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Abstract

We pursue the spectral analysis of the model describing a system of one dynamical nu-

cleus and one electron together with the quantized electromagnetic field. We impose an

ultraviolet cutoff and assume that the fine-structure constant is sufficiently small. Then

we prove that the unperturbed eigenvalues turn into resonances when the nucleus and the

electron are coupled to the radiation field. Furthermore, a method to calculate the reso-

nances up to all orders in the coupling parameters is given. This analysis is related to the

Lamb-Dicke effect.
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1 Introduction and statements of results

In this paper, we pursue the spectral analysis of the model studied in [AF]. This model describes
a hydrogenöıd ion confined by its center of mass, and is used in theoretical physics to explain
the Lamb-Dicke effect (see [CTDRG]). It is also related to the Mössbauer effect (see [CTDRG]).
Our purpose is to present a mathematically rigorous aspect of this phenomenon.

We consider a system of one nucleus and one electron together with the quantized electromag-
netic field. Here the nucleus is dynamical, so that, as compared to a model with fixed nucleus,
the kinetic energy of the atom or ion is modified when it emits or absorbs a photon. If it is
assumed that the center of mass motion of the atomic system is free, this modification is the sum
of a term due to the Doppler effect, and another term that is the ”recoil energy” (see [CTDRG]).
Now, if the center of mass of the atomic system is assumed to be confined by a suitable external
potential, the energy associated with the center of mass motion can take only discrete values.
Then, during an emission or absorption process for a photon, the energy of the emitted or ab-
sorbed photon depends on the value of the energy associated with the center of mass motion,
respectively before and after the process. This situation allows to explain the Dicke effect (see
[CTDRG], exercise 11).

In [AF], we obtained the existence of a ground state for the Hamiltonian describing the
present model, for all values of the fine-structure constant. Furthermore, when instead of fixing
the nucleus, one only assume that the center of mass of the atom or ion is confined, new intense
rays appear in the scattering spectrum of the physical system (see [CTDRG]). Thus, some res-
onances depending on the confining potential with a very small imaginary part should appear
in the spectrum of the Hamiltonian. The aim of our paper is to prove this, assuming here that
the fine-structure constant is sufficiently small. In addition, our proof shall provide a method to
localize the resonances up to all orders in the fine-structure constant.

Let us formally write the Hamiltonian that describes the system that we consider as:

HV
U =

∑
j=1,2

1
2mj

(pj − qjA(xj))2 +Hf + U(R) + V (r). (1)

Here, xj , qj , pj = −i∇j , mj denote respectively the position, the charge, the momentum and
the mass of the particle j (the electron and the nucleus). The position of the center of mass R,
and the variable r are defined by

R :=
m1x1 +m2x2

m1 +m2
, r := x1 − x2. (2)

Moreover, A is the quantized electromagnetic vector potential in the Coulomb gauge, Hf is the
free photon energy field, U is a confining potential acting on the center of mass of the atomic
system, and V denotes the Coulomb potential. An ultraviolet cutoff at a scale Λ is imposed on

2



A for some arbitrary but finite Λ > 0. Note that the units have been chosen such that ~ = c = 1,
where c stands for the velocity of light. Besides, for the sake of simplicity, the spin of the electron
is not taken into account.

We emphasize that the differences between the model described by HV
U and a model with a

static nucleus are significant. Since we consider here a dynamical nucleus, we have to impose some
confinement, otherwise the Hamiltonian of the system would be translation invariant. However,
in the model that we study and that is used in [CTDRG] to explain the Dicke effect, U confines
only the center of mass; the nucleus and the electron themselves are not confined. Actually, the
interaction between the nucleus and the electron takes place exclusively through the attractive
Coulomb potential V . Thus, one can imagine some states where the nucleus and the electron
are localized very far from each other, and where, yet, the energy associated with the center of
mass motion is low.

Mathematically, as we shall see below, the method to study the existence of resonances for
HV

U has to be significantly modified as compared to a similar model where the nuclei would be
treated as static.

We denote by H0 the unperturbed Hamiltonian, that is HV
U where the coupling parameters

q1 := q, q2 := −Zq are put to 0. The main result of this paper is theorem 1.2 below which
shows that the eigenvalues of H0 turn into resonances when q1, q2 become 6= 0. This follows the
strategy developed in [BFS1,2,3] and [BCFS], based on a renormalization group analysis. As
stated above, the main difference between the models studied in these papers and our model is
the presence of the potential U in our model, which confines the center of mass. This confining
potential imposes some modifications of the proofs which are not straightforward. We shall only
reproduce here the new aspects of the proofs and often refer to [BFS1,2,3] or [BCFS].

The assumptions on the confining potential U that we require are stated in subsection 2.2.
We denote by (Ej)j≥0 the non-decreasing sequence of eigenvalues of p2/2µ + V and by (ej)j≥0

the non-decreasing sequence of eigenvalues of P 2/2M + U , where

M := m1 +m2 , µ :=
m1m2

m1 +m2
;

P := p1 + p2 ,
p

µ
:=

p1

m1
− p2

m2
.

(3)

Our main contributions are the following two points:

∗ First, we give a rigorous definition of the family HV
U (θ) obtained through complex scaling (see

subsection 3.1). Note that the potential U imposes a noticeably different definition of the
family HV

U (θ), as compared to the one given is [BFS3]. We shall have to use quadratic forms
in a way related to the one in [AF], and we shall show that HV

U (θ) is an analytic family of type
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(B) on a disc D(0, θ0), for a sufficiently small θ0, with explicit form domain

Q(HV
U (θ)) = Q(p2

1 + p2
2) ∩Q(U) ∩Q(Hf ). (4)

Together with a result obtained in [BFS3], this shall imply:

Theorem 1.1

Assume that g := (q2Λ)3/2 is sufficiently small, where Λ denotes the parameter of the ultraviolet
cutoff. Assume moreover that the hypothesis (HΓl,n) related to the Fermi golden rule (see
subsection 3.2) is fulfilled for all (l, n) such that (l, n) 6= (0, 0) and El + en < e0.
Then the spectrum of HV

U is absolutely continuous in the interval ]E0 + e0 +O(g), e0 −O(g)[.
In particular, the unperturbed eigenvalues El + en disappear when the nucleus and the electron
are coupled to the photons.

∗ Next, we prove that the confining potential U allows to perform a renormalization group anal-
ysis. At this point, we have to transform HV

U through a Power-Zienau-Wooley transformation
(see [CTDRG2]), and to impose, in the resulting interaction term Ã, a spatial cutoff in the
variable r that restricts the electron position to finite distances from the nucleus position. Note
that in [BFS1], a similar spatial cutoff is imposed, which restricts the electrons positions to
finite distance from the static nuclei. We denote by H̃V

U the resulting Hamiltonian, and H̃0

denotes the operator obtained when the coupling between the two ”particles” (the nucleus and
the electron) and the photons vanish. We shall see that the eigenvalues El + en of H0 are
slightly shifted by the transformation: we denote by Ẽl + en the corresponding eigenvalues of
H̃0.

To get the result, we follow the strategy of [BFS2] and use the smooth Feshbach map defined in
[BCFS]. However, the proof is not straightforward: we have to modify carefully the hypotheses
2. and 3. stated in [BFS2] in such a way that, on one hand, they are well adapted to tour
model, and on the other hand, they are still sufficient to perform a renormalization group
analysis. More precisely, our requirements about the interacting part of the Hamiltonian are
stated in subsection 4.1; they are denoted by (H−1/2) and (H1/2). In particular, the fact that
U confines the center of mass shall be essential: this is reflected in our choice of hypothesis
(H2) stated in subsection 2.2. We shall prove:

Proposition 1.1

Assume that U fulfills hypotheses (H0), (H1), (H2) stated in subsection 2.2. Denote by H̃V
U (θ)

the analytic family of type (B) obtained from H̃V
U through complex scaling. Then H̃V

U (θ) fulfills
hypotheses (H−1/2) and (H1/2) stated in subsection 4.1.

Together with the results obtained in [BFS2] and [BCFS], this proposition shall allow us to
prove that we can perform a renormalization group analysis starting from H̃V

U , which shall
yield:
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Theorem 1.2

Fix El + en an eigenvalue of H0 such that (l, n) 6= 0 and El + en < e0. Pick some ρ0 > 0
sufficiently small and assume that the coupling parameter g > 0 is also sufficiently small. Let
δ be the distance from Ẽl + en to the other eigenvalues of H̃0 and pick θ = η + iν in D(0, θ0)
such that ρ0 ≤ δ sin(ν/2) < 1.
Then the spectrum of H̃V

U (θ) in the disc Dρ0/2 := D(Ẽl + en, ρ0/2) around Ẽl + en is located
as follows:

σ
(
H̃V

U (θ)
)
∩Dρ0/2 ⊂ El,n(θ) +Kl,n(θ) (5)

where El,n(θ) is an eigenvalue of H̃V
U (θ) and where Kl,n(θ) is a complex domain such that, for

some τ > 1 and 0 < C < 1:

Kl,n(θ) ⊂
{
Ẽl + en + e−iνa+ b, 0 ≤ a ≤ 1, |b| ≤ Caτ

}
. (6)

In particular, El,n(θ) is independent of θ.

The paper is organized as follows: in section 2, we define our model, we precise our notations
and we state the hypotheses that we have to require on the confining potential U . In section
3, we define precisely HV

U (θ) and we prove that it is an analytic family of type (B); this yields
theorem 1.1. Finally in section 4, we show how the renormalization group method developed in
[BFS1,2] and [BCFS] can be applied to our model. This gives theorem 1.2.

2 Definition and assumptions on the model

2.1 Definition of HV
U and notations

Here, we only give a formal definition of the Hamiltonian HV
U . We refer the reader to [AF] for a

precise definition using quadratic forms. Let us write our Hamiltonian as

HV
U :=

∑
j=1,2

1
2mj

(pj − qjAj)2 +Hf + U + V. (7)

This operator acts in the Hilbert space L2(R6)⊗Fs ' L2(R6;Fs), where Fs denotes the symmetric
Fock space of transversally polarized photons over L2(R3; C2), that is

Fs(L2(R3; C2)) = C⊕
⊕
n≥1

Sn ⊗n
k=1 L2(R3; C2). (8)

Here Sn denotes the symmetrization of the n components in the tensor product ⊗n
k=1L

2(R3; C2).
The vector potential Aj in the Coulomb gauge is defined by

Aj :=
∫ ⊕

R6
A(xj)dX, (9)
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with X = (x1, x2) and

A(x) :=
1
2π

∑
λ=1,2

∫
R3

χ̂Λ(k)√
|k|

ελ(k)
(
â∗λ(k)e−ik.x + âλ(k)eik.x

)
dk. (10)

Recall that â∗λ(k) and âλ(k) are the usual creation and annihilation operators satisfying the
Canonical Commutation Rules (in the sense of operator-valued distributions)

[âλ(k), â∗λ′(k
′)] = δλλ′δ(k − k′),

[âλ(k), âλ′(k′)] = [â∗λ(k), â∗λ′(k
′)] = 0.

ε1(k) and ε2(k) are the orthonormal polarization vectors that we choose as

ε1(k) :=
(k2,−k1, 0)√

k2
1 + k2

2

, ε2(k) :=
k

|k|
∧ ε1(k). (11)

Moreover, Λ is the parameter of the ultraviolet cutoff, and χ̂Λ is a real smooth function depending
only on |k|, which is equal to 1 in the ball B(0, Z2q4Λ/2) and which vanishes outside the ball
B(0, Z2q4Λ), where we have assumed that q1 = q and q2 = −Zq (here q denotes the electron
charge, and Z is the number of protons in the nucleus). Note that we define χ̂Λ on the ball
B(0, Z2q4Λ) instead of B(0,Λ) because of the unitary transformation U1 that we shall apply
below.
The free field energy operator Hf is defined by

Hf :=
∑

λ=1,2

∫
R3
|k|â∗λ(k)âλ(k)dk. (12)

Finally, we write the Coulomb potential V as

V (r) := −Zq2 C
|r|
. (13)

As in [BFS1], we proceed to a change of units in order to exhibit the perturbative character of
the problem. More precisely, we consider the unitary operator U1 that dilates the electron position
and the photons momenta through (xj , k) 7→ (xj/Zq

2, Z2q4k). Then we set H1 := U1H
V
U U∗1 ,

which leads to:

1
Z2q4

H1 =
∑

j=1,2

1
2mj

(
pj − qjZq

2Ãj(Zq2·)
)2

+Hf + Ṽ + Ũ .

Ã(x) denotesA(x) where χ̂Λ is replaced by χ̂Λ(Z2q4·), Ṽ (r) := −C/|r|, and Ũ(R) := 1
Z2q4U(R/Zq2).

We redefine χ̂Λ(k) := χ̂Λ(Z2q4k), V (r) := Ṽ (r) and U(R) := Ũ(R), so that the new Hamiltonian,
still denoted by HV

U , that we have to consider, is:

HV
U =

∑
j=1,2

1
2mj

(
pj − qjZq

2Aj(Zq2·)
)2

+Hf + U + V.
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Now, we can write HV
U as HV

U := H0 +Wg, where H0 is the unperturbed Hamiltonian defined
by

H0 :=
∑

j=1,2

p2
j

2mj
+ U + V +Hf , (14)

Wg is the coupling between the two particles (the nucleus and the electron) and the photons,
defined by

Wg := HV
U −H0, (15)

and g := (q2Λ)3/2 is the perturbative parameter, that we shall assume to be sufficiently small in
the sequel. Let us describe more precisely the perturbation Wg: we write

Wg := gW1 + g2W2, (16)

with

W1 :=
∑

j=1,2

∑
λ=1,2

∫
R3

[
Gj

1,0(k, λ)⊗ â∗λ(k) +Gj
0,1(k, λ)⊗ âλ(k)

]
dk,

W2 :=
∑

j=1,2

∑
λ=1,2

∑
λ′=1,2

∫
R6

[
Gj

2,0(k, λ; k′, λ′)⊗ â∗λ(k)â∗λ′(k
′)

+Gj
0,2(k, λ; k′, λ′)⊗ âλ(k)âλ′(k′)

+Gj
1,1(k, λ; k′, λ′)⊗ â∗λ(k)âλ′(k′)

]
dkdk′ + Λj

0,

(17)

and

G1
1,0(k, λ) = G1

0,1(k, λ)∗ =
iZ

2m1Λ3/2

χ̂Λ(k)
2π
√
|k|
e−iZq2k.x1ελ(k).∇x1 ,

G2
1,0(k, λ) = G2

0,1(k, λ)∗ =
−iZ2

2m2Λ3/2

χ̂Λ(k)
2π
√
|k|
e−iZq2k.x2ελ(k).∇x2 ,

(18)

G1
2,0(k, λ; k′, λ′) = G1

0,2(k, λ; k′, λ′)∗

=
Z2

2m1Λ3

χ̂Λ(k)χ̂Λ(k′)
4π2
√
|k||k′|

ελ(k).ελ′(k′)e−iZq2k.x1e−iZq2k′.x1 ,

G2
2,0(k, λ; k′, λ′) = G2

0,2(k, λ; k′, λ′)∗

=
Z4

2m2Λ3

χ̂Λ(k)χ̂Λ(k′)
4π2
√
|k||k′|

ελ(k).ελ′(k′)e−iZq2k.x2e−iZq2k′.x2 ,

(19)

G1
1,1(k, λ; k′, λ′) =

Z2

2m1Λ3

χ̂Λ(k)χ̂Λ(k′)
2π2
√
|k||k′|

ελ(k).ελ′(k′)e−iZq2k.x1eiZq2k′.x1 ,

G2
1,1(k, λ; k′, λ′) =

Z4

2m2Λ3

χ̂Λ(k)χ̂Λ(k′)
2π2
√
|k||k′|

ελ(k).ελ′(k′)e−iZq2k.x2eiZq2k′.x2 ,

(20)
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and finally

Λ1
0 =

Z2

4π2m1Λ3

∫
R3

χ̂Λ(k)
|k|

dk , Λ2
0 =

Z4

4π2m2Λ3

∫
R3

χ̂Λ(k)
|k|

dk. (21)

2.2 Hypotheses on the confining potential

Recall that the constants M , µ, the variables R,P of the center of mass and the relative variables
r, p are defined in (2)-(3).
Let us state the assumptions on the confining potential U that we require in this paper. The
first hypothesis, (H0), insures that U is confining and well behaves; it is needed in [AF] in order
to prove the existence of a ground state for HV

U . Furthermore, (H0) insures that C∞
0 (R3) is a

core for P 2/2M + U . The second hypothesis, (H1), is related to complex scaling and is needed
to verify that HV

U (θ) is an analytic family of type (B) (see subsection 3.1). Finally, the last one,
(H2), is required in section 4 where we prove the existence of resonances for HV

U . More precisely,
we set:

(H0)


(i) U ∈ L2

loc(R3),

(ii) inf(U(R)) > −∞ and U− is compactly supported,

(iii) P 2/2M + U has a non-degenerate ground state φ > 0 with energy e0 < 0,
and there exists γ such that |φ(R)| ≤ γe−|R|/γ .

Before stating (H1), we recall that Q(A) denotes the domain of the quadratic form associated
with the self-adjoint operator A. For θ ∈ D(0, θ0) where θ0 is sufficiently small, let us define the
quadratic form q

e−2θ P2
2M+U(eθ·) on Q(P 2/2M + U) by

q
e−2θ P2

2M+U(eθ·)(φ, ψ) :=
e−2θ

2M

∫
R3

(Pφ)(R)(Pψ)(R)dR+
∫

R3
U(eθR)φ(R)ψ(R)dR. (22)

Note that henceforth, we assume that U is an analytic function defined on{
z ∈ C3, z = eiνx, |ν| ≤ θ0, x ∈ R3

}
.

Besides, the fact that q
e−2θ P2

2M+U(eθ·) is well-defined is guaranteed by the following hypothesis:

(H1)


(i) There exists C(θ0) ∈ C such that C(θ0) →

θ0→0
0 and

∀θ0 ∈ D(0, θ0),∀R ∈ R3,
∣∣e2θU(eθR)− U(R)

∣∣ ≤ C(θ0)|U(R)|,

(ii) ∀Ψ ∈ Q( P 2

2M + U), θ 7→ q
e−2θ P2

2M+U(eθ·)(Ψ,Ψ) is analytic on D(0, θ0).

Finally we require:

(H2) U(R) ≥ c0R
2 − c1 for all R ∈ R, where c0, c1 > 0.
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Note that hypothesis (H2) implies that the spectrum of P 2/2M + U is purely discrete.
We shall henceforth assume that U fulfills the three hypotheses (H0), (H1) and (H2). For in-
stance, we see that the potential U defined by U(R) = c0R

2 − c1 (where c0, c1 > 0) fulfils these
three hypotheses.

Let us describe the spectrum of the unperturbed Hamiltonian H0. First, the spectrum of
p2/2µ + V consists of an infinity of eigenvalues E0 < E1 < · · · < En < · · · < 0 and of the
essential spectrum [0;∞[. Next, according to hypothesis (H2), we can write the spectrum of
P 2/2M + U as e0 < e1 < · · · < en < . . . . Finally, it is well-known that the spectrum of Hf

consists of the simple eigenvalue 0, and the half-axis [0;∞[ as absolutely continuous spectrum.
Thus, the equality

σ(H0) = σ(p2/2µ+ V ) + σ(P 2/2M + U) + σ(Hf ) (23)

shows that the continuous spectrum of H0 consists on one hand of the union of branches
[El + en,∞[ where El + en are eigenvalues, and on the other hand of the union of branches
[en,∞[ (see fig. 1).

20E  +e0 0E  +e1 0E  +e2 1E  +e0 1E  +e1 1E  +e2 e0 e1 e

Figure 1: Spectrum of the unperturbed Hamiltonian H0

3 Complex scaling and instability of excited states

In this section, in the same way as in [BFS3], we shall scale the electron and nucleus positions
through

xj 7→ eθxj , (24)

and the photons momenta through
k 7→ e−θk. (25)

The scaling parameter θ will be assumed to lie in a disc D(0, θ0) ⊂ C, with a sufficiently small
radius θ0. Yet, we notice that for θ real, the transformations (24)-(25) determine a unitary
operator Uθ such that:

∗ Uθ

(
p2

2µ
+ V

)
U∗θ = e−2θ p

2

2µ
+ e−θV,

∗ Uθ

(
P 2

2M
+ U

)
U∗θ = e−2θ P

2

2M
+ U(eθ·),

∗ UθHfU∗θ = e−θHf .

(26)
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Moreover, UθWgU∗θ is Wg where the operator-valued functions Gj
m,n are replaced by Gj

m,n(θ); we
get Gj

m,n(θ) by adding a factor e−2θ and replacing χ̂Λ(k) by χ̂Λ(e−θk) in Gj
m,n. For instance:

G1
1,0(k, λ, θ) = G1

0,1(k, λ, θ)
∗ = e−2θ iZ

2m1Λ3/2

χ̂Λ(e−θk)
2π
√
|k|

e−iZq2k.x1ελ(k).∇x1 . (27)

This complex scaling will allow us to prove theorem 3.1, that is to say that the unperturbed
eigenstates associated with the eigenvalues El + en become unstable when the coupling Wg is
added.

In the first subsection, we define precisely the analytic family HV
U (θ).

3.1 Definition and analyticity of HV
U (θ)

Since the Hamiltonian HV
U is defined in [AF] using quadratic forms, we shall prove here that,

through complex scaling, the family HV
U (θ) is analytic of type (B). Recall that we require hy-

potheses (H0) and (H1) (hypothesis (H2) is not necessary in this section); then, we shall get the
result with the help of the following sequence of lemmata.

Lemma 3.1 Define the quadratic form qθ on H1(R3) by

qθ(φ, ψ) :=
e−2θ

2µ
(pφ, pψ)− e−θ

(
(V −)1/2φ, (V −)1/2ψ

)
. (28)

Then, for a sufficiently small θ0, qθ is a strictly m-sectorial quadratic form on D(0, θ0), with
form domain H1(R3). Moreover, θ 7→ e−2θp2/2µ+ e−θV is analytic of type (B) on D(0, θ0).

Proof First, the quadratic form qθ given in (28) is well-defined since H1(R3) ⊂ D((V −)1/2):
actually, we even know that for all a > 0, there exists b > 0 such that(

(V −)1/2ψ, (V −)1/2ψ
)
≤ a(pψ, pψ) + b(ψ,ψ),

for any ψ in H1(R3). This inequality shows that qθ is closed on H1(R3) for all θ in D(0, θ0) since,
picking ψn in H1(R3) such that ψn → ψ and qθ(ψn − ψm, ψn − ψm) → 0, we have

|qθ(ψn − ψm, ψn − ψm)| ≥

(∣∣e−2θ
∣∣

2µ
− a

∣∣e−θ
∣∣) ‖p(ψn − ψm)‖2 −

∣∣e−θ
∣∣ b‖ψn − ψm‖2.

Hence, if a is chosen so small that
∣∣e−2θ

∣∣ /2µ − a
∣∣e−θ

∣∣ > 0 for all θ in D(0, θ0), then ‖p(ψn −
ψm)‖ → 0, so that ψ ∈ H1(R3).
Now, it is easy to see that for all θ ∈ D(0, θ0),

∣∣arg[e2θqθ(ψ,ψ) + (E0 + 1)(ψ,ψ)]
∣∣ ≤ θ1, with
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0 < θ1 < π/2, provided θ0 is chosen sufficiently small.
Thus, qθ is strictly m-sectorial on D(0, θ0), with domain H1(R3), and we denote the strictly
m-sectorial operator associated with this quadratic form by e−2θp2/2µ+ e−θV .
Finally, since θ 7→ qθ(ψ,ψ) is analytic on D(0, θ0) for all ψ ∈ H1(R3), we conclude that
e−2θp2/2µ+ e−θV is an analytic family of type (B) on D(0, θ0). �

Remark 3.1 The strictly m-sectorial operator associated with the quadratic form defined in (28)
is e−2θp2/2µ+ e−θV , with domain H2(R3).

Proof To determine the domain of the operator e−2θp2/2µ+e−θV defined in the previous lemma,
we note that we could have defined it directly on H2(R3) by(

e−2θ p
2

2µ
+ e−θV

)
ψ := e−2θ p

2

2µ
ψ + e−θV ψ.

Next, seeing that this operator is m-sectorial (in the sense that it is closed and <(ψ, (p2/2µ +
eθV )ψ) ≥ 0 for all ψ ∈ H2(R3)), we could have associated with it a strictly m-sectorial quadratic
form q̂θ. Then H2(R3) is a form core for q̂θ, and it is easy to see that it is also a form core for
qθ. Hence we have two closed quadratic form that coincide on a domain that is a form core for
the two of them, so that qθ = q̂θ, and in particular D(e−2θp2/2µ+ e−θV ) = H2(R3). �

Lemma 3.2 Pick θ0 sufficiently small. Then the quadratic form defined in (22) is strictly m-
sectorial and the family θ 7→ e−2θP 2/2M + U(eθ·) is analytic of type (B) on D(0, θ0) with form
domain Q(P 2/2M + U).

Proof First, we have to show that q
e−2θ P2

2M+U(eθ·) is closed on Q(P 2/2M +U). To this end, pick
ψn in Q(P 2/2M + U) such that ψn → ψ and q

e−2θ P2
2M+U(eθ·)(ψn − ψm, ψn − ψm) → 0. Then we

have ∫
R3

1
2M

P (ψn − ψm)(R)P (ψn − ψm)(R)dR

+ (1− C(θ0))
∫

R3
U+(R)(ψn − ψm)(R)(ψn − ψm)(R)dR

− (1 + C(θ0)) inf(U)‖ψn − ψm‖2

≤
∣∣∣e2θq

e−2θ P2
2M+U(eθ·)(ψn − ψm, ψn − ψm)

∣∣∣ →
n,m→∞

0,

where C(θ0) is defined in hypothesis (H1).
Thus, ψ ∈ Q(P 2/2M + U) and the quadratic form q

e−2θ P2
2M+U(eθ·) is closed.

Now, we note that for all ψ ∈ Q(P 2/2M + U),

arg
[
e2θq

e−2θ P2
2M+U(eθ·)(ψ,ψ) + (1 + 2 inf (U))(ψ,ψ)

]
≤ θ2,

11



with 0 < θ2 < π/2 provided θ0 is chosen sufficiently small.
Hence, q

e−2θ P2
2M+U(eθ·) is a strictly m-sectorial quadratic form for any θ ∈ D(0, θ0). We denote by

e−2θP 2/2M +U(eθ·) the m-sectorial operator associated with it. Then, the hypothesis (H1)(ii)
shows that θ 7→ e−2θP 2/2M + U(eθ·) is an analytic family of type (B) on D(0, θ0), with form
domain Q(P 2/2M + U). �

Now, we want to define Hat(θ) :=
(
e−2θp2/2µ+ e−θV

)
⊗ I + I ⊗

(
e−2θP 2/2M + U(eθ·)

)
in

such a way that σ(Hat(θ)) = σ(e−2θp2/2µ+e−θV )+σ(e−2θP 2/2M+U(eθ·)). It suffices to apply
Ichinose’s lemma (see [RS4]), which we do now:

Lemma 3.3 Let Hat(θ) denote the closure of
(
e−2θp2/2µ+ e−θV

)
⊗I+I⊗

(
e−2θP 2/2M + U(eθ·)

)
on D(e−2θp2/2µ + e−θV ) ⊗ D(e−2θP 2/2M + U(eθ·)) ⊂ L2(R3) ⊗ L2(R3). Then, for a suf-
ficiently small θ0, Hat(θ) is an analytic family of type (B) on D(0, θ0) with form domain
Q(p2

1 + p2
2) ∩Q(U+). Moreover, σ(Hat(θ)) = σ(e−2θp2/2µ+ e−θV ) + σ(e−2θP 2/2M + U(eθ·)).

Proof In order to apply Ichinose’s lemma, we have to verify that we can suitably choose the
sectors associated with the m-sectorial operators e−2θp2/2µ + e−θV and e−2θP 2/2M + U(eθ·).
More precisely, it is easy to see that

S−E0−1;−2Imθ;θ1 := {z,−2Imθ − θ1 ≤ arg (z − E0 − 1) ≤ −2Imθ + θ1}

is a sector for e−2θp2/2µ+ e−θV .
Similarly, using hypothesis (H1), we can see that

S−2 inf (U)−1;−2Imθ;θ2 := {z,−2Imθ − θ2 ≤ arg (z − 2 inf (U)− 1) ≤ −2Imθ + θ2}

is a sector for e−2θP 2/2M + U(eθ·).
Thus, we can apply Ichinose’s lemma, which yields

σ(Hat(θ)) = σ(e−2θp2/2µ+ e−θV ) + σ(e−2θP 2/2M + U(eθ·)).

Now, we define the quadratic form qHat(θ) on Q(p2
1 + p2

2) ∩Q(U+) by

qHat(θ)(φ, ψ) :=
e−2θ

2m

∫
R6

(pφ)(r,R)(pψ)(r,R)drdR+ e−θ

∫
R6
V (r)φ(r,R)ψ(r,R)drdR

+
e−2θ

2M

∫
R6

(Pφ)(r,R)(Pψ)(r,R)drdR+
∫

R6
U(eθR)φ(r,R)ψ(r,R)drdR.

(29)

Using hypotheses (H0) and (H1), we can see that qHat(θ) is well defined, that it is closed on
Q(p2

1+p2
2)∩Q(U+), that C∞

0 (R6) is a form core for qHat(θ), and finally that qHat(θ) is a strictly m-
sectorial quadratic form. Thus, there is a unique operator H̃at(θ) associated with this quadratic
form such that

a) H̃at(θ) is closed ,
b) D(H̃at(θ)) ⊂ Q(qHat(θ)) and for all φ, ψ ∈ D(H̃at(θ)), qHat(θ)(φ, ψ) = (φ, H̃at(θ)ψ),
c) D(H̃at(θ)∗) ⊂ Q(qHat

(θ)) and for all φ, ψ ∈ D(H̃at(θ)∗), qHat(θ)(φ, ψ) = (H̃at(θ)∗φ, ψ)

12



(see [RS1], theorem VIII.16). But, using the fact that Hat(θ)∗ = Hat(θ), one can verify
that Hat(θ) fulfills these three properties, so that we have Hat(θ) = H̃at(θ); in particular,
Q(Hat(θ)) = Q(p2

1 + p2
2) ∩Q(U+).

To conclude, with the help of the hypothesis (H1)(ii), we get that Hat(θ) is an analytic family
of type (B) on D(0, θ0) with form domain Q(p2

1 + p2
2) ∩Q(U+). �

Remark 3.2 We note here an inclusion that will be useful in the sequel:

D(Hat) ⊂ D(Hat(θ)). (30)

Proof Pick φ in D(Hat), ‖φ‖ = 1. Then for all ψ in D(Hat(θ)∗), we have

|(Hat(θ)∗ψ, φ)| =
∣∣qHat(θ)(ψ, φ)

∣∣
≤
∣∣∣∣e−2θ

2m

∫
R6

(pφ)(r,R)(pψ)(r,R)drdR+ e−θ

∫
R6
V (r)φ(r,R)ψ(r,R)drdR

+
e−2θ

2M

∫
R6

(Pφ)(r,R)(Pψ)(r,R)drdR+
∫

R6
U(R)φ(r,R)ψ(r,R)drdR

∣∣∣∣
+ C(θ0)‖φ‖‖ψ‖

=
∣∣∣∣e−2θ

2m
(p2φ, ψ) + e−θ(V φ, ψ) +

e−2θ

2M
(Pφ, Pψ) + (U−φ, ψ) + ((U+)1/2φ, (U+)1/2)ψ)

∣∣∣∣
+ C(θ0)‖φ‖‖ψ‖

≤ Cste‖ψ‖,

so that φ ∈ D(Hat(θ)). �

The next step in the definition ofHV
U (θ) is the construction ofH0(θ) := Hat(θ)⊗I+I⊗e−θHf ,

in such a way that σ(H0(θ)) = σ(Hat(θ)) + σ(e−θHf ). The method to do this is similar to what
was done to define Hat(θ) in lemma 3.3, so we do not reproduce the proof.

Lemma 3.4 Let H0(θ) denote the closure of Hat(θ)⊗I+I⊗e−θHf on D(Hat(θ))⊗D(e−θHf ) ⊂
L2(R6)⊗Fs. Then, for a sufficiently small θ0, H0(θ) is an analytic family of type (B) on D(0, θ0)
with form domain Q(p2

1 + p2
2) ∩Q(U+) ∩Q(Hf ). Moreover, σ(H0(θ)) = σ(Hat(θ)) + σ(e−θHf ).

Proof Note that we have Q(e−θHf ) = Q(Hf ) and for all ψ ∈ Q(Hf ),

qe−θHf
(ψ,ψ) := e−θqHf

(ψ,ψ) ∈ e−θR+.

Thus, it is easy to follow the proof of lemma 3.3 in order to define H0(θ) with the properties
stated above. �
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Finally, we have to define the perturbative part Wg(θ). We recall from [AF] that Wg is given
as a quadratic form, that we denote by q̂Wg , defined on Q(p2

1 + p2
2) ∩Q(Hf ) by

q̂Wg
(Φ,Ψ) = −

∑
j=1,2

qj [(pjΦ, AjΨ) + (AjΦ, pjΨ)] +
∑

j=1,2

q2j (AjΦ, AjΨ). (31)

Moreover, we have ∣∣q̂Wg (Φ,Φ)
∣∣ ≤ C(g)qH0

0
(Φ,Φ) + b(Φ,Φ), (32)

for all Φ ∈ Q(p2
1 + p2

2) ∩Q(Hf ), where C(g), b > 0 and C(g) → 0 as g → 0. Note that we have
written H0

0 for HV
U where we have made U = V = 0 (see the proof of lemma 2.1 in [AF]).

Now, we recall that, when θ is real, Wg(θ) := UθWgU∗θ is obtained by adding some factors e−2θ

and replacing χ̂Λ(k) by χ̂Λ(e−θk) in Wg. Henceforth, we assume that the following assumption
on χ̂Λ is fulfilled:

(HbχΛ)

{
χ̂Λ is an analytic function defined on

{
z ∈ C3, z = eiνx, |ν| ≤ θ0, x ∈ R3

}
and supported on some compact KΛ.

Then, there is a natural definition for Wg(θ), when θ is complex, as a quadratic form qWg(θ)(Φ,Ψ)
defined on Q(p2

1 +p2
2)∩Q(Hf )∩Q(U+). For instance, the term associated with G1

1,0(k, λ; θ) (see
(27)) is given by

ge−2θ iZ

2m1Λ3/2

∑
λ=1,2

∫
R3

χ̂Λ(e−θk)
2π
√
|k|

e−iZq2k.x1 (ελ(k).∇x1Φ, â
∗
λ(k)Ψ) dk. (33)

Then, in the same way as for (32), it is easy to show:

Lemma 3.5 qWg(θ) is relatively bounded with respect to qH0(θ) with relative bound strictly less
than 1 provided that g is sufficiently small.

Proof We want to show that there exists 0 < a < 1 and 0 < b such that∣∣qWg(θ)(Φ,Φ)
∣∣ ≤ a

∣∣qH0(θ)(Φ,Φ)
∣∣+ b(Φ,Φ). (34)

We write the proof for the term given in (33); the terms associated with the other functions
Gj

m,n can be treated in the same way. Using hypothesis (HbχΛ), we have:∣∣∣∣∣∣ge−2θ iZ

2m1Λ3/2

∑
λ=1,2

∫
R3

χ̂Λ(e−θk)
2π
√
|k|

e−iZq2k.x1 (ελ(k).∇x1Φ, â
∗
λ(k)Φ) dk

∣∣∣∣∣∣
≤ g

Z

2πm1Λ3/2

∑
λ=1,2

∫
KΛ

Cste
2π
√
|k|

1
2

[(∇x1Φ,∇x1Φ) + (â∗λ(k)Φ, â∗λ(k)Φ)] dk,

Then, in the same way as in (32), the last expression is bounded by C ′(g)qH0
0
(Φ,Φ) + b′(Φ,Φ),

with C ′(g), b′ > 0 and C ′(g) → 0 as g → 0. From there, we easily conclude that∣∣∣∣∣∣ge−2θ iZ

2m1Λ3/2

∑
λ=1,2

∫
R3

χ̂Λ(e−θk)
2π
√
|k|

e−iZq2k.x1 (ελ(k).∇x1Φ, â
∗
λ(k)Φ) dk

∣∣∣∣∣∣
≤ a

∣∣qH0(θ)(Φ,Φ)
∣∣+ b′′(Φ,Φ),

14



with b′′ > 0 and 0 < a < 1 provided g is sufficiently small. �

Remark 3.3 The previous lemma does not give a meaning to the operator Wg(θ). Yet, we will
have to work with it in the sequel so that we have to precise here what we call Wg(θ). Recalling
the expression (16)-(21) of Wg, we define Wg(θ) on the domain D(p2

1 + p2
2) ∩D(Hf ) by

Wg(θ) := e−2θgW1(θ) + e−2θg2W2(θ), (35)

where W1(θ) and W2(θ) denote respectively W1 and W2 where the function χ̂Λ is replaced by
χ̂Λ(e−θ·). Note that it is easy to verify that Wg(θ) is well defined on D(p2

1 + p2
2) ∩D(Hf ).

To conclude, as a corollary of lemmata 3.1-3.5, we write the result stated at the beginning of
this subsection:

Proposition 3.1 Assume that θ0 and g are sufficiently small. Define HV
U (θ) as the strictly

m-sectorial operator associated with the quadratic form

qHV
U (θ) := qH0(θ) + qWg(θ). (36)

Then, HV
U (θ) is an analytic family of type (B) on D(0, θ0) with form domain Q(p2

1+p2
2)∩Q(U+)∩

Q(Hf ).

Proof With our definitions of U and χ̂Λ, it is easy to see that for all Φ in Q(p2
1 + p2

2)∩Q(U+)∩
Q(Hf ), θ 7→ qHV

U (θ)(Φ,Φ) is analytic on D(0, θ0).
We conclude with lemmata 3.1-3.5. �

3.2 The spectrum of HV
U in a neighborhood of Ej + ek

In this subsection, we shall show that the spectrum of HV
U in a neighborhood of the unperturbed

eigenvalues Ej + ek is absolutely continuous. The proof follows the one in [BFS3], so we shall
not reproduce all the details here. In lemma 3.6, we derive a useful estimate. Next we describe
precisely the spectrum of the unperturbed Hamiltonian H0(θ), and we state the main result of
this section. We refer the reader to [BFS3] for the detail of the proof.
Let us begin with a lemma whose proof differs from the one in [BFS3] because of our use of
quadratic forms:

Lemma 3.6 For θ ∈ D(0, θ0), define ∆Hat(θ) := Hat(θ) − Hat. Then there exists a positive
constant b(θ) such that b(θ) → 0 as θ → 0 and∥∥∆Hat(θ)(Hat ± i)−1

∥∥ ≤ b(θ). (37)
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Proof First, we note that, by remark 3.2, the operator ∆Hat(θ)(Hat ± i)−1 is well defined on
L2(R6). Then we have∥∥∆Hat(θ)(Hat ± i)−1

∥∥ = sup
φ∈Q(Hat),ψ∈L2(R6)

‖φ‖,‖ψ‖=1

∣∣(φ,∆Hat(θ)(Hat ± i)−1ψ)
∣∣

= sup
φ∈Q(Hat),ψ∈L2(R6)

‖φ‖,‖ψ‖=1

∣∣qHat(θ)(φ, (Hat ± i)−1ψ)− qHat
(φ, (Hat ± i)−1ψ)

∣∣ .
Next, using (29) and hypothesis (H1), we get∣∣qHat(θ)(φ, (Hat ± i)−1ψ)− qHat

(φ, (Hat ± i)−1ψ)
∣∣

≤ ‖φ‖
∥∥∥∥[|e−2θ − 1|( p

2

2µ
+
P 2

2M
) + |e−θ − 1||V |+ |U(eθR)− U(R)|

]
(Hat ± i)−1ψ

∥∥∥∥
≤ b(θ)‖φ‖‖ψ‖,

where b(θ) is a positive constant which goes to 0 as θ → 0. This yields (37). �

Let us now describe the spectrum of Hat(θ). Well-known results about complex scaling show
that the spectrum of e−2θp2/2µ+ e−θV is given by

σ(e−2θp2/2µ+ e−θV ) = σpp(p2/2µ+ V ) ∪
{
e−2θµ|µ ∈ [0,∞[

}
. (38)

Besides, assuming hypothesis (H2) and using the fact that e−2θP 2/2M + U(eθ·) is analytic of
type (B), we have

σ(e−2θP 2/2M + U(eθ·)) = σ(P 2/2M + U). (39)

Thus, by lemma 3.3, we get the spectrum of Hat(θ) (see fig. 2).

θ
0E  +e0 0E  +e1 0E  +e2 1E  +e0 1E  +e1 1E  +e2

e0 e2e1

 −2Im

Figure 2: Spectrum of the complex dilated atomic Hamiltonian Hat(θ)

We want to investigate the spectrum of HV
U in a neighborhood of the isolated eigenvalues of

Hat. Fix l ≥ 0, n ≥ 0 with (l, n) 6= (0, 0) and consider the eigenvalue El + en of H0(θ). We
assume moreover that El + en < e0.

We set Rl,n := dist(El + en, σ(Hat)\{El + en}); then, we shall use the projection Pat,l,n(θ)
onto the eigenspace of Hat(θ) corresponding to El + en, defined by

Pat,l,n(θ) :=
i

2π

∫
|z−(El+en)|=Rj,k/2

dz

Hat(θ)− z
, P at,l,n(θ) := 1− Pat,l,n(θ). (40)
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As in [BFS3], we define the matrices

Zod
l,n :=

∑
λ=1,2

∫
R3
Pat,l,nG0,1(k, λ)P at,l,n [Hat − (El + en) + |k| − i0]−1

P at,l,nG1,0(k, λ)Pat,l,ndk,

Zd
l,n :=

∑
λ=1,2

∫
R3
Pat,l,nG0,1(k, λ)Pat,l,nG1,0(k, λ)Pat,l,n

dk

|k|
,

(41)

where Gm,n(k, λ) :=
∑

j=1,2G
j
m,n(k, λ).

For θ ∈ D(0, θ0), we set

Zod
l,n(θ) := UθZ

od
l,nU−1

θ , Zd
l,n(θ) := UθZ

d
l,nU−1

θ , Zl,n(θ) := Zd
l,n(θ)− Zod

l,n(θ). (42)

Let Γl,n := min
{
σ(Im(Zod

l,n))
}

; then for the needs of the proof, we have to require the following
hypothesis, related to the Fermi golden rule:

(HΓl,n) Γl,n > 0 is a simple eigenvalue of Im(Zod
l,n).

Let φl,n,0 be the normalized eigenvector corresponding to the eigenvalue Γl,n of Im(Zod
l,n); we

define
∆El,n := Re [(φl,n0, Zl,nφl,n,0)] . (43)

Let Sl,n(ε, C), Rl,n(ε, C) denote the following sets:

Sl,n(ε, C) := El + en + g2(∆El,n − iΓl,n)− iQl,n

Rl,n(ε, C) := Sl,n(ε, C) + e−θR+ +D(0, Cg2+ε),
(44)

where ε is a small positive constant, C ∈ R+ and Ql,n := {z ∈ C| − µ ≤ arg(z) ≤ µ} (for some
0 < µ < π/2) is such that

{(φ,Zl,nφ), ‖φ‖ = 1} ⊂ ∆El,n − iΓl,n − iQl,n. (45)

Finally, the set Al,n(ε) is defined by

Al,n(ε) := Il,n(Rl,n/2)− i[−g2−ε,∞[, (46)

where Il,n(Rl,n/2) is the interval ]El + en −Rl,n/2;El + en +Rl,n/2[ (see fig. 3).

Now, we state the main result of this subsection, derived from [BFS3]:

Theorem 3.1 Let 0 < ε < 1/3 and fix θ = iν in D(0, θ0) with ν > 0. Assume that g > 0 is
sufficiently small. Assume moreover that (HΓl,n) is fulfilled. Then there exists C in R+ such
that

Al,n(ε)\Rl,n(ε, C) ⊂ ρ(HV
U (θ)), (47)
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Figure 3: The resolvent set of HV
U (θ) : Al,n\Rl,n ⊂ ρ(HV

U (θ)) (see theorem 3.1)

where ρ(HV
U (θ)) denotes the resolvent set of HV

U (θ).
Since we have showed that the family HV

U (θ) is analytic of type (B) on D(0, θ0), (47) implies
that, for g sufficiently small, the spectrum of HV

U is absolutely continuous in Il,n(Rl,n/2).

Proof The proof of this theorem follows step by step the one in [BFS3]. The main difficulty is
to prove the existence of the Feshbach operator FP (θ)(HV

U (θ)− z) defined by

FP (θ)(HV
U (θ)− z) :=P (θ)

[
HV

U (θ)− z
]
P (θ)

− P (θ)Wg(θ)P (θ)
(
P (θ)HV

U (θ)P (θ)− z
)−1

P (θ)Wg(θ)P (θ),
(48)

where P (θ) := Pat,l,n(θ)⊗ 1Hf<ρ0 , P (θ) := 1− P (θ), and ρ0 := g2−2ε.
We refer to proposition 4.2 where we give an outline of the proof leading to the existence of
FP (θ)(HV

U (θ)−z) (we shall work with the smooth Feshbach map (see [BCFS]) in proposition 4.2,
but the same proof would hold for FP (θ)(HV

U (θ)− z)). �

4 Renormalization group and existence of resonances

In the previous section, we showed that the spectrum of the Hamiltonian HV
U is absolutely

continuous in each interval ]El + en − Rl,n/2;El + en + Rl,n/2[ such that (l, n) 6= (0, 0) and
El + en < e0 (under the condition that (HΓl,n) is fulfilled). More generally, the same arguments
imply that the spectrum of HV

U is absolutely continuous in the interval ]E0+e0+O(g), e0−O(g)[.
In this section, under the same assumptions (HΓl,n), we shall show that the eigenvalues of H0

turn into resonances when the perturbation Wg is added. In other words, we shall prove that
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there exists complex eigenvalues El,n,k(g) (with 1 ≤ k ≤ p) of the complex dilated Hamiltonian
HV

U (θ) such that
El,n,k(g) →

g→0
El + en. (49)

Here, p denotes the multiplicity of El + en as an eigenvalue of H0.

In order to get this result, we shall apply the renormalization group method developed in
[BFS1,2]. Note that here, we appeal to the method developed in [BCFS] based on the smooth Fes-
hbach map. Our aim is to define some conditions that are fulfilled by our model, and which allow
to perform the renormalization group method. We emphasize that this point is not straightfor-
ward because the hypotheses stated in [BFS2] are not fulfilled in our case; we have to use carefully
the fact that U confines the center of mass of the atomic system (hypothesis (H2)). Yet, we only
give here the modifications that we have to bring and refer to [BFS1,2] or [BCFS] for the rest of
the proof.

In the first subsection, we state the hypotheses that we require and verify that they are ful-
filled by the Hamiltonian describing our model. We need to proceed to a Power-Zienau-Woolley
transformation on HV

U , and to impose, in a way similar to [BFS1], a spatial cutoff in the variable
r in the resulting interaction term W̃g.

In the second subsection, we prove that we can apply the smooth Feshbach map defined in
[BCFS] to the transformed Hamiltonian H̃V

U (θ).

Finally, in the last subsection, we show that the hypotheses stated in the first subsection
allow to obtain, thanks to a renormalization group transformation, the existence of resonances
for H̃V

U .

4.1 Conditions to perform a renormalization group analysis

Recall the definition of the dilated operator-valued functions Gj
m,n(k, λ; θ) given in (16)-(21),

(27) and (33). In particular, Gj
m,n(k, λ; θ) is well defined as a quadratic form qGjm,n(k,λ;θ) on

Q(p2
1 + p2

2) ∩ Q(U+), but we have not yet defined Gj
m,n(k, λ; θ) as an operator. However, it

is easy to see that, for m + n = 1, Gj
m,n(k, λ; θ) is a well defined operator on the domain

D([p2
1 + p2

2]
1/2), and that, for m+ n = 2, Gj

m,n(k, λ; k′, λ′; θ) is well defined on L2(R6).
Besides, with the help of the assumption (HbχΛ), we note that the map θ 7→ qGjm,n(k,λ;θ)(φ, φ) is
analytic on D(0, θ0) for all φ ∈ Q(p2

1 + p2
2) ∩Q(U+).

Now, for the needs of the proof, we require the following hypotheses:
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(H−1/2)



There exists a non-negative function J−1/2(k) such that:

(i) sup
|θ|≤θ0

‖|Hat + i|−1/4Gm,n((k, λ); θ)|Hat + i|−1/4‖ ≤ J−1/2(k) for m+ n = 1,

(ii) sup
|θ|≤θ0

‖Gm,n((k, λ); (k′, λ′); θ)‖ ≤ J−1/2(k)J−1/2(k′) for m+ n = 2,

(iii)
[∫

R3

(
1 + |k|−1

)
J−1/2(k)2dk

]1/2 := Λ−1/2 <∞.

(H1/2)



There exists a non-negative function J1/2(k) such that:

(i) sup
|θ|≤θ0

‖|Hat + i|−1/2Gm,n((k, λ); θ)|Hat + i|−1/2‖ ≤ J1/2(k) for m+ n = 1,

(ii) sup
|θ|≤θ0

‖|Hat + i|−1/2Gm,n((k, λ); (k′, λ′); θ)|Hat + i|−1/2‖ ≤ J1/2(k)J1/2(k′),

sup
|θ|≤θ0

‖|Hat + i|−1/4Gm,n((k, λ); (k′, λ′); θ)|Hat + i|−1/4‖ ≤ J1/2(k)J−1/2(k′),

for m+ n = 2, where J−1/2 is defined in hypothesis (H−1/2),

(iii) sup
k∈R3

{
|k| 12 (1−β)J1/2(k)

}
:= Λβ <∞ for some β > 0.

Note that we have used the notation Gm,n :=
∑

j=1,2G
j
m,n. Besides, in hypothesis (H1/2)(ii), it

is assumed that Gm,n is symmetric under the permutation of the variables (k, λ) and (k′, λ′).
The first hypothesis, (H−1/2), is sufficient to get the existence of the Feshbach operator FP (θ)

that we define below. However, we have to require the second hypothesis (H1/2) in order to
prove that all the parts of the perturbation Wg are irrelevant under renormalization.

Now, it is easy to see that HV
U fulfills hypothesis (H−1/2) with

J−1/2(k) ≤ Cste1KΛ(k)|k|−1/2,

where 1KΛ denotes the characteristic function of the compact KΛ defined in hypothesis (HbχΛ).
However, because of the fact that Gj

m,n behaves like |k|−1/2 near 0, we can see that hypothesis
(H1/2) is not fulfilled by HV

U .
To face this problem, we begin with performing the Power-Zienau-Woolley transformation on
HV

U . More precisely, we define a unitary operator T by

T =
∫ ⊕

R6
T (X)dX with T (X) = e−i

P
j=1,2 qjZq2xj .A(0). (50)

Then we have b̂λ(k,X) := T (X)âλ(k)T ∗(X) = âλ(k)− iwλ(k,X), with

wλ(k,X) =
1
2π

χ̂Λ(k)
|k|1/2

ελ(k).
∑

j=1,2

qjZq
2xj , (51)

and the unitary equivalent Hamiltonian H̃V
U is

H̃V
U := T HV

U T ∗ =
∑

j=1,2

1
2mj

(pj − qjZq
2Ãj(Zq2·))2 + H̃f + U + V, (52)
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with Ãj =
∫ ⊕

R6 Ãj(X)dX, H̃f =
∫ ⊕

R6 H̃f (X)dX, and

Ãj(X) = A(xj)−A(0) , H̃f (X) =
∑

λ=1,2

∫
R3
|k|̂b∗λ(k,X )̂bλ(k,X)dk. (53)

Developing (52), we can write

H̃V
U = H̃at +Hf + gW̃1 + g2W̃2,

with

H̃at =Hat + g2Z
2

Λ3

∑
λ=1,2

∫
R3

χ̂Λ(k)2

4π2
(ελ(k).r̃)2dk

+ 2g2Z
2

Λ3

∫
R3

χ̂Λ(k)2

π2|k|

[
1

2m1
sin2(Zq2k.x1/2) +

Z

2m2
sin2(Zq2k.x2/2)

]
dk,

(54)

and
W̃1 =

∑
λ=1,2

∫
R3

[
G̃1,0(k, λ)⊗ â∗λ(k) + G̃0,1(k, λ)⊗ âλ(k)

]
dk, (55)

where

G̃1,0(k, λ) = G̃0,1(k, λ)∗

=
iZ

2m1Λ3/2

χ̂Λ(k)
2π
√
|k|

(
e−iZq2k.x1 − 1

)
ελ(k).∇x1

− iZ2

2m2Λ3/2

χ̂Λ(k)
2π
√
|k|

(
e−iZq2k.x2 − 1

)
ελ(k).∇x2

− iZ

Λ3/2

|k|1/2χ̂Λ(k)
2π

ελ(k).r̃.

(56)

Note that we have set r̃ := x1−Zx2. Moreover, W̃2 is W2 where the terms e±iZq2k.xj are replaced
by e±iZq2k.xj − 1 in G̃m,n, for m+ n = 2.
We can see that the new atomic Hamiltonian H̃at is well defined as a closed quadratic form on
Q(p2

1 + p2
2)∩Q(U+)∩Q(r̃2)∩Q(Hf ) provided hypothesis (H2) is fulfilled. In particular, we can

use the fact that

sin2(Zq2k.xj/2) ≤ Zq2

2
|k||xj | ≤

(
Zq2

2
|k|
)

(a1r̃
2 + a2R

2),

where a1 and a2 are positive constants, in order to show that the last term in (54) is relatively
bounded with respect to the first two terms.
Then, in the same way as for HV

U (θ), we can see that the complex dilated Hamiltonian H̃V
U (θ) is

an analytic family of type (B) on D(0, θ0), with form domain Q(p2
1+p2

2)∩Q(U+)∩Q(r̃2)∩Q(Hf ).
In particular, the quadratic form qfWg(θ)

is well defined on Q(H̃V
U (θ)); as an operator, we can

define W̃g(θ) on the domain D(p2
1 + p2

2) ∩D(x2
1 + x2

2) ∩D(Hf ).
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Now, the behavior of G̃m,n(k, λ) is better than the one of Gm,n(k, λ) near 0, since we have∣∣∣e±iZq2k.xj − 1
∣∣∣ ≤ Zq2|k||xj |.

However, we only have:∥∥∥∥∣∣∣H̃at + i
∣∣∣−1/4

G̃m,n(k, λ; θ)
∣∣∣H̃at + i

∣∣∣−1/4
∥∥∥∥ ≤ Cste

g
1KΛ(k)|k|1/2,

for m + m = 1, because of the last term in (56) which is relatively bounded with respect to
|H̃at + i|1/2/g only. This appears to be a problem, because we require that all the terms of
the perturbation W̃g := gW̃1 + g2W̃2 are small as compared to the unperturbed Hamiltonian
H̃0 := H̃at +Hf , when g is small.
To avoid this difficulty, in a way similar to what is done in [BFS1], we consider the simplified
model where a spatial cutoff is imposed on W̃g, which restricts the position of the electron to
finite distances from the position of the nucleus. More precisely, we replace W̃g by W̃g;reg where

W̃g;reg := χr0(r)W̃g. (57)

Here χr0 is a smooth function which is equal to 1 in the ball B(0, r0/2) and which vanishes
outside the ball B(0, r0). r0 is arbitrary large but finite.
Then, we define the Hamiltonian H̃V

U ;reg by

H̃V
U ;reg := H̃0 + W̃g;reg, (58)

and we can verify that:

Proposition 4.1 Assume that hypothesis (H2) holds. Then H̃V
U ;reg fulfills hypotheses (H−1/2)

and (H1/2) (where Hat and Gm,n are replaced respectively by H̃at and G̃m,n;reg := χr0G̃m,n),
with

J−1/2(k) := Cste1KΛ(k)|k|−1/2 , J1/2(k) := Cste1KΛ(k)|k|1/2, (59)

where 1KΛ denotes the characteristic function of the compact KΛ defined in hypothesis (HbχΛ).

Proof We write the proof for G̃1,0;reg; the other terms G̃m,,n;reg can be treated in the same way.
Notice that

G̃1,0;reg(k, λ; θ) = G̃0,1;reg(k, λ; θ)∗

= χr0(r)e
−2θ iZ

2m1Λ3/2

χ̂Λ(e−θk)
2π
√
|k|

(
e−iZq2k.x1 − 1

)
ελ(k).∇x1

− χr0(r)e
−2θ iZ2

2m2Λ3/2

χ̂Λ(e−θk)
2π
√
|k|

(
e−iZq2k.x2 − 1

)
ελ(k).∇x2

− χr0(r)e
−2θ iZ

Λ3/2

|k|1/2χ̂Λ(e−θk)
2π

ελ(k).r̃.

(60)
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First, using the fact that
∣∣∣e±iZq2k.xj − 1

∣∣∣ ≤ 2, we get∥∥∥∥∥∣∣∣H̃at + i
∣∣∣−1/4

χr0(r)

[
e−2θ iZ

2m1Λ3/2

χ̂Λ(e−θk)
2π
√
|k|

(
e−iZq2k.x1 − 1

)
ελ(k).∇x1

−e−2θ iZ2

2m2Λ3/2

χ̂Λ(e−θk)
2π
√
|k|

(
e−iZq2k.x2 − 1

)
ελ(k).∇x2

] ∣∣∣H̃at + i
∣∣∣−1/4

∥∥∥∥∥
≤ Cste1KΛ(k)|k|−1/2.

Moreover, using that χr0(r)|r̃| ≤ Cste(1 + |R|) and hypothesis (H2), we get∥∥∥∥∣∣∣H̃at + i
∣∣∣−1/4

χr0(r)e
−2θ iZ

Λ3/2

|k|1/2χ̂Λ(e−θk)
2π

ελ(k).r̃
∣∣∣H̃at + i

∣∣∣−1/4
∥∥∥∥ ≤ Cste1KΛ(k)|k|1/2.

Thus, we see that hypothesis (H−1/2) is fulfilled with

J−1/2(k) = Cste1KΛ(k)|k|−1/2.

Next, we use the fact that
∣∣∣e±iZq2k.xj − 1

∣∣∣ ≤ Zq2|k||xj | together with χr0(r)|xj | ≤ Cste(1 + |R|)
and hypothesis (H2), which yields∥∥∥∥∥∣∣∣H̃at + i

∣∣∣−1/2

χr0(r)

[
e−2θ iZ

2m1Λ3/2

χ̂Λ(e−θk)
2π
√
|k|

(
e−iZq2k.x1 − 1

)
ελ(k).∇x1

−e−2θ iZ2

2m2Λ3/2

χ̂Λ(e−θk)
2π
√
|k|

(
e−iZq2k.x2 − 1

)
ελ(k).∇x2

] ∣∣∣H̃at + i
∣∣∣−1/2

∥∥∥∥∥
≤ Cste1KΛ(k)|k|1/2.

We have again∥∥∥∥∣∣∣H̃at + i
∣∣∣−1/2

χr0(r)e
−2θ iZ

Λ3/2

|k|1/2χ̂Λ(e−θk)
2π

ελ(k).r̃
∣∣∣H̃at + i

∣∣∣−1/2
∥∥∥∥ ≤ Cste1KΛ(k)|k|1/2.

Hence (H1/2) is fulfilled with
J1/2(k) = Cste1KΛ(k)|k|1/2,

and β = 1. �

Henceforth, we redefine W̃g := W̃g;reg and H̃V
U := H̃V

U ;reg.

To conclude with this subsection, we describe the spectrum of the unperturbed Hamiltonian
H̃0(θ). We assume for the sake of simplicity that we are dealing with the hydrogen atom, that
is Z = 1. Then (54) implies

H̃at =
p2

2µ
+ V + Cg2r2 +

P 2

2M
+ U

+ 2g2 1
Λ3

∫
R3

χ̂Λ(k)2

π2|k|

[
1

2m1
sin2(q2k.x1/2) +

1
2m2

sin2(q2k.x2/2)
]
dk,

(61)
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where C is positive.
We can see that the spectrum of p2/2µ+ V + Cg2r2 is discrete: the eigenvalues El of p2/2µ+ V

are slightly shifted to become Ẽl, and the continuous spectrum of p2/2µ + V turns into a non-
decreasing sequence of discrete eigenvalues Ẽc

l (g), l ≥ 1, such that

Ẽc
l (g)− Ẽc

l−1(g) →
g→0

0.

Thus the spectrum of p2/2µ+ V + Cg2r2 + P 2/2M + U is purely discrete, and the same holds
for H̃at: its eigenvalues are Ẽl + en and Ẽc

l + en, slightly perturbed by the last term of (61). We
still denote by Ẽl + en and Ẽc

l + en the eigenvalues of H̃at.
To conclude, we obtain the spectrum of H̃at as described in figure 4.

~
0 0 1 0 1 0 0 0

c
11 1

c
0 2 0

c~
E  +e E  +e E  +e E  +e e  +E e  +E e  +E

~ ~ ~ ~ ~

Figure 4: Spectrum of the new atomic Hamiltonian H̃at for Z = 1

We notice that, if Z > 1, we can not use the same argument to say that the essential spectrum
of p2/2µ+ V turns into discrete spectrum. However, we still see that the eigenvalues El + en of
Hat are slightly shifted to become eigenvalues of H̃at. They are still denoted by Ẽl + en. Since
we only study such eigenvalues in the sequel (we shall not study the behavior of Ẽc

l + en), the
case Z > 1 can be treated in the same way as the case Z = 1.

4.2 The smooth Feshbach map applied to H̃V
U (θ)

Let us fix (l, n) 6= (0, 0) such that El + en < e0; by a translation, we can assume that Ẽl + en

is located at 0, and for the sake of simplicity, we assume moreover that this eigenvalue is non-
degenerate. The case of a degenerate eigenvalue with finite multiplicity could be treated in a
similar manner. Note however that the results of this subsection does not hold for Ẽc

l + en

(obtained in the case Z = 1) because these eigenvalues are separated from each other only by a
distance O(g).
Now, pick θ := iν, with ν > 0. Then we begin with some definitions.

Let δ := dist(0, σ(H̃at)\{0}) > 0. As in (40), we define the projection onto the subspace
spanned by 0 by:

Pat(θ) :=
i

2π

∫
|z|=δ/2

dz

H̃at(θ)− z
, P at(θ) := 1− Pat(θ). (62)
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The numbers Zod
0 and Zd

0 are defined as in (41):

Zod
0 :=

∑
λ=1,2

∫
R3
PatG̃0,1(k, λ)P at

[
H̃at + |k| − i0

]−1

P atG̃1,0(k, λ)Patdk,

Zd
0 :=

∑
λ=1,2

∫
R3
PatG̃0,1(k, λ)PatG̃1,0(k, λ)Pat

dk

|k|
,

(63)

where we used the notations Pat := Pat(0), P at := P at(0).
Setting Γ0 := Im(Zod

0 ), we note that we shall require in the sequel the following hypothesis in
order to prove that 0 turns into a resonance when W̃g is added:

(HΓ0) Γ0 > 0.

Assume that ν is sufficiently small. Then, for any 0 < ρ0 ≤ δ sin(ν/2) < 1, we define the
functions of Hf , χρ0(Hf ) and χρ0

(Hf ), by

χρ0(Hf ) := sin
[π
2

Θ(Hf/ρ0)
]

, χρ0
(Hf ) :=

√
1− χ2

ρ0
(Hf ) = cos

[π
2

Θ(Hf/ρ0)
]
, (64)

where Θ ∈ C∞
0 ([0,∞[; [0, 1]) is such that Θ = 1 on [0, 3/4[ and Θ = 0 on [1,∞[.

Next we use (62) and (64) to define:

P (θ) := Pat(θ)⊗ χρ0(Hf ) , P (θ) := Pat(θ)⊗ χρ0
(Hf ) + P at(θ)⊗ 1. (65)

Note that (65) implies P (θ)2 + P (θ)2 = 1.

As a first step of our analysis, we want to decimate the degrees of freedom corresponding
to the photons of energy ≥ ρ0. To this end, we apply the smooth Feshbach map FP (θ) to the
Feshbach pair (H̃V

U (θ) − z, H̃0(θ) − z) (see [BCFS]), where z is a spectral parameter that we
assume to lie in the disc Dρ0/2 := {z ∈ C, |z| ≤ ρ0/2}:

FP (θ)(H̃V
U (θ)− z, H̃0(θ)− z) := (H̃0(θ)− z) + P (θ)W̃g(θ)P (θ)

− P (θ)W̃g(θ)P (θ)
[
(H̃0(θ)− z) + P (θ)W̃g(θ)P (θ)

]−1

P (θ)W̃g(θ)P (θ).
(66)

This operator is well-defined provided that (H̃0(θ)−z)+P (θ)W̃g(θ)P (θ) is invertible on RanP (θ),
and that ∣∣∣(H̃0(θ)− z) + P (θ)W̃g(θ)P (θ)

∣∣∣−1/2

U−1P (θ)W̃g(θ)P (θ),

P (θ)W̃g(θ)P (θ)
∣∣∣(H̃0(θ)− z) + P (θ)W̃g(θ)P (θ)

∣∣∣−1/2
(67)

extend to bounded operators on L2(R6)⊗Fs and Ran(P (θ)) respectively. Here

(H̃0(θ)− z) + P (θ)W̃g(θ)P (θ) = U
∣∣∣(H̃0(θ)− z) + P (θ)W̃g(θ)P (θ)

∣∣∣ (68)
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denotes the polar decomposition of (H̃0(θ)− z) + P (θ)W̃g(θ)P (θ) on Ran(P (θ)).
The key property of the Feshbach map is that it is isospectral in the following sense: H̃V

U (θ)− z
is invertible if and only if FP (θ)(H̃V

U (θ) − z, H̃0(θ) − z) is invertible on Ran(P (θ)); moreover, 0
is an eigenvalue of H̃V

U (θ)− z with multiplicity k if and only if 0 is an eigenvalue of

FP (θ)(H̃V
U (θ)− z, H̃0(θ)− z)

∣∣∣
Ran(P (θ))

,

with the same multiplicity k (see [BCFS]).
The following proposition shows that FP (θ)(H̃V

U (θ)−z, H̃0(θ)−z) is well-defined for all z ∈ Dρ0/2:

Proposition 4.2 Pick z in Dρ0/2 with 0 < ρ0 ≤ δ sin(ν/2) < 1, and assume that gρ0
−1/2 is

sufficiently small: gρ0
−1/2 � ν2.

Then (H̃0(θ)− z) + P (θ)W̃g(θ)P (θ) is invertible on Ran(P (θ)), and the operators given in (67)
extend to bounded operators on L2(R6)⊗Fs and Ran(P (θ)) respectively.

Proof The proof follows the one in [BFS3] with some slight modifications. We sketch the proof
and give some intermediate results.
First, using the assumption that |z| ≤ ρ0/2 ≤ δ sin(ν/2)/2, we easily see that

H
P (θ)
0 := 1Ran(P (θ))(H̃0(θ)− z)1Ran(P (θ)) (69)

is invertible on Ran(P (θ)). We denote by HP (θ)
0 = U0

∣∣∣HP (θ)
0

∣∣∣ the polar decomposition of HP (θ)
0

on Ran(P (θ)).
Then we write

1Ran(P (θ))

[
(H̃0(θ)− z) + P (θ)W̃g(θ)P (θ)

]
1Ran(P (θ))

= U0

∣∣∣HP (θ)
0

∣∣∣1/2
[
1 +

∣∣∣HP (θ)
0

∣∣∣−1/2

U−1
0 P (θ)W̃g(θ)P (θ)

∣∣∣HP (θ)
0

∣∣∣−1/2
] ∣∣∣HP (θ)

0

∣∣∣1/2

.
(70)

Thus, to prove that (H̃0(θ) − z) + P (θ)W̃g(θ)P (θ) is invertible on Ran(P (θ)), it is sufficient to
show that ∥∥∥∥∣∣∣HP (θ)

0

∣∣∣−1/2

U−1
0 P (θ)W̃g(θ)P (θ)

∣∣∣HP (θ)
0

∣∣∣−1/2
∥∥∥∥ < 1. (71)

To this end, we write:∥∥∥∥∣∣∣HP (θ)
0

∣∣∣−1/2

U−1
0 P (θ)W̃g(θ)P (θ)

∣∣∣HP (θ)
0

∣∣∣−1/2
∥∥∥∥

≤
∥∥∥∥∣∣∣HP (θ)

0

∣∣∣−1/2

U−1
0 P (θ) |Bθ(ρ0)|1/2

∥∥∥∥× ∥∥∥|Bθ(ρ0)|−1/2
W̃g(θ) |Bθ(ρ0)|−1/2

∥∥∥
×
∥∥∥∥|Bθ(ρ0)|1/2

P (θ)
∣∣∣HP (θ)

0

∣∣∣−1/2
∥∥∥∥ ,

(72)

where Bθ(ρ0) is defined by

Bθ(ρ0) := H̃0(θ) + e−θρ0 = H̃at(θ) + e−θ(Hf + ρ0). (73)
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Using the fact that U0 is an isometry which commutes with HP (θ)
0 (since HP (θ)

0 is invertible), we
get: ∥∥∥∥∣∣∣HP (θ)

0

∣∣∣−1/2

U−1
0 P (θ) |Bθ(ρ0)|1/2

∥∥∥∥ =
∥∥∥∥|Bθ(ρ0)|1/2

P (θ)
∣∣∣HP (θ)

0

∣∣∣−1/2
∥∥∥∥ ≤ Cste

ν1/2
. (74)

Here, we used a result similar to what we derived in lemma 3.6:∥∥∥∆H̃at(H̃at ± i)−1
∥∥∥ ≤ b(θ), (75)

where b(θ) is a positive constant that goes to 0 as θ → 0, and where ∆H̃at is defined by
∆H̃at := H̃at(θ)− H̃at.
Furthermore, as in [BFS3], we can see that∥∥∥|Bθ(ρ0)|−1/2

W̃g(θ) |Bθ(ρ0)|−1/2
∥∥∥ ≤ Cste

ν
gρ0

−1/2. (76)

Let us make a few remarks about this last estimate. There is a difficulty because, with our
definition using quadratic forms, W̃g(θ) is not defined a priori as an operator on D(|Bθ(ρ0)|1/2).
However, the quadratic form qfWg(θ)

is well defined on this domain. Following the calculus of

[BFS3] and using the fact that H̃V
U fulfills hypothesis (H−1/2), we can see that∣∣∣qfWg(θ)

(|Bθ(ρ0)|−1/2Φ, |Bθ(ρ0)|−1/2Ψ)
∣∣∣ ≤ Cste

ν
gρ0

−1/2‖Φ‖‖Ψ‖, (77)

for all Φ,Ψ ∈ L2(R6)⊗Fs.
Note that we do not need to require the second hypothesis (H1/2) in order to prove the estimate
(77). Actually, (H1/2) is not necessary to obtain the existence of FP (θ)(H̃V

U (θ) − z, H̃0(θ) − z);
however, it will become essential in the renormalization procedure.
Now |Bθ(ρ0)|−1/2W̃g(θ)|Bθ(ρ0)|−1/2 is clearly well defined on |Bθ(ρ0)|1/2D(W̃g(θ)). But C∞

0 (R6)⊗
DS ⊂ D(W̃g(θ)) is a core for |H̃0|1/2 (here we use the fact that U+ ∈ L2

loc(R3) in hypothesis (H0)),
and we can see that it is also a core for |Bθ(ρ0)|1/2. Thus |Bθ(ρ0)|1/2D(W̃g(θ)) is dense; then
(77) shows that |Bθ(ρ0)|−1/2W̃g(θ)|Bθ(ρ0)|−1/2 extends to a bounded operator on L2(R6) ⊗ Fs

that satisfies (76).
Inserting (73) and (76) into (72), we obtain:∥∥∥∥∣∣∣HP (θ)

0

∣∣∣−1/2

U−1
0 P (θ)W̃g(θ)P (θ)

∣∣∣HP (θ)
0

∣∣∣−1/2
∥∥∥∥ ≤ Cste

ν2
gρ0

−1/2.

Thus, provided that gρ0
−1/2 � ν2, (71) is proved, so that (H̃0(θ) − z) + P (θ)W̃g(θ)P (θ) is

invertible on Ran(P (θ)).
The proof that the operators given in (67) extend to bounded operators on L2(R6) ⊗ Fs and
Ran(P (θ)) respectively is similar. �
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Now, inverting (70), we can write:

1Ran(P (θ))

[
(H̃0(θ)− z) + P (θ)W̃g(θ)P (θ)

]−1

1Ran(P (θ))

=
∣∣∣HP (θ)

0

∣∣∣−1/2∑
n≥0

[
−
∣∣∣HP (θ)

0

∣∣∣−1/2

U−1
0 P (θ)W̃g(θ)P (θ)

∣∣∣HP (θ)
0

∣∣∣−1/2
]n ∣∣∣HP (θ)

0

∣∣∣−1/2

U−1
0

=
[
H

P (θ)
0

]−1∑
n≥0

[
−P (θ)W̃g(θ)P (θ)

[
H

P (θ)
0

]−1
]n

.

(78)

Using this, our aim in the next subsection will be to prove that the operator

FP (θ)(H̃V
U (θ)− z, H̃0(θ)− z)

∣∣∣
Ran(P (θ))

,

can be identified with an element of a suitably chosen Banach space. The main property of this
Banach space that we shall require is that the operator coming from the interaction is irrelevant
under renormalization.

4.3 Renormalization in a Banach space of Hamiltonians

Our purpose, in this subsection, is to prove that the eigenvalues Ẽl + en of H̃0, such that
(l, n) 6= (0, 0) and El + en < e0, turn into resonances when the interaction W̃g is added. Recall
that, to simplify, we assume that Ẽl + en is non-degenerate and located at 0.

Let us begin with the definition of the Banach space W#
≥0. We set:

W#
≥0 := C⊕ T ⊕W#

≥1 := C⊕ T ⊕
⊕

M+N≥1

W#
M,N , (79)

where

T :=

{
f ∈ C1([0, 1]), f(0) = 0, ‖f‖T := sup

α∈[0,1]

|f ′(α)| <∞

}
, (80)

and

W#
M,N :=

{
fM,N : [0, 1]× (B1 × {1, 2})M × (B1 × {1, 2})N → C such that:

∗ fM,N (·; (k, λ)(M); (k̃, λ̃)(N)) ∈ C1([0, 1]) for every

((k, λ)(M); (k̃, λ̃)(N)) ∈ (B1 × {1, 2})M+N ,

∗ fM,N (α; (k, λ)(M); (k̃, λ̃)(N)) is totally symmetric with respect to

(k, λ)(M) and (k̃, λ̃)(N),

∗ ‖fM,N‖# := ‖fM,N‖+ ‖∂αfM,N‖ <∞
}
.

(81)

Here B1 denotes the unit ball in R3, ∂αfM,N is the partial derivative of fM,N with respect to
the first variable, and

‖fM,N‖ := sup
[0,1]×(B1×{1,2})M+N

∣∣∣fM,N (α; (k, λ)(M); (k̃, λ̃)(N))
∣∣∣ M∏

i=1

|ki|−1/2
N∏

j=1

|k̃j |−1/2. (82)
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Note that we have used the notations

(k, λ)(M) := ((k1, λ1), . . . , (kM , λM )) ∈ (R3 × {1, 2})M ,

(k̃, λ̃)(N) := ((k̃1, λ̃1), . . . , (k̃N , λ̃N )) ∈ (R3 × {1, 2})N .

Next, the space W#
≥1 := {w := (wM,N )M+N≥1} is equipped with the norm

‖w‖#ξ,1 :=
∑

M+N≥1

ξ−(M+N)‖wM,N‖#, (83)

where 0 < ξ < 1 is a parameter that we will precise below.
Defining

W#
0,0 :=

{
f0,0 ∈ C1([0, 1]), ‖f0,0‖# := ‖f0,0‖∞ + ‖∂αf0,0‖∞ <∞

}
, (84)

we can see that there is a natural isomorphism between the Banach spaces C⊕ T and W#
0,0, so

that we identify C⊕ T and W#
0,0.

Thus, we can write an element of W#
≥0 as w := (wM,N )M+N≥0, and we equip W#

≥0 with the
norm

‖w‖#ξ :=
∑

M+N≥0

ξ−(M+N)‖wM,N‖#. (85)

Now, we want to identify an element of W#
≥0 with an operator on the Hilbert space

Hred := 1Hf<1Fs. (86)

To this end, we define for w ∈ W#
≥0:

H(w) :=
∑

M+N≥0

WM,N (w) := w0,0(Hf )1Hf<1 +
∑

M+N≥1

WM,N (w), (87)

where for M +N ≥ 1:

WM,N (w) := 1Hf<1

∑
λ(M)∈{1,2}M

λ̃(N)∈{1,2}N

∫
BM+N

1

a∗λ(M)(k(M))wM,N [Hf ; (k, λ)(M); (k̃, λ̃)(N)]

aλ̃(N)(k̃(N))dk(M)dk̃(N)1Hf<1.

(88)

Note that in the last equation, we have used the notations:

λ(M) := (λ1, . . . , λM ) , λ̃(N) := (λ̃1, . . . , λ̃N ),

a∗λ(M)(k(M)) :=
M∏

j=1

â∗λj (kj) , aλ̃(N)(k̃(N)) :=
N∏

j=1

âλ̃j
(k̃j),

dk(M) := dk1 . . . dkM , dk̃(N) := dk̃1 . . . dk̃N .

(89)

The following proposition is proved in [BCFS]; it shows that any operator of Hred written as in
(87) can be identified with an element of the Banach space W#

≥0.
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Proposition 4.3 Pick ξ such that 0 < ξ < 1.
Then, the map H defined in (87) is an injective embedding from W#

≥0 into B[Hred], the set of
bounded operators on Hred. Moreover, we have

‖H(w)‖Hred
≤ ‖w‖#ξ . (90)

To control the dependence of the operators that we shall study in the spectral parameter z,
we introduce the Banach space

W≥0 :=
{
w[·] : D1/2 →W#

≥0, w[·] is analytic
}
, (91)

where D1/2 denotes the disc {z ∈ C, |z| ≤ 1/2}. It is equipped with the norm:

‖w[·]‖ξ := sup
z∈D1/2

‖w[z]‖#ξ . (92)

Likewise, H(W≥0) denotes the Banach space:

H(W≥0) :=
{
H(w[·]) : D1/2 → H(W#

≥0),H(w[·]) is analytic
}
, (93)

with the norm
‖H(w[·])‖ := sup

z∈D1/2

‖H(w[z])‖Hred
. (94)

This is on this Banach space that the renormalization map constructed in [BCFS] acts.

Our first aim is to define an operator H(0)[z] which is isospectral to H̃V
U (θ), and which belongs

to H(W≥0). In the same way as in [BFS1], we define, for any ξ in Dρ0/2,

H̃eff [ξ] := eiν1Hf<ρ0

〈
FP (θ)(H̃V

U (θ)− ξ, H̃0(θ)− ξ)) + ξ
〉

at
1Hf<ρ0

= Hf1Hf<ρ0 + eiν〈. . . 〉at,
(95)

where 〈. . . 〉at denotes:〈
P (θ)

[
W̃g(θ)− W̃g(θ)P (θ)

[
(H̃0(θ)− ξ) + P (θ)W̃g(θ)P (θ)

]−1

P (θ)W̃g(θ)
]
P (θ)

〉
at

, (96)

and where, for a bounded operator A on L2(R6)⊗Fs, the operator 〈A〉at on Fs is defined as the
operator associated with the bounded quadratic form

q〈A〉at(Φ,Ψ) := (φ0(θ)⊗ Φ, Aφ0(θ)⊗Ψ). (97)

Here, φ0(θ) denotes the normalized eigenstate associated with the non-degenerate eigenvalue 0
of H̃at(θ).
We see that H̃eff [ξ] defines an operator on 1Hf<ρ0Fs. To obtain an operator on Hred, we scale
the photons momenta through a unitary transformation Uρ0 such that k 7→ ρ0k. Then we set:

Heff [ξ] :=
1
ρ0
Uρ0H̃eff [ξ]U∗ρ0

= Hf1Hf<1 +
eiν

ρ0
Uρ0〈. . . 〉atU∗ρ0

, (98)
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for all ξ ∈ Dρ0/2.
Finally, to obtain an analytic family of operators H(0)[z] with z ∈ D1/2, we map the spectral
parameter through the transformation:

Z(0) : Dρ0/2 → D1/2 , ξ 7→ eiν

ρ0
ξ. (99)

Thus, we get a family H(0)[z] which is well defined as a family of bounded operators on Hred for
all z ∈ D1/2:

H(0)[z] := Heff [Z−1
(0) (z)]

=
eiν

ρ0
1Hf<1Uρ0

〈
FP (θ)(H̃V

U (θ)− Z−1
(0) (z), H̃0(θ)− Z−1

(0) (z)))
〉

at
U∗ρ0

1Hf<1 + z1Hf<1.
(100)

We come now to the main theorem of this section, which, with the help of the results obtained
in [BFS1], [BFS2] and [BCFS], will lead to the existence of resonances:

Theorem 4.1 Let θ = iν with ν > 0 sufficiently small; pick ρ0 > 0 such that ρ0 ≤ δ sin(ν/2) <
1. Assume in addition that H̃V

U fulfills hypotheses (H−1/2) and (H1/2). Choose β, ε > 0.
Then, for gρ−1/2

0 sufficiently small, H(0)[·] belongs to H(W≥0); furthermore, defining H(0)[z] :=
H(w(0)[z]), we have w(0)[·] ∈ B(β, ε), where

B(β, ε) :=

{
w[·] = (E[·], T [·], (wM,N [·])M+N≥1) ∈ W≥0,

sup
z∈D1/2

‖T [z, α]− α‖T ≤ β, sup
z∈D1/2

|E[z]| ≤ ε, sup
z∈D1/2

‖(wM,N [z])M+N≥1‖#ξ ≤ ε

}
.

(101)

Note that the parameter ξ appearing in the definition of W≥0 is chosen such that ξ ≥ Cρ0
1/2

where C denotes a positive real number.

Proof We sketch the proof and emphasize the main point which differs from [BFS1,2], [BCFS].
In particular, the requirement to hypothesis (H1/2) shall be essential here.
We begin with the operator H̃eff [ξ], defined in (95) for ξ ∈ Dρ0/2, that we write as

H̃eff [ξ] = 1Hf<ρ0

[
Ẽeff [ξ] + T̃eff [ξ;Hf ] + W̃eff [ξ;Hf ]

]
1Hf<ρ0 , (102)

where

Ẽeff [ξ] := w̃eff
0,0[ξ, 0],

T̃eff [ξ;Hf ] := Hf + w̃eff
0,0[ξ;Hf ]− w̃eff

0,0[ξ, 0],

W̃eff [ξ;Hf ] :=
∑

M+N≥1

W̃ eff
M,N [ξ;Hf ],

(103)
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and

W̃ eff
M,N [ξ;Hf ] :=

∑
λ(M)∈{1,2}M

λ̃(N)∈{1,2}N

∫
R3(M+N)

a∗λ(M)(k(M))w̃eff
M,N [ξ;Hf ; (k, λ)(M); (k̃, λ̃)(N)]

aλ̃(N)(k̃(N))dk(M)dk̃(N).

(104)

Then, assuming that g and ρ0 are chosen as in proposition 4.2, the Pull-Through formula, Wick’s
theorem and (78) yield (see [BFS2]):

w̃eff
M,N [ξ; r; (k, λ)(M); (k̃, λ̃)(N)]

= eiν
∞∑

L=1

(−1)L−1
∑

ml+nl+pl+ql=1,2
l=1,...,L

δM,
PM
l=1 ml

δN,
PN
l=1 nl

L∏
l=1

(
ml + pl

pl

)(
nl + ql
ql

)
{
D̃L

[
ξ;Hf ;

{
Wml,nl

pl,ql
; (kl, λl)(ml); (k̃l, λ̃l)(nl)

}L

l=1
;
{
RP

0 [Hf ; θ]
}L−1

l=1

]}symm

M,N

,

(105)

where
{
f
[
(k, λ)(m); (k̃, λ̃)(n)

]}symm

m,n
denotes the symmetrization of f with respect to the variables

(k, λ)(m) and (k̃, λ̃)(n):{
f
[
(k, λ)(m), (k̃, λ̃)(n)

]}symm

m,n

:=
1

m!n!

∑
π∈Sm

∑
π̃∈Sn

f
[
(kπ(1), λπ(1)), . . . , (kπ(m), λπ(m)); (k̃π̃(1), λ̃π(1)), . . . , (k̃π̃(n), λ̃π(n))

]
,

(106)

and

D̃L

[
ξ;α;

{
Wml,nl

pl,ql
; (kl, λl)(ml); (k̃l, λ̃l)(nl)

}L

l=1
;
{
RP

0 [Hf ; θ]
}L−1

l=1

]
:=

L∏
l=1

(−g)ml+nl+pl+qlχρ0(α+ τ0)
(
φ0(θ)⊗ Ω,Wm1,n1

p1,q1
[(k1, λ1)(m1); (k̃1, λ̃1)(n1)]

RP
0 [Hf + α+ τ1; θ]Wm2,n2

p2,q2
[(k2, λ2)(m2); (k̃2, λ̃2)(n2)] . . .

RP
0 [Hf + α+ τL−1; θ]Wml,nL

pl,qL
[(kL, λL)(mL); (k̃L, λ̃L)(nL)]φ0(θ)⊗ Ω

)
χρ0(α+ τL).

(107)

We have set:

RP
0 [Hf ; θ] := P (θ)

[
HP

0 (θ)
]−1

P (θ) = P (θ)
[
1Ran(P (θ))(H̃0(θ)− z)1Ran(P (θ))

]−1

P (θ), (108)
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and

Wml,nl
pl,ql

[(kl, λl)(ml); (k̃l, λ̃l)(nl)] :=∑
µ
(pl)
l

∈{1,2}pl

µ̃
(ql)
l

∈{1,2}ql

∫
R3(pl+ql)

G̃ml+pl,nl+ql

[
(kl, λl)(ml), (yl, µl)(pl); (k̃l, λ̃l)(nl), (ỹl, µ̃l)(ql); θ

]

⊗ a∗
µ

(pl)
l

(y(pl)
l )a

µ̃
(ql)
l

(ỹ(ql)
l )dy(pl)

l dỹ
(ql)
l .

(109)

Besides,

τl :=
l∑

j=1

|k̃(nj)
j |+

L∑
j=l+1

|k(mj)
j | :=

l∑
j=1

nj∑
i=1

|k̃i
j |+

L∑
j=l+1

mj∑
i=1

|ki
j |. (110)

We come now to the main point whose proof differs from [BFS2]: it is the purpose of the following
lemma.

Lemma 4.1 Assume that H̃V
U fulfills hypotheses (H−1/2) and (H1/2).

Pick (k, λ)(m) in (R×{1, 2})3m and (k̃, λ̃)(n) in (R×{1, 2})3n. Let ω, ω̃ be two nonnegative real
numbers; let m,n, p, q ∈ N be such that 1 ≤ m+ n+ p+ q ≤ 2. Pick 0 < ρ0 < 1.Then we have:∥∥∥|Bθ(ρ0 + ω)|−1/2Wm,n

p,q [(k, λ)(m); (k̃, λ̃)(n)]|Bθ(ρ0 + ω̃)|−1/2
∥∥∥

≤ Csteρ0
− 1

2−
1
2 δp+q,0

m∏
j=1

J1/2(kj)
n∏

j=1

J1/2(k̃j),
(111)

where Bθ(ρ0) is defined in (73).

Proof Recall that θ := iν is fixed with ν > 0 sufficiently small. We note the following two
estimates which can be obtained in the same way as in [BFS3]:∥∥∥|Bθ(ρ0)|−1

(
H̃at + i

)∥∥∥ ≤ Cste
ν

(
1 +

1
ρ0

)
, (112)

∥∥|Bθ(ρ0)|−1 (Hf + ω)
∥∥ ≤ Cste

ν

(
1 +

ω

ρ0

)
, (113)

for all ρ0 > 0 and ω ≥ 0.
We shall distinguish between the different cases m + n = i, p + q = j such that i, j ∈ {0, 1, 2}
and i+ j = 1, 2.
First, if m+ n = 0 and p+ q = 1, 2, using that H̃V

U fulfills hypothesis (H−1/2), in the same way
as in (76), we can see that:∥∥∥|Bθ(ρ0 + ω)|−1/2W 0,0

p,q |Bθ(ρ0 + ω̃)|−1/2
∥∥∥ ≤ Cste

ν
ρ0
−1/2. (114)
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Assume now that m+ n = 1, 2 and p+ q = 0. Using (112) and hypothesis (H1/2), we write:∥∥∥|Bθ(ρ0 + ω)|−1/2Wm,n
0,0 [(k, λ)(m); (k̃, λ̃)(n)]|Bθ(ρ0 + ω̃)|−1/2

∥∥∥
≤
∥∥∥∥|Bθ(ρ0 + ω)|−1/2

∣∣∣H̃at + i
∣∣∣1/2

∥∥∥∥
×
∥∥∥∥∣∣∣H̃at + i

∣∣∣−1/2

G̃m,n

[
(k, λ)(m); (k̃, λ̃)(n); θ

] ∣∣∣H̃at + i
∣∣∣−1/2

∥∥∥∥
×
∥∥∥∥∣∣∣H̃at + i

∣∣∣1/2

|Bθ(ρ0 + ω̃)|−1/2

∥∥∥∥
≤ Cste

ν2
ρ0
−1 ×

m∏
j=1

J1/2(kj)
n∏

j=1

J1/2(k̃j)

Finally, we have to deal with the possibility m+ n = 1 and p+ q = 1. For instance, we assume
that p = m = 1 and n = q = 0; the other cases can be treated in the same way. We compute:∥∥∥|Bθ(ρ0 + ω)|−1/2W 1,0

1,0 [(k, λ)(m)]|Bθ(ρ0 + ω̃)|−1/2
∥∥∥

=

∥∥∥∥∥|Bθ(ρ0 + ω)|−1/2
∑

µ=1,2

∫
R3
G̃2,0 [(k, λ); (y, µ); θ]⊗ â∗µ(y)dy|Bθ(ρ0 + ω̃)|−1/2

∥∥∥∥∥
≤
[

sup
µ=1,2

∫
R3

1
|y|

∥∥∥|Bθ(ρ0 + ω)|−1/2G̃2,0 [(k, λ); (y, µ); θ] |Bθ(ρ0 + ω̃ + |y|)|−1/2(Hf + |y|)1/2
∥∥∥2

dy

]1/2

× sup
‖Ψ‖=1

[ ∑
µ=1,2

∫
R3
|y|
∥∥∥(Hf + |y|)−1/2â∗µ(y)Ψ

∥∥∥2

dy

]1/2

We can easily see that the second term in the last line is less than 1. As for the first term, using
(112), (113) and the two hypotheses (H−1/2), (H1/2), we have:∥∥∥|Bθ(ρ0 + ω)|−1/2G̃2,0 [(k, λ); (y, µ); θ] |Bθ(ρ0 + ω̃ + |y|)|−1/2(Hf + |y|)1/2

∥∥∥
≤
∥∥∥(Hf + |y|)1/4|Bθ(ρ0 + ω)|−1/4

∥∥∥× ∥∥∥|Bθ(ρ0 + ω)|−1/4|H̃at + i|1/4
∥∥∥

×
∥∥∥|H̃at + i|−1/4G̃2,0 [(k, λ); (y, µ); θ] |H̃at + i|−1/4

∥∥∥
×
∥∥∥|H̃at + i|1/4|Bθ(ρ0 + ω̃ + |y|)|−1/4

∥∥∥× ∥∥∥|Bθ(ρ0 + ω̃ + |y|)|−1/4(Hf + |y|)1/4
∥∥∥

≤ Cste
ν

[(
1 +

|y|
ρ0

)(
1 +

1
ρ0

)(
1 +

1
ρ0 + |y|

)(
1 +

|y|
ρ0 + |y|

)]1/4

J1/2(k)J−1/2(y)

≤ Cste
ν

ρ0
−1/2(1 + |y|)1/2J1/2(k)J−1/2(y).

This yields:∥∥∥|Bθ(ρ0 + ω)|−1/2W 1,0
1,0 [(k, λ)(m)]|Bθ(ρ0 + ω̃)|−1/2

∥∥∥
≤ Cste

ν
ρ0
−1/2J1/2(k)

[∫
R3

(
1 +

1
|y|

)
J−1/2(y)2dy

]1/2

=
Cste
ν

Λ−1/2ρ0
−1/2J1/2(k).
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Thus the proof of the lemma is complete. �

Back to the proof of theorem 4.1

To finish the proof of theorem 4.1, with the help of lemma 4.1, it suffices to follow [BFS2], with
some simplifications due to the use of the smooth Feshbach map. Namely, using the identity
|Bθ(ρ0)|1/2φ0(θ) ⊗ Ω = ρ0

1/2φ0(θ) ⊗ Ω together with lemma 4.1 and the bound obtained as in
(74): ∥∥∥|Bθ(ρ0)|RP

0 [Hf + α+ µl; θ]
∥∥∥ ≤ Cste

ν
, (115)

we get (see [BFS2], lemma 3.7)∣∣∣∣D̃L

[
ξ;α;

{
Wml,nl

pl,ql
; (kl, λl)(ml); (k̃l, λ̃l)(nl)

}L

l=1
;
{
RP

0 [Hf ; θ]
}L−1

l=1

]∣∣∣∣
≤

L∏
l=1

(C1gρ0
−1/2)ml+nl+pl+qlρ0

1− 1
2 (M+N)CM+N

2

M∏
j=1

J1/2(kj)
N∏

j=1

J1/2(k̃j).
(116)

Here, C1,C2 denote positive real numbers depending respectively on ν,Λ and Λ.
Inserting (116) into (105), we can obtain:∣∣∣w̃eff

M,N [ξ; r; (k, λ)(M); (k̃, λ̃)(N)]
∣∣∣

≤ ρ0
1− 1

2 (M+N)(C3gρ0
−1/2)M+N+2δM+N,0

M∏
j=1

J1/2(kj)
N∏

j=1

J1/2(k̃j)
(117)

for some positive constant C3.
Next, seeing the definition of the Banach space of Hamiltonians at the beginning of this sub-
section, we have to consider the derivative of D̃L[. . . ] with respect to α. To this end, we notice
that:

R0[Hf ; θ] =
[
P at(θ)H̃at(θ)⊗ 1 + e−iνP at(θ)⊗ (Hf − z)

]−1

+ Pat(θ)
χρ0

(Hf )2

e−iνHf − z
, (118)

which yields

∂Hf
R0[Hf ; θ] = −e−iνR0[Hf ; θ]2 + Pat(θ)⊗

2χρ0
(Hf )∂Hf

χρ0
(Hf )

e−iνHf − z
. (119)

Using this together with Leibniz’ rule and the bound∥∥∥|Bθ(ρ0)|RP
0 [Hf + α+ µl; θ]2

∥∥∥ ≤ Cste
ν

ρ0
−1, (120)

we obtain ∣∣∣∣∂αD̃L

[
ξ;α;

{
Wml,nl

pl,ql
; (kl, λl)(ml); (k̃l, λ̃l)(nl)

}L

l=1
;
{
RP

0 [Hf ; θ]
}L−1

l=1

]∣∣∣∣
≤

L∏
l=1

(C1gρ0
−1/2)ml+nl+pl+qlρ0

− 1
2 (M+N)CM+N

2

M∏
j=1

J1/2(kj)
N∏

j=1

J1/2(k̃j).
(121)
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Hence, inserting (121) into (105), we can get in the same way as in (117):∣∣∣∂αw̃
eff
M,N [ξ; r; (k, λ)(M); (k̃, λ̃)(N)]

∣∣∣
≤ ρ0

− 1
2 (M+N)(C3gρ0

−1/2)M+N+2δM+N,0

M∏
j=1

J1/2(kj)
N∏

j=1

J1/2(k̃j).
(122)

To conclude, we come back to the operator H(0)[z] defined in (98)-(100). The identity

H(0)[z] =
eiν

ρ0
Uρ0H̃eff [Z−1

(0) (z)]U
∗
ρ0

(123)

together with (103)-(104) implies that for any z ∈ D1/2:

H(0)[z] = 1Hf<1

[
E(0)[z] + T(0)[z;Hf ] +W(0)[z;Hf ]

]
1Hf<1, (124)

with

E(0)[z] := w
(0)
0,0[z, 0],

T(0)[z;Hf ] := Hf + w
(0)
0,0[z;Hf ]− w

(0)
0,0[z, 0],

W(0)[z;Hf ] :=
∑

M+N≥1

W
(0)
M,N [z;Hf ],

(125)

and

W
(0)
M,N [z;Hf ] :=

∑
λ(M)∈{1,2}M

λ̃(N)∈{1,2}N

∫
R3(M+N)

a∗λ(M)(k(M))w(0)
M,N [z;Hf ; (k, λ)(M); (k̃, λ̃)(N)]

aλ̃(N)(k̃(N))dk(M)dk̃(N);

(126)

furthermore, for all M +N ≥ 0, w(0)
M,N is related to w̃eff

M,N through

w
(0)
M,N

[
z;Hf ; (k, λ)(M); (k̃, λ̃)(N)

]
= ρ0

3
2 (M+N)−1w̃eff

M,N

[
Z−1

(0) (z); ρ0Hf ; (ρ0k, λ)(M); (ρ0k̃, λ̃)(N)
]
.

(127)

Thus, (117) and (122) yield∣∣∣w(0)
M,N [z;α; (k, λ)(M); (k̃, λ̃)(N)]

∣∣∣+ ∣∣∣∂αw
(0)
M,N [z;α; (k, λ)(M); (k̃, λ̃)(N)]

∣∣∣
≤ 2ρ0

(M+N)(C3gρ0
−1/2)M+N+2δM+N,0

M∏
j=1

J1/2(ρ0kj)
N∏

j=1

J1/2(ρ0k̃j)

≤ ρ0
3
2 (M+N)(C4gρ0

−1/2)M+N+2δM+N,0

M∏
j=1

|kj |1/2
N∏

j=1

|k̃j |1/2,

(128)

36



where C4 denotes a positive real number.
In other words, H(0)[z] = H(w(0)[z]) with w(0) =

(
E(0), T(0), (w

(0)
M,N )M+N≥1

)
and

sup
z∈D1//2

∣∣E(0)[z]
∣∣ ≤ C4g

2ρ0
−1,

sup
z∈D1//2

∥∥T(0)[z;α]− α
∥∥
T ≤ 2C4g

2ρ0
−1,

sup
z∈D1//2

∥∥∥(w(0)
M,N [z])M+N≥1

∥∥∥#

ξ
≤

∑
M+N≥1

(C5gρ0
1/2)M+N ≤ C5gρ0

1/2,

(129)

where C5 > 0, and where we have chosen ξ ≥ Csteρ0
1/2.

Hence, the proof of the theorem is complete, except for the fact that H(0)[z] is analytic on
D1/2. But since we have ∂zR0[Hf ; θ] = −R0[Hf ; θ]2, one can see, as in (120)-(122), that∣∣∣∂zw

(0)
M,N [z;α; (k, λ)(M); (k̃, λ̃)(N)]

∣∣∣ is bounded, which gives the analyticity of H(0)[z]. �

To sum up, we have showed that H(0)[·] belongs to H(B(ρ/8, ρ/8)) for any ρ > 0, provided
that ρ0 is less than δ sin ν/2 and that gρ0

−1/2 is sufficiently small. Moreover, by construction,
H(0)[·] is isospectral to the initial Hamiltonian H̃V

U (θ) in the sense that:

z ∈ σ(H(0)[z]) ∩D1/2 ⇔ Z−1
(0) (z) ∈ σ(H̃V

U (θ)) ∩Dρ0/2. (130)

Now, we appeal to the results proved in [BFS2] and [BCFS]: the renormalization transformation
Rρ is defined for any w = (E, T, (wM,N )M+N≥1) in B(ρ/8, ρ/8) by:

Rρ (H(w[z]))− z := ρ−1UρFχρ(Hf )

[
H(w[Z−1(z)])− Z−1(z),

E[Z−1(z)] + T [Z−1(z);Hf ]− Z−1(z)
]
U∗ρ ,

(131)

where the map Z is defined by

{ξ, |ξ − E[ξ]| ≤ ρ/2} → D1/2 , ξ 7→ ρ−1 (ξ − E[ξ]) . (132)

Then we have (see [BCFS]):

Theorem 4.2 Fix ρ := (16CΘ)−2 and ξ := (4CΘ)−1ρ1/2 where CΘ ≥ 1 is a constant only
depending on the smooth function Θ defined in (64). Then,

Rρ : H (B(β, ε)) → H
(
B
(
β +

ε

2
,
ε

2

))
, (133)

for any 0 < β ≤ ε0, 0 < ε ≤ ε0, where ε0 := (8CΘ)−1ρ.

Proof Note that the Banach space W≥0 that we have defined in this paper is different from
the one defined in [BCFS]; indeed, we have used a supremum in the definition of the norm (82),
where the authors used a L2-norm in [BCFS]. This modification allows us to simplify some
estimates, but this also requires that the proof of the present theorem to be modified. However,
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the modifications are straightforward, and we do not reproduce the proof here. �

To conclude, we state a result which provides the existence of resonances for the Hamiltonian
H̃V

U ; its proof can be found in [BFS2], [BCFS]. We define for n ≥ 1:

H(n)[·] := H
(
(E(n), T(n), (w

(n)
M,N )M+N≥1)

)
:= Rn

ρ (H(0)[·]), (134)

and, as in (132),

Z(n) :
{
z ∈ D1/2,

∣∣z − E(n−1)[z]
∣∣ ≤ ρ/2

}
→ D1/2 , z 7→ 1

ρ

(
z − E(n−1)[z]

)
. (135)

Notice that, choosing ρ, ξ, ε0, β, ε as in theorem 4.2 and ρ0 such that 0 < ρ0 ≤ min(ρ, δ sin(ν/2)),
we obtain from theorems 4.1 and 4.2:

H(n)[·] ∈ H
(
B(β + ε,

ε

2n
)
)
, (136)

for any n ≥ 0, provided gρ−1/2
0 is sufficiently small.

Then it is proved that:

Theorem 4.3 Fix ρ and ξ as in theorem 4.2. Pick ρ0 > 0 sufficiently small and assume that
g > 0 is also sufficiently small. Then, for all θ = iν ∈ D(0, θ0), where ν > 0 is chosen such that
ρ0 ≤ δ sin(ν/2), the spectrum of H̃V

U (θ) is located as follows (see fig. 5):

σ
(
H̃V

U (θ)
)
∩Dρ0/2 ⊂ E(∞) +K(∞). (137)

Here, E(∞) := limn→∞ Z−1
(0) ◦ Z

−1
(1) ◦ · · · ◦ Z

−1
(n)(0) is a simple eigenvalue of H̃V

U (θ), and K(∞)

denotes a complex domain contained in:{
e−iνa+ b, 0 ≤ a ≤ 1, |b| ≤ Caτ

}
, (138)

where τ > 1 and C is a positive constant which can be chosen strictly less than 1 provided g is
sufficiently small.
Assuming moreover that (HΓ0) is fulfilled, this implies that E(∞) is a resonance for H̃V

U .

n

E (∞) ⊃K(∞)

 ~
l  E  +e

Figure 5: The spectrum of H̃V
U (θ) around Ẽl + en
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