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Abstract

We present a framework and methodology to compute the scattering
map associated to heteroclinic trajectories in the spatial Hill’s problem.
The scattering map can be applied to design of zero-cost transfer trajec-
tories in astrodynamics.

1 Introduction

The goal of this paper is to compute the scattering map associated to heteroclinic
trajectories from the neighborhood of L1 to the neighborhood of L2 (or vice
versa) in the spatial Hill’s problem.

The planar Hill’s problem was studied extensively by Simó and Stuchi in [22],
where they already computed several homoclinic and heteroclinic connections.
Recently, accurate numerical procedures have been developed to compute ho-
moclinic and heteroclinic orbits in the spatial Hill’s problem [13], [19].

The scattering map was first introduced in [6]. It plays a crucial part in
the mechanism of diffusion described in [4]. Its properties have been studied
extensively in [5].

In [2] we studied the scattering map in the planar restricted three body prob-
lemas a first step to understand it in the spatial problem. Compared with [2],
the present paper is more complex, because one has to deal with manifolds two
dimensions higher. This fact makes manifold intersections harder to compute
and manifold tangencies harder to detect. On the other hand, going one degree
of freedom higher gives room to trajectories connecting different invariant tori
and to so-called Arnold’s diffusion.

As an example application, consider a spacecraft orbiting in a given Lissajous
orbit with small out-of-plane amplitude around L1 in the Sun-Earth system. For
some reason (for instance due to a contingency plan), we would like to have the
spacecraft transfered to a Lissajous orbit around L1 with large out-of-plane
amplitude at the minimum fuel cost. Performing the transfer using classical
maneuvers is expensive in terms of delta-v but, using heteroclinic connections
and the scattering map, it can be performed at almost zero cost (see section 5.3).
The main drawback is longer transfer times.

This paper presents a framework and methodology for the computation of
scattering maps in the spatial Hill’s problem. Moreover, the methodology can be
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easily adapted to similar problems. The methodology is indebted to the work
of C. Simó and his collaborators, who were the first to sistematically apply
dinamical systems theory to space mission design. The series of volumes [12],
[14], [10], [11] is a compendium of their work.

The main contributions of this paper are:

• Clarification of the relation of Lindstedt-Poincaré expansions to Birkhoff
normal forms (section 3.2.1).

• Description of a method to compute heteroclinic trajectories from the
normally hyperbolic invariant manifold of the equilibrium point Li to that
of Lj (section 4.2). Numerical results are given for Hill’s problem.

• A method to compute the wave operators in Hill’s problem. Semi-analitic
formulas for the wave operators are given using Lindstedt-Poincaré vari-
ables (section 5.1).

• A method to determine heteroclinic channels in Hill’s problem (section 5.2).
Some heteroclinic channels are constructed explicitly for illustration.

Once the wave operators and heteroclinic channels are known, it is straight-
forward to compute the associated scattering maps (see section 5.3). In partic-
ular, we introduce a reduced form of the scattering map that captures all the
information present in the usual scattering map in Hill’s problem.

This paper does not describe in detail the possible uses of the scattering map
in Hill’s problem. However we present a simple application in section 5.3 for
illustration. We plan to show some interesting applications in a future paper.

2 The spatial Hill’s problem

Assume that two large bodies (for instance, the Sun and the Earth) follow
circular orbits around their center of mass. The spatial restricted three body
problem (RTBP for short) consists in describing the motion of a third body of
negligible mass (for instance, the Moon) under the gravitational influence of the
two massive bodies. Usually, the two large bodies are called “primaries”. The
one with larger mass 1−µ is called P1 and the one with smaller mass µ is called
P2.

The equations of motion of the third particle are given in [23], section 10.2.
We denote (X,Y,Z) the position coordinates of the third particle. We remark
that the motion of the third body is not constrained to the plane defined by the
primaries.

Hill’s problem is a limit version of the RTBP focusing on the neighborhood
of the smallest primary, P2 (see [23], [22]). The computations of heteroclinic
trajectories in this paper are done using Hill’s equations instead of RTBP equa-
tions, because they are simpler and they present a symmetry. Moreover, this
allows us to compare results with [22] and [19]. The results can be extended to
the RTBP for small values of the mass µ.

Hill’s model can be obtained from the RTBP by a translation of the origin
to the small primary followed by a µ1/3 rescaling:

X → Xµ1/3 + µ − 1, Y → Y µ1/3, Z → Zµ1/3.
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Expanding the equations in powers of µ1/3 and considering only the dominant
terms, one obtains Hill’s limit:

Ẍ − 2Ẏ =
∂Ω

∂X

Ÿ + 2Ẋ =
∂Ω

∂Y

Z̈ =
∂Ω

∂Z

where

Ω(X,Y,Z) =
3

2
X2 − 1

2
Z2 +

1√
X2 + Y 2 + Z2

.

There exists an integral of this system, known as the Jacobian integral:

Ẋ2 + Ẏ 2 + Ż2 = 2Ω(X,Y,Z) − C, (1)

where C is called the Jacobian constant.
Two of the collinear fixed points of the RTBP, L1 and L2, persist in Hill’s

problem. They are located symmetrically with respect to the X = 0 plane on
the X axis, at a distance γ = 3−1/3 of the small primary.

To focus on the neighborhood of one of the equilibrium points (L1 or L2),
we shift the coordinate system to the equilibrium point and scale it so that the
distance from the closest primary to the origin becomes one:

X = −γξ + β, Y = −γη, Z = γζ

where β = ±γ, with the upper sign for L1 and the lower one for L2. In terms
of these new variables, the equations of motion become (see [21]):

ξ̈ − 2η̇ =
1

γ2

∂ΩL

∂ξ
,

η̈ + 2ξ̇ =
1

γ2

∂ΩL

∂η
,

ζ̈ =
1

γ2

∂ΩL

∂ζ
,

(2)

where

ΩL(ξ, η, ζ) =
3γ2

2
(ξ + 1)2 − γ2

2
ζ2 +

1

γ
√

(ξ + 1)2 + η2 + ζ2
.

The Jacobian integral is again

ξ̇2 + η̇2 + ζ̇2 = 2ΩL(ξ, η, ζ) − CL,

where C = γ2CL.
Introducing momenta in this rotating system

pξ = ξ̇ − η, pη = η̇ + ξ, pζ = ζ,
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a time-independent Hamiltonian function can be obtained:

HL(ξ, η, ζ, pξ, pη, pζ) =
1

2

(

p2
ξ + p2

η + p2
ζ

)

+ ηpξ − ξpη

+
1

2

(

ξ2 + η2
)

− 1

γ2
ΩL(ξ, η, ζ).

(3)

It is an integral of the system closely related to the Jacobian integral. In fact,
CL = −2HL.

We will denote (M,ϕt) the phase space and the flow associated to (3).

3 Representation of the dynamics near L1 and

L2

This section gives a description of the dynamics in the neighborhood of an
equilibrium point (L = L1 or L2) using a Lindstedt-Poincaré procedure.

The Lindstedt-Poincaré procedure is analogous to a Birkhoff normal form,
but without first diagonalizing the linear part of the equations. It produces an
integrable approximation to the dynamics, with uncoupled elliptic and hyper-
bolic behaviour and the center part arranged as a rotation on the torus. Hence,
it gives a representation of the invariant tori present in the center manifold,
and associated stable and unstable manifolds. However, the representation is
only valid in a small region around L due to small divisors. An advantage of
the Lindstedt-Poincaré procedure with respect to normal forms is that it works
with the original coordinates, and avoids a costly diagonalizing transformation.

For the numerical method used in section 4 to compute Li −Lj heteroclinic
trajectories, it is necessary to work with the invariant tori around Lj , so we will
use a Lindstedt-Poincaré representation, and restrict ourselves to the region
where it is valid.

From the point of view of the scattering map, the important point is that
the procedure is able to uncouple the center and hyperbolic directions, giving
a local description of the stable and unstable manifolds’ foliation (25). In this
sense, we could have used a “reduction to center manifold” type of normal form
instead of a Lindstedt-Poincaré or Birkhoff normal form. A detailed exposition
of the “reduction to center manifold” procedure can be found in [18] or [10].

In this paper, we will simply use Lindstedt-Poincaré and normal form ex-
pansions without explaining how these expansions can be computed. For a
justification of the expansions and details about their computation, we refer
to [10], [18], [19], and references therein.

An important idea in dynamical systems is to identify certain sets of solutions
with similar dynamical properties as invariant manifolds organizing the phase
space. We summarize the local invariant manifolds present near the fixed point L
of the spatial Hill’s problem. We use truncated series to represent the manifolds,
which gives a good numerical approximation to the exact manifolds.

3.1 Normal form expansions

The general idea behind normal forms is to simplify the Taylor expansion of the
Hamiltonian around an equilibrium point using canonical changes of variables.
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There are several types of normal forms, depending on the kind of transforma-
tions allowed and the “simple” form one puts the system into.

Let us briefly review the Birkhoff normal form procedure. For details see [17],
for instance.

The Hamiltonian H = HL is expanded in power series using the Legendre
polynomials, Pn:

H(ξ, η, ζ, pξ, pη, pζ) = σ+
1

2

(

p2
ξ + p2

η + p2
ζ

)

+ηpξ −ξpη −
∑

n≥2

cnρnPn

(

ξ

ρ

)

, (4)

where ρ2 = ξ2 + η2 + ζ2, c2 = 4, cn = (±1)n3 n ≥ 3, and σ = − 9
2 .

Consider the second-order part of the Hamiltonian:

H2(ξ, η, ζ, pξ, pη, pζ) =
1

2

(

p2
ξ + p2

η + p2
ζ

)

+ ηpξ − ξpη − c2ξ
2 +

c2

2
η2 +

c2

2
ζ2.

Let A be the linearization of the flow around the origin, i.e. A = J∇H2(0). The
characteristic roots of A are two real roots of opposite sign, ±λ0, and two pairs
of imaginary roots of opposite sign, ±iω0 and ±iν0, with

λ0 =

√

c2 − 2 +
√

9c2
2 − 8c2

2
, ω0 =

√

2 − c2 +
√

9c2
2 − 8c2

2
, ν0 =

√
c2.

Therefore, the equilibrium point L is of the type saddle × center × center.
As a preliminary step, diagonalize the linear part of the equations of motion,

or equivalently, simplify the second-order part H2 of the Hamiltonian.
Use first a linear symplectic change of coordinates

x → Cx

where x = (ξ, η, ζ, pξ, pη, pζ). The matrix C is given explicitly in [19], section 4.
Then, H2 takes the form

H2(ξ, η, ζ, pξ, pη, pζ) = λ0ξpξ +
ω0

2
(η2 + p2

η) +
ν0

2
(ζ2 + p2

ζ).

Introduce then complex variables

(

q2

p2

)

=
1√
2

(

1 −i
−i 1

)(

η
pη

)

,

(

q3

p3

)

=
1√
2

(

1 −i
−i 1

) (

ζ
pζ

)

(5)

and

(

q1

p1

)

=

(

ξ
pξ

)

to complete the diagonalization of the linear part of the

differential equations, which puts the Hamiltonian in the form

H2(q1, q2, q3, p1, p2, p3) = λ0q1p1 + iω0q2p2 + iν0q3p3. (6)

Remark 1. We call attention to the fact that this diagonalizing transformation
is nontrivial and very useful. The Lindstedt-Poincaré procedure avoids this
preliminary tranformation at the expense of complicating the normalization
procedure, and the final expansion is less compact than a Birkhoff normal form
solution (compare equations (13) and (15)).
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Next we arrange the nonlinear part of the differential equations. For econ-
omy, let us use multiindex notation: q = (q1, q2, q3), qi = (qi1

1 , qi2
2 , qi3

3 ), |i| =
i1 + i2 + i3. Substituting the linearizing change of variables in the expansion (4)
gives

H(q, p) =
∑

n≥2

Hn(q, p), Hn =
∑

|i|+|j|=n

hijq
ipj , (7)

where hij are complex coefficients, and H2 is given in (6).
The Birkhoff normal form procedure cancels all nonresonant terms of the

Hamiltonian up to a certain degree N . One performs successive canonical trans-
formations of the Hamiltonian (7) to obtain

H(q, p) = HB(q, p) + R(q, p),

where HB is a degree N polynomial in Birkhoff normal form

HB = λ0q1p1 + iω0q2p2 + iν0q3p3 + Ĥ(q1p1, q2p2, q3p3), (8)

and R is a reminder of order N + 1 in the variables. Introduce the variables
I1 = q1p1, I2 = q2p3, I3 = q3p3 with associated canonical pairs ϕ1, ϕ2, ϕ3. Notice
that I1, I2, I3 are first integrals of HB:

İ1 = İ2 = İ3 = 0

ϕ̇1 =
∂HB

∂I1
= λ0 +

∂Ĥ

∂I1
(I0

1 , I0
2 , I0

3 )

ϕ̇2 =
∂HB

∂I2
= iω0 +

∂Ĥ

∂I2
(I0

1 , I0
2 , I0

3 )

ϕ̇3 =
∂HB

∂I3
= iν0 +

∂Ĥ

∂I3
(I0

1 , I0
2 , I0

3 ).

(9)

where (I0
1 , I0

2 , I0
3 ) = (I1(0), I2(0), I3(0)). Therefore the Birkhoff normal form of

degree N is integrable. The right-hand side is constant: it only depends on
I1, I2, I3. Introduce the frequency series

λ = λ0 +
∂Ĥ

∂I1
(I0

1 , I0
2 , I0

3 ) =
∑

ikm

λikm(q0
1p0

1)
i(I0

2 )k(I0
3 )m

ω = ω0 +
∂Ĥ

∂I2
(I0

1 , I0
2 , I0

3 ) =
∑

ikm

ωikm(q0
1p0

1)
i(I0

2 )k(I0
3 )m

ν = ν0 +
∂Ĥ

∂I3
(I0

1 , I0
2 , I0

3 ) =
∑

ikm

νikm(q0
1p0

1)
i(I0

2 )k(I0
3 )m.

(10)

where (q0
1 , p0

1) = (q1(0), p1(0)).
We may realify the normalized Hamiltonian (8) using the inverse of the

previous complexifying transformation (5) to obtain

HB(ξ, pξ, η, pη, ζ, pζ) = λ0ξpξ +
ω0

2
(η2 + p2

η) +
ν0

2
(ζ2 + p2

ζ) + Ĥ(ξpξ, ηpη, ζpζ).

(11)
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The corresponding Hamiltonian equations are

ξ̇ = λξ ṗξ = −λpξ (12a)

η̇ = ωpη ṗη = −ωη (12b)

ζ̇ = νpζ ṗζ = −νζ (12c)

with solution

ξ(t) = q0
1eλt pξ(t) = p0

1e
−λt (13a)

η(t) = I0
2 cos(ωt + ϕ0

2) pη(t) = −I0
2 sin(ωt + ϕ0

2) (13b)

ζ(t) = I0
3 cos(νt + ϕ0

3) pζ(t) = −I0
3 sin(νt + ϕ0

3), (13c)

where

q0
1 = ξ(0) p0

1 = pξ(0)

I0
2 = I2(0) ϕ0

2 = ϕ2(0)

I0
3 = I3(0) ϕ0

3 = ϕ3(0).

In the normalization process there appear small divisors, which makes di-
vergence of the process noticeable outside a small neighborhood VB of the equi-
librium point.

The Birkhoff normal form is equivalent to a Lindstedt-Poincaré expansion,
as will be explained in section 3.2.1.

3.2 Lindstedt-Poincaré expansions

Consider first the linearization of the equations of motion (2) obtained by ex-
panding the function ΩL around the origin (equilibrium point) and neglecting
terms of order 2 and higher in ξ, η and ζ:

ξ̈ − 2η̇ = (1 + 2c2)ξ

η̈ + 2ξ̇ = (1 − c2)η

ζ̈ = −c2ζ,

where c2 = 4 for Hill’s problem. (See [19] for details of the computation).
Recall that the eigenvalues of the linearized equations are ±λ0, ±iω0 and

±iν0. The solution of the linearized equations is

ξ(t) = α1e
λ0t + α2e

−λ0t + α3 cos(ω0t + φ1), (14a)

η(t) = k2α1e
λ0t − k2α2e

−λ0t + k1α3 sin(ω0t + φ1), (14b)

ζ(t) = α4 cos(ν0t + φ2), (14c)

where α1, α2, α3, α4, φ1, φ2 are independent coefficients that can be completely
determined from the initial conditions ξ(t0), η(t0), ζ(t0), ξ̇(t0), η̇(t0), ζ̇(t0), and
k1, k2 are constant:

k1 = −ω2
0 + 1 + 2c2

2ω0
, k2 =

λ2
0 − 1 − 2c2

2λ0
.
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Note that the coefficients α1 and α2 are associated with the real exponents λ0

and −λ0, so the first term in the right hand side of expressions (14a) and (14b)
has exponential growth, and the second term has exponential decay with time.

Selecting an initial condition

x0 = (ξ0, η0, ζ0, ξ̇0, η̇0, ζ̇0) =
(

ξ(t0), η(t0), ζ(t0), ξ̇(t0), η̇(t0), ζ̇(t0)
)

such that α1 = α2 = 0 yields a particular solution consisting of an elliptic
motion in the ξ, η plane (“in-plane” component of the motion) and an uncou-
pled oscillation in the ζ direction (“out-of-plane” component). These bounded
solutions may be periodic (if ν0 and ω0 are commensurable) or quasi-periodic.
Each of these orbits, usually called Lissajous orbits, lies on a two-dimensional
torus Tα3,α4

characterized by the amplitudes α3 and α4, and parametrized by
the angles θ1 = ω0t + φ1 and θ2 = ν0t + φ2.

Selecting initial coditions corresponding to α3 = α4 = 0 reduces to a saddle
phase portrait in the ξ, η plane.

Combinations of these two cases give rise to solutions having both elliptic
and hyperbolic behaviour. In particular, one can see directly from (14) that
selecting an initial condition x0 corresponding to α1 = 0 and α2 6= 0 gives a
solution tending to a Lissajous orbit as t → ∞, i.e. the orbit of x0 belongs
to the stable manifold of the torus Tα3,α4

. Notice that the stable manifold is
actually composed of all such orbits. Similarly, if x0 corresponds to α1 6= 0 and
α2 = 0, then the orbit of x0 belongs to the unstable manifold of Tα3,α4

.
Of course, the solutions discussed above are only valid for the linearized

problem. However, in [19] it is shown that solutions of the exact problem can
be well approximated in a neighborhood VLP of the equilibrium point by a
truncated series of the form

ξ(t) =
X

e
(i−j)λt

ˆ

ξ
pq

ijkm cos (pθ1 + qθ2) + ξ̄
pq

ijkm sin(pθ1 + qθ2)
˜

α
i
1α

j
2α

k
3α

m
4

η(t) =
X

e
(i−j)λt

ˆ

η
pq

ijkm cos(pθ1 + qθ2) + η̄
pq

ijkm sin(pθ1 + qθ2)
˜

α
i
1α

j
2α

k
3α

m
4

ζ(t) =
X

e
(i−j)λt

ˆ

ζ
pq

ijkm cos(pθ1 + qθ2) + ζ̄
pq

ijkm sin(pθ1 + qθ2)
˜

α
i
1α

j
2α

k
3α

m
4

(15)

where α1, α2, α3, α4 are constant,

θ1(t) = ωt + φ1, θ2(t) = νt + φ2,

and

λ =
∑

λikm (α1α2)
i
αk

3αm
4

ω =
∑

ωikm (α1α2)
i
αk

3αm
4

ν =
∑

νikm (α1α2)
i
αk

3αm
4 .

Summation is extended over all i, j, k,m ∈ N and p, q ∈ Z. Compare with (9), (10).
By construction, the coefficients αi and φi parametrize families of solutions

of the nonlinear problem analogous to those families just discussed of the linear
problem. Selecting an initial condition such that α1 = α2 = 0 in (15) yields
a bounded solution with associated invariant torus Tα3,α4

= Tα3,α4
(θ1, θ2). If
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α1 = 0 and α2 6= 0, one obtains a solution in the stable manifold of Tα3,α4
, and

if α1 6= 0 and α2 = 0, a solution in the unstable manifold.
Let MLP = R

4 ×T
2 denote the space of Lindstedt-Poincaré coefficients. Let

now
K : MLP → M (16)

denote the Lindstedt-Poincaré transformation that, given t = t0, takes the coef-
ficients (α1, α2, α3, α4, φ1, φ2) to Hill’s variables (ξ, η, ζ, ξ̇, η̇, ζ̇) through expres-
sion (15). Consider the set

N = {(α1, α2, α3, α4, φ1, φ2) ∈ MLP : α1 = α2 = 0} ∩ VLP. (17)

When using Lindstedt-Poincaré coordinates, we will write a point in this mani-
fold as x = (α3, α4, φ1, φ2) ∈ N . The restriction k = K|N , k : N → M gives the
Lindstedt-Poincaré parametrization of the (approximate) local center manifold

Λ = {k(α3, α4, φ1, φ2) : (α3, α4, φ1, φ2) ∈ N} .

For fixed ᾱ3, ᾱ4, the associated invariant torus is given in Lindstedt-Poincaré
coordinates by

Tᾱ3,ᾱ4
= {k(x) : x = (α3, α4, φ1, φ2) ∈ N, α3 = ᾱ3, α4 = ᾱ4} .

We will write a point in an invariant torus as x = k(φ1, φ2) ∈ Tᾱ3,ᾱ4
.

The (approximate) local stable (resp. unstable) manifold of a torus is given
by

W s
loc (Tᾱ3,ᾱ4

) = {k(x) : x = (0, α2, ᾱ3, ᾱ4, φ1, φ2) ∈ MLP} ∩ VLP (18a)

Wu
loc (Tᾱ3,ᾱ4

) = {k(x) : x = (α1, 0, ᾱ3, ᾱ4, φ1, φ2) ∈ MLP} ∩ VLP. (18b)

They extend to global stable and unstable manifolds W s
Tᾱ3,ᾱ4

,Wu
Tᾱ3,ᾱ4

.

When the out-of-plane amplitude α4 is zero, the torus Tα3,0 naturally cor-
responds to a periodic Lyapunov orbit in the planar RTBP. It is well known
that the amplitude of this periodic orbit increases as the Jacobi constant C de-
creases, starting at Cmax = C1 or C2, the value at the equilibrium point L = L1

or L2 (see [23]). Due to the local character of the expansions of the solutions,
we will restrict the maximum amplitude value for α3 when α4 = 0, α3 ∈ [0, α∗

3]
or equivalently the minimum energy value,

C ∈ [Cmin, Cmax] .

Notice that the local center manifold of L is the union of all tori “close” to
L:

Λ =
⋃

C(α3,α4)∈[Cmin,Cmax]

Tα3,α4
.

It is a biparametric (α3, α4) family of invariant tori.
Remark that the Lindstedt-Poincaré or Birkhoff normal form process is

known to be divergent (see [18]), and the transformation (15) is only computed
up to a finite degree. Nonetheless the original flow (generated by (2)) and the
approximate flow (15) are locally conjugate up to a very small numerical error,
because the divergence is not too fast, and the conjugacy is computed up to
high order. Hence Λ is a good approximation to the exact local center manifold
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(that of the original equations of motion (2)). In fact, the exact center manifold
is practically full of invariant tori; the measure of the set of points between tori
is exponentially small (see [7]).

Sometimes it will be convenient to consider the restriction of the center
manifold to a given level of energy. Let M c denote the points of the phase space
M with Jacobian constant C = c as defined in (1). Let us fix c ∈ [Cmin, Cmax]
and consider the set Λc = Λ ∩ M c,

Λc =
⋃

C(α3,α4)=c

Tα3,α4
.

Given that the amplitudes α3, α4 are related through the Jacobian integral,
this is a one-parametric family of invariant tori whose extremal degenerate tori
Tα3,0 and T0,α4

are periodic orbits. These are usually called planar and vertical
Lyapunov orbits in the literature. Let us call α ∈ [αmin, αmax] the parameter
indexing the restricted center manifold,

Λc =
⋃

α∈[αmin,αmax]

Tα. (19)

For instance, one could take α = α4 as the parameter, which varies between
0 and a certain maximum amplitude. Topologically, the manifold Λc is the
3-sphere S3 (see [3]).

3.2.1 Relation to Birkhoff normal form

We have seen that one can transform the original Hamiltonian (4) into its
real Birkhoff normal form (11) through a series of canonical changes of vari-
ables. Let us denote h : MB → M the total transformation that takes the real
Birkhoff normal form variables x̄ = (ξ̄, η̄, ζ̄, p̄ξ, p̄η, p̄ζ) to the original variables
x = (ξ, η, ζ, pξ, pη, pζ).

Write now the old variables in terms of the new ones. For instance,

ξ = h1
(

ξ̄, η̄, ζ̄, p̄ξ, p̄η, p̄ζ

)

=
∑

l

h1
l ξ̄

ip̄ξ
j η̄k1 p̄η

k2 ζ̄m1 p̄ζ
m2

where h1 is the first component of h, l = (i, j, k1, k2,m1,m2) is a multiindex,
and h1

l are complex coefficients. There are similar expressions for the other
variables η, ζ, pξ, pη, pζ .

Substitute the solution (13) to the Birkhoff normal form for ξ̄, η̄, ζ̄, p̄ξ, p̄η, p̄ζ ,

ξ =
X

l

h
1
l

“

q
0
1e

λt
”i “

p
0
1e

−λt
”j

`

I
0
2 cos(ωt + ϕ

0
2)

´k1
`

−I
0
2 sin(ωt + ϕ

0
2)

´k2

`

I
0
3 cos(νt + ϕ

0
3)

´m1
`

−I
0
3 sin(νt + ϕ

0
3)

´m2

=
X

l

e
(i−j)λt

h

h
1
l

`

cos(ωt + ϕ
0
2)

´k1
`

− sin(ωt + ϕ
0
2)

´k2
`

cos(νt + ϕ
0
3)

´m1
`

− sin(νt + ϕ
0
3)

´m2

i

`

q1
0´i `

p
0
1

´j `

I
0
2

´k `

I
0
3

´m
,

where k = k1 + k2 and m = m1 + m2. Writting the product inside brackets as

10



a trigonometric series, and identifying

α1 = q0
1 α2 = p0

1 (20a)

α3 = I0
2 α4 = I0

3 (20b)

φ1 = ϕ0
2 φ2 = ϕ0

3 (20c)

or equivalently

q1(t) = α1e
λt p1(t) = α2e

−λt (21a)

I2(t) = α3 I3(t) = α4 (21b)

ϕ2(t) = ωt + φ1 ϕ3(t) = νt + φ2, (21c)

one obtains precisely the Lindstedt-Poincaré series (15).
Indeed, the Lindstedt-Poincaré expansion (15) is just the solution (written in

the original coordinates) to the Birkhoff normal form equations (12). Hence the
task to find the coefficients (ξpq

ijkm, ξ̄pq
ijkm) that compose the Lindstedt-Poincaré

expansion is equivalent to finding the coefficients h1
l of the Birkhoff normal form

transformation.
Moreover, we stress the meaning of Lindstedt-Poincaré coefficients (α1, α2, α3, α4, φ1, φ2)

as initial conditions for the Birkhoff normal form solution, as (20) shows.
We will denote (MLP, ϕt

LP) the phase space and flow associated to the motion
of (q1, p1, I2, I3, ϕ2, ϕ3) given by equations (21).

3.3 Normally hyperbolic invariant manifolds

Loosely speaking, the flow ϕt is normally hyperbolic at Λ provided Λ ⊂ M is a
compact invariant submanifold for ϕt, the flow is hyperbolic within the normal
bundle to Λ, and the rate of contraction towards Λ in the stable and unstable
directions is stronger than any possible contraction within Λ. The precise def-
inition of a normally hyperbolic invariant manifold is given for instance in [8],
[9], [16], [15], [20] or [5].

Recall that the stable (resp. unstable) manifold of a normally hyperbolic
invariant manifold Λ is defined as

W s
Λ =

{

x ∈ M | dist
(

ϕt(x),Λ
)

≤ Cxe−λt, t ≥ 0
}

Wu
Λ =

{

x ∈ M | dist
(

ϕt(x),Λ
)

≤ Cxe−λ|t|, t ≤ 0
}

for some constants Cx and λ ≥ 0. The stable (resp. unstable) manifold of a
point x ∈ Λ is defined as

W s
x =

{

y ∈ M | dist
(

ϕt(x), ϕt(y)
)

≤ Cx,ye−λt, t ≥ 0
}

Wu
x =

{

y ∈ M | dist
(

ϕt(x), ϕt(y)
)

≤ Cx,ye−λ|t|, t ≤ 0
}

.

Normal hyperbolicity has important consequences. Namely, it guarantees
that the invariant manifold Λ persists under small perturbations of the flow. It
also gives a foliation for the stable and unstable manifolds of Λ; this fact will
be used in section 5.1.

We proceed to discuss normally hyperbolic invariant manifolds in Hill’s prob-
lem. It is straightforward to check from expression (21) that the stable (resp.

11



unstable) manifold of N with respect to ϕt
LP is given in Lindstedt-Poincaré

coordinates by

Es = {(q1, p1, I2, I3, ϕ1, ϕ2) ∈ MLP : q1 = 0}
Eu = {(q1, p1, I2, I3, ϕ1, ϕ2) ∈ MLP : p1 = 0} .

Notice that Es,u is a bundle over N .
This gives a splitting for every x ∈ N

TxMLP = Es
x ⊕ Eu

x ⊕ TxN

in such a way that

v ∈ Es
x ⇔ |D(ϕt)xv| ≤ Ce−λt|v| t ≥ 0

v ∈ Eu
x ⇔ |D(ϕt)xv| ≤ Ce−λ|t||v| t ≤ 0

v ∈ TxN ⇔ |D(ϕt)xv| ≤ C|v| t ∈ R,

where in this case C = 1 and λ is given in equation (10). This is precisely the
characterization of a normally hyperbolic invariant manifold. Therefore,

Λ = k(N) (22)

is an (approximate) normally hyperbolic invariant manifold for ϕt.
The restriction ks,u : Es,u → M defined as ks,u = k|Es,u maps Es,u to

W s,u
loc (Λ) = {ks,u(x) : x = (q1, p1, I2, I3, ϕ1, ϕ2) ∈ Es,u} ∩ VLP. (23)

The local stable and unstable manifolds of a point x = k
(

Ī2, Ī3, ϕ̄2, ϕ̄3

)

∈ Λ are
given by

W s
loc (x) =

{

ks(y) : y =
(

q1, p1, Ī2, Ī3, ϕ̄2, ϕ̄3

)

∈ MLP, q1 = 0
}

∩ VLP

Wu
loc (x) =

{

ku(y) : y =
(

q1, p1, Ī2, Ī3, ϕ̄2, ϕ̄3

)

∈ MLP, p1 = 0
}

∩ VLP.
(24)

4 Computation of heteroclinic trajectories

Let Λj (resp. Λi) be the normally hyperbolic invariant manifold of Lj (resp.
Li) in Hill’s problem, as defined in (22). Suppose that the manifolds W s

Λj
and

Wu
Λi

intersect. If x ∈ W s
Λj

∩ Wu
Λi

, then

dist
(

ϕt(x),Λj

)

≤ Cxe−λjt, t ≥ 0 and

dist
(

ϕt(x),Λi

)

≤ Cxe−λi|t|, t ≤ 0.

for some constants λi, λj ≥ 0 associated to the equilibrium points Li, Lj respec-
tively. The trajectories ϕ(t) passing through x are called heteroclinic because
they are asymptotic to Λj in the future and Λi in the past.

In this section, we first review the numerical method used in [19] to com-
pute heteroclinic trajectories towards a target torus in the spatial Hill’s problem.
Then this method is exploited to continue families of heteroclinic orbits (with
respect to the amplitudes of the target torus). This gives a complete descrip-
tion of selected families of heteroclinic orbits. Details of the computation of
heteroclinic families will be published elsewhere [1].

12



The intersection of the stable and unstable manifolds W s
Λj

,Wu
Λi

will be used
in section 5.2 to compute heteroclinic channels. The heteroclinic trajectories
will be used in section 5.3 to compute the scattering map.

We have to compute the heteroclinic trajectories first in order to find the
scattering map. A natural question is whether the scattering map can be com-
puted without going through the explicit construction of W s

Λj
,Wu

Λi
, and the

intersection of these manifolds. In the future we expect to simplify the compu-
tation of the scattering map using the perturbative formulas for its derivative
given in [5].

4.1 Heteroclinic trajectories towards a fixed torus

Let us give an overview of the method used in [19] to compute heteroclinic
trajectories to a given torus. The method uses the Lindstedt-Poincaré repre-
sentation of the dynamics near Li and Lj .

As input to the method, give a target invariant torus T = Tᾱ3,ᾱ4
⊂ Λj for

the heteroclinic trajectories. Let c = C(ᾱ3, ᾱ4) be the fixed Jacobian constant
of the integral curves of T , so that T ⊂ Λc

j .

Example 1. For illustration, we will show some heteroclinic trajectories for
the Sun-Earth system going from Λc

2 to a target torus Tᾱ3,ᾱ4
⊂ Λc

1. The torus
has amplitudes ᾱ3 = 0.042, ᾱ4 = 0.13, corresponding to a Jacobian constant
c = 4.26460693.

• Fix a surface of section Σ = {X = 0} perpendicular to the X axis of Hill’s
problem and located at the position of the small primary (the Earth).

• Consider W s
loc (T ), the local stable manifold of T , defined in (18a). Take

a section of W s
loc (T ):

ws
0 (T ) =

{

ks(x) ∈ W s
loc (T ) : x = (α1, α2, ᾱ3, ᾱ4, φ1, φ2) , α2 = α0

2

}

with α0
2 fixed. The section ws

0 (T ) is a submanifold of W s
loc (T ) transversal

to the flow.

Discretize the section ws
0 (T ) into a grid of points, sampling the angles

(φ1, φ2) ∈ T
2 at regular intervals. This constitutes a grid of initial con-

ditions on W s
loc (T ). The solutions having these initial conditions are nu-

merically integrated backwards in time until they reach the surface Σ.
This gives a set of points ws

1 (T ) ⊂ Σ, the first intersection of the stable
manifold W s

loc (T ) with Σ.

Abusing notation, we will use the same name for the manifolds ws
0 (T ) ,ws

1 (T )
and their discrete numerical approximation.

Figure 1 illustrates (in example 1) the continuation of the stable manifold
W s

T from a set of initial conditions very close to the torus (α0
2 = 10−3). Note

that the numerically integrated orbits approximate the stable manifold W s
T .

Figure 2 illustrates the set ws
1 (T ).

• Similarly, consider the normally hyperbolic invariant manifold Λc
i restricted

to the energy level c, with associated unstable manifold Wu
loc (Λc

i ). Take
a section of Wu

loc (Λc
i ):

wu
0 (Λc

i ) =
{

ku(x) ∈ Wu
loc (Λc

i ) : x = (α1, α2, α3, α4, φ1, φ2), α1 = α0
1

}

13



Figure 1: Continuation of W s
T , in RTBP coordinates. The torus T is on the

right-hand side. The initial conditions are so close to the torus that they are
hardly distinguishible from it. The small box marks the location of the Earth.

Figure 2: First intersection of W s
T with the surface of section Σ. This set is

denoted ws
1 (T ) in the text. Only the Y Ẏ projection is shown here.
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Figure 3: First nonempty intersection of W s
T and Wu

Λc
2

restricted to the surface
of section Σ. It happens after the stable and unstable manifolds have cut Σ
three times. This set is denoted γ3,3 (T ) in the text. Left: Y Z projection,
center: Y ZẎ projection, right: Y ZŻ projection.

with α0
1 fixed. The section wu

0 (Λc
i ) is a submanifold of Wu

loc (Λc
i ) transver-

sal to the flow.

Discretize the section wu
0 (Λc

i ) into a grid of points. Numerically integrate
these initial conditions forward in time until they reach Σ, to obtain a set
of points wu

1 (Λc
i ) ∈ Σ.

One can also compute subsequent intersections of the asymptotic mani-
folds with Σ as they are continued. We will denote these sets by ws

n (T ) ⊂
Σ and wu

n (Λc
i ) ⊂ Σ for n = 2, 3, 4, . . . .

• Look for the heteroclinic set (restricted to Σ)

γm,n (T ) = ws
m (T ) ∩ wu

n (Λc
i ) ⊂ Σ.

First look for close encounters of the discrete sets ws
m (T ) and wu

n (Λc
i )

using Euclidian distance.

Then, for each pair of points (x, y) ∈ ws
m (T ) × wu

n (Λc
i ) candidate to an

intersection, use a Newton method to find a true intersection. Specifi-
cally, let x0 ∈ ws

0 (T ) be the initial condition whose solution integrates to
x backward in time, and let y0 ∈ wu

0 (Λc
i ) be the initial condition whose

solution integrates to y forward in time. Leave x0 fixed, and correct y0 us-
ing a Newton method until x = y. This gives (a numerical approximation
to) γm,n (T ).

If x ∈ γm,n (T ) then x ∈ W s
T ∩Wu

Λc
i
, so each point x ∈ γm,n (T ) gives rise to a

heteroclinic solution tending to Λc
i in the past and T in the future. A single point

x ∈ γm,n (T ) is enough to recover the whole heteroclinic orbit passing through
x. However, it is useful to record the following extra information associated to
the orbit: the points x0 ∈ ws

0 (T ) and y0 ∈ wu
0 (Λc

i ), and the integration times
ts and tu such that ϕts(x) = x0 and ϕtu(y0) = y. Therefore, the output of the
method is the set γm,n (T ) and, for each x ∈ γm,n (T ), the associated extra
information x0, y0, ts, tu.

We will denote γm,n
0 (T ) the trace of the heteroclinic trajectories on the

section ws
0 (T ):

γm,n
0 (T ) =

{

x0 ∈ ws
0 (T ) : x0 = ϕts(x) for some x ∈ γm,n (T )

}

.
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Figure 4: Λ2 − T heteroclinic orbits generated from γ3,3 (T ). The two families
correspond to the different connected components of γ3,3 (T ). All trajectories
tend to T ∈ Λ1 (on the right-hand side of the pictures).

 0
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 5

 6

-3 -2 -1  0  1  2  3

Figure 5: Projection of the heteroclinic set γ3,3 (T ) back onto the initial section
of the stable manifold, ws

0 (T ). Plotted are the in-plane (horizontal axis) and
out-of-plane phases (vertical axis) of states x0 ∈ ws

0 (T ) having a heteroclinic
trajectory. This set is denoted γ3,3

0 (T ) in the text.

16



-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

-0.27 -0.26 -0.25 -0.24 -0.23 -0.22 -0.21 -0.2 -0.19 -0.18 -0.17
-0.27

-0.26
-0.25

-0.24
-0.23

-0.22
-0.21

-0.2
-0.19

-0.18
-0.17-0.05

-0.04
-0.03

-0.02
-0.01

 0
 0.01

 0.02
 0.03

 0.04
 0.05

-0.1
-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 0.1

Figure 6: First nonempty intersection of W s
Λc

1
and Wu

Λc
2

restricted to the surface

of section Σ. This set is denoted γ3,3 in the text. Left: Y Z projection, right:
Y ZẎ projection.

In example 1, the first nonempty intersection of ws
m (T ) and wu

n (Λc
i ) happens

for m = 3, n = 3. Figure 3 shows γ3,3 (T ). Figure 4 shows the resulting
heteroclinic orbits generated from γ3,3 (T ). Figure 5 shows γ3,3

0 (T ), the trace
of the heteroclinic trajectories on the section ws

0 (T ).

4.2 Heteroclinic trajectories from Λi to Λj

We have seen how to compute heteroclinic trajectories from Λi to a given torus
T ⊂ Λj . However, the more natural question remains to describe all heteroclinic
trajectories from Λi to Λj .

Remark 2. Notice that, given C = c, the problem amounts to describe all
heteroclinic trajectories from Λc

i to Λc
j .

Let us denote γm,n the heteroclinic set (restricted to Σ) associated to an
energy level:

γm,n = ws
m

(

Λc
j

)

∩ wu
n (Λc

i ) ⊂ Σ.

Recall from equation (19) that the family of invariant tori Λc
j can be parametrized

by α = α4 ∈ [αmin, αmax], so

γm,n =
⋃

α∈[αmin,αmax]

γm,n (Tα) .

Assume that we have already obtained a set of heteroclinic orbits to a given
torus Tα by the method of section 4.1. That is, we have obtained γm,n (Tα) and
associated data x0, y0 for each x ∈ γm,n (Tα). The family of heteroclinic orbits
can be continued with respect to the target torus Tα ⊂ Λc

j . Vary the amplitude

α̃ = α + ∆α of the target torus and for each heteroclinic orbit, refine x0 and y0

using Newton’s method to find a new intersection x̃ ∈ γm,n (Tα̃).
It may happen that the asymptotic manifolds W s

T and Wu
Λi

cease to intersect
as α varies, so the heteroclinic family ceases to exist.

Let us describe the heteroclinic set γ3,3 in our numerical example (energy
level c = 4.26460693) as α = α4 varies. The set γ3,3 is represented in figure 6.
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Figure 7: Evolution of the set γ3,3
0 (Tα) on the section ws

0 (Tα) as the
amplitude α of the torus varies. The pictures correspond to α =
0.0816, 0.1300, 0.1436, 0.1463, 0.1500, 0.1534 (top to bottom and left to right).

• When α = α4 = 0, the target torus T = Tα is a planar Lyapunov orbit,
and the manifolds W s

T and Wu
Λc

2
intersect on the surface Σ in just two

points, the leftmost and rightmost points of figure 6 (YZ projection).

• As α increases, the torus Tα has larger out-of-plane amplitude, and the
manifolds intersect on Σ in two components homeomorphic to S1. For
instance, for α = α4 = 0.13 we recover the set γ3,3 (Tα) of section 4.1,
marked with asterisks in figure 6. The trace γ3,3

0 (Tα) of the heteroclinic
orbits on ws

0 (Tα) is shown in figure 7, second picture; it is just a repetition
of figure 5.

• At some critical value α = α4 ≈ 0.145, the trace γ3,3
0 (Tα) on ws

0 (Tα)
changes from two noncontractible curves to two contractible curves, as
shown in figure 7, third and fourth pictures.

• Finally, as α = α4 → 0.1799, the manifolds cease to intersect, and γ3,3 (Tα)
collapses in two points inside the two small circles marked with crosses in
figure 6. This corresponds to the last picture in figure 7.

5 Scattering map

In this section we discuss the scattering maps associated to transversal inter-
sections of W s

Λj
and Wu

Λi
in the spatial Hill’s problem. A scattering map in this

context is a map from Λi to Λj which describes in a precise sense the asymptotic
behaviour of heteroclinic solutions.

The scattering map discussed in this paper is an instance of the general
definition given in [5], except for the fact that ours describes heteroclinic instead
of homoclinic solutions.

18



A crucial step is the construction of a heteroclinic channel (see definition (2))
through which a scattering map is defined. For the spatial Hill’s problem, we
give a criterion to determine heteroclinic channels (proposition 1) that is easy
to check in practice. This is one of the main differences with respect to the
planar RTBP, where heteroclinic channels were easier to determine [2]. As a
consequence, in the spatial case the domain and range of the scattering map are
not all of Λ, as they were in the planar case.

The scattering map for the spatial case relates tori of different amplitudes,
allowing for more complex and interesting applications.

5.1 Wave operators

In order to have a precise description of the asymptotic behaviour of solutions
in the stable and unstable manifolds, in this section we describe the wave maps,
defined from the stable or unstable manifold of a normally hyperbolic invariant
manifold Λ to Λ itself. We also explain how to compute them. The main
reference for the general definition and properties of the wave operators and the
scattering map is [5].

For a normally hyperbolic invariant manifold Λ, the assympotic manifolds
of points x ∈ Λ give a one-dimensional foliation of W s,u

Λ :

W s,u
Λ =

⋃

x∈Λ

W s,u
x and W s,u

x ∩ W s,u
y = ∅ if x 6= y. (25)

For a point x ∈ W s
Λ (resp. x ∈ Wu

Λ), we denote by x+ (resp. x−) the point
in Λ such that x ∈ W s

x+
(resp. x ∈ Wu

x−
)

Definition 1. The projection maps defined by

Ω± : W s,u
Λ → Λ

x → x±

are called the wave operators.

The name “wave operators”, sometimes also called Møller transformations,
comes from the physics litterature (see [24], for instance).

Notice that Ω± (ϕt(x)) = ϕt(x±) for all x ∈ W s,u
x±

and t ∈ R, so the wave
operators have the following invariance property:

Ω± = ϕ−t ◦ Ω± ◦ ϕt. (26)

We proceed to discuss the wave maps in Hill’s problem. Let Λ = Λ1 or Λ2.
Notice that the foliation of W s,u

loc (Λ) is explicit in the Lindstedt-Poincaré parametriza-
tion (23) and (24). Actually, in the Lindstedt-Poincaré approximation, we have
something stronger: W s,u

loc (Λ) =
⋃

x∈Λ W s,u
x is a fiber bundle with base space Λ

and fiber space R, i.e. the following diagram commutes:

W s,u
loc (Λ)

(ks,u)
−1

- Es,u = N × R

Λ

Ω±

?

¾
k

N

projN

?
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where projN : N × R → N is the natural projection onto N , k : N → M is the
parametrization defined in section 3.2, and ks,u : Es,u → M are the parametriza-
tions defined in section 3.3. The fiber over x is W s,u

loc (x).
Thus, Ω± is locally given by

Ω±|W s,u

loc
(Λ) = k ◦ projN ◦ (ks,u)

−1
.

For instance, given x = ks(0, p1, I2, I3, ϕ2, ϕ3) ∈ W s
loc (Λ) in Lindstedt-Poincaré

coordinates,

Ω+(x) = k ◦ projN ◦ (ks)
−1

(x)

= k ◦ projN (0, p1, I2, I3, ϕ2, ϕ3)

= k(I2, I3, ϕ2, ϕ3).

(27)

To extend Ω± to the global assymptotic manifolds W s,u
Λ , one has to combine

the semianalytical expression (27) with purely numerical techniques. Recall
from section 4 that ws

0 (Λ) denotes a section of the local stable manifold W s
loc (Λ).

Given a point x ∈ W s
Λ far from Λ, one can numerically integrate the solution

ϕ(t, x) until it reaches the section ws
0 (Λ) at a point

x0 = ϕ(ts, x) ∈ ws
0 (Λ) ,

where ts = ts(x) depends on x.
As x0 ∈ W s

loc (Λ), we can compute x0
+ = Ω+(x0) using expression (27): if

x0 = ks
(

0, p0
1, I

0
2 , I0

3 , ϕ0
2, ϕ

0
3

)

, then x0
+ = k

(

I0
2 , I0

3 , ϕ0
2, ϕ

0
3

)

. Then, using invari-
ance property (26),

Ω+(x) = Ω+(ϕ−ts(x0)) = ϕ−ts(x0
+).

Finally, using the conjugacy (16) and equations (21) for the solution we obtain

Ω+(x) = ϕ−ts
(

k
(

I0
2 , I0

3 , ϕ0
2, ϕ

0
3

))

= k
(

ϕ−ts

LP

(

I0
2 , I0

3 , ϕ0
2, ϕ

0
3

))

= k
(

I0
2 , I0

3 , ϕ0
2 − ωts, ϕ

0
3 − νts

)

.

(28)

Similarly for the unstable manifold, given y ∈ Wu
Λ far from Λ and y0 =

ϕ(−tu, y) = ku
(

q0
1 , 0, I0

2 , I0
3 , ϕ0

2, ϕ
0
3

)

∈ wu
0 (Λ),

Ω−(y) = k
(

I0
2 , I0

3 , ϕ0
2 + ωtu, ϕ0

3 + νtu
)

. (29)

From (28) and (29) it is clear that the wave map in Lindstedt-Poincaré
coordinates is just a translation by the linear flow on the target torus. Notice
that the translation is not uniform, because ts (resp. tu) depends on the point
x (resp. y).

Remark 3. Let us illustrate the action of the wave operator in our numeri-
cal example (example 1). Take for instance the heteroclinic set γ3,3 (T ) ⊂ Σ,
depicted in figure 3. Integrating this set numerically up to ws

0 (Λ1) we would
recover the set γ3,3

0 (T ) (figure 5). The image under the positive wave map
γ3,3
+ (T ) = Ω+

(

γ3,3 (T )
)

would be a (nonuniform) translation of γ3,3
0 (T ) by the

linear flow on the torus T .
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5.2 Heteroclinic channels

A heteroclinic channel is a restriction of a heteroclinic manifold to a submanifold
where the wave operators are diffeomorphisms. The invertibility of the wave
operators will be needed in section 5.3 to define the scattering map.

Given two normally hyperbolic invariant manifolds Λi,Λj of the same di-
mension, let Γ ⊂ W s

Λj
∩ Wu

Λi
be a heteroclinic manifold such that ∀x ∈ Γ:

TxM = TxW s
Λj

+ TxWu
Λi

(30a)

TxW s
Λj

∩ TxWu
Λi

= TxΓ. (30b)

We then say that W s
Λj

and Wu
Λi

intersect transversally along Γ.

Under condition (30), it is not hard to see that the dimension of Γ has to be
equal to the dimension of Λi,j . As a consequence, for all x ∈ Γ

TxΓ ⊕ TxW s
x+

= TxW s
Λj

(31a)

TxΓ ⊕ TxWu
x−

= TxWu
Λi

. (31b)

We then say that Γ is transversal to the {W s
x}x∈Λj

, {Wu
x }x∈Λi

foliation.

Given a manifold Γ verifying condition (30), we may consider the wave op-
erators Ω± restricted to Γ. Denote ΩΓ

± = Ω±|Γ, and HΓ
± = Ω± (Γ) ⊂ Λj,i, so

that
ΩΓ

± : Γ → HΓ
±.

Condition (31) guarantees that ΩΓ
± are local diffeomorphisms in a neighbour-

hood of each x ∈ Γ. Restricting Γ if necessary, ΩΓ
± are diffeomorphisms and in

such case, we introduce the definition of a heteroclinic channel.

Definition 2. We say that Γ is a heteroclinic channel if:

1. Γ ⊂ W s
Λj

∩ Wu
Λi

verifies (30).

2. The wave operators ΩΓ
± : Γ → HΓ

± are diffeomorphisms.

This definition is analogous to the definition given in [5] for a homoclinic
channel.

Remark 4. Note that if Γ is a heteroclinic channel, so is ϕt(Γ) for any t ∈ R.

It is also not hard to show the following conjugation properties (see [5]). For
any t ∈ R,

ΩΓ
+ = ϕ−t ◦ Ω

ϕt(Γ)
+ ◦ ϕt (32a)

ΩΓ
− = ϕt ◦ Ω

ϕ−t(Γ)
− ◦ ϕ−t. (32b)

Let us discuss next the heteroclinic channels in Hill’s problem. Recall that
the phase space M is 6-dimensional, Λ1,2 are 4-dimensional and Es,u

x are 1-
dimensional for any x ∈ M . Thus W s,u

x are also 1-dimensional, and W s
Λj

,Wu
Λi

are 5-dimensional. Under condition (30) we would have dim Γ = dim Λ1,2 = 4.
Λ1,Λ2 decompose into energy level sets Λc

1,Λ
c
2 (remark 2) that are nor-

mally hyperbolic invariant manifolds in the energy restricted phase space M c,
so it is enough to consider heteroclinic channels from Λc

i to Λc
j for any given
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c. Notice that the energy restricted phase space M c is 5-dimensional, Λc
1,2 are

3-dimensional, and W s
Λc

j
and Wu

Λc
i

are 4-dimensional. Let us denote Γc an energy

restricted heteroclinic channel: Γc = Γ∩M c. Under condition (30) we have that
dim Γc = dim Λc

1,2 = 3.
As we did in section 4, we take the global Poincaré section Σ = {X = 0}

to reduce the dimension of the problem. Given a heteroclinic channel Γc and a
section Σ, let γ be the heteroclinic manifold

γ = γc = Γc ∩ Σ,

and define Ωγ
± = Ω±|γ , hγ

± = Ω± (γ) ⊂ HΓc

± . Note that dim γ = dim Γc −1, and

dimhγ
± = dim HΓc

± − 1. Then we have that Ωγ
± : γ → hγ

± is a diffeomorphism.
We have called γ a reduced heteroclinic channel associated to Γc, and Ωγ

± a
reduced wave operator.

Indeed, in section 4 we have already computed reduced heteroclinic manifolds
γm,n that will give rise to reduced wave operators, as explained below. The
following remark is used to compute the wave operators ΩΓc

± from the reduced
wave operators Ωγ

±.

Remark 5. Given x̃ ∈ Γc, suppose we were to compute ΩΓc

± (x̃). Find t such
that the image of x̃ under the t-flow lies on the section Σ, and introduce x =
ϕt (x̃) ∈ γ. Then, using property (32),

ΩΓc

± (x̃) = ϕ−t ◦ Ω
ϕt(Γc)
± (x) = ϕ−t ◦ Ωγ

±(x) (33)

so the problem amounts to determine the reduced wave operator Ωγ
±.

Therefore, our strategy will be to define Ω± on a reduced channel γ, choosing
γ carefully in such a way that Ωγ

± : γ → hγ
± can be extended into a diffeomor-

phism ΩΓc

± : Γc → HΓc

± .

Remark 6. In analogy with complex analysis, ΩΓc

± can be seen as a branch of
the multivalued function Ω±. The branch of Ω±(x) is chosen in reference to its
specific value on Σ, namely Ωγ

±(x).

Recall from equation (19) that, in the Lindstedt-Poincaré approximation,
the normally hyperbolic invariant manifold Λc

j if foliated by invariant tori. To
further reduce the dimension of the problem, we first look for heteroclinic man-
ifolds (restricted to Σ) towards a given torus T = Tα ⊂ Λc

j

γ (T ) ⊂ (W s
T ∩ Σ) ∩

(

Wu
Λc

i
∩ Σ

)

such that the extended heteroclinic manifold

Γc (T ) =
{

ϕt (γ (T )) : t ∈ (−ε, ε)
}

(34)

verifies
∀x ∈ γ (T ) TxΓc (T ) ⊕ TxW s

x+
= TxW s

T . (35)

Consider one of the heteroclinic sets γm,n (T ) = ws
m (T )∩wu

n (Λc
i ) ⊂ Σ intro-

duced in section 4.1. We look for γ (T ) as 1-dimensional heteroclinic manifolds
inside γm,n (T ).
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Figure 8: Illustration of proposition 1. The target torus corresponds to c =
4.26460693 and ᾱ4 = 0.13. The set γ+(T ) is represented as a continuous line.
The flow on the torus is represented with discontinuous arrows of slope ν/ω. The
coordinates are the in-plane angle φ1 (horizontal) and the out-of-plane angle φ2.

Proposition 1. Let γ (T ) ⊂ γm,n (T ) be a heteroclinic manifold with extended
heteroclinic manifold Γc (T ), and consider the set γ+(T ) = Ω+ (γ (T )) ⊂ T ,
which is just a curve on T (see remark 3). Let x ∈ γ (T ) and x+ = Ω+(x) ∈
γ+(T ).

Assume that the target torus T has associated in-plane and out-of-plane
frequencies ω, ν. Then, condition (35) is verified at x ∈ γ (T ) if and only if

Condition C the slope of the curve γ+(T ) (in the angular coordinates φ1, φ2)
at the point x+ is different from ν

ω .

Proof. We assume that Γc (T ) is near T ; if it is not, one can always trans-
port Γc (T ) by the flow towards T and prove it there, because property (35)
is invariant under diffeomorphisms. Therefore we can use Lindstedt-Poincaré
coordinates to describe the spaces TxΓc (T ), TxW s

x+
and TxW s

T involved in the
proof.

The proof consists in writting Γc (T ) and W s
x+

in these coordinates and
studying whether they intersect transversally at the point x ∈ γ (T ). Expressing
Γc (T ) in terms of γ+(T ), we obtain that condition (35) is equivalent to the
assertion that the tangent vectors Tx+

γ+(T ) and Tx+
Orbit (x+) are not parallel.

Since the slope of Orbit (x+) on T is ν/ω, we get the result.

The proposition is of course also true for the unstable foliation.
We remark that the characterization given in proposition 1 is very easy to

check, even visually. Take for instance our numerical example (example 1).
Given c = 4.26460693 and ᾱ4 = 0.13, we have already computed γ3,3 (T ) (fig-
ure 3). Let γ (T ) ⊂ γ3,3 (T ) be the heteroclinic manifold consisting of one of
the connected components of γ3,3 (T ), and consider the set γ+(T ), represented
as a continuous line in figure 8. The target torus has associated frequencies
(ω, ν) = (2.06930834, 1.99773353). The flow on the torus is represented with
discontinuous lines of slope ν/ω = 0.96541123. The slope of γ+(T ) is different
from ν/ω at every x+ ∈ γ+(T ). According to proposition 1, there exists a local
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extension Γc (T ) of γ (T ) on which condition (35) is verified. Therefore, Ω
Γc(T )
+

is a local diffeomorphism in a neighborhood of x for all x ∈ γ (T ).

Ω
γ(T )
+ : γ (T ) → h

γ(T )
+ is a diffeomorphism, where h

γ(T )
+ = γ+(T ). By the

above argument, it extends to a diffeomorphism Ω
Γc(T )
+ : Γc (T ) → H

Γc(T )
+ ,

where Γc (T ) is defined in (34), and H
Γc(T )
+ = Ω+ (Γc (T )).

Note that, using definition (34) and property (26),

H
Γc(T )
+ =

{

ϕt
(

h
γ(T )
+

)

: t ∈ (−ε, ε)
}

. (36)

H
Γc(T )
+ would be a band around γ+ (T ) represented by the arrows in figure 8.

Clearly, ε must be taken sensibly less than 2π in expression (36) to avoid

autointersections with h
γ(T )
+ . That is, H

Γc(T )
+ can not be extended indefinitely

by the flow because of the lack of monodromy.

Actually, due to remark 5, we can compute Ω
Γc(T )
+ from Ω

γ(T )
+ . Condition C

guarantees that the curve γ+ (T ) is really a Poincaré section for the flow ϕt on
the torus T , so that ΩΓc

± (x̃) = ϕ−t
(

Ωγ
±(x)

)

is well defined in equation (33).

Remark 7. Of course, we could have chosen the other connected component of
γ3,3 (T ) as the heteroclinic manifold γ (T ). This would give a different diffeo-

morphism Ω
Γc(T )
+ .

For all tori with amplitudes in the range α = α4 ∈ (0, 0.145), one can
easily check that the heteroclinic manifolds γ (T ) defined in this way verify the
characterization given in proposition 1. See figure 7. In all cases, the slope ω/ν
is very close to 1.

Naturally, we now let

γ =
⋃

α∈(0,0.145)

γ (Tα)

to obtain a heteroclinic manifold γ such that Ωγ
+ : γ → hγ

+ is a diffeomorphism.
The manifold γ has been constructed in such a way that, if we let

Γc =
⋃

α∈(0,0.145)

Γc (Tα)

HΓc

+ =
⋃

α∈(0,0.145)

H
Γc(Tα)
+ ,

then ΩΓc

+ : Γc → HΓc

+ is a diffeomporphism.
Up to this point, we have determined a heteroclinic manifold Γc on which

the positive wave operator is a diffeomorphism. Similarly one could restrict Γc

(if necessary) so that the negative wave operator is also a diffeomorphism on
Γc. In that case, Γc is a heteroclinic channel, and γ is a reduced heteroclinic
channel.

As we can choose between two different connected components of γ3,3 (T ),
there are two possible continuous families γ = ∪αγ (Tα), i.e. two possible hete-
roclinic channels.

Let us now apply proposition 1 to a torus with amplitude α = α4 = 0.15 (see
figure 7). Let γ (T ) ⊂ γ3,3 (T ) be the heteroclinic manifold consisting of one of
the connected components of γ3,3 (T ), and consider the set γ+(T ), represented
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x1
+

x2
+

Figure 9: The target torus corresponds to c = 4.26460693 and ᾱ4 = 0.15. The
set γ+(T ) is represented with a continuous line. The flow on the torus is repre-
sented with discontinuous arrows of slope ν/ω. Condition C of proposition 1 is
violated at the points x1

+ and x2
+.

with a continuous line in figure 9. The target torus has associated frequencies
(ω, ν) = (2.07043339, 1.99668167). The curve γ+(T ) is tangent to the flow ν/ω
at two points x1

+, x2
+ ∈ γ+(T ). According to proposition 1, we have to exclude

the corresponding two points x1, x2 from γ(T ).
These two points x1, x2 divide γ(T ) in two connected components. We have

to further restrict the heteroclinic manifold γ(T ) to one of these two connected

components, to avoid the lack of monodromy when h
γ(T )
+ is extended to H

Γc(T )
+ .

In this case, there are 4 possible choices for γ (T ) ⊂ γ3,3 (T ).
We let

γ =
⋃

α∈(0.145,1.799)

γ (Tα)

to obtain 4 possible reduced heteroclinic channels that extend properly to het-
eroclinic channels.

5.3 Scattering map

Next we recall the definition of the scattering map associated to a heteroclinic
channel as given in [5].

Definition 3. Given Γ a heteroclinic channel, and ΩΓ
± : Γ → HΓ

± the associated
wave operators, we define the scattering map associated to Γ

σΓ : HΓ
− → HΓ

+

by
σΓ = ΩΓ

+ ◦ (ΩΓ
−)−1.

Equivalently, given x− ∈ Λi and x+ ∈ Λj , we write x+ = σΓ(x−) whenever
there exists a point x ∈ Γ such that

dist
(

ϕt(x), ϕt(x±)
)

→ 0 as t → ±∞.
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Heuristically, the motion of x sincronizes with that of x+ (and x−) in the future
(in the past).

Let σΓ,ϕt

denote the scattering map σΓ associated to the flow ϕt. In [5] it
is shown that

σΓ,ϕt

=
(

σΓ,ϕ−t
)−1

.

In applications, it is common to work with both the forward-time scattering map
σΓ,ϕt

and the backward-time scattering map σΓ,ϕ−t

. For them to be defined, ΩΓ
+

and ΩΓ
− must be invertible. This is guaranteed by the definition of heteroclinic

channel (definition 2).
Recall from section 5.2 that, due to the existence of a global section for

heteroclinic connections in Hill’s problem, we may encode the wave operators
ΩΓ

± in the reduced wave operators Ωγ
±. They induce a reduced scattering map in

the obvious way. Given a reduced heteroclinic channel γ, and Ωγ
± the associated

reduced wave operators, we define the reduced scattering map associated to γ,

σγ : hγ
− → hγ

+, by σγ = Ωγ
+ ◦

(

Ωγ
−

)−1
.

Finally, let us briefly explain how to use the scattering map in an example
application to space mission design. Suppose we want to transfer a spacecraft
from a given Lissajous orbit with small out-of-plane amplitude α4 = a around
L1 to a Lissajous orbit with the largest possible amplitude α4 = b around L1 at
the minimum fuel cost. The orbits lie on 2-dimensional invariant tori Ta ⊂ Λ1

resp. Tb ⊂ Λ1. We can solve this problem by studying the composition of a
scattering map σ12 : Λ1 → Λ2 and a scattering map σ21 : Λ2 → Λ1.

Given heteroclinic channels

Γ12 ⊂ W s
Λ2

∩ Wu
Λ1

and

Γ21 ⊂ W s
Λ1

∩ Wu
Λ2

,

consider the associated scattering maps

σΓ12 : HΓ12

− ⊂ Λ1 → HΓ12

+ ⊂ Λ2

σΓ21 : HΓ21

− ⊂ Λ2 → HΓ21

+ ⊂ Λ1.

Define the composition map F : HΓ12

− ⊂ Λ1 → HΓ21

+ ⊂ Λ1 by

F = σΓ21 ◦ σΓ12 .

Let x− = k(α3, α4 = a, φ1, φ2) ∈ Ta, and x+ = k(α3, α4 = b, φ1, φ2) ∈ Tb.
Notice that if F (x−) = x+ then there is a transfer from Ta to Tb at almost zero
cost. Thus the problem can be formulated in terms of maximizing the amplitude
difference |b − a| with respect to the point x− ∈ Ta using the function F .

In the future, we plan to use the scattering map sistematically in similar
applications.
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design near libration points. Vol. I, volume 2 of World Scientific Monograph
Series in Mathematics. World Scientific Publishing Co. Inc., River Edge,
NJ, 2001. Fundamentals: the case of collinear libration points, With a
foreword by Walter Flury.
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