
variables, possessing the same properties as the random variables ξε

jk and ξ̂ε
jk appearing in

Assumption (D) in Subsect. 2.2.
Hypotheses (A)–(C) and the properties of {ηk} allow to define a discrete-time random

dynamical system (RDS) on B by the relation

uk = Suk−1 + ηk, k = 1, 2, . . . , u0 ∈ B. (3.2)
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Let us denote by M(B) the set of probability Borel measures on B, given the Lipschitz-dual
distance

dist(µ, ϑ) = distM(B)(µ, ϑ) = sup
f∈L

〈µ− ϑ, f〉 , (3.3)

where
L = L(B) = {f : B 7→ R : Lip (f) ≤ 1 and |f | ≤ 1} .

With this norm the set M(B) becomes a complete metric space, where the convergence in
the norm is equivalent to the ∗-weak convergence of measures, see [6] and [13]. This fact
holds for any set B which is a complete separable metric space. Since in our case B is
bounded, then, equivalently, L may be replaced by the bigger (and more convenient) set L0,
formed by all functions f on B such that Lip f ≤ 1.

The RDS (3.2) defines transformations {Ψk, k ≥ 0} of the set M(B):

Ψk(µ) = ϑ, ϑ(Q) =
∫

P{uk(u0) ∈ Q}µ(du0) , (3.4)

where the sequence uk = uk(u0) is calculated according to (3.2). Clearly they can be
extended to linear transformations of the space of signed Borel measures, and it is easy
to see that Ψk = (Ψ1)k. A measure µ is called a stationary measure for the RDS (3.2) if
Ψkµ = µ for each k.

The arguments, given in the proof of Theorem 1.1 from [16], lead to the following result:

Theorem 3.2 Let Assumptions (A)-(C) be in force and the kicks ηk be given by (3.1) with
ξω
jk satisfying conditions in (D), and

bj 6= 0 for 1 ≤ j ≤ N ,

where N < ∞ depends on the parameters of the equation and the kicks. Then the RDS (3.2)
has a unique stationary measure µ and

dist(µ, Ψk(ϑ)) ≤ Ce−ck ∀ϑ ∈M(B) ,

with some C, c > 0.

We will apply this theorem to the evolution in (2.9). To do this we need to study further
the properties of solutions to problem (1.1)–(1.4) in order to verify the conditions (A)–(C)
above. We do this in the next section.

4 Flow-maps

We recall that {ST
ε , T ≥ 0} stand for the flow-maps of the NSE (1.1)–(1.4)f≡0, and introduce

the set
Bε = {u ∈ Vε : ‖Mεu‖ε ≤ a(ε), ‖Nεu‖ε ≤ b(ε)} . (4.1)

Here a(ε), b(ε) are positive real numbers such that R∗(ε) = a(ε) + b(ε) satisfy (2.3), so
Theorem 2.1 insures that the flow-maps ST

ε are well-defined on Bε. The following assertion
is proved in Section 6, as well as Theorem 4.2 and Proposition 4.4 below.

Proposition 4.1 For any T0 > 0 we can find ε0 > 0 and k∗, γ ∈ (0, 1) such that if η ∈ Vε

satisfies
‖Mεη‖ε ≤ k∗a(ε), ‖Nεη‖ε ≤ k∗b(ε),

where

lim
ε→0

√
ε b2(ε)
a(ε)

= 0 (4.2)
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and (2.3) holds with R∗ = a + b, then for any T ≥ T0 and ε < ε0 the set Bε is invariant for
the mapping

u 7→ ST
ε u + η .

Besides,
‖ST

ε u‖ε ≤ γ‖u‖ε for any u ∈ Bε . (4.3)

Let {eλk
, λk} be the eigenfunctions and eigenvalues of the operator Aε, corresponding

to the 2D Stokes operator (see Appendix). We denote by P̃N the projector of Vε on the
subspace Span{eλ1 , . . . , eλN

}.

Theorem 4.2 Assume that a(ε) and b(ε) satisfy (4.2) and

a(ε) ≤ C1

√
ε

[
log

1
ε

]σ

, b(ε) ≤ C2

[
log

1
ε

]σ/2

, (4.4)

where 0 ≤ σ < 1/2. Take any u1, u2 ∈ Bε. Then for each T > 0 we have

• if σ > 0, then there exists ε0 ∈ (0, 1] and for every δ > 0 there is Cδ > 0 such that for
ε ∈ (0, ε0] we have

‖(ST
ε u1 − ST

ε u2)‖ε ≤ Cδ

(
1
ε

)δ

e−
λ1ν
2 T ‖u1 − u2‖ε . (4.5)

If σ = 0, then this estimate holds with δ = 0.

• For any q < 1 there exists ε0 > 0, and for ε ∈ (0, ε0] there exists N = N(ε, T ) such
that

‖(I − P̃N )(ST
ε u1 − ST

ε u2)‖ε ≤ q‖u1 − u2‖ε . (4.6)

Moreover, if σ = 0, then N may be chosen independent of ε.

Remark 4.3 The assumptions in Theorem 4.2 allow the initial data and the vectors η to
be large. For instance, if both u0 = (u01, u02, u03) and η = (η1, η2, η3) are restrictions on Oε

of C1(O1)-functions, then

‖Mεu0‖2ε + ‖Nεu0‖2ε ≤ εc0|u0‖2C1(O1)
,

and
‖Mεη‖2ε + ‖Nεη‖2ε ≤ εc0‖η‖2C1(O1)

.

Therefore choosing a2(ε) = c0ε
(
log 1

ε

)3/4 and b2(ε) = c0

(
log 1

ε

)1/4 satisfying (4.2) and (4.4)
we can see that large values of u0 and η are possible, when ε is small. In general, with this
choice of a2(ε) and b2(ε), C1-norms of u0 and η may be of order

(
log 1

ε

)3/4.

The following assertion is useful in the study of limit behaviour as ε → 0 of random kick
evolution in (2.9).

Proposition 4.4 Under the conditions of Theorem 4.2 the set AεS
T
ε Be is bounded in Hε

for every ε. Moreover, if ε0 is sufficiently small, then for any ρ > 0 there exist C(ρ) such
that for all 0 < ε ≤ ε0 and 0 < τ ≤ T we have

sup
{|AεS

τ
ε u|ε : u ∈ Bε, ‖u‖ε ≤ ρ

√
ε
} ≤ C(ρ)

(
1 +

1√
τ

)√
ε . (4.7)
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5 Main results

Now we are in position to state and prove our main results.

5.1 Well-definiteness of RDS

We return to the formal evolutions described in (2.9) and assume that the quantities Bε

and B̂ε, defined in (2.11), satisfy the inequalities

√
εBε ≤ a∗(ε) and

√
εB̂ε ≤ b∗(ε), (5.1)

where a∗(ε) and b∗(ε) meet (4.2) and (4.4) with some σ ∈ [0, 1/2). Let us set

a(ε) = Ca∗(ε) , b(ε) = Cb∗(ε) .

Choosing C sufficiently large we achieve that a(ε) and b(ε) satisfy assumptions of Proposi-
tion 4.1 and Theorem 4.2. In particular, the set Bε (see (4.1)) is invariant for the RDS (3.2)
with S = ST

ε and ηk = ηε,ω
k :

uk = ST
ε (uk−1) + ηε,ω

k , k = 1, 2, . . . (5.2)

Accordingly, the dynamics in (2.9) is globally well-defined for T ≥ T0 and ε ≤ ε0, where
ε0 = ε0(T0) is the same as in Proposition 4.1.

Thus, equations (1.1)–(1.4), where f is the random kick-force given by (2.8), defines in
Bε the dynamics

u0 7−→ u(k; u0) , k ≥ 0 ,

where u(k;u0) = u(·, kT ) and u(x, t) is calculated according to (2.9) (that is, according to
(5.2) with u0 = u0).

Let us take any τ ∈ [0, T ]. If u(x, t) is calculated using (2.9), then uk,τ := u(kT + τ, ·),
k ≥ 0,5 is a trajectory of the RDS

uk,τ = Sτ
ε

(
ST−τ

ε (uk−1,τ ) + ηε,ω
k

)
(5.3)

(for τ = 0 it coincides with the system (5.2)). For the same reasons as before (see also the
argument given in the proof of Proposition 4.1 in Section 6), the set Bε is invariant for this
system for any τ if ε ¿ 1.

Our goal is to study asymptotical properties of the RDS’s (5.3) with 0 ≤ τ ≤ T as
k →∞ and their limiting properties as ε → 0. We pay the main attention to the case τ = 0,
i.e., to RDS (5.2).

5.2 Asymptotical behaviour of solutions

For the purposes of this subsection and of the next one it is convenient to provide the space
Vε with the scaled norm

‖ · ‖0,ε = ε−1/2‖ · ‖ε .

Note that the basis {eλj , eΛε
j
, j ≥ 1} is a Hilbert basis of the space (Vε, ‖ · ‖0,ε) and that the

projection Mε : (Vε, ‖ · ‖0,ε) → Ṽ has unit norm. We furnish the set Bε with the distance,
corresponding to this norm. As in Section 3 we denote by M(Bε) the set of probability
Borel measures on Bε, given the Lipschitz-dual distance (3.3) (with B := Bε). The RDS
(5.2) defines transformations {Ψε

k, k ≥ 0} of the set M(Bε) (see (3.4)). Due to the relation

〈Ψε
k(ϑ), g〉 =

∫

Bε

Eg
(
u(k; u0)

)
ϑ(du0)

5For τ = T we define by continuity uk,T = limτ→T−0 u(kT + τ, ·).
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it follows from (4.5) that the transformations Ψε
k are continuous in the ∗-weak topology. We

note that Ψε
k(ϑ) = Du(·, kT ), where u(x, t) is a solution (in the sense (2.9)) for the problem

(1.1)–(1.4) with f = fε given by (2.8), and u0 is a random vector, independent of the kicks
ηε,ω

k , k ≥ 1, and such that D(u0) = ϑ.
The main result in this subsection is the following assertion.

Theorem 5.1 Let Assumption (D) and condition (5.1) be in force. Then for any T0 > 0
there exist ε0 ∈ (0, 1) and c0 > 0 such that for T ≥ T0 and 0 < ε ≤ ε0 we have:

1) the set
Bε = {u ∈ Vε : ‖Mεu‖ε ≤ c0a∗(ε), ‖Nεu‖ε ≤ c0b∗(ε)}

is invariant with respect to the RDS (5.2).
2) There exists N = N(ε) ∈ N such that under the condition

bε
j > 0 ∀ 1 ≤ j ≤ N , (5.4)

imposed on the kicks amplitudes in (2.10), the system (5.2), interpreted as an RDS in Bε,
has a unique stationary measure µε, and

distM(Vε)(µε, Ψεk(ϑ)) ≤ Cεe
−cεk (5.5)

for every ϑ ∈M(Bε), with some Cε, cε > 0.
3) Under the condition

C ′−1 ≤ Bε ≤ C ′ , B̂ε ≤ C ′ for all ε and for some C ′ > 1 , (5.6)

where the values Bε and B̂ε defined in (2.11), the number N in (5.4) does not depend on ε.
Moreover, if, in addition, the random variables ξε

jk and ξ̂ε
jk do not depend on ε, and (5.4)

strengthens as infε>0 min1≤j≤N bε
j > 0, then the constants Cε and cε in (5.5) can be chosen

independent of ε, provided the initial measure ϑ satisfies the relation

supp ϑ ⊂ Bε ∩ {u ∈ Vε : ‖u‖0,ε ≤ c1} .

In this case the stationary measure µε is supported by the set

B0
ε = {u ∈ Vε : ‖Mεu‖0,ε ≤ C, ‖Nεu‖0,ε ≤ C} (5.7)

for some constant C > 0.

We recall that estimates (5.5) means the following: if uω(x, t), t ≥ 0, is a random solution
of the kick-forced NSE (1.1)-(1.4) such that u0 = uω

0 ∈ Bε for every ω and g ∈ L0(Bε) (see
the notations in Section 3), then

|E g(u(·, kT ))− 〈g, µε〉| ≤ Cεe
−cεk for k ≥ 0 . (5.8)

Proof. The invariance of the set Bε follows from argument given in Subsection 5.1. To
prove the existence of a stationary measure for (5.2) we note that due to (2.6) ST

ε (Bε) is a
compact subset in Bε and we can use the standard Krylov-Bogolyubov procedure to prove
that a stationary measure exists (see, e.g., [13, Section 3.3] for some details).

The uniqueness of a stationary measure follows from Theorem 3.2 since the assumption
(5.4) with a suitable N = N(ε) jointly with the established properties of the system (5.2)
imply that it satisfies the assumptions (A)-(C) from Section 3 and (D) from Subsection 2.2,
so Theorem 3.2 applies. Indeed, in the assumption (A) the first relation follows from (4.3)
and the second one follows from (4.5). Assumption (B) holds trivially by the statement of
Proposition 4.1. As for Assumption (C), the compactness of the set ST

ε (Bε) is established
above and the squeezing relation follows from (4.6). Finally, (D) is the set of assumptions
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which we have imposed on the densities pε
j and p̂ε

j . Consequently Theorem 3.2 implies the
uniqueness of a stationary measure and relation (5.5).

Under condition (5.6) we can assume that a∗(ε) and b∗(ε) in (5.1) satisfy (4.2) and (4.4)
with σ = 0. Then the set Bε has a diameter of order one (with respect to the norm ‖ · ‖0,ε)
uniformly in ε and the r.h.s. in (4.5) is independent of ε, as well as the constant N in (4.6).
Moreover, the Lipschitz constant C in (A) is ε-independent. That is, all the data, needed
to apply Theorem 3.2, are independent from ε. Thus N(ε), Cε and cε in Theorem 5.1 can
be chosen independent of ε. •

Remark 5.2 Since the set Bε, supporting all relevant measures, is bounded, then the con-
vergence holds for locally Lipschitz functions g on Vε (i.e., for functions, which are Lipschitz
on bounded subsets of Vε).

Remark 5.3 If g is a locally Lipschitz function on a Sobolev space Hn(Oε), n ≥ 1, then
the convergence still holds, provided that the b-coefficients bε

j and b̂ε
j decay with j sufficiently

fast. Indeed, if ∑

j

(
λn

j

∣∣bε
j

∣∣2 +
[
Λε

j

]n
∣∣∣b̂ε

j

∣∣∣
2
)
≤ Cε < ∞ (5.9)

for some n ≥ 1, then ‖ηε
k‖Hn(Oε) ≤ C ′ε for each ω ∈ Ω, where

Hn(Oε) := D(An/2
ε ) ⊂ Hn(Oε).

Since ‖ST
ε (u)‖Hn(Oε) ≤ C ′ε by (2.6), then now the stationary measure µε is supported by

a bounded set in Hn(Oε). Due to the arguments in [13], Section 6.4, we have that under
the condition in (5.9) the convergence in (5.8) holds for any measurable function g which
is a locally Lipschitz function on Hn−1(Oε). The corresponding constant Cε depends on
g. In particular, if (5.9) holds with n = 3, then we can take g(u) = ui(x)uj(y), where
i, j ∈ {1, 2, 3} and any x, y ∈ Oε are fixed. Since H2(Oε) ⊂ C(Oε), then g is a locally
Lipschitz function on H2(Oε). Thus we obtain relation (1.13) claimed in the Introduction.

Corollary 5.4 Let the assumptions of Theorem 5.1 be in force and h be a locally Lipschitz
function on the space H l(Oε;R3) for some l ∈ N. Then for any 0 < τ ≤ T we have

|Eh(u(·, kT + τ))− 〈h, µτ
ε 〉| ≤ Cε,h,τe−cεk for k = 0, 1, . . . . (5.10)

Here µτ
ε = Sτ

ε ◦ µε and u is a solution of (1.1)-(1.3), where u0 = uω
0 ∈ Bε for every ω.

Moreover, if the assumptions of item 3) of Theorem 5.1 are in force and h ∈ L(Bε), then
the constants C and c may be chosen independent from ε, τ and h. So in this case

distM(Vε)(µτ
ε ,Du(·, kT + τ)) ≤ Ce−ck ∀ k (5.11)

for every τ ∈ [0, T ] and every ε ≤ ε0 provided that u(·, 0) ∈ B0
ε .

Proof. Due to (2.9) the l.h.s. of (5.10) equals the l.h.s. of (5.8) with g = h ◦ Sτ
ε . Since

u ∈ Bε, then by (2.6) (h ◦ Sτ
ε )(u) is a bounded Lipschitz function on Bε. Now the estimate

(5.10) follows from (5.8).
Under the assumptions of the second assertion, we use (4.5) to get that the function

C−1h ◦ Sτ
ε ∈ L(B0

ε) for some C, independent from ε, h and τ . Therefore the desired result
follows from item 3) of Theorem 5.1. •

Since {u(kT + τ, ·), k ≥ 0} is a trajectory of the RDS (5.3) in Bε, then by (5.10) the
latter has the unique stationary measure µτ

ε which attracts exponentially fast distributions
of all trajectories of the system.
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Let the initial condition u0 in (1.1)-(1.3) be such that D(u0) = µε, and u(x, t) be a
corresponding solution. Then

Du(kT + τ) = µτ
ε ∀ τ ∈ [0, T ] , k = 0, 1, . . . .

Abusing language, we call such solutions stationary (in fact, they are T -periodic in distri-
bution).

5.3 Limit ε → 0.

Theorem 2.2 suggests that statistical properties of solutions u(x, t), averaged in x3, are close
to those of solutions for the 2D NSE. To prove corresponding results we have to strengthen
assumption (5.1) on the kicks ηε

k. Namely, we assume the following:

(L) • The random variables ξjk ≡ ξε
jk and ξ̂jk ≡ ξ̂ε

jk in (2.10) are independent of ε;

• bε
j → bj as ε → 0 in the sense that

∣∣ ∑
(bε

j − bj)eλj

∣∣2eH ≡
∑

j

1
λj

(bε
j − bj)2 −→ 0 as ε → 0; (5.12)

• relations (5.6) are in force.

Let us define 2D kicks η̃k =
∑

bjξjkeλj (x
′) and consider the 2D kick-force

f̃ =
∑

δkT (t) η̃ω
k (x′) . (5.13)

Clearly f̃ = lim Mεf
ε, where f = fε is given by (2.8). Similar to the 3D case, the cor-

responding kick-forced 2D NSE (1.9)-(1.10) defines a continuous discrete-time RDS in the
space Ṽ , and defines the semigroup {Ψk, k ≥ 0} of continuous transformations of the space
of Borel measures on Ṽ . Moreover, this system extends to a continuous RDS in the space H̃,
and the transformations Ψk extend to continuous (in the ∗-weak topology) transformations
of the space of Borel measures in H̃, see [13]. If

bj > 0 ∀ j ≤ N (5.14)

with a suitable N < ∞, then by the same reasons as above this system has a unique
stationary measure ϑ. This is a Borel measure in Ṽ , supported by a ball of finite radius.

Due to (5.12), assumption (5.14) implies (5.4) if 0 < ε ≤ ε0 ¿ 1, and Theorem 5.1
applies. For such ε let us denote ϑε = Mε ◦ µε, i.e.

ϑε(Q) = µε {u ∈ Bε : Mεu ∈ Q} .

Theorem 5.5 Let Assumptions (D) and (L) be in force and (5.14) holds with a sufficiently
large N . Then

ϑε ⇀ ϑ as ε → 0 , (5.15)

where ⇀ stands for the ∗-weak convergence of measures in H̃ and ϑ is the unique stationary
measure of the kick-forced 2D NSE (1.9)-(1.10) with f̃ defined in (5.13). Moreover, if in
addition we assume that ∑

j

j2
∣∣bε

j

∣∣2 ≤ C , (5.16)

then the convergence in (5.15) holds true in ∗-weak sense of measures on the space H2−δ :=
H2−δ(T2) ∩ Ṽ , for every δ > 0. In particular, if g is a continuous functional on C(T2;R2),
then

〈g, ϑε〉 → 〈g, ϑ〉 as ε → 0 . (5.17)
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Proof. By Theorem 5.1 under condition (5.6) the stationary measure µε has its support
in the set B0

ε given by (5.7). Hence, supp ϑε ⊂ {‖v‖eV ≤ C} for each ε. So by the Prokhorov
theorem the family of measures {ϑε, 0 < ε ≤ ε0} is precompact in the set of measures in H̃,
given the ∗-weak topology. It remains to prove that any limiting measure ϑ̃ of this family
equals ϑ. Let us take a sequence εj → 0 such that ϑεj

⇀ ϑ̃. By the Skorokhod representation
theorem (e.g., see [12]), on a probability space, for which we take the segment [0,1] given the
Borel sigma-algebra and Lebesgue measure, we can construct Ṽ -valued random variables ṽ
and {vεj}, such that

D(vεj
) = ϑεj

, D(ṽ) = ϑ̃ and vεj
→ ṽ in Ṽ a.s.

We view them as random variables on the probability space Ωnew = [0, 1]× [0, 1], depending
only on the first factor, and for each j find a Bεj

-valued random variable uεj
on Ωnew such

that Mεuεj
= vεj

and D(uεj
) = µεj

, see below Lemma 5.9.
Next we construct on Ωnew random variables ξjk new etc, distributed as ξjk etc and

independent from the previously constructed random variables. We define the random
vectors η̃1 new and η̃

εj

1 new, using these “new” random variables. Then

Ψεj

1 (µεj
) = D(ST

εj
uεj

+ η
εj

1 new) and Ψ1(ϑεj
) = D(ST

0 vεj
+ η̃1 new) .

Let g be any continuous function on H̃ such that Lip (g) ≤ 1 and |g| ≤ 1. Then

|〈g, Ψ1(ϑεj )〉 − 〈g, Mεj ◦Ψεj

1 (µεj )〉|
= |E(

g(ST
0 (vεj ) + η1 new)− g

(
Mεj (S

T
εj

(uεj )) + Mεj (η
εj

1 new)
)|

≤ E
(|ST

0 (vεj )−Mεj (S
T
εj

(uεj ))| ∧ 2
)

+ E|η1 new −Mεj (η
εj

1 new)| .
Since Mεuεj = vεj → ṽ a.s., then by Theorem 2.2 the random variable in the first expectation
in the r.h.s. goes to zero with εj for each ω. By (5.12) the random variable in the second
expectation goes to zero with εj uniformly in ω. So the r.h.s. goes to zero with εj and the
rate of convergence is independent of g as above. Since Mεj ◦Ψεj

1 (µεj ) = Mεj ◦ µεj = ϑεj ,
then we have seen that

distM( eH)(ϑεj ,Ψ1(ϑεj )) → 0 as εj → 0 . (5.18)

As the transformation Ψ1 is continuous in M(H̃), then by (5.18) ϑ̃ is a stationary measure
of the 2D NSE. So it equals ϑ.

To prove the second part of the theorem, we note that
∫
eH
|A0u|2eHϑε(du) =

1
ε

∫

Bε

|AεMεu|2εµε(du) =
1
ε
E

∫

Bε

|AεMε(ST
ε u + ηω

1 )|2εµε(du)

≤ 2
ε

∫

Bε

|AεS
T
ε u|2εµε(du) +

2
ε

E
∫

Bε

|AεMεη
ω
1 |2εµε(du) ,

where the second equality holds since µε is a stationary measure. Since Mεη
ε
1 =

∑
bε
jξ

ω
j1eλj

(see (8.2)), then due to (5.16) and (8.4) the second term in the r.h.s. is bounded by∑
(bε

j)
2λ2

j ≤ C1. Since µε is supported by (5.7), due to Proposition 4.4 the first term is
≤ C2. Hence,

∫
eH |A0u|2eHϑε(du) ≤ C3 for all ε, and by Prokhorov’s theorem we conclude

that the family {ϑε} is precompact in the ∗-weak topology of the space of measures on
H2−δ. This implies the desired convergence.

The convergence in (5.17) holds since for δ < 1/2 the space H2−δ is continuously em-
bedded in C(T2;R2). •
Remark 5.6 Note that the proof implies that the measures ϑε and ϑ are supported by the
same ball {‖v‖eV ≤ C}.
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The following assertion shows that the convergence of Mε ◦µτ
ε in the space H2−δ takes place

for τ > 0 without condition (5.16).

Corollary 5.7 Let the assumptions of the first assertion of Theorem 5.5 be in force. Then
for any τ > 0

Mε ◦ µτ
ε ⇀ Sτ

0 ◦ ϑ =: ϑτ as ε → 0 (5.19)

in Borel measures in the space H2−δ = H2−δ(T2) ∩ Ṽ for every δ > 0. Moreover, the rate
of convergence (5.19) in the space of measures in H̃ is independent from τ ∈ [0, T ].

Proof. Recall that µτ
ε = Sτ

ε ◦ µε is the unique stationary measure of the RDS (5.3).
Similarly, ϑτ is the unique stationary measure for the 2D RDS

vk,τ = Sτ
0 (ST−τ

0 (vk−1,τ ) + η̃ω
k ) .

Arguing as in the proof of Theorem 5.5 we see that the convergence (5.19) holds in the space
H̃, and its rate is independent from τ . Since the measures µε with ε ¿ 1 are supported by
the ball (5.7), then by Proposition 4.4 the measures Mε ◦ µτ

ε are supported by a ball in the
space H2(T2) ∩ Ṽ with the radius independent of ε. So they form a precompact family of
Borel measures on H2−δ, and the assertion follows. •

In our last theorem we obtain an analogy of the assertion of Theorem 2.2 for distributions
of solutions to the random NSE. In difference with the deterministic situation, now an
analogy of convergence (2.5) holds uniformly in t ≥ 0.

Theorem 5.8 Let us assume that condition (5.1) and Assumptions (D) and (L) hold. Let
T ≥ T0 and N ∈ N (independent of ε) be as in Theorem 5.1, and bj > 0 for j ≤ N .
Let uε,ω(t, x) be a solution of the random kick-forced NSE (1.1)-(1.3), where u0 = uε,ω

0 is
a random vector independent of the kicks and such that uε,ω

0 ∈ B0
ε for each ω. Assume

that Muε,ω
0 → vω

0 ∈ Ṽ weakly in H̃ for each ω, and denote by vω(t, x′) a solution of the
2D NSE (1.9), (1.10), (5.13), equal vω

0 at t = 0. Then

distM( eH)

(DMεu
ε(t),Dv(t)

) → 0 as ε → 0 , (5.20)

uniformly in t ≥ 0. Moreover, if (5.16) holds, then also

distM(H2−δ)

(DMεu
ε(kT ),Dv(kT )

) → 0 as ε → 0

for any δ > 0, uniformly in k ≥ 1, where as above H2−δ = H2−δ(T2) ∩ Ṽ .

Proof. Let us fix any Θ ≥ 1. Applying iteratively Theorem 2.2 on the time-segments
[0, T ], [T, 2T ], . . . we get that

sup
0≤t≤Θ

|Mεu
ε,ω(t)− vω(t)| eH =: κω(ε, Θ) → 0 as ε → 0 (5.21)

for each ω. Accordingly, for any g ∈ L(H̃) we have

sup
0≤t≤Θ

|E g
(
Mεu

ε(t)
)−E g(v(t))| ≤ Emin

(
2,κω(ε, Θ)

)
=: κ1(ε, Θ),

where κ1(ε, Θ) → 0 as ε → 0, for each Θ. So

distM( eH)

(DMεu
ε(t),Dv(t)

) ≤ κ1(ε, Θ) for 0 ≤ t ≤ Θ. (5.22)

If t = kT + τ ≥ Θ, then using (5.11) we get

distM( eH)

(DMεu
ε(t),Mε ◦ µτ

ε

) ≤ Ce−cΘ/T .
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Similarly the solution v(t) satisfies

distM( eH)

(Dv(t), ϑτ
) ≤ Ce−cΘ/T

(see [13] and the beginning of this subsection). Using Corollary 5.7 we get from the last two
estimates that

distM( eH)

(DMεu
ε(t),Dv(t)

) ≤ κ2(Θ) + κ3(ε) for t ≥ Θ ,

where κ2 → 0 as Θ →∞ and κ3 → 0 as ε → 0. Jointly with (5.22) this relation implies the
first assertion of the theorem.

Let us assume (5.16). Then due to relation (4.7) applied to each interval [kT, (k + 1)T ],
for t ≥ T , ε ≤ ε0 and all ω we have |MεAεu

ε(t)| eH ≤ C. Similar using (2.7) we find that
|A0v(t)| eH ≤ C1. Interpolating these inequalities with (5.21) we get

sup
0≤t≤Θ

|Mεu
ε,ω(t)− vω(t)|H2−δ =: κω

δ (ε, Θ) → 0 as ε → 0

for each ω. Now arguing as above and using the second assertion of Theorem 5.5 we complete
the proof. •

In the lemma below the segment [0,1] is given the Borel sigma algebra and Lebesgue
measure.

Lemma 5.9 Let A and B be complete metric spaces (infinite and non-countable), given
Borel σ-algebras, µ be a Borel measure on A × B and ξ be a measurable map [0, 1] → A
such that D(ξ) = µ1, where µ1 is the projection of the measure µ to A. Then there exists a
measurable map η : [0, 1]2 → B such that the distribution of the map ξ× η : [0, 1]2 → A×B
is µ. Here we extended ξ to a function on [0, 1]2, depending on the first factor only.

Proof. Since both spaces A and B are measurably isomorphic to the segment [0,1], given
the Borel σ-algebra ([6], Section 13.1), then without loss of generality we may assume that
A = B = [0, 1]. By the theorem on the conditional distribution ([6], Section 10.2) we can
write µ as µ(da db) = µ1(da)µ2(a; db). Here µ2 is measurable in the sense that the function
F (a; b) = µ(a; [0, b]) is measurable both in a and b. Since F as a function of b is continuous
from the right, then it is measurable as a map of Borel spaces [0, 1]2 → [0, 1]. Let us define
the function ρ(a, y) : [0, 1]2 → [0, 1] by the relation

ρ(a, y) = inf{τ : F (a, τ) ≥ y} .

It is measurable, monotonic in y and continuous from the right. The mapping [0, 1] 3 y 7→
ρ(a, y) transforms the Lebesgue measure dy to the measure µ(a; db) ([6], Section 9.1). Now
we set η(x, y) = ρ(ξ(x), y). The mapping ξ × η : [0, 1]2 → A × B possesses the desired
properties. •

6 Proofs of results stated in Section 4.

6.1 Preliminaries

The following properties established in [22] are important in the further considerations.

(i) Mε∇′ = ∇′Mε and Nε∇′ = ∇′Nε, where ∇′ = (∂x1 , ∂x2 , 0).

(ii) For all u, v ∈ H1(Oε)
3 we have

∫
Oε
∇Nεu∇Mεvdx = 0 and

|u|2ε = |Nεu|2ε + |Mεu|2ε, ‖u‖2ε = ‖Nεu‖2ε + ‖Mεu‖2ε . (6.1)
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(iii) For all u, w, v ∈ Vε we have

bε(u,w, Mεv) = bε(Mεu,Mεw,Mεv) + bε(Nεu, Nεw, Mεv) (6.2)

and
bε(u,w, Nεv) = bε(Nεu,w, Nεv) + bε(Mεu,Nεw, Nεv). (6.3)

(iv) If u ∈ D(Aε), then Mεu ∈ D(Aε) and

∆Nεu = Nε∆u, ∆Mεu = Mε∆u .

(v) If u ∈ D(Aε), then

bε(Mεu,Mεu,AεMεv) = b0(Mεu,Mεu, A0Mεv) = 0, (6.4)

where b0 is the 2D trilinear form and A0 is the 2D Stokes operator on T2 (i.e., in the
space H̃).

(vi) If u ∈ D(Aε), then Aεu = −∆u and (see Lemma 2.5 [22])
3∑

i,j

∣∣∣∣
∂2u

∂xi∂xj

∣∣∣∣
2

L2(Oε)

≤ |Aεu|2L2(Oε) , ∀u ∈ D(Aε). (6.5)

As in [22] we also use the “thin domain” analogues of the classical Poincaré, Agmon and
Ladyzhenskaya inequalities given in the following assertion.

Lemma 6.1 ([22]) There exist positive constants c and cq, 2 ≤ q ≤ 6, such that for all
ε ∈ (0, 1] the following inequalities hold true:

|Nεu|ε ≤ ε |∂3Nεu|ε , for all u ∈ Vε (6.6)

(Poincaré’s inequality);

|Nεu|(L∞(Oε))3 ≤ c|Nεu|1/4
(L2(Oε))3




3∑

i,j

∣∣∣∣
∂2Nεu

∂xi∂xj

∣∣∣∣
2

L2(Oε)




3/4

(6.7)

for all u ∈ D(Aε) (Agmon’s inequality);

|Nεu|2(Lq(Oε))3 ≤ cqε
(6−q)/q‖Nεu‖2ε for all u ∈ Vε, 2 ≤ q ≤ 6, (6.8)

(Ladyzhenskaya’s inequality).

We will also use the following version of Lemmas 3.1 and 3.2 of [22] (in the case when the
external force is absent, f ≡ 0).

Lemma 6.2 ([22]) Let the hypotheses of Theorem 2.1 be in force and u(t) be a solution to
(1.1)–(1.4) with f ≡ 0. Assume that

‖Mεu0‖ε ≤ a(ε), ‖Nεu0‖ε ≤ b(ε),

where R∗(ε) ≡ a(ε) + b(ε) satisfy (2.3). Then there exists T (ε) > 0 such that T (ε) → +∞
and for all 0 < t < T (ε) the following inequalities hold:

‖Nεu(t)‖2ε ≤ b2(ε) exp
{
− νt

2ε2

}
, (6.9)

∫ t

0

|AεNεu(s)|2εds ≤ 2
ν

b2(ε), (6.10)

‖Mεu(t)‖2ε ≤ a2(ε) exp {−νλ1t}+ c1(ν)εb4(ε), (6.11)
∫ t

0

|AεMεu(s)|2εds ≤ 2
ν

a2(ε) + c1(ν)εb4(ε). (6.12)

Here above λ1 is the first eigenvalue of 2D Stokes operator A0.
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6.2 Estimates for the trilinear form

The following estimates are proved in [22] in the case when u = w. The proof given below
is a slight modification of the argument from [22].

Lemma 6.3 For every θ < 1/2, there exist positive constants ε0, c such that for all ε ∈
(0, ε0), u,w ∈ D(Aε), v ∈ (L2(Oε))3, we have

|bε(Mεu,Nεw, v)| ≤ cεθ‖Mεu‖ε · |AεNεw|ε · |v|ε; (6.13)

|bε(Nεu,w, v)| ≤ cε1/2|AεNεu|ε · ‖w‖ε · |v|ε; (6.14)

|bε(Nεu,Nεw, v)| ≤ cε1/2‖Nεu‖ε · |AεNεw|ε · |v|ε. (6.15)

Proof. Estimate (6.13): Since (Mεu)3 = 0, we obviously have that

|bε(Mεu,Nεw, v)| ≤
2∑

j=1

3∑

l=1

∫

Oε

|(Mεu)j | |(∂j Nεu)l| |vl| dx.

Applying Hölder’s inequality, we obtain

|bε(Mεu,Nεw, v)| ≤
2∑

j=1

3∑

l=1

|(Mεu)j |Lp1 (Oε) |(∂j Nεw)l|Lp2 (Oε) |vl|L2(Oε) ,

where p−1
1 + p−1

2 = 1/2, 2 < p2 ≤ 6. Since ∂jNεw = Nε∂jw for all w ∈ D(Aε) and j = 1, 2,
we can use (6.5) and (6.8) to write

|∂j(Nεw)l|Lp2 (Oε) ≤ cε
6−p2
2p2 ‖∂jNεw‖ε ≤ cε

6−p2
2p2 |AεNεw|ε .

for any l = 1, 2, 3. One can also see that

|(Mεu)j |Lp1 (Oε) = ε1/p1 |(Mεu)j |Lp1 (T2) ≤ cε1/p1 |(Mεu)j |H1(T2)

≤ cε1/p1−1/2 ‖(Mεu)j‖ε .

Therefore inequality (6.13) with θ = 2/p2 − 1/2 follows.

Estimate (6.14): Using (6.7) we get that

|bε(Nεu,w, v)| ≤
3∑

j=1

3∑

l=1

∫

O

|(Nεu)j | · |(∂jw)l| |vl| dx

≤
3∑

j=1

3∑

l=1

|(Nεu)j |L∞(Oε) |(∂jw)l|L2(Oε) |vl|L2(Oε)

≤ c |Nεu|1/4
ε |AεNεu|3/4

ε ‖w‖ε |v|ε .

By (6.6) we have that |Nεu|ε ≤ ε
∣∣∣A1/2

ε Nεu
∣∣∣
ε
≤ ε2 |AεNεu|ε, and (6.14) follows.

Estimate (6.15): We obviously have that

|bε(Nεu,Nεw, v)| ≤
3∑

j=1

3∑

l=1

∫

Oε

|(Nεu)j | · |(∂j Nεw)l| |vl| dx

≤
3∑

j=1

3∑

l=1

|(Nεu)j |L3(Oε) |(∂jNεw)l|L6(Oε) |vl|L2(Oε)

≤ c |Nεu|L3(Oε)




3∑

j=1

|∂jNεw|L6(Oε)


 |v|ε .

Thus by (6.8) we obtain (6.15). •
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6.3 Proof of Proposition 4.1.

Applying (6.9) and (6.11) with ã(ε) = ‖Mεuε(t)‖ε and b̃(ε) = ‖Nεuε(t)‖ε instead of a(ε)
and b(ε) yields

‖uε(t)‖2ε = ‖Mεuε(t)‖2ε + ‖Nεuε(t)‖2ε
≤ ã2(ε) exp {−νλ1t}+ c1εb̃

4(ε) + b̃2(ε) exp
{
− νt

2ε2

}

≤
[
ã2(ε) + b̃2(ε)

]
max

{
exp {−νλ1t} , c1εb̃

2(ε) + exp
{
− νt

2ε2

}}
.

Thus

‖ST
ε u0‖2ε ≤ ‖u0‖2ε max

{
exp {−νλ1T0} , c1εR

2(ε) + exp
{
−νT0

2ε2

}}
.

for all T ≥ T0. Therefore we can find ε0 and 0 < γ < 1 such that (4.3) holds.
Now we prove the invariance of the set Bε. From (6.9) and (6.11) we have that

|A1/2
ε Nε[u(T ) + η]|ε ≤ b(ε) exp

{
− νT

4ε2

}
+ k∗b(ε)

and

|A1/2
ε Mε[u(T ) + η]|ε ≤ a(ε) exp

{
−νλ1

2
T

}
+ c1

√
εb2(ε) + k∗a(ε),

Thus the set Bε given by (4.1) is invariant with respect mapping u 7→ ST
ε u + η if

exp
{
−νT0

4ε2

}
+ k∗ ≤ 1

and

c1

√
εb2(ε) ≤ a(ε)

[
1− exp

{
−νλ1

2
T0

}
− k∗

]
.

Now we can choose k∗ = 1
2

[
1− exp

{−νλ1
2 T0

}]
and, due to (4.2), find ε0 = ε0(T0) such that

the inequalities above hold for all ε ∈ (0, ε0).

6.4 Proof of Theorem 4.2.

Let u1(t) and u2(t) be two strong solutions to 3D Navier-Stokes problem (2.1) with f ≡ 0.
Then the difference u(t) = u1(t)− u2(t) satisfies the equation

u′ + νAεu + Bε(u, u1) + Bε(u2, u) = 0. (6.16)

Step 1: Preliminary estimate for Nε-component.

Multiplying (6.16) in Hε by AεNεu we get

1
2

d

dt
|A1/2

ε Nεu|2ε + ν|AεNεu|2ε + bε(u, u1, AεNεu) + bε(u2, u, AεNεu) = 0. (6.17)

Now we estimate the trilinear terms in (6.17). By (6.3) we have

bε(u, u1, AεNεu) = bε(Nεu, u1, AεNεu) + bε(Mεu,Nεu1, AεNεu)

By (6.14) and (6.13) we obtain

|bε(Nεu, u1, AεNεu)| ≤ cε1/2‖u1‖ε|AεNεu|2ε
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and
|bε(Mεu,Nεu1, AεNεu)| ≤ δ|AεNεu|2ε +

c

δ
ε2θ‖Mεu‖2ε|AεNεu1|2ε

for any δ > 0, where 0 < θ < 1/2 can be chosen in arbitrary way.
Similarly

bε(u2, u, AεNεu) = bε(Nεu2, u, AεNεu) + bε(Mεu2, Nεu,AεNεu),

where
|bε(Nεu2, u, AεNεu)| ≤ δ|AεNεu|2ε +

c

δ
ε‖u‖2ε|AεNεu2|2ε

for any δ > 0, and

|bε(Mεu2, Nεu,AεNεu)| ≤ cεθ‖Mεu2‖ε|AεNεu|2ε ≤ cεθ‖u2‖ε|AεNεu|2ε .

Using in (6.17) these inequalities with suitable δ > 0 we get that

1
2

d

dt
‖Nεu‖2ε +

(
ν − c0

[
ε1/2‖u1‖ε + εθ‖u2‖ε

])
|AεNεu|2ε

≤ c1ε‖u‖2ε|AεNεu2|2ε + c2ε
2θ‖Mεu‖2ε|AεNεu1|2ε (6.18)

for every θ ∈ [0, 1/2). Under the hypotheses concerning a(ε) and b(ε), we have from relations
(6.9) and (6.11) in Lemma 6.2 that

ε1/2‖u1(t)‖ε + εθ‖u2(t)‖ε ≤ cεθ(log ε−1)σ,

for any pair of initial data u1(0) and u2(0) from Bε. Choosing 0 < ε0 ¿ 1 we get that

d

dt
‖Nεu‖2ε + ν|AεNεu|2ε (6.19)

≤ c1ε‖Nεu‖2ε |AεNεu2|2ε + c2ε
2θ‖Mεu‖2εψN (t, u1, u2) ,

for all 0 < ε ≤ ε0, where

ψN (t, u1, u2) = |AεNεu1(t)|2ε + |AεNεu2(t)|2ε. (6.20)

Step 2: Preliminary estimate for Mε-component.

Multiplying (6.16) in Hε by AεMεu we get

1
2

d

dt
|A1/2

ε Mεu|2ε + ν|AεMεu|2ε + bε(u, u1, AεMεu) + bε(u2, u, AεMεu) = 0. (6.21)

As above, we estimate trilinear terms in (6.21). By (6.2) we have

bε(u, u1, AεMεu) = bε(Mεu,Mεu1, AεMεu) + bε(Nεu,Nεu1, AεMεu).

It is clear that

|bε(Mεu,Mεu1, AεMεu)| ≤ c
√

ε‖Mεu‖L4(T2)

∑

j=1,2

‖∂jMεu1‖L4(T2)|AεMεu|ε

≤ c
√

ε‖Mεu‖H1(T2)‖Mεu1‖H2(T2)|AεMεu|ε
≤ c√

ε
‖Mεu‖ε|AεMεu1|ε|AεMεu|ε

≤ δ|AεMεu|2ε +
c

δε
‖Mεu‖2ε|AεMεu1|2ε
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for every δ > 0. As for the second term, by (6.15) we have that

|bε(Nεu,Nεu1, AεMεu)| ≤ δ|AεMεu|2ε +
cε

δ
‖Nεu‖2ε|AεNεu1|2ε

for every δ > 0.
Now we estimate the term bε(u2, u, AεMεu). As above we have that

bε(u2, u, AεMεu) = bε(Mεu2,Mεu,AεMεu) + bε(Nεu2, Nεu,AεMεu).

It is obvious that

|bε(Mεu2,Mεu,AεMεu)| ≤ c‖Mεu2‖L∞(T2)‖Mεu‖ε|AεMεu|ε
≤ c√

ε
|AεMεu2|ε‖Mεu‖ε|AεMεu|ε

≤ δ|AεMεu|2ε +
c

δε
‖Mεu‖2ε|AεMεu2|2ε

for every δ > 0. It also follows from (6.14) that

|bε(Nεu2, Nεu,AεMεu)| ≤ δ|AεMεu|2ε +
cε

δ
‖Nεu‖2ε|AεNεu2|2ε, ∀ δ > 0.

Using in (6.21) the inequalities above with appropriate δ > 0 we get

d

dt
‖Mεu‖2ε + ν|AεMεu|2ε (6.22)

≤ c1ε‖Nεu‖2εψN (t, u1, u2) +
c2

ε
‖Mεu‖2εψM (t, u1, u2),

where ψN (t, u1, u2) is defined above in (6.20) and

ψM (t, u1, u2) = |AεMεu1(t)|2ε + |AεMεu2(t)|2ε.

Step 3: Proof of (4.5).

It follows from (6.19) and (6.22) that

d

dt
‖u‖2ε + λ1ν‖u‖2ε ≤ c‖u‖2εψε(t, u1, u2) (6.23)

where ψε(t, u1, u2) = ε2θψN (t, u1, u2) + ε−1ψM (t, u1, u2). By Lemma 6.2 we have that

∫ t

0

ψε(τ, u1, u2)dτ ≤ c0ε
2θb2(ε) +

c1a
2(ε)
ε

+ c2b
4(ε) ≤ c3 + c4

[
log

1
ε

]2σ

for all 0 < ε ≤ ε0. Thus by Gronwall’s lemma from (6.23) we have that

‖u(t)‖2ε ≤ ‖u(0)‖2ε exp
{
−λ1νt + c

∫ t

0

ψε(τ, u1, u2)dτ

}

≤ ‖u(0)‖2ε exp

{
−λ1νt + c1 + c2

[
log

1
ε

]2σ
}

. (6.24)

Since 0 < σ < 1/2, we have that c2

[
log 1

ε

]2σ ≤ cδ + 2δ log 1
ε . Hence we arrived at the

relation

‖u(t)‖2ε ≤ Cδ

[
1
ε

]2δ

‖u(0)‖2εe−λ1νt, t ∈ [0, T ], ∀δ > 0, (6.25)

which implies (4.5). If σ = 0, then we recover from (6.24) estimate (4.5) with δ = 0.
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Step 4: Main estimate for Nε-component.

Since ‖u(t)‖2ε = ‖Nεu‖2ε + ‖Mεu‖2ε, inserting estimate (6.25) in (6.19) yields

d

dt
‖Nεu‖2ε + ν|AεNεu|2ε ≤ cδε

2θ−δ‖u(0)‖2εψN (t, u1, u2),

where ψN (t, u1, u2) is given by (6.20). Since by (6.6)

|AεNεu|2ε ≥ ε−2|A1/2
ε Nεu|2ε = ε−2‖Nεu‖2ε,

we obtain that

‖Nεu(t)‖2ε ≤ ‖Nεu(0)‖2 exp
{
− ν

ε2
t
}

+ cδε
2θ−δ‖u(0)‖2ε

∫ t

0

ψN (τ, u1, u2)dτ.

Now application of estimate (6.10) yields

‖Nεu(t)‖2ε ≤ ‖Nεu(0)‖2 exp
{
− ν

ε2
t
}

+ cδε
2θ−δb2(ε)‖u(0)‖2ε.

Thus under the hypotheses of Theorem 4.2 we have that

‖Nεu(t)‖ε ≤ ‖Nεu(0)‖ exp
{
− ν

2ε2
t
}

+ c%ε
% ‖u(0)‖ε, 0 ≤ t ≤ T, (6.26)

for every 0 < % < 1/2, provided that u1(0), u2(0) ∈ Bε.

Step 5: Estimate for (I − PN )Mε-component.

Let 1/6 ≤ γ < 1/2 and PN be the (spectral) orthonormal projector on the first N eigen-
vectors of the 2D Stokes operator A0 and 0 < λ1 ≤ λ2, . . . be the eigenvalues of A0. Let
w = (I − PN )Mεu. Then w solves the following 2D problem in T2:

w′ + νA0w + (I − PN )Mε [Bε(u, u1) + Bε(u2, u)] = 0.

Therefore

w(t) = e−νA0tw(0)−
∫ t

0

e−νA0(t−τ)(I − PN )Mε [Bε(u, u1) + Bε(u2, u)] dτ .

Thus

‖A1/2
0 w(t)‖ eH ≤ ‖A1/2

0 w(0)‖ eHe−νλN+1t

+Ψγ(t, u1, u2) ·
∫ t

0

‖A1/2+γ
0 e−νA0(t−τ)(I − PN )‖L( eH)dτ,

where
Ψγ(t, u1, u2) = sup

τ∈[0,t]

∥∥A−γ
0 Mε [Bε(u(τ), u1(τ)) + Bε(u2(τ), u(τ))]

∥∥ eH .

It is well-known (see, e.g. [3, Chap.2] that a positive operator A0 with a compact resolvent
satisfies ∫ t

0

∥∥∥Aβ
0 e−νA0(t−τ)(I − PN )

∥∥∥ eH dτ ≤ Cβ

λ1−β
N+1

for every 0 ≤ β < 1. Therefore,

‖A1/2
0 w(t)‖ eH ≤ ‖A1/2

0 w(0)‖ eHe−νλN+1t +
Cγ

λ
1/2−γ
N+1

Ψγ(t, u1, u2) . (6.27)
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Now we estimate Ψγ(t, u1, u2). We obviously have that
∥∥A−γ

0 MεBε(u, u1)
∥∥ eH = sup

{
(MεBε(u, u1), A

−γ
0 v) eH : v ∈ H̃, ‖v‖ eH = 1

}

=
1
ε

sup
{

bε(u, u1,MεA
−γ
0 v) : v ∈ H̃, ‖v‖ eH = 1

}
. (6.28)

It is clear that

bε(u, u1,MεA
−γ
0 v) = bε(u,Mεu1,MεA

−γ
0 v) + bε(Nεu,Nεu1,MεA

−γ
0 v).

To estimate the first term we note that

|bε(u,Mεu1,MεA
−γ
0 v)| ≤ C‖Mεu1‖ε

3∑

j,l=1

[∫

Oε

|uj |2|(A−γ
0 v)l|2 dx

]1/2

≤ C‖Mεu1‖ε|u|L6(Oε)

[
ε

∫

T2
|(A−γ

0 v)|3 dx

]1/3

.

Since H1/3(T2) ⊂ L3(T2) and γ ≥ 1/6, we have that
[∫

T2
|(A−γ

0 v)|3 dx

]1/3

≤ C|(A−γ
0 v)|H1/3(T2) ≤ C‖v‖ eH .

We also have6 that |u|L6(Oε) ≤ Cε−1/3‖u‖ε. Therefore, applying (6.11) to the term ‖Mεu1‖ε,
we have that

|bε(u,Mεu1, MεA
−γ
0 v)| ≤ C‖u‖ε‖Mεu1‖ε‖v‖ eH ≤ C

(
a(ε) +

√
εb2(ε)

) ‖u‖ε‖v‖ eH . (6.29)

As for the second term, we obviously have that

|bε(Nεu,Nεu1,MεA
−γ
0 v)| ≤ Cε1/p2‖Nεu1‖ε|Nεu|Lp1 (Oε)|MεA

−γ
0 v|Lp2 (T2),

where p−1
1 + p−1

2 = 1/2, 2 < p1 ≤ 6. Since H1−2/p2(T2) ⊂ Lp2(T2), from (6.8) we obtain
that

|bε(Nεu, Nεu1,MεA
−γ
0 v)| ≤ Cεθ‖Nεu1‖ε‖Nεu‖ε‖A1/p1−γ

0 v‖ eH ,

where θ = 1/p2 + (6 − p1)/(2p1) = 2/p1. We can choose p1 = γ−1 and apply (6.9) to
‖Nεu1‖ε to obtain that

|bε(Nεu,Nεu1,MεA
−γ
0 v)| ≤ Cε2γb(ε)‖Nεu‖ε‖v‖ eH .

Using this estimate and also (6.29) in (6.28) we find that
∥∥A−γ

0 MεBε(u, u1)
∥∥ eH ≤ Cε−1d(ε)‖u‖ε ,

where
d(ε) = a(ε) +

√
εb2(ε) + ε2γb(ε) (6.30)

for every 1/6 ≤ γ < 1/2. A similar argument yields
∥∥A−γ

0 MεBε(u2, u)
∥∥ eH ≤ Cε−1d(ε)‖u‖ε .

Therefore using (6.25) we obtain that

Ψγ(t, u1, u2) ≤ Cδd(ε)
(

1
ε

)1+δ

‖u(0)‖ε .

Since ‖A1/2
0 w(t)‖ eH = ε−1/2‖w(t)‖ε, then now (6.27) yields the estimate

‖w(t)‖ε ≤ ‖w(0)‖εe
−νλN+1t + Cδd(ε)

(
1
ε

)1/2+δ

λ
−1/2+γ
N+1 ‖u(0)‖ε , (6.31)

where w(t) = (I − PN )Mεu(t), d(ε) is given by (6.30), and δ = 0 if σ = 0 in (4.4).
6The estimate follows from the Ladyzhenskaya inequality in the domain T2 × (0, 1) which transforms to

Oε by the scaling transformation (x′, x3) 7→ (x′, εx3).
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Concluding step: Proof of (4.6).

Since (I − P̃N )u(t) = (I − PN )Mεu(t) + Nεu(t), we get from (6.26) and (6.31) that

‖(I − P̃N )u(t)‖ε ≤ q(N, ε, t)‖u(0)‖ε, (6.32)

where

q(N, ε, t) = exp
{
− ν

2ε2
t
}

+ exp {−νλN+1 t}+ c%ε
% +

Cδd(ε)

λ
1/2−γ
N+1

(
1
ε

)1/2+δ

.

Clearly for any T > 0 we can choose ε0 > 0 and for ε ≤ ε0 find N = N(ε, T ) such that
q(N, ε, T ) ≤ q. Therefore (6.32) implies (4.6).

If σ = 0 in relations (4.4), then δ = 0 and, after choosing γ = 1/4, we have d(ε) ≤ C
√

ε.
Thus the coefficient in the last term of the expression for q(N, ε, t) does not depend on ε
and hence N may be chosen independent of ε.

The proof of Theorem 4.2 is complete.

6.5 Proof of Proposition 4.4

The first part follows from (2.6). To prove estimate (4.7) we start with an assertion which is
well-known for every fixed ε (see, e.g., [5]). We repeat the corresponding argument because
we need to control dependence of the constants on ε.

Lemma 6.4 There exist positive constants ε0, c such that for all ε ∈ (0, ε0), u ∈ Vε,
w ∈ D(Aε), v ∈ Hε, we have

|bε(u,w, v)| ≤ cε−1/2|u|1/4
ε ‖u‖3/4

ε ‖w‖1/4
ε |Aεw|3/4

ε · |v|ε. (6.33)

Proof. We obviously have that

|bε(u, w, v)| ≤
3∑

j=1

3∑

l=1

|uj |L4(Oε) |∂jwl|L4(Oε) |vl|L2(Oε) .

Transforming Oε into O1 by the scaling transformation (x′, x3) 7→ (x′, ε−1x3) and applying
the well-known estimates for L4-norm, we obtain that

|uj |L4(Oε) ≤ Cε−1/4|u|1/4
ε ‖u‖3/4

ε . (6.34)

Using a similar estimate for |∂jwl|L4(Oε) we arrive at (6.33). •

To continue with the proof of Proposition 4.4 we note that application of Lemma 6.2
with a(ε) = b(ε) = ρ

√
ε yields

‖u(t)‖2ε +
∫ t

0

|Aεu(s)|2εds ≤ c(ρ)ε, t ∈ [0, T ]. (6.35)

It follows from (6.33) that

|Bε(u, u)|ε ≤ cε−1/2‖u‖5/4
ε |Aεu|3/4

ε ≤ cε1/8|Aεu|3/4
ε , t ∈ [0, T ].

Since u(t) satisfies (2.1) with f = 0, then

|u′ + νAεu|ε ≤ cε1/8|Aεu|3/4
ε ≤ δ|Aεu|ε + Cδ

√
ε, t ∈ [0, T ] . (6.36)
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for any δ > 0. This inequality with δ = 1 and (6.35) give us that
∫ t

0

|u′(s)|2εds ≤ c(ρ)ε, t ∈ [0, T ]. (6.37)

The equation for w := u′

w′ + νAεw + Bε(w, u) + Bε(u,w) = 0

implies that
1
2

d

dt
|w|2ε + ν‖w‖2ε ≤ |bε(w, u, w)|. (6.38)

Since
|bε(w, u, w)| ≤ C‖u‖ε |w|2L4(Oε) ≤ C

√
ε |w|2L4(Oε) ,

then it follows from (6.34) that

|bε(w, u, w)| ≤ C|w|1/2
ε ‖w‖3/2

ε ≤ ν‖w‖2ε + C|w|2ε.
Consequently (6.38) yields

|w(t)|2ε ≤ |w(s)|2ε + C

∫ t

s

|w(τ)|2εdτ, 0 ≤ s ≤ t ≤ T

Integration of this relation with respect to s over the interval [0, t] yields

t|w(t)|2ε ≤ C(1 + t)
∫ t

0

|w(τ)|2εdτ, 0 ≤ t ≤ T

Since w = u′, then evoking (6.37) we get that

|u′(t)|2ε ≤ Cρ(1 + t−1)ε, 0 ≤ t ≤ T,

which, due to (6.36) with δ = ν/2 implies (4.7). Thus the proof of Proposition 4.4 is
complete.

7 Some hydrodynamical consequences

In this section we use our results to study asymptotic properties of some quantities, charac-
terising fluid’s motion. We assume that the hypotheses of the first assertion in Theorem 5.5
are in force.

1. Energy. Let e(u) be the normalised energy of a flow u in Oε:

e(u) =
1
2ε

∫

Oε

|u(x)|2 dx =
1
2ε
|u|2ε

(note that e(u) = 1
2 |u|2eH if Mεu = u). Then

a) The averaged energy Ee(u(kT + τ)) of any solution u for (1.1)-(1.5) at time kT + τ
(0 ≤ τ ≤ T ) with the initial data from Bε converges as k → ∞ to the energy of the
stationary measure

∫
e(u) µτ

ε (du) (we use Theorem 5.1 and Remark 5.2). Furthermore,
calculating the latter quantity one can replace the average in ensemble by the average in
time (cf. Introduction).

b) The following relation holds

lim
ε→0

∫

Bε

e(u)µτ
ε (du) =

∫
eH

e(v)ϑτ (dv) . (7.1)
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To prove (7.1) we note that by (6.1) we have that
∫

Bε

e(u)µτ
ε (du) =

1
2ε

∫
eV
|Mεu|2ε µτ

ε (du) +
1
2ε

∫

B0
ε

|Nεu|2εµε(du), (7.2)

where B0
ε is given by (5.7). However, under the conditions of Theorem 5.5 by (6.6) we have

that
|Nεu|2ε ≤ ε2‖Nεu‖2ε ≤ Cε3, u ∈ B0

ε . (7.3)

So when ε → 0 the second term in the r.h.s. of (7.2) disappears. Applying Theorem 5.5 to
the first term we get (7.1).

The obtained relation means that under the limit ε → 0 the averaged 3D energy per
unit volume of a stationary flow in Oε converges to the averaged 2D energy per unit area
of a stationary 2D flow in T2.

c) Let the random force satisfies the hypothesis of Theorem 5.8, and uε(x, t) be a solution
of (1.1)-(1.5) such that u0 = uε

0 ∈ B0
ε and Muε

0 = ṽ0. Let v(x′, t) be a solution of problem
(1.9)–(1.11) with the force f̃ given by (5.13). Using Theorem 5.8 jointly with (7.3) we find
that the averaged energy of the 3D solution Ee(u(t)) converges to the averaged energy of
the 2D solution Ee(v(t)) as ε → 0, uniformly in time t.

2. Enstrophy. Consider the normalised enstrophy functional

Ω(u) =
1
2ε
‖u‖2ε =

1
2ε

∫

Oε

|curlu(x)|2 dx .

a) Let the assumptions of item 2) of Theorem 5.1 hold, as well as (5.9) with n = 2. Then
the averaged enstrophy of any admissible solution u converges to the averaged enstrophy of
the stationary measure: EΩ(u(kT + τ)) → ∫

Ω(u)µτ
ε (du) as k → ∞, for any τ . Assume

now that the kicks have zero mean-value:

Eηε
k = 0 ∀k .

Then E|u(T )|2ε = E|u(T − 0)|2ε + E|ηε
1|2ε, so the energy balance relation for a solution u on

the segment [0, T ] takes the form

E|u(T )|2ε + 2νE
∫ T

0

‖u(τ)‖2εdτ = E|u(0)|2ε + εDε,

where
Dε = ε−1E|ηε

1|2ε =
∑

(bε
j)

2λ−1
j E(ξε

j1)
2 +

∑
(b̂ε

j)
2(Λε

j)
−1E(ξ̂ε

j1)
2 . (7.4)

Applying the energy balance relation to a stationary solution u we get that

∫ T

0

dτ

∫

Bε

Ω(u)µτ
ε (du) =

1
4ν

Dε . (7.5)

Accordingly, the enstrophy of any solution satisfies

1
T

∫ t+T

t

EΩ(u(s)) ds → 1
4νT

Dε as t →∞ .

b) Assume assumptions of Theorem 5.8 (including (5.16)). If τ > 0, then (4.7) implies
that Ω

(
Nu(kT + τ)

) ≤ Cτ−1ε, so by Theorem 5.8 for any τ > 0 we have

lim
ε→0

∫

Bε

Ω(u) µτ
ε (du) =

∫
eH

Ω(v)ϑτ (dv) . (7.6)
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Assume that the second term in the r.h.s. of (7.4) goes to zero with ε (this is a mild
assumption since (Λε

j)
−1 ≤ ε2 for each j). Then due to (5.12) Dε →

∑
b2
jλ
−1
j Eξ2

j1, so by
(7.5) we obtain that

∫ T

0

dτ

∫

Bε

Ω(u) µτ
ε (du) → 1

2ν

∑
b2
jλ
−1
j Eξ2

j1 .

But the r.h.s. of (7.6), integrated in dτ over [0, T ], also equals to the limiting value above (see
(3.12) in [13]). So the limiting relation (7.6), valid for τ > 0, remains true after integrating
in dτ over [0, T ].

3. Correlation tensor. Assume that (5.16) holds. We have from (5.17) in Theorem 5.5
and from Corollary 5.7 that

lim
ε→0

∫

Bε

〈ui〉(x′)〈uj〉(y′)µτ
ε (du) =

∫
eH

vi(x′)vj(y′)ϑτ (dv), i, j ∈ {1, 2} , (7.7)

for any τ ∈ [0, T ]. Here x′, y′ are any points in T2, for a function f(x) on Oε we denote
〈f〉(x′) = ε−1

∫
f(x′, x3) dx3 and ϑτ = Sτ

0 ◦ ϑ. So the ‘horizontal’ components of the
correlation tensor for the stationary 3D solution, averaged in the thin direction, converge to
the correlation tensor for the stationary 2D solution.

If τ > 0, then for the same reasons as above

lim
ε→0

∫

Bε

ui(xε)uj(yε)µτ
ε (du) =

∫
eH

vi(x′)vj(y′) ϑτ (dv) for i, j ∈ {1, 2, 3} .

Here xε ∈ Oε is any point of the form xε = (x′, x3(ε)), similar with yε, and the r.h.s.
vanishes if i = 3 or j = 3.

3. Enstrophy production. The averaged enstrophy production for a 3D flow u in Oε

equals

EεΩ(u), where εΩ(u) =
∑

i,j

∫

Oε

ωi(x)ωj(x)sijdx.

Here ω = curl u and sij = 1
2 (∂jui + ∂iuj) For a 2D flow we have εΩ = 0. If u is a 3D

flow, satisfying the boundary conditions in (1.4) then integrating by parts we find that
εΩ(u) = bε(u, u, Aεu). Therefore

1
ε

∫ T

0

dτ

∫

B0
ε

εΩ(u)µτ
ε (du) =

1
ε

∫ T

0

dτ

∫

B0
ε

bε(u(τ), u(τ), Aεu(τ))µε(du)

However, by the symmetry relation in (6.4) we can write bε(u, u, Aεu) as follows

bε(u, u, Aεu) = bε(Mεu,Nεu,AεNεu) + bε(Nεu, Mεu,AεNεu)
+bε(Nεu,Nεu,AεMεu) + bε(Nεu,Nεu,AεNεu).

Now we use Lemma 6.3 and estimate (6.35) to obtain that

lim
ε→0

1
ε

∫ T

0

dτ

∫

B0
ε

εΩ(u)µτ
ε (du) = 0

under condition (5.6), in agreement with the fact that for the limiting 2D flow we have
εΩ = 0.
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8 Appendix: spectral problem for the Stokes operator

The spectral boundary value problem which corresponds to operator Aε has the form




−∆w = λw, div w = 0 in Oε = T2 × (0, ε),

w(x′, x3) is (l1, l2)-periodic with respect to x′,

w3|x3=ε = 0, ∂3wj |x3=ε = 0, j = 1, 2,

w3|x3=0 = 0, ∂3wj |x3=0 = 0, j = 1, 2.

∫
Oε

ujdx = 0, j = 1, 2.

(8.1)

Using the decomposition (1.7), where the spaces MεVε h Ṽ and NεVε are invariant for ∆
by iv) in Section 6.1, we see that the spectrum consists of two branches. Recalling estimate
(6.6) we find that these branches are: (i) the spectrum of the 2D Stokes operator A0,
0 < λ1 ≤ λ2 ≤ . . ., and (ii) series of eigenvalues 0 < Λε

1 ≤ Λε
2 ≤ . . . , depending on ε and

greater than ε−2 . We denote the corresponding eigenfunctions eλj and eΛε
j
. We have

Mεeλj = eλj , MεeΛε
j

= 0 . (8.2)

The eigenvalues λj are properly ordered numbers
(
s1

2π
l1

)2

+
(
s2

2π
l2

)2

, s = (s1, s2) ∈ Z2\{0},
and

C−1j ≤ λj ≤ Cj for all j, (8.3)

with some C > 1 (see, e.g., [5]). We normalise the eigenfunctions as follows:

‖eλj‖ε = ‖eΛε
j
‖ε =

√
ε ∀ j . (8.4)

Then ‖eλj‖Ṽ = 1 for all j.
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