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Abstract. In the work we consider some inverse problems relatively domain for the Laplace
operator. The aim of the work is to find a domain under the condition that, the function,
expressed by spectral data of the problem is given in the boundary of this domain.
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Introduction. Solution of a wide class of practical problems is reduced to the minimization
of the functionals related with eigenvalues [1]. The study of shape optimization problems for
the eigenvalues of an elliptic operator is a fascinating field that has strong relations with several
applications as for instance the stability of vibrating bodies, the propagation of waves in com-
posite media, the thermic insulation of conductors. Investigation of such problems is important
also for study of the qualitative properties of the eigenvalues [2]. In the work we consider some
inverse problems relatively domain. In its mathematical formulation the problem consists in
taking an elliptic operator and considering its eigenvalues λk as a functionals of the domain D
where the problem is solved. In the work these problems are reduced to the minimization of the
functionals including spectral data of the corresponding operators. Usually in such problems
obtained optimality conditions for domain involve eigenfunctions that makes difficult their use
in the determination of the domain. Here we reduce the considering shape optimization prob-
lems to variational formulation, get some optimality conditions and a formula for the eigenvalue
corresponding to the optimal domain. Note that the obtained formulas don’t include an eigen-
function. It makes them interesting both from practical and theoretical points of view. For the
sake of simplicity we consider only Laplace operator, but the results may be extended for other
elliptic operators.

Main results. Consider the problem

−∆u = λu, x ∈ D, (1)

u (x) = 0, x ∈ SD, (2)

where ∆- Laplace operator, D ⊂ En-convex bounded domain, SD-its boundary, ∇ =
n∑
i=1

∂
∂xi
.

It is known [3] that in the considered case the eigenfunctions uj , j = 1, 2, ... of the problem
(1), (2) belong to the class C1 (D) ∩ C2

(
D
)
, eigenvalues are positive and may be numbered as

λ1 ≤ λ2 ≤ ...., where each λk is counted with its multiplicity.
Let D ⊂ En be bounded convex domain with smooth boundary SD.The set of all such domains

we denote by K.
For the sake of simplicity we denote by u the first normalized eigenfunction of the problem

(1), (2) corresponding to the first eigenvalue λ1.
The first problem is: To find a domain D ∈ K such that for the first eigenvalue and

corresponding eigenfunction of the problem (1)-(2) the relation
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|∇u|2
λ1

= ϕ (x) , x ∈ SD (3)

is fulfilled for given in En function ϕ (x).
We call this problem (I) problem.
As the seeking object of this problem is a domain its direct solution meets some difficulties.

So, instead of this problem we consider the following one

−∆u = λu, x ∈ D, (4)

u (x) = 0, x ∈ SD , (5)

λ1 (D)→ min, (6)

under the condition
∫

D

f (x) dx = 1, (7)

where f (x) is some given in En function.
This problem we call (V) problem.
Our aim is to show that for some classes of function ϕ(x) the problems (I) and (V) are

equivalent and to define these classes.
Let us introduce Lagrange’s function

L (D,µ) = λ1 (D) + µ ·
∫

D

f (x) dx. (8)

It is known that [4] for fixed domain D the first eigenvalue of the problem (1), (2) is calculated
by formula

λ1 (D) = inf
u
I (u,D) ,

where

I (u,D) =

∫
D

∇u2 (x) dx
∫
D

u2 (x) dx
, |∇u(x)|2 =

n∑

i=1

(
∂u

∂xi

)2

and inf is taken over all functions u ∈ E2 (D) ∩ E1
(
D̄
)
, being equal to zero at SD.

As we see, this formula defines λ1 as a functional of D.
In [5, 6] it is proved that the first eigenvalue of the problem (1), (2) is differentiable with

respect to D on K and for its first variation the formulae

δλ1 (D) = −
∫

SD

|∇u|2 δPD (n (x)) ds (9)

is true.
Here PD (x) = max

l∈D
(l, x) , x ∈ En is a support function of the domain D, n (x)- outward

normal to SD in the point x.
Denote
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G (D) ≡
∫

D

f (x) dx.

There is shown that this functional is also differentiable on K and

δ G (D) =
∫

SD

f (x) δPD (n (x)) ds. (10)

Considering these formulas in (8) we get

δL (D) =
∫

SD

[
µf (x)− |∇u|2

]
δPD (n (x)) ds. (11)

If D is a solution of the problem (4)-(7) then as follows from Lagrange’s theory the equality

µ · f(x)− |∇u|2 = 0, x ∈ SD (12)

is fulfilled.
In spite of this condition is obtained under the convexity condition on D one may show that

it is true for non convex domains too.
Multiplying (12) by PD (x) and integrating on SD we obtain

∫

SD

[
µ · f (x)− |∇u|2

]
δPD (n (x)) ds = 0.

From this it is easy to get

1
2
µ ·
∫

SD

f (x)PD (n (x)) ds =
1
2

∫

SD

|∇u|2 PD (n (x)) ds.

As is shown in [7] the right hand side of this equality is equal to the first eigenvalue of the
problem (1)-(2)

λ1 =
1
2

∫

SD

|∇u|2 PD(n(x))ds.

Considering this we get

µ ·
∫

SD

f (x)PD (n (x)) ds = 2λ1.

Since the first eigenvalue of the problem (1), (2) is not equal to zero,
∫

SD

f (x)PD (n (x)) ds 6= 0.

So we obtain for the Lagrange’s multiplier

µ =
2λ1∫

SD

f (x)PD (n (x)) ds
. (13)

This formula allows one to calculate Lagrange multiplier. Note that here D is an optimal
domain and (13) doesn’t include an eigenfunction.

Putting (13) into (12) we get
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2λ1 · f(x)∫
SD

f(x)PD(n(x))ds
= |∇u|2 . (14)

From this we finally obtain

|∇u|2
λ1

=
2f (x)∫

SD

f (x)PD (n (x)) ds
. (15)

Suppose, that f is a such function that

2f (x)∫
SD

f (x)PD (n (x)) ds
= ϕ (x) , x ∈ SD. (16)

Then for the functions ϕ (x) = xα1 Φ
(
x2
x1
, x3
x1
, ..., xnx1

)
the solution of (V) problem - the domain

D will be a solution of (I) problem at the same time.
There exist two questions here:

a) For which functions ϕ is possible to find functions f providing (16);
b) Investigation of (V) problem.

Now let’s investigate the first question.
As is known [8] for the support function PD (x) , x ∈ En is true

PD (n (x)) = (n (x) , x) .
Using this and Ostragradskii formulae we can write

∫

SD

f(x)PD(n(x))ds =
∫

SD

f (x) (n (x) , x) ds =
n∑

i=1

∫

D

∂

∂xi
(f (x) , x) dx.

Denoting and calculating the derivatives we can transform

M =
n∑

i=1

∫

D

(
f (x) +

∂ · f (x)
∂xi

xi

)
dx =

=
∫

D

[n · f (x) + (∇f, x)] dx,

where ∇f (x) =
(
∂f
∂x1

, ..., ∂f∂xn

)
.

As follows from condition (7)

M = n+
∫

D

(∇f, x)dx. (17)

Considering this in (16) we finally obtain

2f (x)
n+

∫
D

(∇f, x) dx
= ϕ (x) . (18)

Now we show a class of functions f providing the equivalency of the problems (I) and (V).
Take

ϕ (x) = xα1 Φ
(
x2

x1
,
x3

x1
, ...,

xn
x1

)
. (19)
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Here α is any given number, Φ(y1, y2, ..., yn−1)- given differentiable function. We define f (x)
as

f (x) = C · xα1 Φ
(
x2

x1
,
x3

x1
, ...,

xn
x1

)
= C · ϕ (x) . (20)

We can find the constant C from condition (18). It easy to check that for the functions ϕ (x)
defined by formula (19) is true

(∇ϕ(x), x) = αϕ(x).
Then from (18) we get

2Cϕ (x)
n+ α

∫
D

C · ϕ (x) dx
= ϕ (x) .

Considering here the condition (20) one may obtain

2C · ϕ (x) = (n+ α)ϕ (x) .
Thus C = n+α

2 .
Other words the function

f (x) =
n+ α

2
· xα1 Φ

(
x2

x1
,
x3

x1
, ...,

xn
x1

)
=
n+ α

2
· ϕ (x)

satisfies to the condition (18).
Now we give a concrete class of functions satisfying above given conditions. To do it we take

the following functions

ϕ(x) =
n∑

i=1

aix
α
i .

In this case the functions f (x) = n+α
2 ϕ (x) form the seeking class.

Really, for these functions

fxi =
n+ α

2
aix

α−1
i , fxi · xi =

n+ α

2
αaix

α
i .

Then

n∑

i=1

fxi · xi = (∇f, x) =
n+ α

2
α

n∑

i=1

aix
α
i = α · ϕ (x) ,

consequently

∫

D

(∇f, x)dx = α

∫

D

n∑

i=1

n+ α

2
aix

α
i dx =α

∫

D

f(x)dx =α.

If put it into (18) we get

2f (x)
n+ α

= ϕ (x) .

That shows that the class was defined correctly.
Now suppose that ϕ (x) ≡ 1. Then as a particular case may be obtained from (18)

f (x) =
n

2
.

So, the condition (4) indeed has a form
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mesD =
2
n
.

Other cases also may be considered when the inverse problem (1)-(3) is reduced to the varia-
tional formulation (4)-(6) with various functionals. To investigate the problem (4)-(6) one may
use the apparatus offered in [6].

Now we consider minimization over domains of some functionals including eigenvalue. As
was noted above determination of the minimizing such functionals domains is important for
investigation of some inverse problems and the qualitative properties of the eigenvalues.

Consider the problem

−∆u = λu, x ∈ D (21)

u = 0, x ∈ SD. (22)

The second problem is: To find a domain D ∈ K minimizing the functional

J (D) = λ1 (D) ·
∫

D

f (x) dx, (23)

where f (x) is given in En function, D ∈ K, λ1 is the first eigenvalue of the problem (21)-(22)
corresponding to the domain D.

If take f (x) ≡ 1, then we get the problem

λ1(D) ·mesD → min.

As is known, when the domain increases, mesD also increases, but corresponding eigenvalue
of this problem decreases. So, it is expectable that this problem has a solution. Also note that
this is not true for all functions f (x). We’ll give below a class of functions for which this problem
has no solution. We also give an optimality condition for the solution of the problem (21)-(22)
- the domain D, that does not include eigenfunction.

Assume that the problem (21)-(23) has a solution.
Using (9), (10) we can write

δJ = δλ1(D) ·
∫

D

f (x) dx+ λ1 (D) · δ
∫

D

f (x) dx =

= −
∫

SD

|∇u|2 δPD(n(x))ds ·
∫

D

f(x)dx+

+λ1 (D) ·
∫

SD

f (x) δPD (n (x)) ds.

From this we get the optimality condition

|∇u|2
∫

D
f(x)dx+ λ1(D) f(x) = 0, x ∈ SD. (24)

Multiplying by PD and integrating over SD we obtain

−

∫

SD

|∇u|2 PD(n(x))ds



∫

D

f(x)dx+
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+λ1 (D)
∫

SD

f (x)PD (n (x)) ds = 0.

From this we get

−2λ1

∫

D

f (x) dx+ λ1 (D)
∫

SD

f (x)PDds = 0.

Doing above making transformations for M =
∫
SD

[2f (x) + (∇f, x)] ds and considering it in

last relation we obtain the optimality condition in the form

λ1 (D) ·
∫

D

(∇f, x) ds = 0. (25)

Thus this condition does not include eigenfunction u(x).
Let’s consider (25) for some classes of f .

a) As a class of f (x) we take the functions satisfying the condition (∇f, x) = α · f (x).
Then

α

∫

D

f (x) dx = 0.

Putting it in (24) we get f (x) = 0, x ∈ SD . It shows that if D is a solution of the problem
(21)-(23) for the functions satisfying a) then

f (x) = 0, x ∈ SD.
Indeed the function satisfying a) has a form

f (x) = xα1 Φ
(
x2

x1
,
x3

x1
, ...,

xn
x1

)
= C · ϕ (x) . (26)

For such functions is true

(∇f, x) = α · f(x), x ∈ D
If we add here the condition

f (x) = 0, x ∈ SD
we get

f (x) ≡ 0, x ∈ D.
So we get the following
Consequence. The problem (21)-(23) has no solution for the functions satisfying (26).
Now let’s consider another functional and give a formula for the eigenvalue corresponding to

the optimal domain.
Consider the following problem

−∆u = λu, x ∈ D, (27)

u(x) = 0, x ∈ SD, (28)
where D ∈ K .

The third problem is: To find D ⊂ K , such that
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J (D) = λ1 (D) +
∫

D

f (x) dx→ min, (29)

where λ1(D) is the first eigenvalue of the problem (27),(28) corresponding to D ⊂ K , f(x)-
given continuously differentiable in En function.

We suppose that the problem (27)-(29) has a solution on K.
Theorem. If the domain D ∈ K is a solution of the problem (27)-(29), then

λ1(D) =
1
2

∫

SD

f(x)PD(n(x))ds.

Proof. Considering (9) we can write

δ λ1 (D) = −
∫

SD

|∇u1 (x)|2 [PD′ (n (x))− PD (n (x))] ds, (30)

where D ,D′ ∈ K.
Let’s take positive parameter t and define D = D(t), λ1(t) = λ1(D(t)). Then as one may

obtain from (30)

λ1 (t+ ∆t)− λ1 (t) = λ1 (D (t+ ∆t))− λ1 (D (t)) =

=
∫

S(t)

|∇u1 (x)|2 [PD(t+∆t) (n (x))− PD(t) (n (x))
]
ds+ o (∆t).

From this dividing by ∆t we get

λ
′
1 (t) = −

∫

SD(t)

|∇u1 (x)|2 P ′D(t) (n (x)) ds, (31)

where

P ′D(t) (x) =
d

dt
PD(t) (x) .

Now let’s show that for the first eigenvalue of the problem (27), (28) in the domain D is true
the formula

λ1 (D) =
1
2

∫

SD

|∇u1 (x)|2 PD (n (x)) ds. (32)

Here we denoted by u1(t) the first eigenfunction of the problem (27), (28) corresponding
to the domain D0.Take D0 ∈ K, D (t) = tD0, t > 0. Then it is clear that the function
ũ1 (x) = u1

(
x
t

)
, x ∈ D(t) would be an eigenfunction of the problem (27),(28) by D = D (t) .

Really, considering

∆ũ1 (x) =
1
t2

∆u1

(x
t

)

we see that ũ1 (x) is an eigenfunction of (27), (28) corresponding for the eigenvalue λ1 (t) =
λ1(D0)
t2

. Considering this in (31) we have

−2
λ1(D0)
t3

= − 1
t2

∫

SD

∣∣∣∇u1

(x
t

)∣∣∣
2
PD0(n(x))ds.
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Taking t = 1 we obtain (32).
Considering (10) for the functional

F (D) =
∫

D

f (x) dx

we have

δ F (D) =
∫

SD

f (x) [PD′ (n (x))− PD (n (x))] ds.

Now, let D ∈ K be solution of the problem (27)-(29). Then according to the optimality
condition

− |∇u1(x)|2 + f(x) = 0, x ∈ SD. (33)

Multiplying (33) by PD (n (x)) and integrating over SD we get

−1
2

∫

SD

|∇u1 (x)|2 PD (n (x)) ds+
1
2

∫

SD

f (x)PD (n (x)) ds = 0.

Considering here (32) we get the statement of the theorem.
Theorem is proved.
Consider some particular cases. Suppose that f(x) = 1, x ∈ En. In this case the functional

(29) takes a form

J (D) = λ1 (D) +mesD → min. (34)

From the theorem we obtain

λ1 (D) =
1
2

∫

SD

PD (n (x)) ds.

In two dimensional case ([6])

1
2

∫

SD

PD (n (x)) ds = mesD.

Thus

λ1 (D) = mesD.

In one dimensional case the problem (27)-(29) has the form

u
′′

= λu, x ∈ (a, b),
u(a) = u(b) = 0,

λ1(a, b) +
b∫
a
f(x)dx→ min .

In this case finding of domain is equivalent to the finding of a and b. For this problem

λ1 (a, b) =
1
2

[f (b) b− f (a) a] .

For considered problem the eigenvalues are determined (see for instance [3]), so it is not
difficult to check the obtained formulae.
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Note, that when f (x) ≡ 1 the problem (27)-(29) has no solution. In this case the “increasing”
of domain leads to decreasing of the eigenvalue. From (32) also follows the condition λ1 = 0,
that is not true for considered problem.

Using the offered here technique other cases also may be considered.
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