
Stability and stabilisation of thelattie Boltzmann methodR. A. Brownlee, A. N. Gorban and J. LevesleyDepartment of Mathematis, University of Leiester,Leiester LE1 7RH UKNovember 16, 2006AbstratThe lattie Boltzmann method (LBM) is known to have stabilityde�ienies. For example, loal blow-ups and spurious osillations arereadily observed when the method is used to model high-Reynolds uidow. Beginning from thermodynami onsiderations, the LBM an bereognised as a disrete dynamial system generated by entropi in-volution and free-ight and the stability analysis is more natural. Inthis paper we solve the stability problem of the LBM on the basis ofthis thermodynami point of view. The main instability mehanismsare identi�ed. The simplest and most e�etive reeipt for stabilisationadds no arti�ial dissipation, preserves the seond-order auray ofthe method, and presribes oupled steps: to start from a loal equi-librium, then, after free-ight, perform the overrelaxation ollision, andafter a seond free-ight step go to new loal equilibrium. Two otherpresriptions add some arti�ial dissipation loally and prevent thesystem from loss of positivity and loal blow-up. Demonstration of theproposed stable LBMs are provided by the numerial simulation of a1D shok tube and the unsteady 2D-ow around a square-ylinder upto Reynolds number O(10000).1 IntrodutionA lattie Boltzmann method (LBM) is a disrete veloity method in whih auid is desribed by assoiating, with eah veloity vi, a single-partile dis-tribution funtion fi = fi(x; t) whih is evolved by advetion and interationon a �xed omputational lattie.The method has been proposed as a disretization of Boltzmann's kinetitransport equation: �fi�t + vi � rfi = Qi; (1)where the ollision operator, Qi, is subjet to the fundamental mass, mo-mentum and energy onservation laws. Dutifully, the ompressible Navier{1



Stokes equations are satis�ed by the disrete population moments providedthe studiously hosen disrete veloities have suÆient symmetry; the Mahnumber is suÆiently low and the long time-sale, t, is large omparedto the time-sale of ollisions (for an histori review see [23℄). Further-more, the ollision operator an be alluringly simple, as is the ase withthe Bhatnager{Gross{Krook (BGK) operator [5℄, whereby ollisions are de-sribed by a single-time relaxation to loal entropy maximising equilibriaf�i (although other hoies of equilibria are often preferred [23℄). Here, therelaxation time is proportional to the kinemati visosity � of the model.The overrelaxation disretization of (1) (see, e.g., [4, 11, 19℄) is knownas LBGK and deouples visosity from the time step, thereby suggestingthat LBGK is apable of operating at arbitrarily high-Reynolds number bymaking the relaxation time suÆiently small. However, in this low-visosityregime, LBGK su�ers from numerial instabilities whih readily manifestthemselves as loal blow-ups and spurious osillations.To analyse stability, the above histori LBM presription is not imme-diately useful. However, there is another approah whih arises from ther-modynami onsiderations. Central to this alternative presription is thenotion of an entropy maximising or quasiequilibrium manifold in the spaeof distributions and the Ehrenfests' idea of oarse-graining [14, 15℄. In thisnew representation, the main element is the disrete (in time) dynamialsystem generated by entropi involution and free-ight (advetion). Thedisrete veloities appear as approximation nodes in ertain ubatures inveloity spae, and if the veloities from this set are automorphisms of alattie, the LBM in its regular spae-and-time disrete form, as above, isobtained. The bakground knowledge neessary to disuss the LBM in thismanner is presented in Set. 2. Then, this presription suggests severalsoures of numerial instabilities in the LBM and allows several reeipts forstabilisation. Common to eah reeipt is the desire to stay uniformly loseto the aforementioned manifold (Set. 3).In Set. 5 a numerial simulation of a 1D shok tube and the unsteady2D-ow around a square-ylinder using the present stabilised LBMs are pre-sented. For the later problem, the simulation quantitively validates the ex-perimentally obtained Strouhal{Reynolds relationship up to Re = O(10000).This extends previous LBM studies of this problem where the relationshiphad only been suessfully validated up to Re = O(1000) [1, 3℄.Set. 6 ontains some onluding remarks as well as pratial reommen-dations for LBM realisations.2 BakgroundIn this setion, we briey introdue the thermodynami bakground of ourapproah, and some notations. Proofs of most statements ould be extrated2



from [15℄. Historially [23℄, the LBM appeared from the disretization ideasof: 1. disrete veloity set;2. lattie spae-and-time representation.The idea of (symmetri or almost symmetri) overrelaxation was introduedto deouple visosity from the time step [4, 11, 19, 23℄. This overrelaxationwas transformed into the notion of entropi involution [15, 21, 24℄, and anew understanding of the LBM was ahieved. In this new representation,the main element is the disrete dynamial system generated by entropi in-volution and free-ight. The disrete veloity set arises as ubature approx-imation nodes for the hydrodynami moments, and when these veloitiesare automorphisms of some lattie, the LBM in its regular spae-and-timedisrete form is reovered.The lattie presription is nie and symmetri, without any di�erene be-tween spae and time disretization, but it requires some e�ort to introduethermodynamis and to analyse stability of systems of this kind. On theontrary, when we start from thermodynami onsiderations, the entropyintrodution and the stability analysis are very natural, but the ubatureapproximation and the spae disretization requires some additional e�ort.Here we an �nd an analogy to relativisti (quantum) �eld theory: the La-grangian formalism is fully ovariant, but if we would like to enjoy physisof the Hamiltonian formalism, we should split spae and time, and use anon-ovariant representation [13℄.Let us introdue entropi involution in earnest. The starting point is aonservative kineti equation dfdt = J(f): (2)Here, onservative means that this equation preserves values of a onavefuntional, the entropy, S(f).The standard example is the free-ight equation�f�t + v � rf = 0; (3)where f = f(x;v; t) is a single-partile distribution funtion, x is the spaevetor, v is veloity. The hoie of entropy for (3) is ambiguous; we anstart from any onave funtional of the formS(f) = Z s(f(x;v; t))f(x;v; t) dxdvwith onave s(f). The hoie by default is s(f) = � lnf , whih gives thelassial Boltzmann{Gibbs{Shannon entropy.3



In addition to the kineti equation (2) we have a �xed linear mappingm : f 7!M to some marosopi variables, for example, M is the set of �vehydrodynami �elds n, nu and E (density{momentum{energy),M0 = n := Z fdv; Mi = nui := Z vifdv; M42 = E := 12 Z v2fdv:(4)Further, for eah M , a quasiequilibrium (or onditional equilibrium, or gen-eralised anonial state) f�M is de�ned as a solution of the optimisationproblem S(f)! max; m(f) =M: (5)For eah f , a orrespondent quasiequilibrium state f�m(f) is de�ned. The setof all quasiequilibrium states is parameterised by M and referred to as thequasiequilibrium manifold. The projetor of a point f onto the quasiequi-librium manifold is the following operator:PS : f 7! f�m(f):Let �t be the time shift transformation for the initial onservative kinetiequation (2): �t(f(0)) = f(t):For the free-ight equation (3) we have�t : f(x;v) 7! f(x� vt;v):For a given time � , the Ehrenfests' step is a transformation of the quasiequi-librium manifold Ehr� : f�M 7! PS(�� (f�M )): (6)The motion starts on the quasiequilibrium manifold, goes time � along thetrajetory of the onservative kineti equation (2), and then follows proje-tion bak onto the quasiequilibrium manifold. Marosopi variables formoordinates on the quasiequilibrium manifold. In these oordinates,Ehr� :M 7! m(�� (f�M)):The Ehrenfests' step gives a seond-order in time step � approximation tothe solution of the dissipative marosopi equationdMdt = m(J(f�M )) + �2m((DfJ(f))f=f�M�f�M ); (7)where �f�M is the defet of invariane of the quasiequilibrium manifold:�f�M = J(f�M)�DM (f�M )m(J(f�M )); (8)and is the di�erene between the vetor-�eld J and its projetion on thequasiequilibrium manifold. 4



For the free-ight equation and hydrodynami �elds M = M(x; t) (4),the quasiequilibrium distribution is the well known loal Maxwellianf�M (v) = n�2�kBTm ��3=2 exp��m(v � u)22kBT �;and (7) is the system of ompressible Navier{Stokes equations�n�t = �Xi �(nui)�xi ;�(nuj)�t = � 1m �P�xj �Xi �(nuiuj)�xi+ �2Xi ��xi�Pm��uj�xi + �ui�xj � 2Æij3 r � u��;�E�t = � 1mXi �(Pui)�xi �Xi �(Eui)�xi + �2 5kB2m Xi ��xi�Pm �T�xi�;where m is partile mass, kB is Boltzmann's onstant, T is kineti temper-ature and P = nkBT is ideal gas pressure [18℄. The dynami visosity is� = �2P (the kinemati visosity is � = �2 21 where 1 is the thermal velo-ity for one degree of freedom, 21 = kBT=m). For � ! 0, (7) tends to theonservative marosopi equationdMdt = m(J(f�M )): (9)For hydrodynamis, this is the (ompressible) Euler equations.The step with a quasiequilibrium state in the middle gives a seond-orderin time step � approximation to the solution of the onservative marosopiequation (9):M(0) = m(PS(���=2(f�M ))) 7! m(PS(��=2(f�M))) =M(�): (10)In order to deouple visosity and time step, we an ombine (6) with (10):M(0) = m(PS(��#=2(f�M ))) 7! m(PS(�&+#=2(f�M ))) =M(& + #) =M(�);where & � � and # = � � &. The state M is a mid-point on the trajetory.This transformation provides a seond-order in time approximation for theequation: dMdt = m(J(f�M )) + &2m((DfJ(f))f=f�M�f�M ) (11)for the time step � [15℄. For the free-ight equation (3) and hydrodynami�elds (4), the system (11) is the ompressible Navier{Stokes equations withdynami visosity � = &2P (the kinemati visosity is � = &221).5



It is worthwhile to mention that all the points �t(f�M ) belong to amanifold that is a trajetory q of the quasiequilibrium manifold due tothe onservative dynamis (2) (in hydrodynami appliations that is thefree-ight dynamis (3)). We all this manifold the �lm of non-equilibriumstates [15, 16, 17℄. The defet of invariane �f�M (8) is tangent to q at thepoint f�M , and belongs to the intersetion of this tangent spae with kerm.This intersetion is one-dimensional. This means that the diretion of �f�Mis seleted from the tangent spae to q by the ondition: derivative of M inthis diretion is zero.A point f on the �lm of non-equilibrium states q is naturally parame-terised by (M; �): f = qM;� , where M = m(f) is the value of the maro-sopi variables, and � = �(f) is the time shift from a quasiequilibriumstate: ��� (f) is a quasiequilibrium state for some (other) value of M . Tothe �rst-order in � , qM;� = f�M + ��f�M : (12)The quasiequilibrium manifold divides q into two parts, q = q� [ q0 [ q+,where q� = fqM;� j � < 0g, q+ = fqM;� j � > 0g, and q0 is the quasiequilib-rium manifold: q0 = fqM;0g = ff�Mg.For eah M and positive s from some interval ℄0; &[ there exist two num-bers ��(M; s) (�+(M; s) > 0, ��(M; s) < 0) suh thatS(qM;��(M;s)) = S(f�M )� s:The numbers �� oinide to the �rst-order: �+ = ��� + o(��).We de�ne the entropi involution as a transformation of q:IS(qM;��) = qM;�� :The pair of points f+; f� 2 q onneted by the involution IS (i.e., f� =IS(f�)) is de�ned (in q) by two onditions:S(f+) = S(f�); m(f+) = m(f�):The values of entropy and marosopi variables at these points oinide.Let us hoose an initial marosopi state M0, and suppose the initialmirosopi state f0 belongs to q� [ q+ in a � -small viinity of f�M0 :m(f0) =M0; f0 = qM;#; �� < # � 0:Then the step M0 7! m(IS(�� (IS(�� (f0))))) (13)gives a seond-order in time step � approximation to the onservative maro-sopi equations (9) with time step 2� (the seond appliation of IS in (13)is added for symmetry and does not e�et M). One shift IS�� guarantees�rst-order auray only [15℄. 6



For modelling the visous motion (11) we an ombine involution andprojetion in the following manner: for f0 2 q� the point f1 = I�S (f0),� 2 [1=2; 1℄, is de�ned in q� by two onditions:m(f1) = m(f0); S(f1)� S(PS(f0)) = (2� � 1)2(S(f0)� S(PS(f0))):The point I�S (f0) is loser to the quasiequilibrium point PS(f0) than IS(f0).For � = 1 we get the entropi involution: I1S = IS , and for � = 1=2 wereeive the operator I1=2S = PS .If, for t 2 [0; � ℄, the trajetory �t(f0) intersets the quasiequilibriummanifold (i.e., f0 = qM0;# and �� < # � 0), then, after some initial steps,the following sequene gives a seond-order in time step � approximationof (11) with & = (1� �)�=�, � 2 [1=2; 1℄:Mn = m((I�S�� )nf0): (14)In order to prove this statement we onsider a transformation of the seondoordinate in qM;# (�� < # � 0): in linear approximation in # and � wehave (I�S�� )qM;# = qM 0;#0 ;where #0 = �(2� � 1)(#+ �):This transformation has a �xed point #� = ��(2� � 1)=(2�) and(I�S�� )nqM;# = qMn;#n ;where #n = #� + (�1)n(2� � 1)nÆ + o(�);for some Æ. This asymptoti formula is valid for the given � 2 [1=2; 1℄ and� ! 0, but if 1�� is small it has no pratial sense beause relaxation maybe too slow: #n � #� + (�1)n exp(�2n(1 � �))Æ, and relaxation requires� 1=(1 � �) steps.If #n = #� + o(�) then the sequene Mn (14) approximates (11) with& = � � 2j#�j = (1� �)�=� and seond-order auray in time step � .As we have already mentioned, for the transfer from free-ight withentropi involution to the standard LBGK models we must:1. transfer to a �nite number of veloities with the same marosopiequations;2. transfer from spae to a lattie, where these veloities are automor-phisms;and also, 7



3. transfer from dynamis and involution on q to the whole spae ofstates.Instead of I�S the transformationI�0 : f 7! PS(f) + (2� � 1)(PS(f)� f) (15)is used. If, for a given f0, the sequene (14) gives a seond-order in timestep � approximation of (11), then the sequeneMn = m((I�0�� )nf0) (16)also gives a seond-order approximation to the same equation.Entropi LBGK (ELBM) methods [7, 15, 21, 24℄ di�er only in the de�-nition of (15): for � = 1 it should onserve the entropy, and in general hasthe following form: I�E(f) = (1� �)f + � ~f; (17)with ~f = (1 � �)f + �PS(f). The number � = �(f) is hosen so thatthe onstant entropy ondition is satis�ed: S(f) = S( ~f). For LBGK (15),� = 2.Of ourse, omputation of I�0 is muh easier than that of I�S or I�E : itis not neessary to follow exatly the manifold q and to solve the nonlinearonstant entropy ondition equation. For an appropriate initial onditionfrom q (not suÆiently lose to q0), two steps of ELBM with I�0 gives thesame seond-order auray as (14). But a long hain of suh steps anlead far from the quasiequilibrium manifold and even from q. Here, we seestability problems arising.3 Stability and reeipts for stabilisationFirst of all, if f is far from the quasiequilibrium, the state I�0 (f) may benon-physial. The positivity onditions (positivity of probabilities or pop-ulations) may be violated. For multi-dimensional and in�nite-dimensionalproblems it is neessary to speify what one means by far. In the previoussetion, f is the whole state whih inludes the states of all sites of the lat-tie. All the inversion operators with lassial entropies (ones that do notdepend on gradients) are de�ned for lattie sites independently. Violation ofpositivity at one site makes the whole state non-physial. Hene, we shoulduse here the `1-norm: lose states are lose uniformly, at all sites.There is a simple reeipt for positivity preservation: to substitute non-positive I�0 (f) by the losest non-negative state that belongs to the straightline n�f + (1� �)PS(f)j � 2 Ro8



Figure 1: Neutral stability and one-step osillations in a sequene of re-etions. Bold dotted line { a perturbed motion, � { diretion of neutralstability.de�ned by the two points, f and orrespondent quasiequilibrium. Let us allthis reeipt the positivity rule. It has been demonstrated [8℄ (also, indepen-dently, in [25℄) that the lassi LBGK model with the positivity rule providesthe same results (in the sense of stability and absene/presene of spuriousosillations) as the entropi LBGK models. This reeipt preserves positivityof populations and probabilities, but an a�et auray of approximation:to avoid the hange of auray order, the number of sites with this stepshould be of the order O(Nh=L) where N is the total number of sites, h isthe step of the spae disretization and L is the marosopi harateristilength.The seond problem is non-linearity: for auray estimates we alwaysuse the assumption that f is suÆiently lose to quasiequilibrium. Far fromthe quasiequilibrium manifold these estimates do not work beause of non-linearity (�rst of all, the quasiequilibrium distribution, f�M , depends nonlin-early on M and hene the projetion operator, PS , is nonlinear). Again weneed to keep the states not far from the quasiequilibrium manifold.The third problem is a diretional instability that an a�et auray:the vetor f�PS(f) an deviate far from the tangent to q. Hene, we shouldnot only keep f lose to the quasiequilibrium, but also guarantee smallnessof the angle between the diretion f � PS(f) and tangent spae to q.One ould rely on the stability of this diretion, but we fail to provethis in any general ase. The diretional instability hanges the struture ofdissipation terms: the auray dereases to the �rst-order in � and signi�-ant utuations of the Prandtl number and visosity, et may our. Thisarries a danger even without blow-ups; one ould oneivably be relying onnon-reliable omputational results.Furthermore, there exists a neutral stability of all desribed approxima-tions that auses one-step osillations: a small shift of f in the diretion of�f�M does not relax bak for � = 1, and its relaxation is slow for � � 1 (forsmall visosity). This e�et is demonstrated for a hain of mirror reetionsin Fig. 1. 9



Three presriptions allow us to improve the situation:1. Positivity rule.The tehnial advise is to use this rule in all disrete kineti models.This rule guarantees positivity of populations and probabilities, andelementary post-proessing allows one to estimate how these steps af-fet the whole piture. Tests prove that this rule is as e�etive asentropi methods, and they are muh simpler for realisation (see, [8℄and Set. 5).For the stabilisation of LBMs, the entropi version of (17) was proposedand is used. This approah somehow improves stability, indeed, but annoterase spurious osillation and large loal deviation from quasiequilibrium [6,8, 9℄. The H-theorem implies stability of equilibrium in the entropi norm(that is, a weighted `2-norm, a weighted sum of squared point evaluations)for isolated systems. For non-isolated systems (e.g., the shok tube, systemswith external ows, et.) the H-theorem (positivity of entropy prodution)does not guarantee stability in any norm, but an be used to establish ertainestimates of boundedness with respet to the entropi norm. However, tosuppress loal blow-ups we need estimates in `1-norm, and to suppresshigh-frequeny osillations we need boundedness in the Sobolev norm thatdepends on derivatives.2. Ehrenfests' regularisation.In order to keep the urrent state uniformly lose to the quasiequi-librium manifold we monitor loal deviation of f from the orrespon-dent quasiequilibrium, and when this deviation is large perform loalEhrenfests' steps [18℄, 1 fj 7! f�j ; (18)where j is the number of the site, fj is the state at this site, and f�j isthe orrespondent loal quasiequilibrium (we assume that the entropyis the sum of nodal values, and the problem of quasiequilibrium (5) isfully split into loal problems at the sites).In order to preserve the seond-order of auray, it is worthwhile per-forming Ehrenfests' steps at only a small number of sites (the number ofsites should be O(Nh=L), where N is the total number of sites, L is themarosopi harateristi length and h is the lattie step). If only k sitesare required then this onstitutes a omputational ost of O(kN). Numeri-al experiments show (see, e.g., [8, 9℄ and Set. 5) that even a small numberof suh steps drastially improves stability.1In our paper [9℄ we used another de�nition that follows the Euler disretization of theBGK equation, but, for small visosity this is essentially the same10
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0IFigure 2: The sheme of oupled steps (19).3. Coupled steps with quasiequilibrium ends.Let us take f�M as the initial state with given M , then evolve the stateby �� , apply LBGK reetion I�0 , again evolve by �� , and �nallyprojet by PS onto quasiequilibrium manifold:M 7! m(PS(�� (I�0 (�� (f�M ))))) (19)The analysis of entropy prodution easily shows that this step (Fig. 2)gives a seond-order in time � approximation to the shift in time 2�for (11) with & = 2(1� �)� , � 2 [1=2; 1℄. The stabilisation (restart ex-atly from a quasiequilibrium point) introdues additional dissipationof order �2, and the perturbation of auray is of order �3. Hene,the method has the seond-order auray.It is neessary to stress that the visosity oeÆient is proportional to &and signi�antly depends on the hain onstrution: for the sequene (14)we have & = (1��)�=�, and for the sequene of steps (19) & = 2(1��)� (theproedure for alulating this visosity oeÆient is ontained in Set. 4).For small 1 � � the later gives around two times larger visosity (and forrealisation of the same visosity we must take this in to aount).4 Visosity omputationIn this setion, we demonstrate how to ompute visosity for any onstru-tion of steps on the base of (7) and the representation (12). We ompute theentropy prodution and ompare it to the entropy prodution in Ehrenfests'steps.First of all, for any f , the distribution PS(f) = f�m(f) is the entropymaximiser for the given marosopi variablesM = m(f). Hene, by Taylorexpansion,S(f) = S(PS(f)) + 12 hf � PS(f); f � PS(f)iPS(f) + o(kf � PS(f)k2);11



where h � ; � ig is the entropi inner-produt, i.e., the negative of the bilinearform of the seond di�erential of entropy: h'; ig := �(D2fS(f))f=g('; ).In partiular, using (12), we haveS(qM;� ) = S(f�M ) + �22 h�f�M ;�f�M if�M + o(�2):For the operation I�0 (15) we haveS(I�0 f) = S(PS(f))+ (2� � 1)22 hf � PS(f); f � PS(f)iPS(f) + o(kf � PS(f)k2):In partiular,S(I�0 qM;� ) = S(f�M ) + �2(2� � 1)22 h�f�M ;�f�M if�M + o(�2);and for the orrespondent entropy gain �S1 we have�S1 = 2�2�(1� �)h�f�M ;�f�M if�M + o(�2):Entropy prodution is the ratio of entropy gain to time. For the Ehrenfests'step (6) in time � the entropy gain �SEhr;� is�SEhr;� = �22 h�f�M ;�f�M if�M + o(�2);with entropy prodution �Ehr;� given by the expression�Ehr;� = �SEhr;�� = �2 h�f�M ;�f�M if�M + o(�): (20)Now, for a oupled step (19) (see Fig. 2)f�M 7! PS(�� (I�0 (�� (f�M))));the free-ight does not hange entropy and the entropy gain is�S = �S1 +�S2;with �S2 = �SEhr;2(1��)� . Thus,�S = 2�2�(1� �)h�f�M ;�f�M if�M + 2�2(1� �)2h�f�M ;�f�M if�M + o(�2)= 2�2(1� �)h�f�M ;�f�M if�M + o(�2):The orresponding entropy prodution is� = �S� = �(1� �)h�f�M ;�f�M if�M + o(�): (21)After omparison of the two entropy prodution formulas (20) and (21)we an immediately onlude that the oupled step (19) gives a seond-orderin time approximation of (11) with & = 2(1 � �)� . For any other variantsof step onstrution the method of visosity omputation is the same: weestimate the entropy gain up to the seond-order, and �nd the orrespondentvalue of &. 12



5 Numerial experimentTo onlude this paper we report two numerial experiments onduted todemonstrate the performane of the proposed LBM stabilisation reeiptsfrom Set. 3. The �rst test is a 1D shok tube and we are interested inomparing the Ehrenfests' regularisation (18), the oupled step (19) withLBGK (15) and ELBM (17).The seond test is the 2D unsteady ow around a square-ylinder. Theunsteady ow around a square-ylinder has been widely experimentally in-vestigated in the literature (see, e.g., [12, 22, 26℄). We demonstrate thatLBGK (15), with the Ehrenfests' regularisation (18), is apable of quan-titively apturing the Strouhal{Reynolds relationship. The relationship isveri�ed up to Re = 20000 and ompares well with Okajima's experimentaldata [22℄.As we are advised in Set. 3, in all of the experiments, we implement thepositivity rule.5.1 Shok tubeThe 1D shok tube for a ompressible isothermal uid is a standard benh-mark test for hydrodynami odes. We will �x the kinemati visosity ofthe uid at � = 10�9. Our omputational domain will be the interval [0; 1℄and we disretize this interval with 801 uniformly spaed lattie sites. Wehoose the initial density ratio as 1:2 so that for x � 400 we set n = 1:0 elsewe set n = 0:5.In all of our simulations we use a lattie with spaing h = 1, time step� = 1 and a disrete veloity set fv1; v2; v3g := f0;�1; 1g so that the modelonsists of stati, left- and right-moving populations only. The governingequations for LBGK are thenfi(x+ vi; t+ 1) = f�i (x; t) + (2� � 1)(f�i (x; t) � fi(x; t)); (22)where the subsript i denotes population (not lattie site number) and f1,f2 and f3 denote the stati, left- and right-moving populations, respetively.The entropy is S = �H, withH = f1 log(f1=4) + f2 log(f2) + f3 log(f3);(see, e.g., [20℄) and, for this entropy, the loal quasiequilibrium state f� isavailable expliitly: f�1 = 2n3 �2�p1 + 3u2�;f�2 = n6 �(3u� 1) + 2p1 + 3u2�;f�3 = �n6 �(3u+ 1)� 2p1 + 3u2�;13



where n :=Xi fi; u := 1nXi vifi:For ontrast we are interested in omparison with ELBM (17):fi(x+ vi; t+ 1) = (1� �)f�i (x; t) + � ~fi(x; t); (23)with ~f = (1 � �)f + �f�. As previously mentioned, the parameter, �, ishosen to satisfy a onstant entropy ondition. This involves �nding thenontrivial root of the equationS((1� �)f + �f�) = S(f): (24)Inauray in the solution of this equation an introdue arti�ial visosity.To solve (24) numerially we employ a robust routine based on bisetion.The root is solved to an auray of 10�15 and we always ensure that thereturned value of � does not lead to a numerial entropy derease. Westipulate that if, at some site, no nontrivial root of (24) exists we will employthe positivity rule instead.For the realisation of the Ehrenfests' regularisation of LBGK, whih isintended to keep states uniformly lose to the quasiequilibriummanifold, weshould monitor non-equilibrium entropy �S at every lattie site:�S := S(f�)� S(f);throughout the simulation. If a pre-spei�ed threshold value Æ is exeeded,then an Ehrenfests' step is taken at the orresponding site. Now, the gov-erning equations beome:fi(x+ vi; t+ 1) = ( f�i (x; t) + (2� � 1)(f�i (x; t)� fi(x; t)); �S � Æ,f�i (x; t); otherwise.(25)Furthermore, so that the Ehrenfests' steps are not allowed to degrade theauray of LBGK it is pertinent to selet the k sites with highest �S > Æ.The a posteriori estimates of added dissipation ould easily be performedby analysis of entropy prodution in Ehrenfests' steps.The governing equations for the oupled step regularisation of LBGKalternates between lassi LBGK and Ehrenfests' steps:fi(x+ vi; t+ 1) = ( f�i (x; t) + (2� � 1)(f�i (x; t)� fi(x; t)); Nstep even,f�i (x; t); Nstep odd,(26)where Nstep is the umulative total number of time steps taken in the sim-ulation. Of ourse, one is at liberty to ombine the oupled step (26) with14



the Ehrenfests' regularisation (25) to reate another method, and we will dothis as well.In aordane with the losing remark of Set. 3, as the kinemati visos-ity of the model uid is �xed at � = 10�9 we should take � = 1=(2� + 1) �1 � 2� for LBGK, ELBM and the Ehrenfests' regularisation. Whereas, forthe oupled step regularisation, we should take � = 1� �.We observe that the proposed stabilisation reeipts (25) and (26) areapable of subduing spurious post-shok osillations whereas LBGK andELBM fail in this respet (Fig. 3). The oupled step simulation (Fig. 3e)is strikingly impressive as the sheme introdues zero arti�ial dissipation.Furthermore, the small post-shok deviation in Fig. 3e (we believe this phe-nomenon is unavoidable without adding dissipation) an be eradiated usingEhrenfests' steps (Fig. 3f and Fig. 3g).In the example, we have onsidered �xed toleranes of (k; Æ) = (4; 10�3)and (k; Æ) = (4; 10�4) only. We reiterate that it is important for Ehrenfests'steps to be employed at only a small share of sites. To illustrate, in Fig. 4we have allowed k to be unbounded and let Æ vary. As Æ dereases, thenumber of Ehrenfests' steps quikly begins to grow (as shown in the aom-panying histograms) and exessive and unneessary smoothing is observedon the shok and rarefation wave. The seond-order auray of LBGK isorrupted. In Fig. 5, we have kept Æ �xed at Æ = 10�4 and instead let k vary.We observe that even small values of k (e.g., k = 1) dramatially improvesthe stability of LBGK.5.2 Flow around a square-ylinderOur seond test is the 2D unsteady ow around a square-ylinder. Therealisation of LBGK that we use will employ a uniform 9-speed square lattiewith disrete veloitiesvi = 8>>>>><>>>>>: 0; i = 0,�os�(i� 1)�2�; sin�(i� 1)�2��; i = 1; 2; 3; 4,p2�os�(i� 5)�2 + �4�; sin�(i� 5)�2 + �4��; i = 5; 6; 7; 8.The numbering f0, f1; : : : ; f8 are for the stati, east-, north-, west-, south-,northeast-, northwest-, southwest- and southeast-moving populations, re-spetively. As usual, the quasiequilibrium state, f�, an be uniquely deter-mined by maximising an entropy funtionalS(f) = �Xi fi log� fiWi�;15
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subjet to the onstraints of onservation of mass and momentum:f�i = nWi 2Yj=1�2�q1 + 3u2j� 2uj +q1 + 3u2j1� uj !vi;j (27)Here, the lattie weights, Wi, are given lattie-spei� onstants: W0 = 4=9,W1;2;3;4 = 1=9 and W5;6;7;8 = 1=36. The marosopi variables are given bythe expressions n :=Xi fi; (u1; u2) := 1nXi vifi:The omputational set up for the ow is as follows. A square-ylinder ofside length L, initially at rest, is emersed in a onstant ow in a retangularhannel of length 30L and height 25L. The ylinder is plae on the entreline in the y-diretion resulting in a blokage ratio of 4%. The entre ofthe ylinder is plaed at a distane 10:5L from the inlet. The free-streamveloity is �xed at (u1; v1) = (0:05; 0) (in lattie units) for all simulations.On the north and south hannel walls a free-slip boundary onditionis imposed (see, e.g., [23℄). At the inlet, the inward pointing veloities arereplaed with their quasiequilibrium values orresponding to the free-streamveloity. At the outlet, the inward pointing veloities are replaed with theirassoiated quasiequilibrium values orresponding to the veloity and densityof the penultimate row of the lattie.5.2.1 Maxwell boundary onditionThe boundary ondition on the ylinder that we prefer is the di�usiveMaxwell boundary ondition (see, e.g., [10℄), whih was �rst applied to LBMsin [2℄. The essene of the ondition is that populations reahing a boundaryare reeted, proportional to equilibrium, suh that mass-balane (in thebulk) and detail-balane are ahieved. We will desribe two possible realisa-tions of the boundary ondition { time-delayed and instantaneous reetionof equilibrated populations. In both instanes, immediately prior to the ad-vetion of populations, only those populations pointing in to the uid at aboundary site are updated. Boundary sites do not undergo the ollisionalstep that the bulk of the sites are subjeted to.To illustrate, onsider the situation of a wall, aligned with the lattie,moving with veloity uwall and with outward pointing normal to the wallpointing in the positive y-diretion (this is the situation on the north wallof the square-ylinder with uwall = 0). The time-delayed reetion imple-mentation of the di�usive Maxwell boundary ondition at a boundary site
19



(x; y) on this wall onsists of the updatef2(x; y; t+ 1) = �f�2 (uwall);f5(x; y; t+ 1) = �f�5 (uwall);f6(x; y; t+ 1) = �f�6 (uwall);with � = f4(x; y; t) + f7(x; y; t) + f8(x; y; t)f�2 (uwall) + f�5 (uwall) + f�6 (uwall) :Whereas for the instantaneous reetion implementation,� = f4(x; y + 1; t) + f7(x+ 1; y + 1; t) + f8(x� 1; y + 1; t)f�2 (uwall) + f�5 (uwall) + f�6 (uwall) :Observe that, beause density is a linear fator of the equilibria (27), thedensity of the wall is inonsequential in the boundary ondition and antherefore be taken as unity for onveniene.We point out that, although both realisations agree in the ontinuumlimit, the time-delayed implementation does not aomplish mass-balane.Therefore, instantaneous reetion is preferred and will be the implementa-tion that we employ in the present example.Finally, it is instrutive to illustrate the situation for a boundary site(x; y) on a orner of the square-ylinder, say the north-west orner. The(instantaneous reetion) update is thenf2(x; y; t+ 1) = �f�2 (uwall);f3(x; y; t+ 1) = �f�3 (uwall);f5(x; y; t+ 1) = �f�5 (uwall);f6(x; y; t+ 1) = �f�6 (uwall);f7(x; y; t+ 1) = �f�7 (uwall);where� = �f1(x� 1; y; t) + f4(x; y + 1; t) + f5(x� 1; y � 1; t)+ f7(x+ 1; y + 1; t) + f8(x� 1; y + 1; t)�.�f�2 (uwall) + f�3 (uwall) + f�5 (uwall) + f�6 (uwall) + f�7 (uwall)�:5.2.2 Strouhal{Reynolds relationshipAs a test of the Ehrenfests' regularisation (18), a series of simulations, allwith harateristi length �xed at L = 20, were onduted over a range ofReynolds numbers Re = Lu1� :20
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ularisation of LBGK is shown in Fig. 6. The simulation ompares well withOkajima's data from wind tunnel and water tank experiment [22℄. Thepresent simulation extends previous LBM studies of this problem [1, 3℄ whihhave been able to quantitively aptured the relationship up to Re = O(1000).Fig. 6 also shows the ELBM simulation results from [1℄. Furthermore, theomputational domain was �xed for all the present omputations, with thesmallest value of the kinemati visosity attained being � = 5 � 10�5 atRe = 20000. It is worth mentioning that, for this harateristi length,LBGK exhibits numerial divergene at around Re = 1000. We estimatethat, for the present set up, the omputational domain would require atleast O(107) lattie sites for the kinemati visosity to be large enough forLBGK to onverge at Re = 20000. This is ompared with O(105) sites forthe present simulation.6 ConlusionsWe have presented the main mehanisms of observed LBM instabilities:1. Positivity loss due to high loal deviation from (quasi)equilibrium;2. Appearane of neutral stability in some diretions in the zero visositylimit;3. Diretional instability.We found three methods of stability preservation. Two of them, the pos-itivity rule and the Ehrenfests' regularisation, are \salvation" (or \SOS")operations. They preserve the system from positivity loss or from the loalblow-ups, but introdue arti�ial dissipation and it is neessary to ontrolthe number of sites where these steps are applied. In order to preservethe seond-order of LBM auray, it is worthwhile to perform these stepson only a small number of sites; the number of sites should not be higherthan O(Nh=L), where N is the total number of sites, L is the marosopiharateristi length and h is the lattie step. The added dissipation ouldeasily be estimated a posterior by summarising the entropy prodution ofthe \SOS" steps.But most e�etive is the speial new hoie of ollisions: the oupledsteps (26). These steps alternate between lassi LBM and Ehrenfests' steps,introdue no arti�ial visosity, have the seond-order auray, and providediretional stability as well as obliterate the e�ets of neutral stability. In-deed, the shok tube simulation in Fig. 3e is a ompelling demonstrationof the proposed sheme's apabilities. Furthermore, the oupled step intro-dues no additional omputational ost ompared to lassial LBMs.The pratial reommendation is to always use the oupled steps, andto keep the positivity rule and the Ehrenfests' steps as an \SOS" in reserve22
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