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Abstract

The Lipschitz stability estimate for a coefficient inverse problem for thenon-stationary
single-speed transport equation with the lateral boundary data is obtained. The method of Carleman
estimates is used. Uniqueness of the solution follows.

1. Introduction

The transport equation is used to model a variety of diffusion processes, such asdiffusion of
neutrons in medium, scattering of light in the turbulent atmosphere, propagation ofγ −rays in a
scattering medium, etc. (see, e.g., the book of Case and Zweifel [6]). Coefficient inverse problems
(CIPs) for the transport equation are the problems of determining of the absorption coefficient,
angular density of sources or scattering indicatrix from an extra boundary data. They find a variety
of applications in optical tomography, theory of nuclear reactors, etc. (see, e.g., the book of
Anikonov, Kovtanyuk and Prokhorov [1], and [6]). This paper addresses the question of the
Lipschitz stability for a CIP for the non-stationary single-speed transport equation with the lateral
boundary data. In general, stability estimates for CIPs provide guidelines for the stability of
corresponding numerical methods.

Stability, uniqueness and existence results and references to such resultsfor CIPs for the
stationary transport equation can be found, e. g., in [1] and in the book of Romanov [23]. Uniqueness
and existence results for CIPs for the non-stationary transport equation were obtained in the works of
Prilepko and Ivankov [20], [21] and [22]. Uniqueness and existence results in [20] and [21]were
obtained for special forms of the unknown coefficient using the overdetermination ata point. Also,
uniqueness and existence results were obtained for an inverse problem with the final
overdetermination, i.e. where complete lateral boundary data is not present but both initial and end
conditions (att = T) are given; see [22]. For some recent publications on inverse problems for the
transport equation see Tamasan [25] and Stefanov [24]. A derivation of the transport equation for the
non-stationary case can be found, for example, in [6].

The proof of the main result of this paper is based on a Carleman estimate, obtained by Klibanov
and Pamyatnykh [16]. Traditionally, Carleman estimates have been used for proofs of stability and
uniqueness results for non-standard Cauchy problems for PDEs. They were first introduced by
Carleman in 1939 [5], also see, e.g., books of Hörmander [7], Klibanov and Timonov [17] and
Lavrentev, Romanov and Shishatskii [19]. Bukhgeim and Klibanov [4] have introduced thetool of
Carleman estimates in the field of CIPs for proofs of global uniqueness and stability results; also, see
Klibanov [12], [13] and [14], and Klibanov and Timonov [17], [18]. This method works for
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non-overdetermined CIPs, as long as the initial condition is not vanishing and the Carleman estimate
holds for the corresponding differential operator (see Chapter 1 in [17] for the definition of
non-overdetermined CIPs). Recently, Klibanov and Timonov have extended the original idea of [4]
and [12] - [14] for the construction of numerical methods for CIPs, including the case when the
initial condition is theδ-function; see [17] for details and more references.

Klibanov and Malinsky [15] and Kazemi and Klibanov [11] have proposed to use the Carleman
estimates for proofs of the Lipschitz stability estimates for hyperbolic equations with the lateral
Cauchy data; also see [17]. The method of [4], [12]-[14] and [17] has generated many publications,
see, for example, Bellassoued [2], [3], Imanuvilov and Yamamoto [8], [9] and [10] and the
references cited therein. The Lipschitz stability of the solution of the non-stationary transport
equation with the lateral data was proved in [16].

In this paper the ideas of [11] and [15] are combined with the ideas of [8], [9], and [16]-[18]. In
Section 2 the statements of the results are given; in Section 3, 4 and 5 the proofs of these results are
provided.

2. Statements of results
2.1. Statements of results
Let T andR be positive numbers. DenoteΩ = x ∈ Rn : |x| < R, Sn = ν ∈ Rn : |ν| = 1,

H = Ω × Sn × −T,T, Γ = ∂Ω × Sn × −T,T, Z = Ω × Sn.

Also, denote

C
kH = s ∈ CkH : Dx,t

α ux, t,v ∈ CH, |α| ≤ k
The transport equation inH has the form [6]

ut + ν,∇u + ax,νu +
Sn

∫ gx, t,ν,μux, t,μdσμ = Fx, t,ν,     (2.1)

whereν ∈ Sn is the unit vector of particle velocity,ux, t,v ∈ C
3H is the density of particle flow,

ax,v is the absorption coefficient,Fx, t,v is the angular density of sources,gx, t,v,μ is the
scattering indicatrix andν,∇u denotes the scalar product of two vectorsν and∇u.

Consider the following boundary condition

u|Γ = px, t,ν, wherex, t,v ∈ ∂Ω × −T,T × Sn andn,v < 0.     (2.2)

Heren,v is the scalar product of the outer unit normal vectorn to the surface∂Ω and the direction
v of the velocity. So, only incoming radiation is given at the boundary in this case.

Equation (2.1) with the boundary condition (2.2) and the initial condition att = 0

ux,0,v = fx,ν, ∀x,v ∈ Z,     (2.3)

form the classical forward problem for the transport equation in any direction oft (positive or
negative). Uniqueness, existence and stability results for this problem arewell known, see, e. g.,
Prilepko and Ivankov [20].

Suppose now that the absorption coefficientax,v is unknown, but the following additional
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boundary condition is given:

u|Γ = qx, t,ν, wherex, t,v ∈ ∂Ω × −T,T × Sn andn,v ≥ 0.

The functionqx, t,v describes the outgoing radiation at the boundary. Introduce the functionγx, t,ν γx, t,ν = px, t,ν,
qx, t,ν, if n,v < 0,

if n,v ≥ 0.
    (2.4)

Hence

u|Γ = γx, t,ν, ∀x, t,v ∈ ∂Ω × −T,T × Sn.     (2.5)

Thus, we obtain the following coefficient inverse problem for the non-stationary transport equation:

Inverse Problem: Given the initial condition (2.3) and the lateral data (2.5), determine the
coefficientax,v of the equation (2.1).

For a positive constantM, denote

DM = sx ∈ CZ : ||s||CZ ≤ M.

Theorem 1. [Lipschitz stability and uniqueness]Let T > R. Suppose that derivatives∂t
kg exist

in H × Sn and ||∂t
kg||CH×Sn ≤ r1 for k = 0,1,2,where r1 is a positive constant. Let |fx,v| > r2 and

||fx,v||CZ ≤ r3, where r3 ≥ r2 > 0. Suppose that the coefficients a1,a2 ∈ DM correspond to the
boundary dataγ1x, t,v andγ2x, t,v, respectively, and functions∂t

kγ i ∈ L2Ω for k = 0,1,2,
i = 1,2.

Then the following Lipschitz stability estimate holds

||a1 − a2||L2Z ≤ K ⋅ ||γ1 − γ2||L2Γ + ||∂tγ1 − γ2||L2Γ + ||∂t
2γ1 − γ2||L2Γ,     (2.6)

where K= KΩ,T,r1,r2,r3,M is the positive constant depending onΩ, T, r1, r2, r3, M and
independent on the functions a1, a2, γ1, γ2.

In particular, whenγ1 ≡ γ2, then a1x,v ≡ a2x,v which implies that the Inverse Problem has
at most one solution.

BelowK = KΩ,T,r1,r2,r3,M denotes different positive constants, depending onΩ, T, r1, r2,
r3, M and independent on functionsa1, a2, γ1, γ2, and conditions of Theorem 1 are assumed to be
satisfied. The proof of Theorem 1 is based on the Carleman estimate formulated in Lemma 1.

Let

L0u = ut + ν,∇u = ut +
i=1

n∑ ν iui ,

whereui ≡ ∂u/∂xi . Let x0 ∈ Rn. Introduce the function
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ψx, t = |x − x0|2 − ηt2, η = const∈ 0,1.
Let c = const> 0. Denote

Gcx0 = x, t : |x − x0|2 − ηt2 > c2 and |x| < R.     (2.7)

Obviously,

Gc1 ⊂ Gc2 if c1 > c2.     (2.8)

Introduce the Carleman Weight Function (CWF) as

Cx, t = expλψx, t.
Lemma 1. Choose the numberη such thatη ∈ 0,1 and T> R/ η . Also, choose the constant

c > 0 such that Gcx0 ⊂ Ω × −T,T. Then there exist positive constantsλ0 = λ0Gcx0 and
B = BGcx0, depending only on the domain Gcx0, such that the following pointwise Carleman
estimate holds in Gcx0 × Sn for all functions ux, t,ν ∈ C1Gcx0 × CSn and for allλ ≥ λ0Gcx0 : L0u2C2 ≥ 2λ1 − ηu2C2 + ∇ ⋅ U + Vt,     (2.9)

where the vector functionU,V satisfies the estimate

|U,V| ≤ Bλu2C2.     (2.10)

The proof of this lemma can be found in [16].
Also, we will use the following Lipschitz stability result, proved in [16]

Theorem 2. Suppose that the function u∈ C1Ω × −T,T × CSn satisfies the conditions
(2.1)and(2.4).Let functions ax, t,ν and gx, t,ν,μ be bounded, i.e. |ax, t,ν| < r5 ∀x, t,v ∈ H
and |gx, t,ν,μ| < r6 ∀x, t,v,μ ∈ H × Sn, where r5 and r6 are positive constants. Let functionsγx, t,v ∈ L2Γ, Fx, t,v ∈ L2H and let T> R. Then the following Lipschitz stability estimate
holds:

||u||L2H ≤ K ⋅ ||γ||L2Γ + ||F||L2H,
where K= KΩ,T,r5,r6 is the positive constant independent on functions u, γ and F.

2.2. Preliminaries

Before proceeding with the proof of the Theorem 1, we introduce some new functions and
formulate necessary lemmata. Let functionsu1 andu2 be solutions of equation (2.1) with the initial
condition (2.3) and the lateral data (2.5) forax,v = a1x,v, γx, t,v = γ1x, t,v and
ax,v = a2x,v, γx, t,v = γ2x, t,v, respectively. Denoteu = u1 − u2,
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a = a1 − a2,     (2.11)γ = γ1 − γ2.

From relations (2.1), (2.3), (2.5) and (2.11), noticing thata1u1 − a2u2 = a1
u + au2, we obtainut + ν,∇u + a1x,νu +

Sn

∫ gx, t,ν,μux, t,μdσμ = −au2,     (2.12)ux,0,v = 0, ∀x,v ∈ Z,     (2.13)u|Γ = γx, t,ν, ∀x, t,v ∈ ∂Ω × −T,T × Sn.     (2.14)

Applying the Theorem 2 to the equation (2.12) with lateral data (2.14), we obtain the following
estimate for the functionu

||u||L2H ≤ K||γ||L2Γ + ||a||L2Z.     (2.15)

Denoteυ = ut. Differentiating (2.12) and (2.14) with respect tot, we obtainυt + ν,∇υ + a1x,νυ +
Sn

∫ gt
u + gυdσμ = −au2 t     (2.16)

and υ|Γ = γ tx, t,ν, ∀x, t,v ∈ ∂Ω × −T,T × Sn.     (2.17)

Setting in (2.12)t = 0, we obtainυx,0,v = −au2x,0,v = −ax,vfx,v, where x,v ∈ Z.     (2.18)

Differentiating (2.16) and (2.17) with respect tot and denotingw = υt, we obtain

wt + ν,∇w + a1x,νw +
Sn

∫ gtt
u + 2gtυ + gwdσμ = −au2 tt,     (2.19)

w|Γ = γ ttx, t,ν, ∀x, t,v ∈ ∂Ω × −T,T × Sn.     (2.20)

We will need the following lemma
Lemma 2. Let functions a1x,ν, a2x,ν ∈ DM. The following Lipschitz stability estimates

hold:

||υ||L2H ≤ K ⋅ ||a||L2Z + ||γ||L2Γ + ||γ t||L2Γ,     (2.21)

||w||L2H ≤ K ⋅ ||a||L2Z + ||γ||L2Γ + ||γ t||L2Γ + ||γ tt||L2Γ.     (2.22)

These estimates are similar to the Lipschitz stability estimate that was obtained in [16], but do
not follow directly from the result of [16] due to the presence of the functionu in (2.16) and (2.19).
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The following lemma provides an estimate from the above for an integral containing the CWF.
Lemma 3. For all functions s∈ CGcx0 and for allλ ≥ 1, the following estimate holds

Gcx0∫ t

0

∫ sx,τdτ 2

C2x, tdxdt ≤ 1λη ⋅
Gcx0∫ s2C2x, tdxdt.

See Section 3.1 in [17] for the proof.

Lemma 4. Let T > R. Then for any c∈ 0,R there exists aη0 = η0R,T,c ∈ 0,1 such that
Gc ⊂ Ω × −T,T for all η ∈ η0R,T,c,1.

Proof. By the definition of the domainGc

Gc ⊂ Ω × −T,T ⇔ ∂Ωmax ψx,T ≤ c2.,

i.e. when

R2 − ηT2 ≤ c2,

which leads to the following inequality η ≥ R2 − c2

T2 .

Sincec ∈ 0,R andR < T thenη ∈ 0,1 and we can chooseη0 = η.□
3. Proof of Lemma 2

DenoteGc ≡ Gc0 for arbitraryc = const> 0. SinceT > R, we can choose a small number = R,T > 0, such that

T > R+ 3 and |x| < 3 ⊂ Ω.     (3.1)

Chooseη0 = η0R,T,/2 ( Lemma 4 ) and let, for the sake of definiteness,η = 1 + η0R,T,/2
2

,

so that

G/2 ⊂ Ω × −T,T.     (3.2)

Choose a small numberδ = δ ∈ 0,/12, such that

G/2+3δ ∩ Ω × −T,T ≠ ∅. and |x| < 3 ⊂ Ω.     (3.3)

Consider the domainsG/2+3δ ⊂ G/2+2δ ⊂ G/2+δ ⊂ G/2. (See (2.8) and Fig.1 for a schematic

representation in the 1 - D case)
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Fig.1. SetsG/2+3δ ⊂ G/2+2δ ⊂ G/2+δ ⊂ G/2.
Also, consider the cut-off functionχx, t ∈ C1Ω × −T,T, such thatχx, t = 1

0

between0 and 1

in G/2+2δ,
in Ω × −T,T\G/2+δ,

in G/2+δ\G/2+2δ.
The equations (2.16) and (2.19) imply that

|υt + ν,∇υ| ≤ K |υ| +
Sn

∫ |u|dσμ +
Sn

∫ |υ|dσμ + |a| ,     (3.4)

|wt + ν,∇w| ≤ K |w| +
Sn

∫ |u|dσμ +
Sn

∫ |υ|dσμ +
Sn

∫ |w|dσμ + |a|     (3.5)

Let υx, t,ν = υx, t,ν ⋅ χx, t. Then
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υt +
i=1

n∑ ν iυ i = χ υt +
i=1

n∑ ν iυ i + υ χt +
i=1

n∑ ν iχ i .

Derivativesχt,χ i , i = 1, ...,n equal to zero inG/2+2δ and inΩ × −T,T\G/2+δ and are bounded in
G/2+δ\G/2+2δ. So, using the inequality (3.4), we obtain

|υt +
i=1

n∑ ν iυ i | ≤≤ K ⋅ χ |υ| +
Sn

∫ |u|dσμ +
Sn

∫ |υ|dσμ + |a| + 1 − χ ⋅ |υ| .     (3.6)

Similarly, for wx, t,ν = wx, t,ν ⋅ χx, t, we obtain from (3.5)

|wt +
i=1

n∑ ν iwi | ≤≤ K ⋅ χ |w| +
Sn

∫ |u|dσμ +
Sn

∫ |υ|dσμ +
Sn

∫ |w|dσμ + |a| + 1 − χ ⋅ |w|     (3.7)

Denoteu = ux, t,ν ⋅ χx, t. Then (3.6) and (3.7) become

|υt +
i=1

n∑ ν iυ i | ≤≤ K ⋅ |υ| +
Sn

∫ |u|dσμ +
Sn

∫ |υ|dσμ + |a| + 1 − χ ⋅ |υ|     (3.8)

and

|wt +
i=1

n∑ ν iwi | ≤≤ K ⋅ |w| +
Sn

∫ |u|dσμ +
Sn

∫ |υ|dσμ +
Sn

∫ |w|dσμ + |a| + 1 − χ ⋅ |w|     (3.9)

Multiplying (3.8) and (3.9) by the CWF and squaring both sides, we obtain
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υt +
i=1

n∑ ν iυ i

2

C2 ≤ K ⋅ υ2 +
Sn

∫ u2dσμ +
Sn

∫ υ2dσμ + a2 C2 ++ K1 − χ ⋅ υ2C2,

wt +
i=1

n∑ ν iwi

2

C2 ≤≤ K ⋅ w2 +
Sn

∫ u2dσμ +
Sn

∫ υ2dσμ +
Sn

∫ w2dσμ + a2 + 1 − χ ⋅ w2 C2.

The Carleman estimate (2.9) leads to

2λ1 − ηυ2C2 + ∇ ⋅ U1 + V1t ≤     (3.10)≤ K ⋅ υ2 +
Sn

∫ u2dσμ +
Sn

∫ υ2dσμ + a2 + 1 − χ ⋅ υ2 C2

and

2λ1 − ηw2C2 + ∇ ⋅ U2 + V2t ≤     (3.11)≤ K ⋅ w2 +
Sn

∫ u2dσμ +
Sn

∫ υ2dσμ +
Sn

∫ w2dσμ + a2 + 1 − χ ⋅ w2 C2

wherex, t,ν ∈ H/2, H/2 = G/2 × Sn and functionsU1, V1 andU2, V2 are the functionsU, V from
the Carleman estimate (2.9)-(2.10) for the case, when the functionu is replaced by the functionsυ
andw, respectively. Integrating overH/2 and applying the Gauss’ formula, we obtain

2λ1 − η
H/2∫ υ2C2dh ≤ K ⋅

H/2∫ υ2 +
Sn

∫ u2dσμ +
Sn

∫ υ2dσμ + a2 C2dh++ K ⋅
H/2∫ 1 − χυ2C2dh+

M/2∫ |U1,V1|dS     (3.12)

Similarly, we obtain forw

2λ1 − η
H/2∫ w2C2dh ≤     (3.13)
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≤ K ⋅
H/2∫ w2 +

Sn

∫ u2dσμ +
Sn

∫ υ2dσμ +
Sn

∫ w2dσμ + a2 C2dh+
H/2∫ 1 − χ ⋅ w2C2dh+

M/2∫ |U2,V2|dS.

wheredh ≡ dxdσvdt, M/2 = ∂G/2 × Sn and∂G/2 denotes the boundary of the domainG/2.
Noticing that for any functionsx, t,v ∈ CH

H/2∫ Sn

∫ s2dσμ C2dh = A ⋅
H/2∫ s2C2dh,

whereA is the area of the unit sphereSn, we remove the inner integrals overSn in (3.12) and (3.13).
So, (3.12) and (3.13) become

2λ1 − η
H/2∫ υ2C2dh ≤ K ⋅

H/2∫ υ2 + u2 + a2 C2dh++ K ⋅
H/2∫ 1 − χυ2C2dh+

M/2∫ |U1,V1|dS

and

2λ1 − η
H/2∫ w2C2dh ≤≤ K ⋅

H/2∫ w2 + u2 + υ2 + a2 C2dh+
H/2∫ 1 − χ ⋅ w2C2dh+

M/2∫ |U2,V2|dS.

Chooseλ0 such thatK/2λ01 − η < 1/2. Then for allλ > λ0 we haveλ
H/2∫ υ2C2dh ≤

≤ K ⋅
H/2∫ a2C2dh+

H/2∫ u2C2dh+
H/2∫ 1 − χυ2C2dh +

M/2∫ |U1,V1|dS

and
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λ
H/2∫ w2C2dh ≤

≤ K ⋅
H/2∫ a2C2dh+

H/2∫ u2C2dh+
H/2∫ υ2C2dh+

H/2∫ 1 − χ ⋅ w2C2dh ++
M/2∫ |U2,V2|dS.

Using (2.10), we obtain λ
H/2∫ υ2C2dh ≤     (3.14)

≤ K ⋅
H/2∫ a2C2dh+

H/2∫ u2C2dh+
H/2∫ 1 − χυ2C2dh + Kλ

M/2∫ υ2C2dS

and λ
H/2∫ w2C2dh ≤     (3.15)

≤ K ⋅
H/2∫ a2C2dh+

H/2∫ u2C2dh+
H/2∫ υ2C2dh+

H/2∫ 1 − χ ⋅ w2C2dh ++ Kλ
M/2∫ w2C2dS.

The boundaryM/2 of the domainG/2 consists of two partsM/2 = M/21 ∪ M/22 , where

M/21 = x, t,v : |x| = R ∩ G/2 × Sn
and

M/22 = x, t,v : |x|2 − ηt2 = /22 ∩ G/2 × Sn.
Since υx, t,v = χγ tx, t,v andwx, t,v = χγ ttx, t,v, for x, t,v ∈ M/21 ,
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υx, t,v = 0 andwx, t,v = 0, for x, t,v ∈ M/22 ,

then

M/2∫ υ2C2dS=
M/21

∫ χγ t
2C2dS and

M/2∫ w2C2dS=
M/21

∫ χγ tt
2C2dS.

Estimate both sides of the inequality (3.14). Note that sinceυ = υ in H/2+2δ andH/2+3δ ⊂ H/2,
then λ

H/2∫ υ2C2dh ≥ λ
H/2+3δ∫ υ2C2dh ≥ λe2λ/2+3δ2

H/2+3δ∫ υ2dh.     (3.16)

Also, since 1− χx, t = 0 in G/2+2δ, then

|1− χ|C2 ≤ e2λ/2+2δ2
, ∀x, t ∈ H/2.

Hence,

H/2∫ 1 − χυ2C2dh ≤ e2λ/2+2δ2

H/2∫ υ2dh.

Therefore (3.14) and (3.16) lead to λe2λ/2+3δ2

H/2+3δ∫ υ2dh ≤     (3.17)

≤ K

H/2∫ a2C2dh+
H/2∫ u2C2dh+ e2λ/2+2δ2 ⋅

H/2∫ υ2dh+ λ
M/21

∫ γ t
2C2dS .

Similarly, from (3.15) we obtain λe2λ/2+3δ2

H/2+3δ∫ w2dh ≤     (3.18)

≤ K

H/2∫ a2C2dh+
H/2∫ u2C2dh+

H/2∫ υ2C2dh+ e2λ/2+2δ2 ⋅
H/2∫ w2dh+ λ

M/21

∫ γ tt
2C2dS .

Let m =
G/2sup |x|2 − ηt2. Then (3.17) and (3.18) yieldλe2λ/2+3δ2

||υ||L2H/2+3δ2 ≤     (3.19)
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≤ K e2λ/2+2δ2
||υ||L2H/22 + e2λm ||a||L2H/2∩t=02 + ||u||L2H/22 + λ||γ t||L2M/21 2

and λe2λ/2+3δ2
||w||L2H/2+3δ2 ≤     (3.20)≤ K e2λ/2+2δ2

||w||L2H/22 + e2λm ||a||L2H/2∩t=02 + ||u||L2H/22 + ||υ||L2H/22 + λ||γ tt||L2M/21 2 .

Since

|ux, t,v| ≤ |ux, t,v| and |υx, t,v| ≤ |υx, t,v| ∀x, t,v ∈ H,

then (3.19) and (3.20) become λe2λ/2+3δ2
||υ||L2H/2+3δ2 ≤≤ K e2λ/2+2δ2

||υ||L2H/22 + e2λm ||a||L2H/2∩t=02 + ||u||L2H/22 + λ||γ t||L2M/21 2

and λe2λ/2+3δ2
||w||L2H/2+3δ2 ≤≤ K e2λ/2+2δ2

||w||L2H/22 + e2λm ||a||L2H/2∩t=02 + ||u||L2H/22 + ||υ||L2H/22 + λ||γ tt||L2M/21 2 .

Dividing these inequalities byλexp2λ/2 + 3δ2, we obtain

||υ||L2H/2+3δ2 ≤     (3.21)≤ K e−2λδ+5δλ ||υ||L2H/22 + e2λmλ ||a||L2H/2∩t=02 + ||u||L2H/22 + λ||γ t||L2M/21 2 ,

||w||L2H/2+3δ2 ≤ K e−2λδ+5δλ ||w||L2H/22 +     (3.22)+ K e2λmλ ||a||L2H/2∩t=02 + ||u||L2H/22 + ||υ||L2H/22 + λ||γ tt||L2M/21 2 .

An inconvenience of the domainH/2+3δ for our goal is that although the domain
H/2+3δ ∩ t = 0 ⊂ Ω, butΩ ≠ H/2+3δ ∩ t = 0. Thus, we now “shift” this domain. Choose anx0

such that |x0| = 3/2 and consider the domainG/2x0, which is obtained by a shift of the domain
G/2. Clearly one can choose = R,T andδ = δ ∈ 0,/12 so small that in addition to
(3.1)-(3.3)

G/2x0 ⊂ Ω × −T,T andG/2+3δx0 ∩ Ω × −T,T ≠ .

Then

13



G/2+3δ ∩ t = 0 = |x| > 
2
+ 3δ ∩ Ω     (3.23)

and

G/2+3δx0 ∩ t = 0 = |x − x0| > 
2
+ 3δ ∩ Ω.     (3.24)

Consider now the ballB0,/2 + 3δ := x : |x| < /2 + 3δ. By (3.1)B0,/2 + 3δ ⊂ Ω, sinceδ = δ ∈ 0,/12. We prove now thatB ⊂ G/2+3δx0 ∩ t = 0. Let x ∈ B be an arbitrary point
of the ballB. Then

|x − x0| ≥ |x0| − |x| = 3
2
 − |x| > 3

2
 − 

2
− 3δ =  − 3δ.

Sinceδ ∈ 0,/12, then − 3δ > /2 +3δ. Hence,

|x − x0| >  − 3δ > 
2
+ 3δ.

Hence, by (3.24)B ⊂ G/2+3δx0 ∩ t = 0. Therefore, using (3.23) and (3.24), we obtain thatΩ = G/2+3δ ∪ G/2+3δx0 ∩ t = 0.

Hence, there exists a numberδ1 ∈ 0,T such that the layer

Eδ1 = x, t : x ∈ Ω, |t| < δ1 ⊂ G/2 ∪ G/2x0.     (3.25)

The schematic representation of the domainsG/2, G/2x0 andEδ1 in 1-D case is provided on Fig.
2.

14



Fig. 2. ∂G/2 − Solid line, ∂G/2x0 − Dashed line, Eδ1 − Shaded area.

Since the Carleman estimate (2.9)-(2.10) is valid for the domainG/2x0, we can obtain
estimates similar to (3.21) and (3.22)

||υ||L2H/2+3δx02 ≤     (3.26)≤ K e−2λδ+5δλ ||υ||L2H/2x02 + e2λmλ ||a||L2H/2x0∩t=02 + ||u||L2H/2x02 + λ||γ t||L2M/21 x02

and

||w||L2H/2+3δx02 ≤ K e−2λδ+5δλ ||w||L2H/2x02 +     (3.27)+ K e2λmλ ||a||L2H/2x0∩t=02 + ||u||L2H/2x02 + ||υ||L2H/2x02 + λ||γ tt||L2M/21 x02 .

where

H/2x0 = G/2x0 × Sn

and

M/21 x0 = G/2x0 ∩ x, t : |x| = R × Sn.

Consider now the layerEδ1 defined by (3.25) (see Fig.2). Estimates (3.21), (3.26) and (3.22),
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(3.27) lead to the following estimates inEδ1 × Sn :

||υ||L2Eδ1×Sn2 ≤ K e−2λδ+5δλ ||υ||L2H2 + e2λmλ ||a||L2Z2 + ||u||L2H2 + λ||γ t||L2Γ2

    (3.28)

and

||w||L2Eδ1×Sn2 ≤     (3.29)≤ K e−2λδ+5δλ ||w||L2H2 + e2λmλ ||a||L2Z2 + ||u||L2H2 + ||υ||L2H2 + λ||γ tt||L2Γ2 .

Since for any functionsx, t,v ∈ CH there existst1 ∈ −δ1,δ1 such that

Sn

∫Ω∫ s2x, t1,vdxdσv ≤ 1
2δ1

||s||L2Eδ1×Sn2 ,

then (3.28) and (3.29) lead to

Sn

∫Ω∫ υ2x, t1,vdxdσv ≤ N1,     (3.30)

Sn

∫Ω∫ w2x, t1,vdxdσv ≤ N2,

where

N1 = K e−2λδ+5δλ ||υ||L2H2 + e2λmλ ||a||L2Z2 + ||u||L2H2 + λ||γ t||L2Γ2     (3.31)

and

N2 = K e−2λδ+5δλ ||w||L2H2 + e2λmλ ||a||L2Z2 + ||u||L2H2 + ||υ||L2H2 + λ||γ tt||L2Γ2 .

Let

S+t1 = ∂Ω × t1,T × Sn, H+t1 = Ω × t1,T × Sn,

S−t1 = ∂Ω × −T, t1 × Sn, H−t1 = Ω × −T, t1 × Sn.

Denote

Yx, t,ν = υt +
i=1

n∑ ν iυ i ,     (3.32)υx, t1,ν = υ0x,ν,
16



υ|S+t1 = γ tx, t,ν.
Estimate theL2H+t1 norm of the functionυ. Multiplying (3.32) by 2υ and integrating over

Z × t1, t, wheret ∈ t1,T, we obtain

t1

t∫
Sn

∫Ω∫ ∂∂τ υ2dxdσvdτ +
t1

t∫
Sn

∫Ω∫ n

i=1

∑ viυ2 idxdσvdτ =
t1

t∫
Sn

∫Ω∫ 2υYdxdσvdτ.     (3.33)

Consider the vector functionB = ν1υ2,ν2υ2, ...,νnυ2. Then

i=1

n∑ ν iυ2 i = ∇ ⋅ B,

so (3.33) becomes

Sn

∫Ω∫ υ2x, t,vdxdσv −
Sn

∫Ω∫ υ2x, t1,vdxdσv +
t1

t∫
Sn

∫∂Ω∫ B,ndSdσvdτ ≤
≤ K

t1

t∫
Sn

∫Ω∫ υ2dxdσvdτ +
t1

t∫
Sn

∫Ω∫ Y2dxdσvdτ .

HereB,n denotes the scalar product of vectorsB andn, wheren is the outward normal vector on∂Ω.
Noticing thatB = ν ⋅ υ2, where |ν| = 1 and using the Cauchy-Schwarz inequality, we obtain

Sn

∫Ω∫ υ2x, t,vdxdσv ≤
Sn

∫Ω∫ υ2 x, t1,vdxdσv +
t1

t∫
Sn

∫∂Ω∫ υ2dSdσvdτ +     (3.34)

+ K

t1

t∫
Sn

∫Ω∫ υ2dxdσvdτ +
t1

t∫
Sn

∫Ω∫ Y2dxdσvdτ ,

Estimate |Y| using (3.4) and (3.32)

|Y| ≤ K |υ| +
Sn

∫ |u|dσμ +
Sn

∫ |υ|dσμ + |a| .     (3.35)

Estimates (3.34) and (3.35) lead to

Sn

∫Ω∫ υ2x, t,vdxdσv ≤
Sn

∫Ω∫ υ2 x, t1,vdxdσv +
t1

t∫
Sn

∫∂Ω∫ γ t
2dSdσvdτ +
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+ K

t1

t∫
Sn

∫Ω∫ υ2dxdσvdτ +
t1

t∫
Sn

∫Ω∫ u2dxdσvdτ +
t1

t∫
Sn

∫Ω∫ a2dxdσvdτ .

Using the Gronwall’s inequality, we obtain

Sn

∫Ω∫ υ2x, t,vdxdσv ≤     (3.36)

≤ K

Sn

∫Ω∫ υ2 x, t1,vdxdσv +
t1

t∫
Sn

∫∂Ω∫ γ t
2dSdσvdτ +

t1

t∫
Sn

∫Ω∫ u2dxdσvdτ +
t1

t∫
Sn

∫Ω∫ a2dxdσvdτ .

Substituting (3.30) and (3.31) in the right-hand side of (3.36), we get

Sn

∫Ω∫ υ2x, t,vdxdσv ≤ K N1 +
t1

t∫
Sn

∫∂Ω∫ γ t
2dSdσvdτ +

t1

t∫
Sn

∫Ω∫ u2dxdσvdτ +
t1

t∫
Sn

∫Ω∫ a2dxdσvdτ == K e−2λδ+5δλ ||υ||L2H2 + e2λmλ ||a||L2Z2 + ||u||L2H2 + λ||γ t||L2Γ2 ++ K

t1

t∫
Sn

∫∂Ω∫ γ t
2dSdσvdτ +

t1

t∫
Sn

∫Ω∫ u2dxdσvdτ +
t1

t∫
Sn

∫Ω∫ a2dxdσvdτ ≤≤ K e−2λδ+5δλ ||υ||L2H2 + e2λmλ ||a||L2Z2 + ||u||L2H2 + λ||γ t||L2Γ2 .

Thus,

||υ||L2H+t12 ≤ K e−2λδ+5δλ ||υ||L2H2 + e2λmλ ||a||L2Z2 + ||u||L2H2 + λ||γ t||L2Γ2 .

    (3.37)

One can obtain similar estimate for ||υ||L2H−t12 .
Summing up that estimate with (3.37), we obtain

||υ||L2H2 ≤ K e−2λδ+5δλ ||υ||L2H2 + e2λmλ ||a||L2Z2 + ||u||L2H2 + λ||γ t||L2Γ2 .

To remove the term withu from the latter formula we apply the estimate (2.15). Hence

||υ||L2H2 ≤ K e−2λδ+5δλ ||υ||L2H2 + e2λmλ ||a||L2Z2 + ||γ||L2Γ2 + λ||γ t||L2Γ2 .

Considerλ1, such that

Ke−2λ1δ+5δ = 1
2

.
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Then λ1 = − 1
2δ + 5δ ln 1

2K
.

Choosingλ > max1,λ1, we obtain

||υ||L2H2 ≤ K e2λmλ ||a||L2Z2 + e2λm ||γ||L2Γ2 + ||γ t||L2Γ2 ,     (3.38)

which implies the desired estimate (2.21).
Applying the procedure, similar to (3.32)-(3.38), to the equations depending onw, and using the

estimate (3.38), one can similarly obtain the estimate (2.22).□
4. Proof of the Theorem 1

This section consists of three subsections. In the subsection 4.1 geometry is defined and the
proof of the Theorem 1 is started. In the subsection 4.2 the supplementary fact is proved. In the
subsection 4.3 the proof of the Theorem 1 is finished.

4.1. Beginning of the Proof of Theorem 1

The proof of the theorem is based on the Carleman estimate (2.9)-(2.10). The values ofthe
parametersλ, η andδ that are used in the proof of this theorem are independent on the values of
these parameters used in the proof of the Lemma 2.

Consider the problem (2.12)-(2.14) inH. Also, consider the relations , (2.16)-(2.18) and
(2.19)-(2.20). Att = 0 equation (2.12) becomesutx,0,v = −au2x,0,v,     (4.1)

Since

u2x,0,v = fx,v
and

|fx,v| ≥ r2,

then (4.1) leads to

|ax,v| ≤ K ⋅ |utx,0,v|.     (4.2)

Since utx, t,v = utx,0,v + t

0

∫ uttx,τ,vdτ,
we have
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ut
2x,0,v ≤ 2ut

2x, t,v + 2
t

0

∫ uttx,τ,vdτ 2

.     (4.3)

Choose a pointx1 ∈ Rn, R <|x1|< 2R. Choose the numberη ∈ 0,1 such thatT > R/ η .
Denote the domains

Pc ≡ Gcx1 and Qc ≡ Gcx1 × Sn, ∀c > 0,

where the domainsGcx1 are defined by (2.7).
Choose the constantc > 0 such that |x − x1|2 − c2 < ηT2, ∀x ∈ Rn : |x| = R. Hence,

Gcx1 ∩ t = ±T = ∅. Define the domainΩb = Ω × 0,b and choose constantsb > 0 andδ > 0
such thatΩb ⊂ Pc+3δ ⊂ Pc. (See fig. 3 for a schematic representation in the 1 - D case)

Fig. 3. The shaded area schematically represents the domainPc.

Consider the domainsPc+3δ ⊂ Pc+2δ ⊂ Pc+δ ⊂ Pc. Also, consider the functionχ1x, t ∈ C1Ω × −T,T, such thatχ1x, t = 1

0

between0 and 1

in Pc+2δ,
in Ω × −T,T\Pc+δ,

in Pc+δ\Pc+2δ,
20



and letχ1x, t be a non-increasing function oft in the domainPc+δ\Pc+2δ ∩ t ≥ 0, and a
non-decreasing function oft in the domainPc+δ\Pc+2δ ∩ t < 0, so that the following inequality
holds for any functionsx, t,v ∈ CH and anyx, t,v ∈ Hχ1x, t ⋅

0

t∫ sx,τ,vdτ ≤
0

t∫ χ1x,τsx,τ,vdτ .

An example of such function is constructed in Appendix A. Denoteυx, t,ν = υx, t,ν ⋅ χ1x, t
andwx, t,ν = wx, t,ν ⋅ χ1x, t. Following the proof of Lemma 2 from (3.4) to (3.15), we obtain
the analogs to estimates (3.14) and (3.15) for the domainsQcλ

Qc

∫ υ2C2dh ≤     (4.4)

≤ K ⋅
Qc

∫ a2C2dh+
Qc

∫ u2C2dh+
Qc

∫ 1 − χ1υ2C2dh + Kλ
Bc

∫ υ2C2dS

and λ
Qc

∫ w2C2dh ≤     (4.5)

≤ K ⋅
Qc

∫ a2C2dh+
Qc

∫ u2C2dh+
Qc

∫ υ2C2dh+
Qc

∫ 1 − χ1 ⋅ w2C2dh + Kλ
Bc

∫ w2C2dS,

whereBc is the boundary of the domainQc. Represent the integrals

Qc

∫ u2C2dh and

Qc

∫ υ2C2dh

as a sums of integrals

Qc

∫ u2C2dh =
Qc+2δ∫ u2C2dh+

Qc\Qc+2δ∫ u2C2dh

and

Qc

∫ υ2C2dh =
Qc+2δ∫ υ2C2dh+

Qc\Qc+2δ∫ υ2C2dh,

and consider the integrals over the domainQc+2δ first. Note thatux, t,v = ux,0,v + t

0

∫ utx,τ,vdτ
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and υx, t,v = υx,0,v + t

0

∫ υtx,τ,vdτ,
Hence. since by (2.13)ux,0,v = 0, thenu2x, t,v ≤ 2

t

0

∫ utx,τ,vdτ 2

.     (4.6)

Also, using (2.18), we obtainυ2x, t,v ≤ 2υ2x,0,v + 2
t

0

∫ υtx,τ,vdτ 2 =
= 2a2f2 + 2

t

0

∫ υtx,τ,vdτ 2

,     (4.7)

Since

ux, t,v = ux, t,v, υx, t,v = υx, t,v, ∀x, t,v ∈ Qc+2δ,
then, recalling thatυ = ut and applying (4.6) and (4.7) to the integrals

Qc+2δ∫ u2C2dh and

Qc+2δ∫ υ2C2dh,

we obtain

Qc+2δ∫ u2C2dh ≤     (4.8)

≤ K

Qc+2δ∫ t

0

∫ utx,τ,vdτ 2

C2dh = K

Qc+2δ∫ t

0

∫ υx,τ,vdτ 2

C2dh

and

Qc+2δ∫ υ2C2dh ≤ K

Qc+2δ∫ a2C2dh+
Qc+2δ∫ t

0

∫ υtx,τ,vdτ 2

C2dh =
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= K

Qc+2δ∫ a2C2dh+
Qc+2δ∫ t

0

∫ wx,τ,vdτ 2

C2dh .     (4.9)

Applying Lemma 3 to (4.8) and (4.9), we obtain

Qc+2δ∫ u2C2dh ≤ Kλ
Qc+2δ∫ υ2C2dh     (4.10)

and

Qc+2δ∫ υ2C2dh ≤ K

Qc+2δ∫ a2C2dh+ 1λ
Qc+2δ∫ w2C2dh .     (4.11)

Also, applying the estimate (4.7) to the right-hand side of (4.10), recalling thatw = υt and using
Lemma 3, we obtain

Qc+2δ∫ u2C2dh ≤ Kλ
Qc+2δ∫ a2C2dh+ 1λ

Qc+2δ∫ w2C2dh .     (4.12)

Applying the estimates (4.10), (4.11) and (4.12) to (4.4) and (4.5), and choosingλ to be
sufficiently large, we obtain λ

Qc

∫ υ2C2dh ≤     (4.13)

≤ K ⋅
Qc

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc

∫ 1 − χ1υ2C2dh + Kλ
Bc

∫ υ2C2dS,λ
Qc

∫ w2C2dh ≤     (4.14)

≤ K ⋅
Qc

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc\Qc+2δ∫ υ2C2dh+
Qc

∫ 1 − χ1 ⋅ w2C2dh ++ Kλ
Bc

∫ w2C2dS,

Note that

|ux, t,v| ≤ |ux, t,v| and |υx, t,v| ≤ |υx, t,v| ∀x, t,v ∈ H,
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(4.13) and (4.14) become λ
Qc

∫ υ2C2dh ≤     (4.15)

≤ K ⋅
Qc

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc\Qc+2δ∫ 1 − χ1υ2C2dh + Kλ
Bc

∫ υ2C2dS

and λ
Qc

∫ w2C2dh ≤     (4.16)

≤ K ⋅
Qc

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc\Qc+2δ∫ υ2C2dh+
Qc

∫ 1 − χ1 ⋅ w2C2dh ++ Kλ
Bc

∫ w2C2dS.

4.2. Proof of an Integral Inequality
Here we estimate the integral

∫
Qc

a2C2dh

from the above through the integral

∫Ωb×Sn

a2C2dh.

Recall thatΩb = Ω × 0,b (see Fig. 3). Consider the function

tcx = |x − x1|2 − c2η .

Then for any functionsx, t,v ∈ CQc, which is even with respect to the variablet, we have

Qc

∫ sx, t,vdh =
Z

∫ tcx−tcx∫ sx, t,vdtdσvdx =
Z

2∫tcx
0

∫ sx, t,vdtdσvdx.     (4.17)

Hence,
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Qc

∫ a2C2dh =
Qc\Qc+2δ∫ a2C2dh+

Qc+2δ∫ a2C2dh =     (4.18)

=
Qc\Qc+2δ∫ a2C2dh+ 2

Z

∫b

0

∫ a2C2dtdσvdx+ 2

Z

∫tc+2δx
b

∫ a2C2dtdσvdx.

Note that, sinceax,v is independent oft,we have

Z

∫b

0

∫ a2C2dtdσvdx+
Z

∫ tc+2δx
b

∫ a2C2dt dσvdx =
Z

∫ a2

b

0

∫ C2x, tdtdσvdx+
Z

∫ a2

tc+2δx
b

∫ C2x, tdt dσvdx.     (4.19)

Since the function θt = e−2ληt2

is decreasing whent > 0, we have

tc+2δx
b

∫ C2x, tdt = e2λ|x−x1|2
tc+2δx

b

∫ e−2ληt2
dt ≤ tc+2δx − b ⋅ e2λ|x−x1|2 ⋅ e−2ληb2 == tc+2δx − b ⋅ e2λ|x−x1|2 ⋅ b−1 ⋅b

0

∫ e−2ληb2
dt.

Since

b

0

∫ e−2ληb2
dt ≤b

0

∫ e−2ληt2
dt,

then tc+2δx − b ⋅ e2λ|x−x1|2 ⋅ b−1 ⋅b

0

∫ e−2ληb2
dt ≤≤ tc+2δx − b ⋅ e2λ|x−x1|2 ⋅ b−1 ⋅b

0

∫ e−2ληt2
dt ≤ K

b

0

∫ C2x, tdt.

So, by (4.18) and (4.19), we obtain
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Qc

∫ a2C2dh ≤
Qc\Qc+2δ∫ a2C2dh+ K Ωb×Sn

∫ a2C2dh.     (4.20)

Note that

C2x, t ≤ e2λc+2δ2 ∀x, t ∈ Gc\Gc+2δ.     (4.21)

From (4.17), (4.19) and (4.21), we obtain

Qc\Qc+2δ∫ a2C2dh ≤ e2λc+2δ2 ⋅
Qc\Qc+2δ∫ a2dh ≤ e2λc+2δ2 ⋅

Qc

∫ a2dh == e2λc+2δ2 ⋅
Z

∫ a2dσvdx ⋅−tcxtcx∫ dt ≤≤ Ke2λc+2δ2 ⋅
Z

∫ a2dσvdx ⋅
0

b∫ dt = Ke2λc+2δ2 ⋅Ωb×Sn

∫ a2dh.

Thus, we have

Qc\Qc+2δ∫ a2C2dh ≤ Ke2λc+2δ2 ⋅Ωb×Sn

∫ a2dh.     (4.22)

SinceΩb ⊂ Pc+3δ ⊂ Pc+2δ, then

e2λc+2δ2 < e2λc+3δ2 < C2x, t ∀x, t ∈ Ωb.

Hence, (4.22) implies that

Qc\Qc+2δ∫ a2C2dh ≤ K Ωb×Sn

∫ e2λc+2δ2a2dh ≤ K Ωb×Sn

∫ a2C2dh.     (4.23)

Finally, by (4.20) and (4.23), we have

Qc

∫ a2C2dh ≤ K Ωb×Sn

∫ a2C2dh.     (4.24)

4.3. Continuation of the Proof of Theorem 1

Consider now the estimates (4.2), (4.3) and (4.15). By (4.2)

|ax,v| ≤ K ⋅ |υx,0,v|.     (4.25)

Also, (4.3) leads to
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υ2x,0,v ≤ 2υ2x, t,v + 2
t

0

∫ wx,τ,vdτ 2

.     (4.26)

Combining (4.25) and (4.26), we obtain

|ax,v|2 ≤ 2υ2x, t,v + 2
t

0

∫ wx,τ,vdτ 2

.

Multiplying the last inequality by theC2x, t and integrating overQc+3δ, we obtain

Qc+3δ∫ |ax,v|2C2dh ≤     (4.27)

≤
Qc+3δ∫ υ2x, t,vC2dh+

Qc+3δ∫ t

0

∫ wx,τ,vdτ 2

C2dh.

SinceQc+3δ ⊂ Qc, the estimates (4.15) and (4.16) lead toλ
Qc+3δ∫ υ2C2dh ≤     (4.28)

≤ K ⋅
Qc

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc

∫ 1 − χ1υ2C2dh + Kλ
Bc

∫ υ2C2dS

and λ
Qc+3δ∫ w2C2dh ≤     (4.29)

≤ K ⋅
Qc

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc\Qc+2δ∫ υ2C2dh+
Qc

∫ 1 − χ1 ⋅ w2C2dh ++ Kλ
Bc

∫ w2C2dS.

Since υx, t,v = υx, t,v, ∀x, t,v ∈ Qc+3δ,
then, combining the estimates (4.27) and (4.28), we obtain
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λ
Qc+3δ∫ a2C2dh− λ

Qc+3δ∫ t

0

∫ wx,τ,vdτ 2

C2dh ≤     (4.30)

≤ K ⋅
Qc

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc

∫ 1 − χ1υ2C2dh + Kλ
Bc

∫ υ2C2dS.

By Lemma 3 λη ⋅
Qc+3δ∫ t

0

∫ wx,τ,vdτ 2

C2x, tdh ≤
Qc+3δ∫ w2x, t,vC2x, tdh.

Hence, (4.30) leads to λ
Qc+3δ∫ a2C2dh−

Qc+3δ∫ w2C2dh ≤     (4.31)

≤ K ⋅
Qc

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc

∫ 1 − χ1υ2C2dh + Kλ
Bc

∫ υ2C2dS.

Summing up the estimates (4.31) and (4.29), noticing that

wx, t,v = wx, t,v, ∀x, t,v ∈ Qc+3δ,
and takingλ > 2, we obtain λ

Qc+3δ∫ a2C2dh+ λ
Qc+3δ∫ w2C2dh ≤     (4.32)

≤ K ⋅
Qc

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc\Qc+2δ∫ υ2C2dh +
+ K ⋅

Qc

∫ 1 − χ1υ2C2dh+
Qc

∫ 1 − χ1w2C2dh ++ Kλ
Bc

∫ υ2C2dS+ Kλ
Bc

∫ w2C2dS.

The boundaryBc consists of two parts. Denote
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Bc
1 = x, t : |x| = R ∩ Pc × Sn,

Bc
2 = x, t : |x − x1|2 − ηt2 = c2 ∩ Pc × Sn.

ThenBc = Bc
1 ∪ Bc

2. Sinceυx, t,v = χ1
γ tx, t,v andwx, t,v = χ1

γ ttx, t,v, if x, t,v ∈ Bc
1,υx, t,v = 0 andwx, t,v = 0, if x, t,v ∈ Bc

2,

then

Bc

∫ υ2C2dS=
Bc

1

∫ χ1
γ t

2C2dS and

Bc

∫ w2C2dS=
Bc

1

∫ χ1
γ tt

2C2dS.

Thus, (4.32) leads to λ
Qc+3δ∫ |ax,v|2C2dh ≤

≤ K ⋅
Qc

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc\Qc+2δ∫ υ2C2dh+
Qc\Qc+2δ∫ w2C2dh ++ Kλ

Bc
1

∫ γ t
2C2dS+ Kλ

Bc
1

∫ γ tt
2C2dS.

Noticing thatΩb × Sn ⊂ Qc+3δ and applying (4.24) to the last inequality, we obtainλ Ωb×Sn

∫ |ax,v|2C2dh ≤     (4.33)

≤ K ⋅ Ωb×Sn

∫ a2C2dh+
Qc\Qc+2δ∫ u2C2dh+

Qc\Qc+2δ∫ υ2C2dh+
Qc\Qc+2δ∫ w2C2dh ++ Kλ

Bc
1

∫ γ t
2C2dS+ Kλ

Bc
1

∫ γ tt
2C2dS.

Takingλ > 2K in (4.33), we obtain λ Ωb×Sn

∫ |ax,v|2C2dh ≤     (4.34)
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≤ K ⋅
Qc\Qc+2δ∫ u2C2dh+

Qc\Qc+2δ∫ υ2C2dh+
Qc\Qc+2δ∫ w2C2dh ++ Kλ

Bc
1

∫ γ t
2C2dS+ Kλ

Bc
1

∫ γ tt
2C2dS.

Let m1 = Γsup |x − x1|2 − ηt2. Then, since

maxC2x, t : x, t ∈ Qc\Qc+2δ = e2λc+2δ2
,

inequality (4.34) yields λ Ωb×Sn

∫ |ax,v|2C2dh ≤≤ K ⋅ e2λc+2δ2
||u||L2H2 + ||υ||L2H2 + ||w||L2H2 ++ Kλe2λm1 ||γ t||L2Γ2 + ||γ tt||L2Γ2 .     (4.35)

Let d1 =Ωb

inf |x − x1|2 − ηt2. Then (4.35) becomesλe2λd1||a||L2Z2 ≤≤ K ⋅ e2λc+2δ2
||u||L2H2 + ||υ||L2H2 + ||w||L2H2 ++ Kλe2λm1 ||γ t||L2Γ2 + ||γ tt||L2Γ2 .

Using the estimates for ||υ||L2H and ||w||L2H, given by Lemma 2 and the estimate (2.15) for
||u||L2H2 , we obtain λe2λd1||a||L2Z2 ≤≤ K ⋅ e2λc+2δ2

||a||L2Z2 + ||γ||L2Γ2 + ||γ t||L2Γ2 + ||γ tt||L2Γ2 ++ Kλe2λm1 ||γ t||L2Γ2 + ||γ tt||L2Γ2 .     (4.36)

Sinced1 > c + 2δ2, then dividing (4.36) byλe2λd1 and takingλ to be so large that

Kλ exp−2λd1 − c + 2δ2 < 1
2

,

we obtain the desired estimate (2.6).□
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Appendix A

Here we construct supplementary functionχ1.
Consider constantsCi > 0, i = 1, ...,6, that will be chosen later, and denote the surfaces inRn,

corresponding to these constants,

Si = x, t : |x|2 − ηt2 = Ci
2, i = 1, ...,6.

Let 0 < C1 < C2. Consider the functionωCωC = 0, 0 < C < C1

e−1 ⋅ exp − C2−C12C2−C12−C2−C2 , C1 < C < C2

1, C > C2

.

This is a non-increasing function of the parameterC ≥ 0. Consider the functionω1x, t = ω|x|2 − ηt2, x, t ∈ Rn × −T,T.
Consider anyx2 ∈ Rn, such that the linex = x2 in Rn × −T,T crosses both surfacesS1 andS2.
Let t > 0 first. Choose arbitraryt1, t2 ∈ 0,T, t1 < t2, such that the pointsx2, t1 andx2, t2

are located between the surfacesS1 andS2. Clearly, the pointsx2, t1 andx2, t2 correspond to
different level surfaces of the functionω1x, t, S3 andS4, respectively, that have corresponding
constantsC3 andC4, such thatC1 < C4 < C3 < C2 (see. Fig.4).

Fig.4. Schematic representation of level surfaces for 1-D case.
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SinceωC is a non-increasing function, we haveω1x2, t1 > ω1x2, t2. Thus, the functionω1x, t is non-increasing with respect tot, whent > 0.
Let t < 0. Choose arbitraryt3, t4 ∈ −T,0, t3 > t4, such that the pointsx2, t3 andx2, t4 are

located between the surfacesS1 andS2. Clearly, the pointsx2, t3 andx2, t4 correspond to
different level surfaces of functionω1x, t, S5 andS6, respectively, that have corresponding
constantsC5 andC6, such thatC1 < C6 < C5 < C2 (see Fig. 4). Since the functionωC is a
non-increasing function, we haveω1x2, t3 > ω1x2, t4. Thus, the functionω1x, t is
non-decreasing with respect tot, whent < 0.

So, since the functionω1x, t is continuously differentiable inRn × −T,T, we can take it as the
functionχ1.
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