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Abstract. In this paper, we study a free boundary problem obtained as
a limit as ε → 0 to the following regularizing family of semilinear equations
∆u = βε(u)F (∇u), where βε approximates the Dirac delta in the origin
and F is a Lipschitz function bounded away from 0 and infinity. The least
supersolution approach is used to construct solutions satisfying geometric
properties of the level surfaces that are uniform. This allows to prove that
the free boundary of the limit has the ”right” weak geometry, in the measure
theoretical sense. By the construction of some barriers with curvature, the
classification of global profiles for the blow-up analysis is carried out and
the limit function is proven to be a viscosity and pointwise solution (a.e) to
a free boundary problem. Finally, the free boundary is proven to be a C1,α

surface around Hn−1 a.e. point.

1. Introduction

Regularizing methods in free boundary problems are models for a wide

spectrum of problems in nature. They are of particular interest in the the-

ory of flame propagation to describe laminar flames as an asymptotic limit

for high energy activation. These methods go back to Zeldovich and Frank-

Kamenetski, [ZF], in 1938. However, the rigorous mathematical study was

postponed until recently with the pionerring works of Berestycki-Caffarelli-

Nirenberg [BCN] and by Caffarelli-Vazquez [CV].

In the last decade, some attention has been given to the study of limit as

ε → 0 of solutions to the elliptic equation

(1.1) ∆u = βε(u)

where βε(s) = 1/εβ(s/ε) and β is a Lipschitz continuous function, with β > 0

in (0, 1), supp (β) = [0, 1] and
∫

β = M > 0. It is known from the series of

remarkable papers of Luis Caffarelli, Claudia Lederman and Noemi Wolanski,

([CLW1],[CLW2],[LW]) that under certain geometric conditions about the limit
1
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function u0 and its free boundary, it is a viscosity solution of the following free

boundary problem

(1.2)

{
∆u = 0 in Ω \ {u > 0}

(u+
ν )2 − (u−ν )2 = 2M on Ω ∩ ∂ {u > 0} ,

and the free boundary is locally a C1,α surface. These assumptions are nec-

essary if one intends to obtain further regularity results since there are limits

which do not satisfy the free boundary condition in the classical sense in any

portion of the free boundary ([CLW1], remark 5.1).

Recently, in [CJK], Luis Caffarelli, David Jerison and Carlos Kenig proved

some new monotonicity results so that it applies to inhomogeneous equations

in which the right-hand side of the equation does not need vanish on the free

boundary. The new versions of the monotonicity theorem led to some exis-

tence and regularity results to the Prandtl-Batchelor equation. In connection

with these results, a uniform Lipschitz estimates for solutions to a family of

semilinear equations was proven. These regularizing approximations general-

ize the type of elliptic equations in (1.1) and they are the object of study of

this paper. More concretelly, we study the limit free boundary problem and

its regularity theory as ε → 0 of the following family of semilinear equations

(1.3) ∆u = βε(u)F (∇u)

Here, F is a Lipchitz continuous function bounded away from 0 and infinity.

The strategy used in this paper is the following: We use the least superso-

lution approach to construct solutions uε, which are more ”stable” from the

geometric viewpoint. This is done for equations more general than (1.3) and

also allows to obtain a limit function with some geometric properties and its

free boundary having some ”weak” geometry. We then move to study the

limit problem. The key part here is the classification of global profiles (2-plane

functions) of the blow-up analysis. We remark however that, the typical inte-

gration by parts method developed in [CLW1] and extensively used in similar

problems does not seem to work for this case. Here, the classification depends

upon a delicate construction of barriers with some uniform control on the

curvature of their free boundaries as well as the asymptotic behavior of their
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slopes. Finally, the limit of the least supersolutions is proven to be a viscosity

and pointwise (HN−1) a.e. solution to

(1.4)

{
∆u = 0 in Ω \ {u > 0}

Hν(u
+
ν )−Hν(u

−
ν ) = M on Ω ∩ ∂ {u > 0} ,

with Hν(t) =
∫ t

0

s

F (sν)
ds.

and the free boundary Ω ∩ ∂ {u > 0} to be a C1,α surface around Hn−1a.e.

point.

In this case, the free boundary condition

Hν(u
+
ν )−Hν(u

−
ν ) = M on F (u)

also depends on the normal direction to the free boundary. This type of free

boundary conditions appear as a limit of homogenization problems in peri-

odic media. For homogenization free boundary problems, we refer to [CLM1],

[CLM2].

2. Existence, Continuity, Regularity Theory of the Least

Supersolution

In this section we will consider the following ε- regularized equations

(Eε) ∆u = Fε(u,∇u) in Ω

where Ω ⊂ RN is a Lipschitz domain and {Fε}ε>0 is under the following struc-

tural conditions:

(2.1) Fε ∈ C(R× RN),

(2.2) 0 ≤ Fε(z, p) ≤ A

ε
χ{0<z<ε} in R× RN , A > 0

Since our goal is the study of the free boundary of the limit configuration

as ε → 0, we will be interested to investigate geometric properties of some

level sets of uε. For this reason, we should choose in some sense, more ”stable”

solutions uε to deal with. This was the approach done in [MT], where solutions

were chosen to be the minimizers of the corresponding functional associated to
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the ε - perturbed equations. In this case, due to lack of variational character-

ization for solutions of (Eε), we will consider the least viscosity supersolution

of the equation above. This will be accomplished by Perron’s method.

Let ϕ be in C(∂Ω) and let us define,

Sε
ϕ = Sε :=

{
w ∈ C(Ω), w viscosity supersolution of (Eε); w ≥ ϕ on ∂Ω

}
Clearly, Sε 6= ∅ since hϕ ∈ Sε, where hϕ is the harmonic in Ω such that h = ϕ

in ∂Ω. Besides, there is also a natural barrier from below for the functions in

set Sε. Indeed, if for each ε > 0, we define

Lε := sup
(z,p)∈(0,ε)×RN

Fε(z, p) < +∞

and let Ψε be the unique solution to

(2.3)

{
∆Ψ = Lε in Ω

Ψ = ϕ on ∂Ω,

by maximum principle, we have

Sε =
{
w ∈ C(Ω), w viscosity supersolution of (Eε); w ≥ Ψε in Ω

}
We define the function

(2.4) uε(x) := inf
w∈Sε

w(x)

It will be called the least supersolution of the equation (Eε). From the

discussion above, there exists natural barriers for uε, namely, Ψε ≤ uε ≤ hϕ in

Ω.

Remark 2.1. It worths to notice that, in general, comparison principle for

supersolutions and subsolutions of equation (Eε) is not available. This way,

uniqueness of solutions is not expected to hold.

Remark 2.2. We recall some definitions that are going to be used in next

Theorem. If u : Ω → R is locally bounded, we define

u∗(x) = inf {v(x) | v ∈ USC(Ω) and v ≥ u in Ω}
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u∗(x) = sup {v(x) | v ∈ LSC(Ω) and v ≤ u in Ω}

Clearly, u∗ ∈ USC(Ω), u∗ ∈ LSC(Ω) and u∗ ≤ u ≤ u∗. Besides, we have

u∗(x) = lim
r↘0

sup {u(y) | y ∈ Ω ∩Br(x)}

u∗(x) = lim
r↘0

inf {u(y) | y ∈ Ω ∩Br(x)}

The functions u∗, u∗ are called upper semicontinuous envelope and lower

semicontinuous envelope of u respectively.

Theorem 2.3. For each ε > 0, the least supersolution of equation (Eε), uε,

belongs to C(Ω) ∩ C1,α
loc (Ω) ∩W 2,p

loc (Ω) for any 0 < α < 1 and any 1 ≤ p < ∞
and it is a viscosity solution of (Eε). Besides, uε is a strong solution of (Eε)

and assume the boundary values ϕ continuously on the boundary, i.e,

(2.5)

{
∆uε = Fε(uε,∇uε) a.e. in Ω

uε = ϕ on ∂Ω,

In particular, uε ∈ Sε.

Proof. Let us observe first that uε = (uε)
∗. It follows from Perron’s method

developed by Ishii in [I] that uε is a a viscosity subsolution and (uε)∗ is a

viscosity supersolution of (Eε). Since ∆uε ≥ 0 in the viscosity sense and

uε is upper semicontinuous, from the uniqueness of the subharmonic upper

semicontinuous representative ([LL], Theorem 9.3), we conclude

(2.6) uε(x) = lim
r→0

∫
Br(x)

uε(y)dy

Moreover, for any w ∈ Sε, ∆w ≤ Lε in the viscosity sense. In Particular,

∆(w −Ψε) ≤ 0 in D′
(Ω)

which implies, by the average characterization of superharmonicity,

∆(uε −Ψε) ≤ 0 in D′
(Ω)
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Again, from superharmonicity theory, there exists a unique superharmonic

and lower semicontinuous representative ωε such that ωε = uε − Ψε a.e in Ω

and it is given by

ωε(x) = lim
r→0

∫
Br(x)

[uε(y)−Ψε(y)]dy = uε(x)−Ψε(x)

Where we use (2.6) in the second inequality. In particular, uε is lower

semicontinuous, and so, uε = (uε)∗ is a continuous viscosity solution of (Eε).

From the structural conditions of Fε and the regularity theory developed in

[Tr1], there is a universal 0 < γ < 1 such that, uε ∈ C1,γ
loc (Ω). It also follows

from [Tr2] that uε is twice differentiable almost everywhere in Ω, with equation

(Eε) then holding almost everywhere. To finish the proof, observe that if we

define, fε(x) = Fε(uε(x),∇uε(x)), then fε ∈ C(Ω) ∩ L∞(Ω) and ∆uε = fε in

the viscosity sense. From W 2,p estimates in ([CC], Theorem 7.1), uε ∈ W 2,p
loc (Ω)

for any 1 ≤ p < ∞ and thus uε ∈ C1,α
loc (Ω) for any 0 < α < 1. To finish, let

x0 ∈ ∂Ω, and xn → x0. Since, Ψε(xn) ≤ uε(xn) ≤ hϕ(xn), letting n → ∞, we

conclude u(x0) = ϕ(x0).

�

Remark 2.4. It follows from the proof of the Theorem (2.3), that under the

continuity assumption of Fε and structural condition (2.2), any continuous

viscosity solution of (Eε) belongs to C1,α
loc (Ω) ∩ W 2,p

loc (Ω) for any 0 < α < 1

and 1 ≤ p < ∞ and satisfies the equation almost everywhere in Ω and in the

distributional sense.

Remark 2.5. The twice differentiability of uε in the Theorem above could also

be justified by the fact that any function in W 2,p
loc (Ω) with n < 2p is twice

diferrentiable almost everywhere. This fact is a consequence of the Calderon-

Zygmund theory. A direct proof can be found in ([CCKS], Appendix C)

To finish this section, we state a result about local uniform Lipschitz regu-

larity. This result is due to Luis Caffarelli.

Theorem 2.6 ([C4], Corollary 2). Let {vε}ε>0 be a family of continuous vis-

cosity solutions to (Eε) such that ||vε||L∞(Ω) ≤ A. Then, if Ω
′ ⊂⊂ Ω there

exists a universal contant C = C(Ω
′
,A) such that

||∇vε||L∞(Ω′ ) ≤ C
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In particular, the family {vε}ε>0 is locally uniformly Lipschitz continuous.

3. Geometric Properties of the Least Supersolution

In this section, we prove important geometric properties of the least superso-

lutions. We will be focused in two properties: Linear growth away from certain

level sets and strong nondegeneracy. In general, those properties are not ex-

pected to hold for general solutions of the equation (Eε). Those properties rely

heavily on the special kind of solutions considered, the least supersolutions to

(Eε). These features will be crucial for the study of the regularity of the free

boundary of the limit function later on. As we will see, these geometric facts

will imply a rather restrictive geometry of the free boundary.

Some notation is now introduced.

B?
α = Bδε(xε) where uε(xε) = α and δε =

1

2
dist(xε, ∂Ω)

Ωα = {x ∈ Ω; 0 ≤ uε(x) ≤ α} and dα(x) = dist(x, Ωα)

Ω+
α = {x ∈ Ω; uε(x) > α}

Ω
′ ⊂⊂ Ω and ∆ = dist(Ω

′
, RN \ Ω)

Theorem 3.1 (Linear growth away from level set ε). There exists a universal

constant C3 > 0 such that if x0 ∈ B?
ε ∩ Ω+

ε

uε(x0) ≥ C3dε(x0)

Proof. Let us prove by contradiction. If this is not the case, for ε > 0 small

enough, there exists yε ∈ B?
ε ∩ Ω+

ε such that uε(yε) << dε(yε) = dε. The

idea now, is to construct an admissible supersolution (in Sε) strictly below

uε in some point providing a contradiction. Since, yε ∈ B?
ε ∩ Ω+

ε , we have

Bdε(yε) ⊂ Ω+
ε and thus

∆uε = 0 in Bdε(yε)

By Harnack inequality, there exists a universal constant C > 0 such that

uε ≤ Cuε(yε) in Bdε/2(yε)
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Now, consider the following function:

(3.1)


∆vε = 0 in R = Bdε/2(yε) \Bdε/4(yε)

vε = 0 on ∂Bdε/4(yε)

vε = 1 on ∂Bdε/2(yε)

and define,

(3.2) wε =


0, in Bdε/4

(yε)

min {uε, dεvε} in R = Bdε/2(yε) \Bdε/4(yε)

uε in Ω \Bdε/2(yε)

Since C > 0 is a universal constant (that appears in the Harnack inequality)

and uε(x0) << dε, we can assume for ε small enough that, Cuε(x0) < dε,

and thus, wε is continuous along ∂Bdε/4(yε). It is easy to check that, wε is a

supersolution ([CC], Proposition 2.8, for example) and so wε ∈ Sε, providing

a contradiction since wε(x0) = 0 < uε(x0). This finishes the proof of the

Theorem.

�

In what follows, we will assume that the family {uε}ε>0 of least supersolu-

tions of the equation (Eε) is uniformly bounded, i .e,

(3.3) ||uε||L∞(Ω) ≤ A

Corollary 3.2. There exists a universal constant C = C(Ω
′
,A) such that

x ∈ Ω
′ ∩ Ω+

ε , dε(x) ≤ ∆

4
=⇒ C3dε(x) ≤ uε(x) ≤ Cdε(x) + ε

Proof. The first inequality follows from the Theorem (3.1) just by observing

that if dε(x) < ∆
3
, then x ∈ B?

ε . Indeed, let xε ∈ ∂Ω+
ε with dε(x) = |x − xε|,

then

2|x− xε| = 2dε(x) < dist(x, ∂Ω)− dε(x) ≤ dist(xε, ∂Ω) = 2δε(x)

The other inequality follows from uniform Lipschitz continuity, Theorem

(2.6). �
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We turn our attention to a strong nondegeneracy result for the least super-

solutions. Below, we state the Strong Nondegeneracy Lemma. The proof can

be found in ([CS], Theorem 1.19) for the Laplacian or in ([MT], Lemma 3.3)

for a general divergence operator with Holder coefficients.

Lemma 3.3. (Strong Nondegeneracy Lemma) Assume that v ≥ 0 is a Lips-

chitz and harmonic in Ω ∩BR(ξ), such that

(1) v ≡ δ on ∂Ω ∩BR(ξ), ξ ∈ ∂Ω

(2) v(x0) ≥ Cδ > 0, C >> 1 with x0 ∈ BR/2(ξ)

(3) v(x) ≥ D · dist(x, ∂Ω) in {v ≥ Cδ} ∩BR/2(ξ)

Then, there exists a universal constant M = M(C, D,Lip(v)) such that:

sup
Br(x0)

v ≥ Mr for 0 < r ≤ R

4

Theorem 3.4 (Strong Nondegeneracy). Given C4 >> 1 there exists C =

C(Ω
′
, C3, C4,A) such that

sup
Bρ(x0)

uε ≥ Cρ for ρ ≤ ∆

12

for

x0 ∈ Ω
′ ∩ {uε ≥ C4ε} , dε(x0) ≤

∆

6

Proof. Let x0 be in the conditions above. If dε = dε(x0) = |x0 − xε| and

δε = dist(xε, ∂Ω), we have:

2∆

3
= ∆− ∆

3
< dist(x0, ∂Ω)− dε(x0) ≤ δε

This way,

(3.4) x0 ∈
1

2
B∆

3
(xε) ⊂ B∆

3
(xε) ⊂

1

2
Bδε(xε) = B?

ε

Besides,

(3.5)
⋃

B∆
3
(xε) ⊂ N∆

2
(Ω

′
) ⊂⊂ Ω

The inclusion (3.4) and Theorem (3.1) say that the previous Lemma can be

used with B∆
3
(xε) in place of BR(ξ) and the last inclusion (3.5) says that we



10 DIEGO R. MOREIRA

can take uniform Lipschitz for all the appearing balls there. This concludes

the Theorem.

�

4. The limit of the least supersolutions

This section will be devoted to establish the first results about the limit

function and the weak geometry of its free boundary. Before, we introduce the

following notation for a continuous function v : Ω → R

Ω+(v) = {x ∈ Ω | v(x) > 0} ; Ω−(v) = (Ω \ Ω+(v))◦

F (v) = ∂ {x ∈ Ω | v(x) > 0} ∩ Ω = ∂Ω+ ∩ Ω

The set F (v) is called the free boundary of v. Again, in what follows, we

assume Ω
′ ⊂⊂ Ω.

Theorem 4.1. [Properties of the limit of the least supersolutions]

Let {uε}ε>0 the family of least supersolutions of (Eε). Assume,

||uε||L∞(Ω) ≤ A

Then for every sequence εk → 0 there exists a subsequence ε
′

k → 0 such that

a) uε
′
k
→ u0 ∈ C0,1

loc (Ω) uniformly on compact subsets of Ω.

b) (Regularity) u0 ∈ C0,1
loc (Ω), ∆u0 ≥ 0 in D′

(Ω) and

∆u0 = 0 in Ω+(u0) and in Ω−(u0)

c) (Linear growth away of the free boundary) Let C3 > 0 be the constant

given by Theorem (3.1), then

u+
0 (x0) ≥ C3dist(x0, {u0 ≤ 0})

if x0 ∈ Ω
′
, dist(x0, {u0 ≤ 0}) ≤ ∆

4
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d) (Strong nondegeneracy) There exists a constant C = C(Ω
′
,A) such

that:

sup
Bρ(x0)

u0 ≥ Cρ for ρ ≤ ∆

12

provided

x0 ∈ Ω
′ ∩ (Ω0 ∪ F (u0)) with dist(x0, {u0 ≤ 0}) ≤ ∆

6

e) (Nondegeneracy) There exists a constant C = C(Ω
′
,A) and C = C(Ω

′
,A)

such that:

C ≤ 1

ρ

∫
∂Bρ(x0)

u+
0 (y)dHN−1(y) ≤ C for ρ ≤ ∆

12

whenever

x0 ∈ Ω
′ ∩ F (u0) with dist(x0, {u0 ≤ 0}) ≤ ∆

6

Proof. a) follows imediately from Theorem (2.6) and Ascoli-Arzela Theorem.

In b), the subharmonicity of u0 is a straightforward consequence of the average

characterization of subharmonic functions and the uniform convergence. To

prove ∆u0 = 0 in Ω+(u0), let B be a ball B ⊂⊂ Ω+(u0). There exists c > 0

such that u0 ≥ c in B. From the uniform convergence, if ε
′

k is taken small

enough, uε
′
k
≥ c

2
≥ ε

′

k in B. So, ∆uε
′
k

= 0 in B and thus, ∆u0 = 0 in B.

Analogously, we conclude, ∆u0 = 0 in {u0 < 0}. This implies, ∆u0 ≤ 0 in

Ω−(u0). From the global subharmonicity of u0 we conclude b). To prove c),

we can assume x0 ∈ Ω+(u0) ∩ Ω
′
. For ε

′

k > 0 small enough, we have x0 ∈ Ω+

ε
′
k

and dε
′
k
(x0) ≤ ∆

4
. By Corollary (3.2), there exists yk ∈ Ωε

′
k
, dε

′
k
(x0) = |x0 − yk|

such that:

uε
′
k
(x0) ≥ C3dε

′
k
(x0) = C3|x0 − yk|

Since {yk}k≥1 is bounded, we can assume, yk → y0, y0 ∈ Ω \ Ω+(u0) and

thus,

u0(x0) ≥ C3|x0 − y0| ≥ C3dist(x0, {u0 ≤ 0})
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For d) , let us study two cases: (i) x0 ∈ Ω+(u0) and (ii) x0 ∈ F (u0). In case

(i) again, for ε
′

k > 0 small enough, we have x0 ∈ Ω+

C4ε
′
k

and dε
′
k
(x0) ≤ ∆

6
. By

Theorem (3.4),

sup
Bρ(x0)

uε
′
k
≥ Cρ

Since uε
′
k
→ u0 uniformly in compact subsets, passing the limit in the pre-

vious expression, the result is proven. Now, to prove (ii) let us observe that

we can find x1 ∈ Ω+(u0)∩Bρ/4(x0). Setting, K = N∆
8
(Ω

′
) and applying (i) to

K, we conclude

sup
Bρ(x0)

u0 ≥ sup
Bρ/4(x1)

u0 ≥
Cρ

4

e) follows from b) and d). Indeed, if we define K = N∆
2
(Ω

′
), then Bρ(x0) ⊂ K

and by Lipschitz continuity,

u+
0 ≤

(
Lip(u0 | K)

12

)
ρ in Bρ(x0)

yielding,

1

ρ

∫
∂Bρ(x0)

u+
0 dHN−1 ≤ C

To prove the other inequality, let us consider x0 in the conditions described

in e). This way, by d), there exists x1 ∈ Bρ/2(x0) such that u0(x1) ≥ Cρ
4

. By,

Lipschitz continuity, if τ ≤ 1
3
, since Bρτ (x1) ⊂⊂ Bρ(x0) ⊂ K

u0 ≥
(

C

4
− Lip(u0 | K)τ

)
ρ in Bρτ (x1)

Taking τ small enough, u0 ≥ Cρ
8

> 0 in Bρτ (x1) and thus,∫
Bρ(x0)

u+
0 dx ≥ τN−1

∫
Bρτ (x1)

u+
0 dx ≥ τNC

8
ρ

By now, we have proven e) for the volume average, i.e, there exist a constant

C1 = C1(Ω
′
,A) > 0 such that, whenever, x0 is in the conditions of (5), we have:

(4.1)
1

ρ

∫
Bρ(x0)

u+
0 dx ≥ C1
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From the fact that u+
0 ≥ 0 is locally Lipschitz constinuous and harmonic in{

u+
0 > 0

}
, the same conclusion holds for the area average as in the statement

of e). Indeed, suppose by contradiction, that this is not the case. Then, we

can find a sequence {xn}n≥1 ⊂ F (u0) ∩ Ω
′
with dist(xn, {u0 ≤ 0}) ≤ ∆

6
, such

that

(4.2)

∫
∂Bρn (xn)

u+
0 dHN−1 ≤ 1

n
ρn with ρn → 0.

Considering the rescaling functions, vn(x) := 1
ρn

u+
0 (xn+ρnx), it follows from

remark (4.2), there exists a subsequence, that we still denote by vn, such that

vn → V uniformly in compact sets of RN , V ≥ 0, V Lipschitz continuous an

harmonic in {V > 0}. Now, rewriting, (4.2), in terms of vn we find,

∫
∂B1(0)

vndHN−1 ≤ 1

n
ρn

Since, u+
0 is globally subharmonic, we have

0 ≤
∫

B1(0)

u+
0 dx ≤

∫
∂B1(0)

u+
0 dHN−1 = 0

which implies that u+
0 ≡ 0 in B1(0). On the other hand, we have proven

that ∫
B1(0)

vndx ≥ C1 > 0

Letting n →∞, we get
∫

B1(0)
u+

0 dx ≥ C1 > 0, a contradiction. This finishes

the proof of the Theorem.

�

Remark 4.2. Let us observe that the Lipschitz constant is invariant under the

rescaling vn(x) := 1
ρn

u+
0 (xn + ρnx). Moreover, vn(0) = 0 for all n ≥ 1. So, we

can obtain a function V described as in the proof of theorem (4.1) by Ascoli-

Arzela Theorem. Since v′ns are harmonic whenever positive, by the uniform

convegernce, the same holds for V .

Now, we establish some properties of the free boundary of u0, F (u0). Before,

we need the following definition
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Definition 4.3. Let v : Ω → R be a continuous function. A unit vector

ν ∈ RN is said to be the inward unit normal in the measure theoretic sense to

the free boundary F (v) at a point x0 ∈ F (v) if

(4.3) lim
ρ→0

1

ρN

∫
Bρ(x0)

| χ{v>0} − χH+
ν (x0) | dx = 0

where H+
ν (x0) =

{
x ∈ RN | 〈x− x0, ν〉 > 0

}
. If A is a set of locally finite

perimeter, then for every point in the reduced boundary, ∂redA, the inward

unit normal is defined. The details can be found in ([EG], section 5.7).

Theorem 4.4. (Properties of the free boundary F (u0))

Let u0 be the functions given by Theorem (4.1). Then,

a) HN−1(Ω
′ ∩ ∂ {u0 > 0}) < ∞

b) There exist borelian functions q+
u0

and q−u0
defined on F (u0) such that

∆u+
0 = q+

u0
HN−1b∂ {u0 > 0}

∆u−0 = q−u0
HN−1b∂ {u0 > 0}

c) There exists universal constants C > 0, C > 0 and ρ0 > 0 depending

on Ω
′
,A such that

CρN−1 ≤ HN−1(Bρ(x0) ∩ ∂ {u0 > 0}) ≤ CρN−1

for every x0 ∈ Ω
′ ∩ {u0 > 0} , 0 < ρ < ρ0

d) 0 < C ≤ q+
u0
≤ C and 0 ≤ q−u0

≤ C in Ω
′ {u0 > 0} . In addition,

q−u0
= 0 in ∂ {u0 > 0} \ {u0 < 0}.

e) u0 has the following asymptotic development at HN−1-almost every

point x0 in F (u0)red

u0(x) = q+
u0

(x0) 〈x− x0, ν〉+ − q−u0
(x0) 〈x− x0, ν〉− + o(|x− x0|)

f) There exists a constant τ = τ(Ω
′
,A) > 0 such that

HN−1(F (u0)red ∩Bρ(x0)) ≥ τ ?ρN−1



LEAST SUPERSOLUTION APPROACH TO FREE BOUNDARY PROBLEMS 15

for any x0 ∈ F (u0) ∩ Ω
′
. In Particular, we have

(4.4) HN−1(F (u0) \ F (u0)red) = 0

Proof. It follows from Theorem (4.1) that all the assumptions of the Alt-

Caffarelli Theory developed in [AC] section 4 are satisfied. This way, it is

proven there that a), b), c), d) and e) holds. A brief overview can be found in

[LW], Theorem (3.2). We observe however, that because of the lack of varia-

tional characterization for solutions uε (and therefore for u0), we are unable to

obtain a positive uniform density from below of the positive phase, like Lemma

(3.7) in [AC]. Then, the HN−1 measure totality in (4.4) of the reduced free

boundary, F (u0)red, does not follow from Alt-Caffarelli theory in [AC]. In-

stead, a sublte construction like one developed in [C3] is necessary. This way,

let us concentrate in proving f). By rescaling, i.e, considering the function

(u0)ρ(x) =
1

ρ
u0(ρ(x− x0))

it is enough to prove the case where ρ = 1 and x0 = 0. For 0 < σ < 1/4, let

us define the following auxiliary function vσ

(4.5)

 ∆vσ = − 1

|Bσ(0)|
χBσ(0) in B1(0)

vσ = 0 on ∂B1(0),

In fact, if G(x, y) denotes the Green function of the unit ball, we have

vσ(x) = −
∫

Bσ(0)

G(x, y)dy

By maximum principle, vσ ≥ 0. It follows from Litmann-Weinberger-

Stampacchia Theorem, ([LWS], Theorem 7.1), that vσ ≤ Cσ2−N outside B2σ(0)

(C > 0 universal constant) and ∂νvσ ∼ C > 0 (here, C is also a universal con-

stant) along ∂B1(0), where ν is the unit outwards normal vector to ∂B1(0).

Now, by Harnack inequality, ([GT], Theorems 8.17 and 8.18), for any q > N
2
,

sup
B2σ(0)

vσ ≤ C?

{
inf

B2σ(0)
vσ + σ2− 2N

q || 1

|Bσ(0)|
χBσ(0)||Lq(B2σ(0))

}
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where C? = C?(N, q). Since inf
Bσ(0)

vσ ≤ Cσ2−N , we finally obtain that

(4.6) vσ ≤ Cσ2−N in B1(0), where C = C(N, σ)

Since, uεk
, vσ ∈ C1,α(B1(0)) for any 0 < α < 1, we can apply the second

Green’s formula, obtaining

(4.7)

∫
Ω+(u0)∩B1(0)

(vσ∆uεk
− uεk

∆vσ)dx =

=

∫
B1(0)∩F (u0)red

(vσ∂νuεk
− uεk

∂νvσ)dHN−1 −
∫

∂B1(0)∩Ω+(u0)

uεk
∂νvσ dHN−1

From the uniform Lipschitz continuity of uεk
in B1(0) and (4.6),

|
∫

B1(0)∩F (u0)red

vσ∂νuεk
dHN−1 |≤ Cσ2−NHN−1(F (u0)red ∩B1(0))

Moreover, as εk → 0, ∫
B1(0)∩F (u0)red

uεk
∂νvσdHN−1 → 0

∫
∂B1(0)∩Ω+(u0)

uεk
∂νvσ dHN−1 →

∫
∂B1(0)

u+
0 ∂νvσ dHN−1

−
∫

Ω+(u0)∩B1(0)

uεk
∆vσdx =

1

|Bσ(0)|

∫
Ω+(u0)∩Bσ(0)

uεk
dx →

∫
Bσ(0)

u+
0 dx

Since vσ∆uεk
≥ 0, from (4.7), we deduce

(4.8)

∫
Bσ(0)

u+
0 dx +

∫
∂B1(0)

u+
0 ∂νvσ dHN−1 ≤ Cσ2−NHN−1(F (u0)red ∩B1(0))

By Theorem (4.1)-e), ∫
∂B1(0)∩Ω+(u0)

u+
0 ∂νvσ dHN−1 ≥ C1 > 0
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In Particular, again by nondegeneracy (4.1), the relation (4.8) implies

C?σ ≤
∫

Bσ(0)

u+
0 dx ≤ Cσ2−NHN−1(F (u0)red ∩B1(0))

To conclude, since there exist C, C depending on Ω
′
and A, such that

C ≤ 1

σ

∫
Bσ(0)

u+
0 dx ≤ C

We can then choose, σ = C/8C, a universal constant. The last conclusion

follows from the density Theorem for lower dimensional Hausdorff Measure

([EG], Theorem 1, pp. 72), just by observing that HN−1bF (u0) is a Radon

Measure. �

5. Special Form of Singular perturbation and Blow-up

Convergence Results

In the previous sections, we have described the ”weak” geometry of the free

boundary F (u0) for the limit of the least supersolutions uε to the equation

(Eε). In order to study in more depth the limit free boundary problem, we

will restrict ourselves to deal with the special case where equation (Eε) assumes

the following form

(SEε) ∆u = βε(u)F (∇u) in Ω

where F satisfies

F − 1) F ∈ C0,1(RN);

F − 2) 0 < Fmin ≤ F (x) ≤ Fmax < ∞ ∀x ∈ RN ;

and β satisfies the conditions in specified in [CV], i.e,

β − 1) β ∈ C0,1(R);

β − 2) β > 0 in (0, 1) and support of β is [0, 1];

β − 3) β is increasing in [0, 1/2) and decreasing in (1/2, 1];

β − 4)

∫ 1

0

β(s)ds := M > 0;

and additionally,

β − 5) β(t) ≥ B0t
+ for all t ≤ 3/4, where B0 > 0.
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Observe that from the condition β − 2, we conclude that there exists τ0 > 0

such that

(5.1) β(t) ≥ τ0

Fmin

for t ∈ [1/4, 3/4]

and we define the following universal constant

(5.2) A0 :=
τ0

3N

As we pointed out in the introduction, the semilinear equations (SEε) have

connections with the Prandtl-Batchelor free boundary problems as they were

pointed out by Luis Caffarelli, David Jerison and Carlos Kenig in [CJK].

Remark 5.1. From the assumption F − 1, we can improve the regularity ob-

tained in Theorem (2.3). Indeed, it follows from ([CC], Theorem 8.1) or ([FH],

Theorem 5.20) that if vε is a continuous viscosity solution to (SEε), then vε is

actually a classical solution of (SEε).

The presence of the gradient in the equations (SEε) does not affect rescaling

properties (see remark (5.5), below). This way, the convergence of blow-up’s

and their compatibility condition proven in [CLW1] and [LW] are preserved.

Since the proofs are a small variant of the original ones, they will be ommited.

Proposition 5.2 (Blow-up convergence - [CLW1], Lemma 3.2). Let {vε}ε>0

be a family of viscosity solutions to (SEε). Assume for a subsequence εj → 0,

vεj
→ v uniformly in compact subsets of Ω. Let x0, xn ∈ Ω ∩ ∂ {v > 0} be

such that xn → x0 as k → ∞. Let λn → 0, vλn(x) = (1/λn)v(xn + λnx) and

(vεj
)λn(x) = (1/λn)vεj

(xn +λnx). Suppose, that vλn → V as n →∞ uniformly

on compact subsets of RN . Then, there exists j(n) → ∞ such that for every

jn ≥ j(n) there holds that εjn/λn → 0, and

i) (vεjn
)λn → V uniformly in compact subsets of RN ;

ii) ∇(vεjn
)λn → ∇V in L2

loc(RN);

iii) ∇vλn → ∇V in L2
loc(RN).

Proposition 5.3 (Blow-up compatibility condition - [LW], Lemma 3.1). Let

{vε}ε>0 be a family of viscosity solutions to (SEε). Assume for a subsequence

εj → 0, vεj
→ v uniformly in compact subsets of Ω. Let x0 ∈ F (v) and, for

λ > 0, let vλ(x) = 1
λ
v(x0 + λx). Let λn → 0 and λ̃n → 0 be such that
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vλn → V = αx+
1 − γx−1 + o(|x|),

vfλn
→ Ṽ = α̃x+

1 − γ̃x−1 + o(|x|),

uniformly in compact sets of RN , with α, α̃, γ, γ̃ ≥ 0. Then αγ = α̃γ̃.

Definition 5.4. A continuous family {vε}ε>0 of viscosity solutions to (SEε) is

said to be a family of least viscosity supersolutions to (SEε) in Ω if for every

open set V ⊂⊂ Ω, we have for every ε > 0

vε | V = ωV
ε

where

wV
ε (x) := inf

w∈Sε(V )
w(x)

Sε(V ) :=
{
w ∈ C0(V ), w viscosity supersolution of (SEε); w ≥ vε on ∂V

}
Clearly, proceeding by Perron’s method, as in Theorem (2.3), ωV

ε is a con-

tinuous viscosity solution of (SEε) in V . It follows directly from the Theory

developed in Theorem (2.3) that {uε}ε>0 is a family of least viscosity superso-

lutions of (SEε).

Remark 5.5. (Transformations that preserves (SEε))

i) (Rescaling ) Assume that v is a solution to (SEε) in Ω. If x0 ∈ Ω and

λ > 0, let T λ
x0

(x) := x0 + λx we define the open set Ωλ
x0

= (T λ
x0

)−1(Ω) ={
x ∈ RN | x0 + λx ∈ Ω

}
and the function (vx0)λ(x) := 1

λ
v(T λ

x0
(x)) = 1

λ
v(x0 +

λx). It is imediate that , (vx0)λ is a solution in Ωλ
x0

to

∆u = β ε
λ
(u)F (∇u)

Conversely, if w is a solution to (SE ε
λ
) in Ωλ

x0
, we define in Ω the function

(wx0)
λ(y) := λw((T λ

x0
)−1(y)) = λw(y−x0

λ
). Again, it is clear that (wx0)

λ is a

solution to (SEε).

This way, the correspondences v 7→ (vx0)λ and w 7→ (wx0)
λ establish a

bijection among solutions of (SEε) and (SE) ε
λ
. Since those maps preserve

order, i.e, v1 ≤ v2 =⇒ (v1
x0

)λ ≤ (v2
x0

)λ and w1 ≤ w2 =⇒ (w1
x0

)λ ≤ (w2
x0

)λ, we

conclude: {vε}ε>0 is a family of least viscosity supersolution to (SEε) in Ω if
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and only if {((vε)x0)λ}ε>0 is a family of least viscosity solutions to (SE) ε
λ

in

Ωλ
x0

.

ii) (Invariance under translations) Since the equation (SEε) does not depen-

dend on x, the equation is translation invariant, i.e, translations of solutions

(subsolutions, supersolutions) u, v = u(·+ h), h ∈ RN are still solutions (sub-

solutions, supersolutions) respectively.

6. Some Qualitative Results

In this section, we will prove some results that will be used in a decisive way

to obtain the classifications of global profiles later on. We will start with some

definitons.

Definition 6.1. We set for σ > 0 the scaled function

(6.1) Eσ(β)(x) := σβ(
x

σ
− 1

2σ
+

1

2
)

Geometrically, the graph of Eσ(β) corresponds to a σ− rescaling of the graph

of β with respect to x = 1
2
. So, supp (Eσ(β)) = [κ−σ , κ+

σ ], where, κ−σ := 1
2
− σ

2
and

κ+
σ := 1

2
+ σ

2
. Also, for any σ > 0, Eσ(β) ∈ C0,1(R) with Lip(Eσ(β)) = Lip(β).

By β − 3), it is easy to verify that

0 < σ < 1 =⇒ Eσ(β)(t) < β(t) for t ∈ supp(Eσ(β))

σ > 1 =⇒ Eσ(β)(t) > β(t) for t ∈ [0, 1] = supp(β)

Moreover, from the relation

σ1, σ2 > 0 =⇒ Eσ2
σ1

(Eσ1(β)) = Eσ2(β)

It follows that

(6.2) 0 < σ1 < σ2 =⇒ Eσ1(β)(t) < Eσ2(β)(t) for t ∈ supp(Eσ1(β))

We set,

(6.3) Mσ :=

κ+
σ∫

κ−σ

Eσ(β)(t)dt = σ2M
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As usual, we use the same notation for the ε−rescaling, i.e,

(Eσ(β))ε(t) =
1

ε
Eσ(β)(

t

ε
).

Let us also define, for |µ| < Fmin/2 and |δ| < 1
2
,

(6.4) Fδ,µ(p) = (1 + δ)(F (p) + µ) >
δFmin

4
> 0

and finally, let e1 = (1, 0, ..., 0) be the first canonical vector in RN ,

(6.5) Hδ,µ(t) =

∫ t

0

s

(Fδ,µ(se1))
ds =

∫ t

0

s

(1 + δ)(F (se1) + µ)
ds

We also denote,

(6.6) H(t) = H0,0(t) =

∫ t

0

s

F (se1)
ds

In the next Lemma, we show that the monotonicity relation in (6.2) still

holds if we perturb Eσ(β) by a scaling factor close enough to 1.

Lemma 6.2. Assume 0 < σ1 < σ2. If θ is close enough to 1, then for every

ε > 0 we have the following inequalities

(6.7) (Eσ2(β))ε(t) ≥ (Eσ1(β))ε(θt) for all t ∈ R

(6.8) (Eσ2(β))ε(θt) ≥ (Eσ1(β))ε(t) for all t ∈ R

Proof. Clearly, by rescaling, it is enough to prove the Lemma for ε = 1. So,

let us define the following functions in R,

Gθ(t) = Eσ2(β)(θt)− Eσ1(β)(t)

Jθ(t) = Eσ2(β)(t)− Eσ1(β)(θt)

We will prove that Gθ, Jθ ≥ 0 ∀t ∈ R. Indeed, let K ⊂ R be a compact

interval such that supp Eσ1(β) ( K ( supp Eσ2(β). Setting G(t) = Eσ2(β)(t)−
Eσ1(β), since Eσ(β)(t) is Lipschitz continuous for σ > 0, we have Gθ → G and

Jθ → G locally uniformly in compact subsets of R. By, (6.2), G > 0 in K. In

particular, by the uniform convergence, Gθ, Jθ > 0 in K for θ close enough to

1. By the other hand, clearly, Gθ(t) ≥ 0 for t /∈ K. If gθ(t) = Eσ1(β)(θt) then
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for θ close enough to 1, supp gθ =
1

θ
(supp Eσ1(β)) ( K and thus, Jθ(t) ≥ 0

for t /∈ K. This finishes the Lemma.

�

Now, we prove a Lemma that says essentially that if a ”almost” strict sub-

soluton to (SEε) is above a supersolution to (SEε), then they cannot touch

inside the domain. This Lemma will be used later on with the help of some

barriers to prevent the slopes of the blow-up limits to have a ”too closed”

aperture.

Lemma 6.3 (No interior contact). Let u1, u2 ∈ C2(B1) ∩ C0(B1) and σ > 1

such that

∆u1 ≤ βε(u1)F (∇u1) in B1

∆u2 ≥ (Eσ(β))ε(u2)F (∇u2) in B1

u1 ≥ u2 in B1

Then, u2 cannot touch u1 in an interior point.

Proof. Let us prove the renormalized case ε = 1. The general case will follow

analogously. So, let us assume, by contradiction, that u2 touches u1 by below

at x0 ∈ B1. This way ∆u2(x0) ≤ ∆u1(x0). Moreover, since∇u1(x0) = ∇u2(x0)

and Eσ(β) ≥ β (σ > 1), we have the opposite inequality and thus

∆u2(x0) = ∆u1(x0)

If we choose 1 < σ < σ, then β ≤ Eσ < Eσ in supp Eσ = [a, b], where a < 0

and b > 1. Thus, c = u1(x0) = u2(x0) /∈ [a, b]. Let us suppose c > b. Consider

r = dist(x0,
{
u1 ≤ 1+b

2

}
) and consider the convex set A = Br(x0) ∩ B1. Since

u1 is harmonic in A◦, u2 is subharmonic in A◦ and A◦ is connected, the strong

maximum principle implies u1 ≡ u2 in A. In particular, ∇u1 ≡ ∇u2 and

∆u1 ≡ ∆u2 in A◦. If x1 is such that r = |x1 − x0|, then u1(x1) = 1+b
2

. This

way, the segment (x1, x0) ⊂ A◦. In particular, by the mean value Theorem, we

can find x2 in the open segment, for which 1+b
2

< u1(x2) = 1+b
2

+ b−1
8

= b < b.

This way, since x2 ∈ A◦, we have u1(x2) = b = u2(x2),∇u1(x2) = p = ∇u2(x2)

and ∆u1(x2) = ∆u2(x2). Thus,

β(b)F (p) = ∆u1(x2) = ∆u2(x2) = Eσ(β)(b)F (p)
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which implies, since F > 0, β(b) = Eσ(b), a contraditcion since b ∈ (a, b). If

c ≤ a we proceed similarly. So, u2 never touches u1 and the Lemma is proven.

�

In the next Proposition, we contruct a radially symmetric supersolution to

(SEε) where its value in a inner disk is much smaller that its value on the

boundary. This will be used to prove that the least supersolution uε have

expontential decay inside the domain.

Proposition 6.4 (Radially symmetric supersolution). Given η > 0, there

exists radially symmetric functions Θε ∈ C1(RN) ∩ W 2,∞
loc (RN) and universal

constants κ2 > 0 and 0 < κ1 < 1 such that

i) Θε ≡
ε

4
in Bκ1η

ii) Θε ≥ κ2η in RN \Bη

iii) Θε is a a viscosity supersolution to (SEε) for ε small enough.

Proof. We will work assuming first that ε = 1. After that, we will rescale the

construction to obtain Θε. Let L ≥ 10√
2A0

, we define,

(6.9) Θ(r) =


1/4, for 0 ≤ r ≤ L

G(r) = A0(r − L)2 + 1/4 for L ≤ r ≤ L + 1/
√

2A0

Γ(r) for r ≥ L + 1/
√

2A0

where Γ solves

(6.10) Γrr +
N − 1

r
Γr = 0 for r ≥ L + 1/

√
2A0

Γ(L + 1/
√

2A0) = 3/4, Γr(L + 1/
√

2A0) =
√

2A0

Let us assume N ≥ 3. Then

Γ(r) = 3/4 +

√
2A0

N − 2
(L + 1/

√
2A0)−

√
2A0

N − 2
(L + 1/

√
2A0)

N−1r2−N =

= KL − f(r), respectively.

This way,

κ2−N <
1

2

(
10

11

)N−1

⇒ κ2−N <

(
10

11

)N−1
1

2L

(
L + 1/

√
2A0

)
=⇒
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=⇒
√

2A0

N − 2

(
11

10

)N−1

κ2−NL ≤ 1

2

√
2A0

N − 2

(
L + 1/

√
2A0

)
Translating the inequality above in terms of KL and f(r), and recalling that

L >
10√
2A0

f(κ3L) ≤ 1

2
KL for κ2−N

3 =
1

4

(
10

11

)N−1

< 1

In particular, since Γ is increasing, Γ(r) > 1
2
KL ≥ κ4L for r ≥ κ3L, where

κ4 =
√

2A0/2(N − 2)L. Finally, let us observe, that for r ∈ (L, L + 1/
√

2A0),

1/4 ≤ Θ ≤ 3/4, so

Θrr +
N − 1

r
Θr = Grr +

N − 1

r
Gr ≤ 2A0N ≤ τ0 ≤ β(Θ(r))F (Θr(r)

x

|x|
)

Thus, setting Θ(x) := Θ(|x|), by construction, Θ ∈ C1(RN) ∩W 2,∞
loc (RN) is

a L∞loc-strong solution to the equation (i.e, it belongs to W 2,∞
loc (RN) and solves

the equation a.e.)

∆u = β(u)F (∇u)

if ε < ε0 :=
η
√

2A0

10κ3

, we can find L > 10√
2A0

such that ε = η
κ3L

and defining

Θε(x) := εΘ(
x

ε
)

We see that Θε ∈ C1(RN)∩W 2,∞
loc (RN) and i) and ii) are satisfied with k1 =

1/κ3 and κ2 = κ4/κ3. The fact the Θε are viscosity solutions of (SEε) follows

from Theorem (2.1) in [CKSS] or more generally by the results in [CCKS].

The case N = 2, where Γ(r) = 3/4 +
√

2A0(L + 1/
√

2A0)log(
r

L +
√

2A0

), is

proven similarly. �

We will prove a interesting geometric property of family of least supersolu-

tion to (SEε). Essentially, it says that if they are small in a certain domain,

as soon as we get a little bit inside the domain, they become much smaller,

decaying exponentially fast with ε.

In the next proposition, we use the notation Qr =
{
(x1, x

′
) ∈ RN ; |x1| ≤ r, |x′| ≤ r

}
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Proposition 6.5 (Expontential decay inside). Suppose {vε}ε>0 is a family of

least supersolutions of (SEε) and that for some η > 0 (small), ||v+
ε ||L∞(Q1) <

κ2η. Then, there exist a constant Cη > 0 depending on η such that

v+
ε (x) ≤ Cηε

3 for all x ∈ Q1−2η and ε small enough.

Proof. Indeed, if x0 ∈ Q1−η, Bη(x0) ⊂ Q1. We can now place the radially

symmetric barrier constructed in the previous Proposition (6.4) in this ball,

and since vε is the least supersolution of (SEε), we conclude, vε(x0) ≤ ε
4
. This

way,

vε(x) ≤ ε

4
for all x ∈ Q1−η

Let us denote by Gx the positive Green’s function of the ball Bη(x). If

x1 ∈ Q1−2η, Bη(x1) ⊂ Q1−η. Using the Green’s representation formula

vε(x1) =

∫
∂Bη(x1)

vεdHN−1 −
∫

Bη(x1)

Gx1(y)∆vε(y)dy

We have by property β − 5),

(6.11)

FminB0

ε2

(
inf

B η
2
(x1)

Gx1

)∫
Bη/2(x1)

v+
ε (y)dy ≤ Fmin

∫
Bη/2(x1)

Gx1(y)βε(vε(y)) ≤ ε

2

Since v+
ε is subharmonic,

(6.12) v+
ε (x1) ≤

∫
Bη/2(x1)

v+
ε (y)dy

Recalling that inf
Bη/2(x1)

Gx1 = Aη, where Aη is a universal constant depending

on η and combining (6.11) and (6.12), we have

v+
ε (x1) ≤

ε3

2FminB0Aη|Bη/2(x1)|
= Cηε

3

�

Finally, to end this section, we study the 1-dimensional profiles of our family

of regularizing equations. This profiles will be modified in the next section, to

create barries with uniformly curved free boundaries.
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Lemma 6.6 (1-dimensional profiles). Assume that P ∈ C2(R) is the unique

solution of

(6.13) uss = Eσ(β)(u)Fδ,µ(use1) = (1 + δ)(Eσ(β)(u))(F (use1) + µ)

u(0) = κ+
σ and us(0) = α > 0

a) If γ ≥ 0 and Hδ,µ(α) − Hδ,µ(γ) > Mσ, there exist γ > γ and s < 0

depending on α, γ, δ, σ, µ such that

(6.14) P (s) =

{
κ+

σ + αs, s ≥ 0

γ(s− s) + κ−σ , s ≤ s,

b) If γ ≥ 0 with Hδ,µ(α)−Hδ,µ(γ) < Mσ we have two cases:

b.1) If Hδ,µ(α) > Mσ, there exist γ < γ and s < 0 depending on

α, γ, δ, σ, µ such that

(6.15) P (s) =

{
κ+

σ + αs, s ≥ 0

γ(s− s) + κσ, s ≤ s,

or

b.2) If Hδ,µ(α) < Mσ, there exist γ > 0 and s < 0 depending on

α, γ, δ, σ, µ such that

(6.16) P (s) =

{
κ+

σ + αs, s ≥ 0

κ+
σ − γ(s− s) s ≤ s,

Moreover, in this case, there exists κσ such that κ−σ < κσ < P (s) < κ+
σ for

s < s < 0. Furthermore, setting Pε(s) = εP (
s

ε
), it solves

(Eε
α,δ,µ,σ) uss = (Eσ(β))ε(u)Fδ,µ(use1)

u(0) = εκ+
σ and us(0) = α > 0

Proof. We start by observing that Hδ,µ is a bijection from [0, +∞) over itself.

This follows since Hδ,µ(s) ≥ s2

3Fmax

, and (Hδ,µ)s > 0 for s > 0. Multiplying

the equation (6.13) by Ps we find,

(Hδ,µ(Ps))s = Bσ(P )s
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where Bσ(ζ) =
∫ ζ

κ−σ
Eσ(β)(t)dt. Integrating this equation, we obtain, in cases

a) and b.1), for some γ > 0,

(6.17) Hδ,µ(Ps(s))−Bσ(P (s)) = Hδ,µ(α)−Mσ = Hδ,µ(γ) > 0

This way, since from the expression above, Ps ≥ 0

0 < γ ≤ Ps(s) ≤ α, for t ∈ R

In case a), we have Hδ,µ(γ) > Hδ,µ(γ) ≥ 0 and so γ > γ. In case b),

Hδ,µ(γ) < Hδ,µ(γ), and thus γ < γ. From the inequality (6.17) above, the

conclusion of a) and b.1) is straightforward. To prove b.2), we observe again,

the relation (6.17), i.e,

(6.18) Hδ,µ(Ps(s))−Bσ(P (s)) = Hδ,µ(α)−Mσ < 0

Since P ss ≥ 0, P s is nondecreasing, thus, Ps > 0 in s ≥ 0. This way, we

conclude, P (s) = κ+
σ + αs for s ≥ 0. Observing that, Hδ,µ ≥ 0, we see that

relation (6.18), implies, in particular, P > 0 in R. Actually, infR P = κσ > κ−σ ,

otherwise, we could take a minimizing sequence sn, (6.18) would provide

0 ≤ Hδ,µ(Ps(sn)) = Bσ(P (sn)) + H(α)−M

letting n → ∞, we would obtain a contradiction. Our assetion will follow, if

we can show that lims→−∞P (s) = +∞. For this purpose, it is enough to show

that there exists b < 0 such that Ps(b) < 0, since by convexity we have

P (s) ≥ P (b) + Ps(b)(s− b) ∀s ∈ R

So, let us suppose by contradiction, that Ps ≥ 0 for all s ∈ R. This way, P

is nondecreasing and thus lims→−∞P (s) = κσ > κ−σ and lims→−∞ Ps(s) = 0.

Applying limit as s → −∞ in (6.18), we find

0 < Bσ(κσ) = Mσ −Hδ,µ(α) = ρ < Mσ

Since Bσ is invertible in (κ−σ , κ+
σ ), we conclude that P (s) → κσ ∈ (κ−σ , κ+

σ ) as

s → −∞. In particular, for η > 0 small enough, P (s) ∈ Aη = [κσ−η, κσ +η] (
(κ−σ , κ+

σ ) for s ≤ c, c < 0. This way, if τ = infAηEσ(β), we have
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Pss(s) = (Eσ(β))(P (s))Fδ,µ(Ps(s)e1) ≥ τ
Fmin

4
> 0 for all s ≤ c

But, this implies Ps(c) = ∞, clearly a contradiction since, P ∈ C2(R). This

finishes b.2). �

7. Slope Barriers with Curved Free Boundary

In this section, we will construct some barriers with uniformly curved free

boundaries. The are essentially obtained by a uniform bending of the 1-

dimensional profiles given by Lemma (6.6). The key tool used to acomplish this

is a sequence of Kelvin transforms with respect to large spheres, i.e, spheres

having centers and radii approaching infinity. These barriers will be the fun-

damental ingridient to classify global profiles (2-plane functions) in the next

section.

Remark 7.1. For later reference, we will recall some facts about Inversion and

Kelvin transform that will be used in the sequel. For L > 0, we denote

SL =
{
x ∈ RN ; |x + Le1| = L

}
S?

L =
{
x ∈ RN ; |x− Le1| = L

}
The Kelvin transforms of a continuous function u with respect to SL and S?

L

are given, respectively, by KL and TL below

(7.1) KL[u](x) = (ρL(x))N−2 u(IL(x))

(7.2) TL[u](x) = (%L(x))N−2 u(JL(x))

where IL, JL are the inversions with respect to SL and S?
L, respectively, given

by

IL(x) = −Le1 +
L2

|x + Le1|2
(x + Le1)

JL(x) = Le1 +
L2

|x− Le1|2
(x− Le1)
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ρL(x) =
L

|x + Le1|
and %L(x) =

L

|x− Le1|
it follows also that,

(7.3) ∆KL[u](x) = (ρL(x))N+2 ∆u(IL(x))

(7.4) ∆TL[u](x) = (%L(x))N+2 ∆u(JL(x))

Furthermore, if R1 is the orthogonal reflection with respect the hyperplane

{x1 = 0}, then for any L0 > 0, and L > L0 we have

(7.5) ρL → 1 in C1
loc(RN \ {le1; l ≤ −10L0})

(7.6) %L → 1 in C1
loc(RN \ {le1; l ≥ 10L0})

(7.7) IL → R1 in C1
loc(RN \ {le1; l ≤ −10L0})

(7.8) JL → R1 in C1
loc(RN \ {le1; l ≥ 10L0})

For more details about Inversions and Kelvin transforms, check ([B]) and

([ABR]).

In what follows, we use the cylinder for L0 > 0,

QL0 =
{

x = (x1, x
′) ∈ RN | |x|∞ = max

{
|x1|, |x

′|
}
≤ 4L0

}
Proposition 7.2 (Above condition barrier). Suppose, σ > σ > 1, δ, µ > 0 and

α > 0, γ ≥ 0 are such that Hδ,µ(α)−Hδ,µ(γ) > Mσ. There exists ϑε ∈ C2(QL0)

such that

a) ∆ϑε(x) ≥ (Eσ(β))ε(ϑε(x))F (∇ϑε(x)) for x ∈ QL0 ;
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b) one has

ϑε < 0 in QL0 ∩ BC

ϑε > 0 in QL0 ∩ B◦

ϑε = 0 on QL0 ∩ S
S ∩ ∂QL0 ⊂ {x1 = d} , d = d(radius of S, L0) > 0

where S = ∂B, and B is a closed ball completely contained in the half space

{x1 ≥ 0}, centered in the positive semi-axis generated by e1 and tangent to the

hyperplane {x1 = 0};
c) There exists α̃ > α > γ̃ > γ such that for W(x) = α̃x+

1 − γ̃x−1 , we have

W(x) ≥ ϑε(x) in QL0 and W(0) = ϑε(0)

W(x− de1) ≥ ϑε(x) for x ∈ QL0 ∩
{

x = (x1, x
′
) ∈ RN ; |x′| = L0

}
Qε ≤ ϑε along span {e1}

where Qε(x) := Qε(x1) and Qε(s) := Pε(s + aε) is the solution to Eε
α,δ,µ,σ and

aε is chosen such that Qε(0) = 0. Moreover, α̃ can be taken as close as we

wish from α.

Proof. As suggested in c), let us define

Qε(x) := Qε(x1)

and recall thatR1 denotes the reflection with respect the hyperplane {x1 = 0}.
Taking L > 20L0, we set

(7.9) ϑL
ε (x) := (KL[Qε] ◦ R1)(x) = KL[Qε](R1(x)) = (ρL(x))N−2Qε(IL(x))

where

IL = IL ◦ R1, ρL = ρ ◦ R1

By remark (7.1),

(7.10) ∆ϑL
ε (x) = (∆KL[Qε] ◦ R1)(x) = ∆KL[Qε](R1(x)) =
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= (ρL(x))N+2∆Qε(IL(x))

But

(7.11) ∆Qε(IL(x)) = (Eσ(β))ε(Qε(IL(x))Fδ,µ(∇Qε(IL(x)) =

= (Eσ(β))ε((1/ρL(x))N−2ϑL
ε (x))Fδ,µ(∇ϑL

ε (x) + Aε
L(x))

where

Aε
L(x) = ∇Qε(IL(x))−∇ϑL

ε (x) =

= ∇Qε(IL(x))−∇[(ρL(x))N−2]Qε(IL(x))− (ρL(x))N−2∇[Qε(IL(x))]

This way,

|∇Qε(IL(x))− (ρL(x))N−2∇[Qε(IL(x))]| =

= sup
|v|=1

〈
∇Qε(IL(x))− (ρL(x))N−2∇[Qε(IL(x))], v

〉
≤

≤ |1− (ρL(x))N−2| · |∇Qε(IL(x))|+

+|ρL(x)|N−2|∇Qε(IL(x))| · ||IdRN −DIL(x)||L(RN )

This way, since Qε(IL(x)) and ∇Qε(IL(x)) are uniformly bounded in QL0

(recall Qε are translations of rescalings of P given in Lemma (6.6)) by (7.5)

and (7.7)

Aε
L → 0 uniformly in QL0 as L →∞ uniformly in ε

Since F is Lipschitz continuous, we have for x ∈ QL0 and L large enough

(7.12) F (∇ϑL
ε (x) + Aε

L) + µ ≥ F (∇ϑL
ε (x) + Aε

L) + Lip(F )|Aε
L| ≥ F (∇ϑL

ε (x))

(7.13) (1 + δ)(ρL(x))N−2 ≥ 1 +
δ

2
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Also, by Lemma (6.2), since σ > σ > 1

(Eσ(β))ε((1/ρL(x))N−2ϑL
ε (x)) ≥ (Eσ(β))ε(ϑ

L
ε (x))

Combining the estimates above, we conclude that choosing L large enough,

we have for x ∈ QL0 uniformly in ε

(7.14) ∆ϑL
ε (x) ≥ (1 +

δ

2
)(Eσ(β))ε(ϑ

L
ε (x))F (∇ϑL

ε (x)) ≥

≥ (Eσ(β))ε(ϑ
L
ε (x))F (∇ϑL

ε (x))

It follows from the proof of Lemma (6.6)a) that there exists γ > γ such that

γ < (Qε)s < α with Qε(0) = 0

We can easily check that the following properties below hold

(1) Qε(s) ≤ γs for s ∈ (−∞, 0] and Qε(s) ≤ αs for s ∈ [0,∞);

(2) x ∈ QL0 ⇒ (IL(x))1 ≤ −L + L2

L−x1
=: τL(x1) with

τL ≥ 0 in {x1 ≥ 0} and τL ≤ 0 in {x1 ≤ 0} ;

(3) If τ > 0 is a small number, for L large enough, we have

1− τ ≤ ρL ≤ 1 + τ in QL0

1− τ ≤ d

dx1

τL ≤ 1 + τ in [−4L0, 4L0]

Since,

d

dx1

τL(x1) =
L2

(L− x1)2
→ 1 uniformly in [−4L0, 4L0]

From these, it is easy to observe the following estimates

For x ∈ {x1 ≤ 0} ∩QL0 ,

ϑL
ε (x) = (ρL(x))N−2Qε(IL(x)) ≤ (1− τ)N−2Qε((IL(x))1) ≤

≤ (1− τ)N−2Qε(τL(x1)) ≤
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≤ (1− τ)N−1γx1 = −γ̃x−1

Similarly, for x ∈ {x1 ≥ 0} ∩QL0

ϑL
ε (x) = (ρL(x))N−2Qε((IL(x))1) ≤ (1 + τ)N−2Qε(τL(x1)) ≤

(1 + τ)N−1αx1 = α̃x+
1

We can use also, similar ideas, to obtain estimates along the boundary.

In this case, the estimates will be 1-dimensional. Indeed, if x ∈ QL0 ∩{
x = (x1, x

′
) ∈ RN ; |x′| = L0

}
then

ϑε(x) = (ρ̃L(x1))
N−2Qε(IL(x)) = (ρ̃L(x1))

N−2Qε(ϕL(x1))

where

ρ̃L(x1) =
L√

(L− x1)2 + L2
0

and

ϕL(x1) := (ĨL(x))1 = −L +
L2

(L− x1)2 + L2
0

(L− x1)

Now, let us observe that ϕL has the following properties,

dϕL

dx1

(x1) =
L2((L− x1)

2 − L2
0)

[(L− x1)2 + L2
0]

2
→ 1 uniformly in [−4L0, 4L0]

ϕL(x1) = 0 ⇐⇒ x1 = d :=
L−

√
L2 − 4L2

0

2
> 0

ϕL ≥ 0 in [−4L0, d], ϕL ≤ in [d, 4L0]

Also,

{
ϑL

ε (x) = 0
}
∩QL0 ∩

{
x ∈ QL0 ; |x

′| = L0

}
⇐⇒ x1 = d

(using that g(x) =
√

x is Lipschitz away from the origin, we can easily

estimate d < L0

10
). If τ > 0 is a small enough, again for L large enough,

1− τ ≤ dϕL

dx1

(x1) ≤ 1 + τ for x1 ∈ [−4L0, 4L0];
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and

1− τ ≤ ρ̃L(x1) ≤ 1 + τ for x1 ∈ [−4L0, 4L0]

This way, we have for x ∈ QL0 ∩
{
x = (x1, x

′
) ∈ RN ; |x′| = L0

}
∩ {x1 ≥ d}

ϑL
ε (x) ≤ (1 + τ)N−2Qε(ϕL(x1)) ≤ (1 + τ)N−2αϕL(x1) ≤

≤ (1 + τ)N−1α(x1 − d) = α̃(x1 − d)+

Similarly,

x ∈ QL0 ∩
{

x = (x1, x
′
) ∈ RN ; |x′| = L0

}
∩ {x1 ≤ d} ⇒

⇒ ϑL
ε (x) ≤ −(1− τ)N−1γ(d− x1) = −γ̃(x1 − d)−

The fact that Qε ≤ ϑL
ε along span {e1} is straightforward. If we choose now

L large enough in such way that all the estimates above holds, we define for

every ε

ϑε := ϑL
ε

Thus, a) and c) are proven. b) follows from the geometric properties of

inversions. �

Proposition 7.3 (Below condition barrier - I). 0 < σ < σ < 1, δ, µ < 0 and

α, γ > 0 be such that

0 < Hδ,µ(α)−Mσ < Hδ,µ(γ)

Let 0 < α? < α be close to α. There exists a function χε ∈ C2(QL0) such

that for every ε > 0

a) ∆χε(x) ≤ βε(χε(x))F (∇χε(x)) for x in QL0 ;

b) one has

χε > 0 in QL0 ∩ B?
C

χε < 0 in QL0 ∩ B◦
?

χε = 0 on QL0 ∩ S?

S? ∩ ∂QL0 ⊂ {x1 = d?} , d? = d?(radius of S?, L0) > 0

where S? = ∂B?, and B? is a closed ball completely contained in the half space

{x1 ≤ 0}, centered in the negative semi-axis generated by e1 and tangent to the

hyperplane {x1 = 0};
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c) There exist 0 < α̃ < α? and 0 < γ̃ < γ and constants C, D > 0 not

depending on ε such that if W?(x) = α̃x+
1 − γ̃x−1 , then

(7.15) W?
ε (x) := W?(x− εDe1) + Cε ≤ χε(x) for all x ∈ QL0

(7.16)

W?(x + (d? − εD)e1) ≤ χε(x) for x ∈ QL0 ∩
{

x = (x1, x
′
) ∈ RN ; |x′| = L0

}

(7.17) Qε ≥ χε along span {e1}

where Qε(x) := Qε(x1), and Qε(s) = Pε(s + aε), Pε is the solution (Eε
α,δ,µ,σ)

where aε is chosen such that Qε(0) = 0. Moreover, α̃ can be taken as close as

we wish from α?.

Proof. The proof is very similar to the proof of Proposition(7.2). As suggested

in c), if we define

Qε(x) := Qε(x1)

and for JL = JL ◦ R1 and %L = % ◦ R1 we set

(7.18) χL
ε (x) := (TL[Qε] ◦ R1)(x) = TL[Qε](R1(x)) = (%L(x))N−2Qε(JL(x))

with

(7.19) ∆χL
ε (x) = (∆TL[Qε] ◦ R1)(x) = ∆TL[Qε](R1(x)) =

= (%L(x))N+2∆Qε(JL(x)) =

= (%L(x))N+2(Eσ(β))ε((1/%L(x))N−2χL
ε (x))Fδ,µ(∇χL

ε (x) + A
ε

L(x))

where,

A
ε

L(x) = ∇Qε(JL(x))−∇χL
ε (x)

Proceeding as in the proof of Proposition (7.2), we obtain

A
ε

L → 0 uniformly in QL0 as L →∞ uniformly in ε
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Since δ, µ < 0, for x ∈ QL0 and L > 20L0 large enough

(7.20) F (∇χL
ε (x) + A

ε

L) + µ ≤ F (∇χL
ε (x) + Aε

L)−Lip(F )|Aε
L| ≤ F (∇χL

ε (x))

(7.21) (1 + δ)(%L(x))N−2 ≤ 1 +
δ

2
< 1

by Lemma (6.2), if σ < σ < 1,

(Eσ(β))ε((1/%L(x))N−2χL
ε (x)) ≤ (Eσ(β))ε(χ

L
ε (x))

and thus for L large enough and for x ∈ QL0 ,

∆χL
ε (x) ≤ (1 +

δ

2
)(Eσ(β))ε(χ

L
ε (x))F (∇χL

ε (x)) ≤

(Eσ(β))ε(χ
L
ε (x))F (∇χL

ε (x)) ≤ βε(χ
L
ε (x))F (∇χL

ε (x))

Analogously to the proof of Proposition (7.2), by Lemma (6.6)b.1), there

exists 0 < γ < γ such that

γ ≤ (Qε)s ≤ α

It is easy to check properties below

1) There exists a constant D such that

(7.22)


Qε(s) ≥ α?s, for s ≥ Dε

Qε(s) = γs, for s ≤ 0

Qε(s) ≥ γs, for every s

2) x ∈ QL0 ⇒ (JL(x))1 ≥ L− L2

L+x1
:= τ ?

L(x1), with

τ ?
L ≥ 0 in {x1 ≥ 0} and τ ?

L ≤ 0 in {x1 ≤ 0}

3) If τ > 0 is a small number, for L large enough we have

1− τ ≤ %L ≤ 1 + τ in QL0

1− τ ≤ d

dx1

τ ?
L ≤ 1 + τ in [−4L0, 4L0]



LEAST SUPERSOLUTION APPROACH TO FREE BOUNDARY PROBLEMS 37

From (3), there exists D such that x1 ≥ Dε ⇒ τ ?
L(x1) ≥ Dε, and thus,

{
x1 ≥ Dε

}
∩QL0 ⇒ χL

ε (x) = (%L(x))N−2Qε((JL(x))1) ≥

≥ (1− τ)N−2Qε(τ
?
L(x1)) ≥ (1− τ)N−1α?x1

Proceeding similarly, we find

x1 ≤ 0 ⇒ χL
ε (x) ≥ −(1 + τ)N−1γx−1 = −γ̃x−1

0 ≤ x1 ≤ Dε ⇒ χL
ε (x) ≥ (1− τ)N−1γx1 = γ?x+

1

Setting C = γ?D, it follows that

W?
ε (x) = W?(x−Dε) + Cε ≤ χε(x) for all x ∈ QL0

Following the ideas above and proceeding as in the proof of Proposition

(7.2), we finish the proof.

�

Proposition 7.4 (Below condition barrier - II). Let 0 < σ < σ < 1 and

δ, µ < 0 with α > 0 such that

Hδ,µ(α) < Mσ

Then, there exist a function χε ∈ C2(QL0) and constants C, D > 0 (inde-

pendent of ε) satisfying for every ε

a) ∆χε(x) ≤ βε(χε(x))F (∇χε(x)) for x in QL0 ;

b) χε ≥ Cε in QL0 and χε ≤ Qε for {x1 ≥ 0} ; where Qε(x) := Pε(x1), Pε

solution to (Eε
α,δ,µ,σ);

c) There exists 0 < α̃ < α and a constant C > 0 independent of ε such

that

χε ≥ α̃x+
1 + Dε for x ∈ QL0 ∩ {x1 ≥ 0}

Moreover, α̃ can be taken as close as we wish from α.
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d) There exists a negative number d? independent of ε such that on

χε(x) → g(x1) uniformly on
{

x = (x1, x
′
) ∈ QL0 ; |x

′| = L0

}
and

g(x1) ≥ α̃(x1 − d?) for x1 ≥ d?

Proof. Defining χL
ε (x) = (TL[Qε] ◦R1)(x) as in Proposition (7.3), where Qε(x)

is specified above, then, for L large enough,

∆χL
ε (x) ≤ βε(χε(x))F (∇χε(x)) for x in QL0

But now, by Lemma (6.6)b.2), we have for C = (1− τ)N−2κσ

χL
ε (x) = (%L(x))N−2Qε((JL(x))1) ≥ Cε ∀x ∈ QL0

and also, for D = (1− τ)N−2κ+
σ and x ∈ QL0 ∩ {x1 ≥ 0}

χL
ε (x) ≥ (1− τ)N−2Qε(τ

?
L(x1)) ≥ (1− τ)N−1αx+

1 + Dε = α̃x+
1 + Dε

Now, as before, we fix a universal L for which the estimates above hold

uniformly in ε. From, Lemma (6.6)b.2), we conclude that for some γ > 0

Qε → P ?(x) := αx+
1 + γx−1 uniformly in RN

Since, Kelvin Transforms preserve uniform convergence, we have

χε → TL[P ?] ◦ R1 uniformly in QL0 as ε → 0

In particular, for x ∈ QL0 ∩
{
x = (x1, x

′
) ∈ RN ; |x′| = L0

}
(7.23) χε → g(x1) := (%̃L(x1))

N−2P ?(ϕ?
L(x1)) uniformly as ε → 0

where,

%̃L(x1) =
L√

(L + x1)2 + L2
0

and
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ϕ?
L(x1) = L− L2

(L + x1)2 + L2
0

(L + x1)

Clearly,

x1 ∈ [−4L0, 4L0] with g(x1) = 0 ⇐⇒ x1 = d? :=
1

2
(−L +

√
L2 − 4L2

0) < 0

L can be taken large enough such that if τ is a small number

d

dx1

ϕ?
L(x1) ≥ 1− τ ∀x ∈ QL0

and thus,

ϕ?
L(x1) ≥ (1− τ)(x1 − d?) ∀x ∈ QL0

So,

x1 ≥ d? ⇒ g(x1) ≥ (1− τ)N−1α(x1 − d?) = α̃(x1 − d?)

From the convergence, (7.23), d) follows, finishing the proof. �

8. Classification of Global Profiles

The purpose of this section is to classify the global profiles (2-plane func-

tions) that will appear in the blow-up analysis. The precise statement of the

result is the following

Theorem 8.1 (Classification of Global Profiles). Let vεj
be a family of least

viscosity solutions to (SE)εj
in a domain Ωj ⊂ RN such that Ωj ⊂ Ωj+1 and

∪∞j=1Ωj = RN . Suppose vεj
converge to v(x) uniformly on compact subsets of

RN . Then we have,

v(x) = αx+
1 − γx−1 with α > 0, γ ≥ 0 =⇒ H(α)−H(γ) = M

v(x) = αx+
1 + γx+

1 with α > 0, γ ≥ 0 =⇒ H(α) ≤ M

Heuristically, the idea of the proof is the following: If the slopes of the limit

would satisfy H(α)−H(γ) > M , then we could use the above condition bar-

riers to construct ε - regularized 2-plane function which are ”almost” strict
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subsolution to (SEε) with uniformly curved free boundary and bigger open-

ing v. If we bring them from the right starting at ”infinity”, this geometry

would force a interior contact with vε violating Lemma (6.3). Analogously,

if H(α) − H(γ) < M , then we could use a below condition barriers to con-

struct ε - regularized 2-plane functions with uniformly curved free boundary

and smaller opening. If we bring them from the left, starting at infinity, this

geometry would force a interior crossing of the graph of vε violating the least

supersolution conditon. The proof will be divided in several propositions, an-

alyzing different possibilities.

Proposition 8.2. Let vεj
be viscosity solutions to (SE)εj

in a domain Ωj ⊂
RN such that Ωj ⊂ Ωj+1 and ∪∞j=1Ωj = RN . Suppose vεj

converge to v =

αx+
1 −γx−1 uniformly on compact subsets of RN , with α > 0, γ ≥ 0 and εj → 0.

Then,

(8.1) H(α)−H(γ) ≤ M

Proof. Let us suppose by contradiction that,

H0,0(α)−H0,0(γ) = H(α)−H(γ) > M

This way, we can find 0 < α < α and σ > 1 such that H0,0(α) −H0,0(γ) >

Mσ = σ2M > M . So, by continuity, there exist δ > 0, µ > 0 such that

(8.2) Hδ,µ(α)−Hδ,µ(γ) > Mσ

Thus, we are in conditions to use the above condition barriers constructed

in Proposition (7.2) with α > α̃. In what follows, we will freely use them as

well as the notation employed there. Let η > 0 small be given. By assumption,

we can find ε0 = ε0(η) > 0 such that

ε < ε0 =⇒ ||vε − v||L∞(QL0
) < η

Setting c1 =
1

γ̃
and c2 = c1 +

1

γ
, we may assume that η is so small that

(8.3) (c1 + c2) η <
d

4
<

L0

4
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Setting Q0 = 1
2
QL0 and Q00 = 1

4
QL0 , we have that for every ξ ∈ RN with

|ξ| ≤ L0, the functions (ϑε)ξ : Q0 → R given by (ϑε)ξ(x) = ϑε(x + ξ) are well

defined. In particular, we can define ϑ?
ε : Q0 → R, given by

ϑ?
ε(x) = ϑε(x− c1ηe1)

It is easy to see that

ϑ?
ε(x) ≤ W(x− c1ηe1) < v(x)− η < vε(x) for x ∈ Q00

If |T | ≤ L0

4
then we can define (ϑ?

ε)T : Q00 → R by

(ϑ?
ε)T (x) := ϑ?

ε(x + Te1)

So, let us consider the set

Γε =

{
0 < T ≤ L0

4
; (ϑ?

ε)T ≤ vε in Q00

}
and Tε = sup Γε

Let us recall that Qε(x) = Qε(x1) ≥ γx1 for x1 ≥ 0 and ϑε ≥ Qε along

Z = span {e1}. In particular, considering x = le1, with |l| ≤ L0

4
and l ≥ −η

γ

ϑε((l +
η

γ
)e1) ≥ γl + η

but,

ϑε((l +
η

γ
)e1) = ϑε((l − c1η + c2η)e1)) = (ϑ?

ε)c2η(le1)

Taking now, l = 0, we find

(ϑ?
ε)c2η(0) ≥ η > vε(0)

In other words, if we translate ϑ?
ε by c2η, we have gone to far in terms of

touching vε by below. This implies that

(8.4) Tε ≤ c2η

Moreover, there exists xn ∈ Q00 such that for all n ≥ 1

(ϑ?
ε)Tε+1/n(xε

n) > vε(xn)

Passing to a subsequence if necessary, we can assume xε
n → xε

0 as n → ∞
where xε

0 ∈ Q00. Thus we have,
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(ϑ?
ε)Tε(x

ε
0) = vε(x0).

(ϑ?
ε)Tε ≤ vε in Q00

Now, since for x ∈ Q00,

vε(x)− (ϑ?
ε)Tε(x) ≥ v(x)− η − (ϑ?

ε)Tε(x) ≥ v(x)− η −W(x− c1ηe1 + Tεe1)

We have

x ∈ ∂Q00 ∩ {x1 = ±L0} ⇒ vε − (ϑ?
ε)Tε(x) ≥

min {(α− α̃)L0 + A(ε, η), (γ̃ − γ)L0 + B(ε, η)} ≥ c3 > 0

if η are chosen small enough, since

A(ε, η) = (α̃c1η − α̃Tε − η) → 0 as η → 0

B(ε, η) = (γ̃c1η − γ̃Tε − η) → 0 as η → 0

Now, once

ρ > 0 =⇒ v(x)−W(x− ρe1) ≥ min {α, γ̃} ρ ∀x ∈ RN

we can estimate,

x ∈ ∂Q00 ∩
{

x = (x1, x
′
) ∈ RN ; |x′| = L0

}
⇒

⇒ vε(x)− (ϑ?
ε)Tε(x) ≥ v(x)− η − ϑε(x− c1ηe1 + Tεe1) ≥

≥ v(x)− η −W(x− c1ηe1 + Tεe1 − de1) ≥

≥ min {α, γ̃} (c1η − Tε + d)− η ≥ min {α, γ̃}
4

d,

for η small enough, since c1η−Tε → 0 as η → 0. In particular, we conclude

that if η > 0 is chosen small enough, on the boundary of Q00, (ϑ?
ε)Tε is striclty

below vε for ε small enough. This forces, the contact point xε
0 ∈ int(Q00).

Now, from the translation invariance, Remark (5.5), ϑε = (ϑ?
ε)Tε satisfies for

some σ > 1,
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∆ϑε(x) ≥ (Eσ(β))ε(ϑε(x))F (∇ϑε(x)) in Q00

Since vε are solutions to (SEε), this contradicts Lemma (6.3). This way,

H(α)−H(γ) ≤ M

and the Theorem is proven.

�

Using the same ideas of Theorem (8.2), we can state next corollary. The

proof will follow mutatis-mutandis. Details are left to the reader.

Corollary 8.3. Let vεj
be viscosity solutions to (SE)εj

in a domain Ωj ⊂ RN

such that Ωj ⊂ Ωj+1 and ∪∞j=1Ωj = RN . Suppose vεj
converge to v = α(x −

x0)
+
1 + γ(x− x0)

+
1 uniformly on compact subsets of RN , with α > 0, γ ≥ 0 and

εj → 0. Then,

H(α) ≤ M

Now, we study the situation where the limit is a strict 2 -phase case.

Proposition 8.4. Let vεj
be a family of least viscosity solutions to (SE)εj

in a domain Ωj ⊂ RN such that Ωj ⊂ Ωj+1 and ∪∞j=1Ωj = RN . Suppose vεj

converge to v = α(x− x0)
+
1 − γ(x− x0)

−
1 uniformly on compact subsets of RN ,

with α > 0, γ > 0 and εj → 0. Then,

(8.5) H(α)−H(γ) ≥ M

Proof. Let us suppose by contradiction that,

H0,0(α)−H0,0(γ) = H(α)−H(γ) < M

This way, we can find 0 < σ < 1 such that

H0,0(α)−Mσ < H0,0(γ)

Since γ > 0, we can find α > α such that

0 < H0,0(α)−Mσ < H0,0(γ)

By continuity, there exist δ, µ < 0 such that
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0 < Hδ,µ(α)−Mσ < Hδ,µ(γ)

Now, let α < α? < α. This way, we are in conditions to use the below

condition barriers χε constructed in Proposition (7.3). Let η > 0 small be

given. We can find ε0 = ε0(η) > 0 such that

ε < ε0 ⇒ ||vε − v||L∞(QL0
) < η

Let us set c1 := max

{
1

α
,
1

γ

}
, c2 = c1 +

1

γ
and assume η is so small that

(c1 + c2) η <
d?

4
<

L0

4
Setting Q0 = 1

2
QL0 and Q00 = 1

4
QL0 , we see that if ξ ∈ RN with |ξ| ≤ L0,

the functions (χε)ξ : Q0 → R given by (χε)ξ(x) = χε(x + ξ) are well defined.

In particular, taking ξ = c1ηe1, we define

χ?
ε(x) = χε(x + c1ηe1)

It is easy to check that

(8.6) χ?
ε(x) ≥ W?(x + c1ηe1) > v(x) + η > vε(x) for x ∈ Q00

For |T | ≤ L0

4
, we can define (χ?

ε)T : Q00 → R by

(χ?
ε)T (x) := χ?

ε(x− Te1)

and consider the set

Γε =

{
0 ≤ T ≤ L0

4
; (χ?

ε)T ≥ vε in Q00

}
and Tε = sup Γε

Let us recall that Qε(x) = Qε(x1) ≤ γx1 for x1 ≤ 0 and χε ≤ Qε along

Z = span {e1}. In particular, considering x = le1, with |l| ≤ L0

4
and l ≤ η

γ

χε((l −
η

γ
)e1) ≤ γl − η

but

χε((l −
η

γ
)e1) = χε((l + ηc1 − ηc2)e1) = (χ?

ε)c2η(le1)

Taking now, l = 0, we find



LEAST SUPERSOLUTION APPROACH TO FREE BOUNDARY PROBLEMS 45

(χ?
ε)c2η(0) ≤ −η < vε(0)

This means that if we translate χ?
ε by c2η we have gone too far in terms of

touching vε by above. In particular,

Tε ≤ c2η

Setting

Zτ
ε (x) := (χ?

ε)Tε+τ (x), τ > 0

then, we can find xτ
ε ∈ Q00 such that

Zτ
ε (xτ

ε) < vε(x
τ
ε)

Let us observe that for x ∈ Q00,

Zτ
ε (x)− vε(x) ≥ W?

ε (x + (c1η − Tε − τ)e1)− v(x)− η ≥

≥ W?((x + (c1η − Tε − τ)e1)− εDe1) + Cε− v(x)− η

In particular,

x ∈ Q00 ∩ {x1 = ±L0} ⇒

⇒ Zτ
ε (x)− vε(x) ≥

≥ min
{
(α̃− α)L0 + A(η, ε, τ), (γ − γ̃)L0 + B(η, ε, τ)

}
≥ c4 > 0

if η and τ are chosen small enough, since

A(η, ε, τ) = α̃(c1η − Tε − τ − εD) + Cε− η → 0 as ε, η, τ → 0

B(η, ε, τ) = γ̃(c1η − Tε − τ − εD) + Cε− η → 0 as ε, η, τ → 0

Furthermore, by (7.16), if x ∈ Q00 ∩
{
x = (x1, x

′
) ∈ RN ; |x′| = L0

}
Zτ

ε (x)− vε(x) ≥ W?(x + (c1η − Tε − τ)e1 + (d? − εD)e1)− v(x)− η ≥

≥ min {α, γ} (c1η − Tε − τ + d? − εD) > c5 > 0
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for ε, η, τ small enough, since c1η−Tε−τ−εD → 0 as ε, η, τ → 0. This way,

by the translation invariance of (SEε), Remark (5.5), Zτ
ε is a supersolution of

(SEε) in Q00. Finally, for η, τ, ε small enough, we have

Zτ
ε ≥ vε in Q00

Zτ
ε (xτ

ε) < vε(x
τ
ε) with xτ

ε ∈ int(Q00)

which contradicts the fact that vε is the least supersolution of (SEε). This

way, H(α)−H(γ) ≥ M and the Theorem is proven.

�

Finally, we treat the case where the profile is of one-phase type.

Proposition 8.5. Let vεj
be a family of least viscosity solutions to (SE)εj

in a domain Ωj ⊂ RN such that Ωj ⊂ Ωj+1 and ∪∞j=1Ωj = RN . Suppose vεj

converge to v = α(x − x0)
+
1 uniformly on compact subsets of RN , with α > 0

and εj → 0. Then,

(8.7) H(α) ≥ M

Proof. The proof is similar to the proof of Theorem (8.4). Once more, let

us assume by contradiction that H(α) < M . As before, we can find α > α,

δ, µ < 0 and σ < 1 such that

Hδ,µ(α) < Mσ

Let us now choose, α < α̃ < α. We are now in conditions to use the barriers

constructed in Proposition (7.4). By assumption, there exists ε0 = ε0(η) such

that

ε ≤ ε0 ⇒ ||vε − v||L∞(QL0
) < κ2η

Setting Q0 = 1
2
QL0 and Q00 = 1

4
QL0 , we see that if ξ ∈ RN with |ξ| ≤ L0,

the functions (χε)ξ : Q0 → R given by (χε)ξ(x) = χε(x + ξ) are well defined.

Let us set

Qη
L0

=
{

x = (x1, x
′) ∈ RN | |x|∞ = max

{
|x1|, |x

′|
}
≤ 4L0 − 2η

}
Let us define c1 := 2κ2/α̃ +3 and c2 := c1 +2/α, and consider η so small that,

(c1 + c2)η <
d?

4
<

L0

4
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Observe, that by the exponential decay in the interior, Lemma (6.5), there

exists a constant Cη such that

x ∈ Q00 ∩ {x1 ≤ −2η} ⇒ v+
ε ≤ Cηε

3

Now, taking the barrier constructed in Proposition (7.4), by b), χε ≥ Cε in

QL0 . Let us define

χ?
ε(x) = χε(x + c1ηe1)

Then, if for x1 ≥ −c1η we have

χ?
ε(x) ≥ α̃(x1 + c1ηe1) + Dε ≥ α̃x1 + 2κ2η + 3α̃η + Dε

In particular, x1 ≥ −3η ⇒ χ?
ε(x) > 2κ2η. This way, there exists ε1 =

ε1(η) < ε0, we have χε − vε > 0 in Q0 since

χ?
ε − vε ≥ Cε− Cηε

3 > 0 in Q0 ∩ {x1 ≤ −2η}

χ?
ε − vε ≥ κ2η in Q0 ∩ {x1 ≥ −3η}

For |T | ≤ L0

4
, we can define (χ?

ε)T : Q00 → R by

(χ?
ε)T (x) := χ?

ε(x− Te1)

and consider the set

Γε =

{
0 ≤ T ≤ L0

4
; (χ?

ε)T ≥ vε in Q00

}
and Tε = sup Γε

Now, let us recall that

χε(le1) ≤ Qε(le1) = Pε(l) = αl + εκ+
σ for l ≥ 0

In particular, if l ≥ (c2 − c1)η and l ≤ L0

4
, then

(χ?
ε)c2η(le1) = χε(le1 + (c1 − c2)ηe1) ≤ αl + α(c1 − c2)η + εκ+

σ

Taking l = 2η/α, for ε small enough,

(χ?
ε)c2η

(
2η

α
e1

)
= χε(0) = εκ+

σ <
2αη

α
= v

(
2η

α
e1

)
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In other words, if we translate χ?
ε by c2η we have gone to far in terms of

touching vε by above. This implies, that

0 ≤ Tε ≤ c2η

Let us we define for 0 < τ < L0/10 a small number,

Zτ
ε (x) := (χ?

ε)Tε+τ (x), τ > 0

Now, we estimate

x ∈ ∂Q00 ∩ {x1 = L0} ⇒ Zτ
ε (x)− vε(x) ≥ Zτ

ε (x)− v(x)− η ≥

≥ χε(x + c1ηe1 − Tεe1 − τe1)− v(x)− η ≥

≥ (α̃− α)L0 + A(ε, η, τ) ≥

≥ 1

4
(α̃− α)L0

since A(ε, η, τ) = α̃(c1η − c2η − τ) + Dε− η → 0 as ε, η, τ → 0.

Clearly, for η, τ, ε small enough,

x ∈ ∂Q00 ∩ {x1 = −L0} ⇒ Zτ
ε − vε > Cε− Cηε

3 > 0

Finally, let us see that

x ∈ ∂Q00 ∩
{

x = (x1, x
′
) ∈ QL0 ; |x

′| = L0

}
⇒ Zτ

ε (x) > vε(x)

Indeed, choosing η, τ small enough, d? − c1η + Tε + τ < 3
4
d?. We can

assume, passing to a subsquence, if necessary that, Tε → T as ε → 0. By

the convergence given in Proposition (7.4)d),

Zτ
ε → G uniformly in ∂Q00 ∩

{
x = (x1, x

′
) ∈ QL0 ; |x

′| = L0

}
where,

G(x1) = g(x1 + c1η − T − τ)

Additionally, if x1 ≥ d? − c1η + T + τ , then

G(x1) ≥ α̃(x1 − d? + c1η − T − τ)
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So, for ε small enough and x ∈ ∂Q00 ∩
{
x = (x1, x

′
) ∈ QL0 ; |x

′| = L0

}
∩{

x1 ≥ 3
4
d?

}
,

Zτ
ε ≥ G− η

This way,

x1 ≥ d?/2 ⇒ Zτ
ε > L(x1) = α̃(x1 − d?) + B(η, T , τ)

where B(η, T , τ) = α̃(c1η − T − τ)− η → 0 as η, τ → 0.

Since, L(d?/2) > −α̃/4 > κ2η for η, τ small enough, and d
dx1
L(x1) = α̃ > α,

we conclude that

x1 ≥ d?/2 ⇒ Zτ
ε ≥ L > v + η > vε

and clearly,

x1 ≤ d?/2 ⇒ Zτ
ε − vε > Cε− Cηε

3 > 0

This way, by the translation invariance of (SEε), Remark (5.5), Zτ
ε is a

supersolution of (SEε) in Q00. Finally, for η, τ, ε small enough,

Zτ
ε ≥ vε in Q00

Zτ
ε (xτ

ε) < vε(x
τ
ε) with xτ

ε ∈ int(Q00)

which contradicts the fact that vε is the least supersolution of (SEε). This

way, H(α) ≥ M and the Theorem is proven.

�

9. Limit Free Boundary Problem

In this section, we prove that the limit of the least viscosity, u0 provided by

Theorem (4.1) is a solution in the Caffarelli’s viscosity sense as well as in the

pointwise sense (HN−1 a.e.) to the free boundary problem

(FBP ) ∆u = 0 in Ω \ ∂ {u > 0}

Hν(u
+
ν )−Hν(u

−
ν ) = M on Ω ∩ ∂ {u > 0}
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where u+ = max(u, 0), u− = max(−u, 0), ν is the inward unit normal to the

free boundary F (u) = Ω ∩ ∂ {u > 0} and

Hν(t) =

∫ t

0

s

F (sν)
ds

This notion of weak solution was introduced by Luis A. Caffarelli in the

classical papers [C2, C3]. Now, we provide these definitions to our problem.

Definition 9.1. Let Ω be a domain in RN and u ∈ C0(Ω). Then, u is called

a viscosity supersolution to (FBP) if

i) ∆u ≤ 0 in Ω+ = Ω ∩ {u > 0}
ii) ∆u ≤ 0 in Ω− = (Ω \ Ω+)◦

iii) Along F (u), u satisfies

Hν(u
+
ν )−Hν(u

−
ν ) ≤ M

in the following sense:

If x0 ∈ F (u) is a regular point from the nonnegative side(i.e, there

exists Br(y) ⊂ Ω+ with x0 ∈ ∂Br(x0)) and

u+(x) ≥ α 〈x− x0, ν〉+ + o(|x− x0|) in Br(x0), (α > 0)

and

u−(x) ≥ β 〈x− x0, ν〉− + o(|x− x0|) in Br(x0)
C , (β ≥ 0)

with equality along every nontangential domain in both cases, then

Hν(α)−Hν(β) ≤ M

Analogously, we have

Definition 9.2. Let Ω be a domain in RN and u ∈ C0(Ω). Then, u is called

a viscosity subsolution to (FBP) if

i) ∆u ≥ 0 in Ω+ = Ω ∩ {u > 0}
ii) ∆u ≥ 0 in Ω− = (Ω \ Ω+)◦
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iii) Along F (u), u satisfies

Hν(u
+
ν )−Hν(u

−
ν ) ≥ M

in the following sense:

If x0 ∈ F (u) is a regular point from the nonpositive side (i.e, there

exists Br(y) ⊂ Ω− with x0 ∈ ∂Br(x0)) and

u−(x) ≥ β 〈x− x0, ν〉− + o(|x− x0|) in Br(x0), (β ≥ 0)

and

u+(x) ≥ α 〈x− x0, ν〉+ + o(|x− x0|) in Br(x0)
C , (α ≥ 0)

with equality along every nontangential domain in both cases, then

Hν(α)−Hν(β) ≥ M

Remark 9.3. There are equivalent definitions for supersolutions and subsolu-

tions to (FBP) above. We mention an equivalent one for supersolutions that

will be used in the next results. For this and further details, see [CS], chapter

2.

Equivalentely, u ∈ C0(Ω) is a supersolution of (FBP) if conditions i), ii) of

defintion (9.1) are satisfied and if x0 is regular point from the nonnegative side

with tangent ball B

u+(x) ≥ α 〈x− x0, ν〉+ + o(|x− x0|) in B, (α ≥ 0)

then,

u−(x) ≥ β 〈x− x0, ν〉− + o(|x− x0|) in BC , (β ≥ 0)

For any β such that

Hν(α)−Hν(β) > M

Now, we move towards the proof of the major results in this section. In

what follows, u0 will always denote the limit of the least supersolutions given

by Theorem(4.1).
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Proposition 9.4. u0 is a viscosity subsolution to (FBP)

Proof. Clearly, conditions i), ii) of definiton (9.1) are satisfied. Now, let us

suppose that x0 ∈ F (u0) is a regular point from the nonpositive side with

tangent ball B. We can assume without lost of generality that x0 = 0 and

ν = e1. This way, by linear behavior at regular boundary points, Lemma

(11.7) in [CS], there exist α ≥ 0 and β > 0

u+
0 (x) = αx+

1 + o(|x|) in BC

and

u−0 (x) = βx−1 + o(|x|) in B.

Since u+
0 is nodegenerate, by Theorem (4.1)e) or more specifically, since (4.1)

holds, we conclude that α > 0 and thus, B is tangent to F (u0). This way, u0

admits full asymptotic development, i.e,

u0(x) = αx+
1 − βx−1 + o(|x|)

Taking now any sequence λn → 0 and using the blow-up sequence (uε
′
k
)λn

given in proposition (5.2), we conclude that there exists a subsequence that we

still denote by ε
′

k such that (uε
′
k
)λk

→ αx+
1 −βx−1 uniformly in compact subsets

of RN . Since by remark (5.5) the equation (SEε) and the least supersolution

property are preserved under blow-up process, by Theorem (8.1), we conclude

that

H(α)−H(β) = M

where H = He1 .

�

Proposition 9.5. u0 is a supersolution to (FBP).

Proof. As we already observed, u0 satisfies conditions i), ii) of definition (9.1).

We will show that the condition in the remark (9.3) holds. This way, let us

assume that B = Br(y) be a touching ball from the nonnegative side at x0 and

let us assume that for some α ≥ 0,

(9.1) u+
0 (x) ≥ α 〈x− x0〉+ + o(|x− x0|) in B
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where ν given by the inward unit radial direction of the ball at x0. If

Hν(α) ≤ M there is nothing to prove. Otherwise, if

(9.2) Hν(α) > M,

let γ ≥ 0 such that Hν(α)−Hν(γ) > M (we can find such γ, since Hν is a

bijection from [0, +∞] into itself). We will show that

(9.3) u−0 (x) ≥ γ 〈x− x0, ν〉− + o(|x− x0|) in BC

As usual, we assume without loss of generality that ν = e1 and x0 = 0. We

will prove the following

Claim: There exist α, γ > 0 such that

u0(x) = αx+
1 − γx−1 + o(|x|).

Indeed, by the Lemma (4.1) in [LW],

(9.4) u−0 (x) = γx−1 + o(|x|) in {x1 < 0}

for some γ ≥ 0. Let us consider the blow-up sequence, i.e, for λ > 0,

(u0)λ(x) =
1

λ
u0(λx).

Since u0 is locally Lipschitz continuous and u0(0) = 0 then, for every se-

quence, λn → 0, there exists a subsequence, that we still denote by λn, such

that (u0)λn → U0 uniformly in compact sets of RN , where U0 is Lipschitz in

RN . By (9.1) and (9.4) we know that

U−
0 = γx−1 in RN

and

U0 > 0 and harmonic in {x1 > 0}
We have to analyze two cases:

Case I: γ > 0.
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In this case, U0 < 0 in {x1 < 0}. Therefore U0 = 0 on the hyperplane

{x1 = 0} and since it is Lipschitz continuous, we have

U+
0 (x) = αx+

1 in RN

for some α > 0. This way, we conclude that

(9.5) U0(x) = αx+
1 − γx−1 , α, γ > 0.

Case II: γ = 0.

In this case, U0 ≥ 0 in RN . Since U0 > 0 and harmonic in harmonic in

{x1 > 0}, then by Lemma A1 in [C3], there exist α > 0 such that

(9.6) U0(x) = αx+
1 + o(|x|) in {x1 > 0} .

Since α > α, then (H = He1)

(9.7) H(α) ≥ H(α) > M

Let us consider, for λ > 0, the blow-up sequence

(U0)λ(x) =
1

λ
U0(λx)

Since U0 is Lipschitz continuous and U0(0) = 0, there exists a subsequence

λn → 0, such that (U0)λn
→ U00 uniformly on compact sets of RN , where

U00 ∈ Lip(RN). By (9.6),

U00(x) = αx+
1 in {x1 > 0} .

Let us observe that, U00 ≥ 0 in RN , it is harmonic in its positivity set

{U00 > 0} and u00 = 0 on the hyperplane {x1 = 0}, again by Lemma A1 in

[C3], we have

u00(x) = α̃x−1 + o(|x|) in {x1 < 0} ,

for some α̃ ≥ 0. Finally, if we consider once more for λ > 0 the blow-up

sequence

(u00)λ =
1

λ
u00(λx).
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As before, there is still a subsequence λ̃n → 0 and U000 ∈ Lip(RN), such that

(U00)fλn
→ U000 uniformly on compact subsets of RN . From the computations

above, we conclude

U000(x) = αx+
1 + α̃x−1 , α > 0, α̃ ≥ 0.

Applying proposition (5.2) and recalling that least supersolutions are pre-

served under blow-ups, we can see that there exists a sequence δn → 0 and

least supersolutions uδn to (SEδn) such that

(9.8) uδn → U0

uniformly on compact sets of RN . Applying the same poposition twice, we

see that there exist a sequence δ̃n → 0 and solutions ufδn
to (SEeδn

) such that

ufδn
→ U000 uniformly on compact sets of RN . By Theorem (8.1) and by (9.2)

H(α) ≤ M < H(α)

which contradicts (9.7). Then, case II does not occur and (9.5) holds, proving

the claim. This way, by (9.8), we can apply again Theorem (8.1) to U0 to

conclude

(9.9) He1(α)−He1(γ) = M

By proposition (5.3), there exists a δ > 0 independent of the sequence λn

such that

(9.10) αγ = δ

So, α and γ are determinded in a unique way and therefore, U0 does not

depend on the sequence λn. In particular,

(u0)λ → U0

uniformly in compact subsets of RN(as λ → 0). Thus,

u0(x) = αx+
1 − γx−1 + o(|x|)
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In particular,

(9.11) u−0 (x) = γx−1 + o(|x|) in BC

By (9.9), we obtain since α ≥ α

(9.12) He1(γ) = He1(α)−M ≥ He1(α)−M > He1(γ)

from which we conclude γ > γ and therefore by (9.11),

u−0 (x) > γx−1 + o(|x|) in BC

This finishes the proof. �

We establish now, the pointwise result.

Theorem 9.6. For Hn−1 a.e. x0 ∈ F (u0), u0 has the following asymptotic

development

u0(x) = α 〈x− x0, ν〉+ − γ 〈x− x0, ν〉− + o(|x− x0|)
where

Hν(α)−Hν(γ) = M

In particular, around such points, the free boundary F (u0) is flat in the sense

of Theorem 2
′
in [C2].

Proof. Indeed, by Theorem (4.4), for HN−1 a.e. in F (u0) we have,

u0(x) = q+
u0

(x0) 〈x− x0, ν〉+ − q−u0
(x0) 〈x− x0, ν〉− + o(|x− x0|)

Considering now, the blow-up sequence, (u0)λ(x) = 1
λ
u(x0 + λx), λ > 0, we

have

(u0)λ → q+
u0

(x0) 〈x− x0, ν〉+ − q−u0
(x0) 〈x− x0, ν〉−

Since least supersolutions are preserved under blow-up process, as in the

previous Theorem, by proposition (5.2) and Theorem (8.1), we conclude that

Hν(q
+
u0

(x0))−Hν(q
−
u0

(x0)) = M

The flatness follows now by the arguments in [C3]. This finishes the proof.
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�

At last, we prove our last Theorem concerning about the regularity of the

free boundary F (u0).

Theorem 9.7 (Free boundary regularity). Let u0 be the limit of the least

supersolutions given by Theorem (4.1). Then, the free boundary F (u0) =

∂ {u0 > 0} ∩ Ω is a C1,γ surface in a neighborhood of HN−1 a.e. point x0 ∈
F (u0)red. In particular, F (u0) is a C1,γ surface in a neighborhood of HN−1

a.e. point in F (u0).

Proof. We already know that u0 is a viscosity solution of (FBP). In this case,

u0 satisfies

u+
ν = G(u−ν , ν) on F (u)

in the viscosity sense, where

(9.13) G(z, ν) = H−1
ν (M + Hν(z))

Let us observe that G depends on ν in a Lipschitz continuous fashion. In-

deed, there is a constant C > 0 such that G(z, ν) ≥ C. To see that, since

t2/2Fmax ≤ Hν(t) ≤ t2/2Fmin, for t ≥ 0, we obtain

G(z, ν)2

2Fmin

≥ Hν(G(z, ν)) ≥ M + Hν(z) ≥ M

Furthermore,

|Hν(x)−Hν(y)| ≥ σ

Fmin

|x− y| for x, y ∈ [σ, +∞).

This way, for ν1, ν2 ∈ SN−1, by (9.13)

|Hν1(G(z, ν1)−Hν2(G(z, ν2)| = |Hν1(z)−Hν2(z)|
therefore for |z| ≤ C0, there exists C0 = C0(C0, Lip(F )) such that

C

Fmin

|G(ν1, z)−G(ν2, z)| ≤ |Hν1(G(z, ν1)−Hν2(G(z, ν2)| =

= |Hν1(z)−Hν2(z)| ≤ C0|ν1 − ν2|
Moreover, by Theorem (4.1) u0 is locally Lipschitz continuous and it has

linear growth away from its free boundary F (u0). Also, since F (u0)red has full
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HN−1 measure in F (u0), u0 is for HN−1 a.e. point on F (u0) a 2-plane solution.

In particular, for any such point x0, a suitable dilation

(u0)τ =
u(τ(x− x0))

τ
, τ small enough

falls under conditions of Theorem 3 in [C2], concluding the proof. �
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