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Abstract

The exact controllability theorem for the non stationary transport equation is
proven.

1 Introduction

In this publication, the exact controllability theorem for the time dependent transport equa-
tion is proven for the first time. The transport equation governs all diffusion processes, as
long as they are linear ones, e.g., propagation of neutrons, see the classic book of Case and
Zweifel [2]. A particularly interesting example is propagation of the near infrared light (orig-
inated by lasers) in a diffuse background, such as human tissues, for example. The latter
has applications in the medical optical imaging, see, e.g., the review paper of Das, Liu and
Alfano [3].

The transport equation plays an important role in the diffusion theory. We refer to such
classical books of physics as the books of Case and Zweifel [2], Ishimaru [14] and Landau
and Lifshitz [20]. We also refer to the review paper of Ukai [32] and to his book [31]. It
is stated in section 1.3 of [2], that the transport equation is actually the equation of the
balance, and it is a linearized Boltzmann equation, see, e.g., [32] for the Boltzman equation.
Moreover, one can relate the transport equation with the equations of fluid dynamics such
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as the Euler and the Navier-Stokes equations through an asymptotic expansion of a solution
of the Boltzmann equation, e.g,. see pp. 42-44 in [33]. It is also indicated on p. 33 of [32]
that Hilbert (1912) was the first one who has proposed this expansion. It is stated on p.
89 of [20] that “A considerable class of transport phenomena is constituted by processes in
which the mean changes of quantities (on which the distribution function depends) in each
event are small in comparison with their characteristic values. The relaxation times for such
processes are long in comparison with the times of the individual events which constitute
their microscopic mechanism, in the sense, they may be called slow processes.” It is stated
on the same page of [21] that the transport equation can be derived for such processes. In
addition, it is a classic result of the diffusion theory (in physics) that the more popular
parabolic diffusion equation ut = div (D(x)∇u) − a(x)u can be derived from the transport
equation as its so-called “P1−approximation”, see, e.g., [14].

There are many publications in the control theory, and the authors are unable to review
all of them here. The following is an incomplete list of publications and the reader might wish
to consult the references therein. The papers of Russell [28] and Seidman [29] are early works.
Lions has introduced the duality method in [23] - [25] (also, see Komornik [19]). We can
further list early works: as for hyperbolic equations, see e.g., Bardos, Lebeau and Rauch [1],
Lasiecka and Triggiani [21], Triggiani [30], and e.g., Zuazua [33] for a plate equation. Exact
controllability results are obtained for a variety of partial differential equations, see e.g., Eller
and Masters [6] for Maxwell’s equations, also see Fursikov [7], Fursikov and Imanuvilov [8],
Imanuvilov [12], Imanuvilov and Yamamoto [13] for parabolic equations.

Our proof of the exact controllability consists of two conventional stages. On the first
stage the so-called “continuous observability” estimate is established, i.e., the Lipschitz sta-
bility estimate for the time dependent transport equation with the lateral boundary data
on the lateral side of the time cylinder. This estimate is a crucial ingredient of the duality
method, which is applied on the second stage. The Lipschitz stability estimate for the trans-
port equation was recently established by Klibanov and Pamyatnykh [18]. It is necessary to
modify the proof of [18] here for three reasons. The first and the most important one is linked
with the weighted scalar product (1.9) in Theorem 2 with the weight function |cos (n, ν)|.
Weight functions were not considered in [18]. The delicacy here is due to the fact that this
weight function is vanishing at a set S ⊂ Γ−. It is well known, however that the presence
of zeros of weight functions in Hilbert spaces usually causes complications in the analysis.
Because of this, we need to carefully evaluate the boundary terms in the pointwise Carleman
estimate for the principal part of the differential operator of the transport equation, which
was not done in [18]. The second reason is that the result of [18] was established for solutions
u ∈ C1, whereas we need to work with weak solutions u ∈ L2 of the transport equation.
The latter causes significant additional complications, see Remark 2.1. Third, the Lipschitz
stability estimate was proved in [18] in the entire time cylinder, and this estimate is similar
with the estimate (1.10) in our case. However, in addition to (1.10), we need to obtain an
estimate at the top {t = T} of the time cylinder, see (1.11).

We prove the continuous observability estimate using the method of Carleman esti-
mates. For the first time the method of Carleman estimates was applied for the proof
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of the continuous observability estimate by Klibanov and Malinsky [16]. They have done
this for the case of hyperbolic equations with the constant principal part and low order
terms, wtt = ∆w + lot,where “lot” stands for lower order terms. In the next publication
of Kazemi and Klibanov [15] the idea of [16] was applied to a more general case of hy-
perbolic inequalities |wtt −∆w| ≤ A (|∇w|+ |wt|+ |w|+ |f(x, t)|) , A = const. > 0 and
the case when one boundary condituion is given only at a part of the boundary was con-
sidered. One of auxiliary results of the book of Klibanov and Timonov [17] is an exten-
sion of the method of [15] and [16] to the case of a more general hyperbolic inequality
|a(x)wtt −∆w| ≤ A (|∇w|+ |wt|+ |w|+ |f(x, t)|) with some restrictions imposed on the
positive function a(x). The method of [15] and [16] enabled one to establish the exact con-
trollability for the hyperbolic equations with lower order terms, see, e.g., the review paper of
Gulliver, Lasiecka, Littman and Triggiani [9]. The previously applied method of multipliers
was working (at least at the time of publications [15] and [16]) only under the assumption
lot = 0, see Ho [10] for the first publication of the method of multipliers. Currently Carleman
estimates are widely used in the control theory for proofs of continuous observability results,
see, e.g., [7] - [9], [12] and [13]. In this paper we modify the idea of [15]-[17] for case of the
transport equation.

In order to take into account the non-zero boundary condition, we derive a pointwise
Carleman estimate, as it was originated in the book of Lavrent’ev, Romanov and Shishatskii
[22]. Another popular method of deriving of Carleman estimates is one of Hörmander [11].
This method is well suitable for the so-called “unique continuation theorems”, which establish
that certain zero boundary conditions correspond only to the zero solution. However, it
cannot be applied in our case. The reason is that one of requirements of the method of [11]
is the zero boundary condition, while our goal is to estimate the solution via a non-zero
boundary condition.

All functions considered in this paper are real valued ones. So, Hilbert spaces here contain
only real valued functions. For a function g (x) with x ∈ RN denote gi = ∂g/∂xi whenever
the differentiation is appropriate. Let Ω ⊂ RN be a strictly convex bounded domain with
the boundary ∂Ω ∈ C∞. Let z1, z2 ∈ Ω be two points such that

|z1 − z2| = max
x,y∈Ω

|x− y| .

Without loss of generality we assume that 0 = (z1 + z2) /2. Clearly, 0 ∈ Ω. Denote

R = max
x∈Ω

|x| .

Let SN−1 ⊂ RN be the unit sphere and ν be the unit vector. Denote

W = Ω× SN−1 × (0, T ),Γ = Γ (T ) = ∂Ω× SN−1 × (0, T ),

Γ+ = Γ+ (T ) = {(x, t, ν) ∈ Γ : (n(x), ν) > 0} ,

Γ− = Γ− (T ) = {(x, t, ν) ∈ Γ : (n(x), ν) ≤ 0} ,
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where (, ) is the scalar product and n(x) is the unit outward normal vector to ∂Ω at x.
The homogeneous transport equation has the form [2], [18]

Mu := ut + (ν,∇u) + a(x, t, ν)u+

∫
SN−1

g(x, t, ν, µ)u(x, t, µ)dσµ = 0, in W, (1.1)

where ν ∈ SN−1 is the unit vector of particle velocity, u(x, t, ν) is the density of particle flow,
a is an absorption coefficient and g is a scattering indicatrix. We assume that

a ∈ C1
(
W
)
, g ∈ C1

(
W × SN−1

)
. (1.2)

It seems that the weaker assumptions a ∈ C
(
W
)
, g ∈ C

(
W × SN−1

)
might be sufficient.

Still, we prefer to use (for brevity) a little bit stronger assumption (1.2) to introduce the
definition of the weak solution, which in turn is relying on Theorem 2.1. In this paper we
consider the following

Exact Controllability Problem. Consider the zero initial condition

u |t=0= 0, (1.3)

and the boundary condition
u |Γ−= p(x, t, ν), (1.4)

where p ∈ L2
cos (Γ−) (see below for the definition of the Hilbert space L2

cos (Γ−)). We assume
that the weak solution u ∈ C([0, T ];L2(Ω × SN−1)) of the problem (1.1)-(1.4) can be de-
fined (Theorem 2.2). Let uT (x, ν) ∈ L2

(
Ω× SN−1

)
be an arbitrary function. Find such a

boundary condition (i.e., boundary control) p = p (uT ) ∈ L2
cos (Γ−) that the resulting function

u (x, t, ν) be such that
u (x, T, ν) = uT (x, ν). (1.5)

Here we can interpret T as the “steering time”. Our main result is
Theorem 1. Let Ω be a strictly convex bounded domain with ∂Ω ∈ C∞ and T > 2R.

Then for any function uT (x, ν) ∈ L2
(
Ω× SN−1

)
there exists a control function p = p (uT ) ∈

L2
cos (Γ−) such that if the function u is the weak solution of the initial boundary value problem

(1.1)-(1.4), then (1.5) holds.
In this paper, without loss of generality, we can assume that the initial value of the

controlled system (1.1) is zero. In fact, let Theorem 1 be proved and let u = u(x, t, ν) be the
weak solution to (1.1), (1.4) and u|t=0 = u0 for an u0 ∈ L2(Ω× Sn−1). For given u0 and uT ,
we have to find a control function p ∈ L2

cos(Γ−) such that the function u satisfies (1.5). Let v
be the weak solution to Mv = 0 in W , v|t=0 = u0 and v|Γ− = 0. Setting w = u− v, we have
Mw = 0 in W , w|t=0 = 0 and w|Γ− = p. Therefore by Theorem 1 in the case of the zero
initial condition, which is assumed to be solved, for w we can find p ∈ L2

cos(Γ−) such that
w(x, T, ν) = uT (x, ν)− v(x, T, ν). This control p steers u from u0 at t = 0 to uT at t = T .
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Consider the weak solution of the adjoint transport equation

M∗v := vt + (ν,∇v)− a(x, t, ν)v −
∫

SN−1

g(x, t, µ, ν)v(x, t, µ)dσµ = 0, in W , (1.6)

v (x, T, ν) = v0 (x, ν) ∈ L2
(
Ω× SN−1

)
, (1.7)

v |Γ+= 0. (1.8)

We introduce the weighted scalar product as

〈p, q〉 =

∫
Γ−

p (x, t, ν) q (x, t, ν) · |cos (n, ν)| dSxdtdσν . (1.9)

By Lemma 2.1 (below), (1.9) is a scalar product which generates a Hilbert space, which
we denote L2

cos(Γ−). Note that

L2 (Γ−) ⊂ L2
cos (Γ−) and ‖p‖L2

cos(Γ−) ≤ ‖p‖L2(Γ−) , ∀p ∈ L2 (Γ−) ,

that is, the L2
cos (Γ−)− norm is weaker than the L2 (Γ−)− norm. The necessity of the

introduction of the weighted space L2
cos (Γ−) can be seen from (3.13a) (section 3). To prove

Theorem 1, we combine the duality argument with the following continuous observability
result.

Theorem 2. Assume that Ω is a strictly convex bounded domain with ∂Ω ∈ C∞ and
T > 2R. Let the function v be the weak solution of the adjoint problem (1.6)-(1.8) in the
sense of the Definition 2.1. Let v |Γ− := (Kv0) (x, t, ν) ∈ L2

cos (Γ−) be the generalized trace of
the function v on Γ− (Definition 3.1). Then the following Lipschitz stability estimates are
valid:

‖v‖L2(W ) ≤ C ‖Kv0‖L2
cos(Γ−) , (1.10)

‖v0‖L2(Ω×Sn−1) ≤ C ‖Kv0‖L2
cos(Γ−) , (1.11)

where the positive constant C = C
(
Ω, T, ‖a‖C(W) , ‖g‖C(W×SN−1)

)
depends only on numbers

R,T and norms ‖a‖C(W) and ‖g‖C(W×SN−1) .

The following theorem can be proven similarly with Theorem 2, see, e.g., analogs of this
theorem for the hyperbolic case in [15] and [17]. The point of the proof for the inequality is
that the Carleman estimate, the main ingredient of the proof, is independent on low order
terms of a corresponding differential operator, see, e.g., [11] and [17].

Theorem 3. Let Ω be a strictly convex bounded domain with ∂Ω ∈ C∞. Let T >
diameter (Ω). Let the function w ∈ C1

tνgrad

(
W
)

(see below about the definition of the space

C1
tνgrad

(
W
)
) be a solution of the transport inequality

|wt + (ν,∇w)| ≤ B

|w|+ ∫
SN−1

|w(x, t, µ)| dσµ

 ,
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where B = const. > 0. Then

‖w‖L2(W ) ≤ C1 ‖h‖L2(Γ) , ‖w(x, T, ν)‖L2(W ) ≤ C1 ‖h‖L2(Γ) ,

where the positive constant C1 = C1

(
Ω, T, B, ‖a‖C(W) , ‖g‖C(W×SN−1)

)
and the function

h = w |Γ .
In this paper C = C

(
Ω, T, ‖a‖C(W) , ‖g‖C(W×SN−1)

)
denotes different positive constants

depending on parameters listed. The conditions of Theorem 1 are assumed to be satisfied
below. In section 2 we introduce the weak solutions of problems (1.1)-(1.4) and (1.6)-(1.8).
In section 3 we prove Theorem 1, assuming that Theorem 2 is valid. In section 4 we prove
Theorem 2.

2 Strong and weak solutions

2.1 The space L2
cos(Γ−) of controls

In this subsection we prove
Lemma 2.1. L2

cos (Γ−) is a Hilbert space.
Proof. First, we have to prove that 〈p, p〉 = 0 ⇔ p = 0. We set Φ := {(x, ν) ∈

∂Ω× SN−1 : cos(n, ν) = 0}. It is sufficient to prove that

meas (Φ) = 0.

Since the boundary ∂Ω ∈ C1 class, we can locally represent ∂Ω by {x1 = 0} via choosing
suitably coordinates. Therefore, without loss of generality, we can assume that ∂Ω = ∪J

j=1∂jΩ

and in each Γj, we set n(x) = (1, 0, ..., 0)T by changing variables. Here the superscript
“T” means the transpose. Then cos(n(x), ν) = 0 is equivalent to ν = (0, ν2, ..., νN)T with∑N

j=2 ν
2
j = 1. Hence Φ∩ (∂jΩ×SN−1) ⊂ ∂jΩ×SN−2, that is, Φ∩ (∂jΩ×SN−1) is a (2N−3)-

dimensional hypersurface in the (2N−2)-dimensional space. Hencemeas(Φ∩(∂jΩ×SN−1)) =
0. Therefore meas

(
Φ ∩

(
∪J

j=1∂jΩ× SN−1
))

= meas(Φ) = 0. Thus we see that (1.9) defines
a scalar product.

Second, we prove the completeness of L2
cos(Γ−). Let {pk}∞k=1 ⊂ L2

cos(Γ−) be a Cauchy
sequence in the norm of L2

cos(Γ−), that is, limk,`→∞ ‖pk − p`‖L2
cos(Γ−) = 0. Then{

pk| cos(n, ν)| 12
}∞

k=1
is a Cauchy sequence in L2(Γ−). Hence, there exists a function

p̃ ∈ L2(Γ−) such that

lim
k→∞

∫
Γ−

|p̃− pk| cos(n, ν)|
1
2 |2dSxdtdσν = 0.

Denote

q =
p̃

| cos(n, ν)| 12
.
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Hence, q ∈ L2
cos(Γ−). Therefore,

lim
k→∞

∫
Γ−

∣∣∣∣∣ p̃

| cos(n, ν)| 12
− pk

∣∣∣∣∣
2

| cos(n, ν)|dSxdtdν = lim
k→∞

‖q − pk‖2
L2

cos(Γ−) = 0,

which proves the completeness of L2
cos(Γ−). �

2.2 Strong solution

Consider the case when (1.3) is replaced with

u |t=0= f(x, ν). (2.1)

For the exact controllability, we need a weak solution. However, the authors are unaware
about publications, where weak solutions with non-zero boundary values in L2

cos(Γ−) would
be introduced (see Chapter 2 in Ukai [32] for complete accounts which is a monograph in
Japanese). As for the weak solution with the homogenous boundary data, see, for example
Douglis [4] and Ukai [32]. In principle, the L2-solution of the transport equation with non-
homogeneous boundary value in L2

cos(Γ−) can be defined by the transposition method (see
Chapter 3 in Lions and Magenes [26] or pp. 46-50 in Lions [25]). However, it is convenient
for our goal define the weak solution via density arguments. To do so, we use a result of
Prilepko and Ivankov [27] about strong solutions.

We first assume that

f ∈ C∞
(
Ω× SN−1

)
and f(x, ν) ∈ C∞0 (Ω) ,∀ν ∈ SN−1, (2.2)

p ∈ C∞
(
Γ−
)

(2.3a)

and for every appropriate pair (x, ν)

p(x, t, ν) := px,ν (t) ∈ C∞0 (0, T ) . (2.3b)

Following [27], introduce the following functional space

C1
tνgrad

(
W
)

=

{
u (x, t, ν) : u, ut,

d

ds
u (x+ sν, t, ν) |s=0∈ C

(
W
)
,∀ν ∈ SN−1

}
,

‖u‖C1
tνgrad(W) = ‖u‖C(W) + ‖ut‖C(W) +

∥∥∥∥ ddsu (x+ sν, t, ν) |s=0

∥∥∥∥
C(W)

.

Rewrite the quation (1.1) in a different form

ut +
d

ds
u (x+ sν, t, ν) |s=0 +a(x, t, ν)u+

∫
SN−1

g(x, t, ν, µ)u(x, t, µ)dσµ = 0, in W. (2.4)
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Equations (1.1) and (2.4) are not equivalent. If, for example, the derivatives ut, ui ∈ C
(
W
)

and the function u satisfies (2.4), then this function also satisfies (1.1). However, if a function
u ∈ C1

tνgrad

(
W
)

satisfies (2.4) but not all its derivatives ui exist, then this function might
not be a solution of equation (1.1). Therefore the equation (2.4) is more general than the
equation (1.1). Theorem 2.1 is a simplified version of Theorem 1 of [27].

Theorem 2.1. Let Ω ⊂ RN be a strictly convex bounded domain with ∂Ω ∈ C∞. As-
sume that conditions (1.2), (2.2) and (2.3a,b) hold. Then there exists unique solution u ∈
C1

tνgrad

(
W
)

of the problem (1.4), (2.1), (2.4).
Remark 2.1. In the view of our goal a significant complication linked with Theorem

2.1 is an insufficient smoothness guaranteed by this theorem. In other words, we cannot
work directly with the “individual” derivatives ui, because their existence is not guaranteed.
Rather, we need to work with the directional derivatives du (x+ sν, t, ν) /ds |s=0. . Further-
more, we cannot even claim that such a directional derivative equals to (ν,∇u) . The key
idea, which helps to overcome these, is the introduction of an orthogonal matrix Aν0 in (2.6).

Below in this section we gradually relax smoothness conditions (2.2), (2.3a,b). We need
these minimal conditions in order to introduce the weak solution. On the other hand, we
need the weak solution for the duality argument.

2.3 Weak solution

Lemma 2.2. (energy conservation). Suppose that conditions (1.2), (2.2) and (2.3a,b) are
fulfilled. Let the function u ∈ C1

tνgrad

(
W
)

be a solution of the problem (1.4), (2.1), (2.4).
Denote

E(u, t) =

∫
Ω

∫
SN−1

|u(x, t, ν|2 dσνdx.

Then there exists a positive constant C = C
(
Ω, T, ‖a‖C(W) , ‖g‖C(W×SN−1)

)
such that for

any two numbers t1, t2 ∈ [0, T ]

E(u, t2) ≤ C
[
E(u, t1) + ‖p‖2

L2
cos(Γ−)

]
. (2.5)

Proof. Fix an arbitrary vector ν0 ∈ SN−1. Let Aν0 =
(
aij

ν0

)N
i,j=1

be an orthogonal matrix

such that
Aν0ν0 = ν̃0 := (1, 0, 0, ..., 0)T . (2.6)

Let
y = Aν0x. (2.7)

Denote Aν0Ω = {y = Ax : x ∈ Ω}. Also, for any point y = Aν0x ∈ ∂ (Aν0Ω) (hence, x ∈ ∂Ω)
let ñ(y) = Aν0n(x) be the unit outward normal vector at the point y. Denote

ũ(y, t, η) = u
(
A−1

ν0
y, t, A−1

ν0
η
)
,∀η ∈ SN−1, (2.8)

ã(y, t, ν̃0) = a
(
A−1

ν0
y, t, A−1

ν0
ν̃0

)
, (2.9)
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g̃(y, t, ν̃0, η) = g
(
A−1

ν0
y, t, A−1

ν0
ν̃0, A

−1
ν0
η
)
,∀η ∈ SN−1. (2.10)

In the new coordinates, noting that ũ(y, t, ν̃0) = u(x, t, ν0) and

u(x+ sν0, t, ν0) = u(A−1
ν0

(y + sν̃0), t, ν0) = ũ(y + sν̃0, t, ν̃0)

= ũ(y1 + s, y2, ..., yn, t, ν̃0),

we have
d

ds
u (x+ sν0, t, ν0) |s=0= ũy1 (y, t, ν̃0) . (2.11)

Hence, setting ν = ν0 in the equation (1.1), we obtain

(ũt + ũy1 + ãũ) (y, t, ν̃0) +

∫
SN−1

g̃(y, t, ν̃0, η)ũ(y, t, η)dση = 0. (2.12)

Since u ∈ C1
tνgrad

(
W
)
, we have by (2.11)

ũ (y, t, ν̃0) , ũt (y, t, ν̃0) , ũy1 (y, t, ν̃0) ∈ C
(
Aν0Ω× [0, T ]

)
. (2.13)

Actually, the goal of the transformation (2.7) - (2.10) was to obtain the equation (2.12) with
ũy1 (y, t, ν̃0) ∈ C

(
Aν0Ω× [0, T ]

)
.

Multiply the both sides of (2.12) by the function ũ (y, t, ν̃0) . We obtain for this vector ν̃0[
(ũ2)t + (ũ2)y1

]
(y, τ , ν0) = −2ãũ2(y, τ , ν0)− 2ũ(y, τ , ν0) ·

∫
SN−1

g̃(y, τ , ν̃0, η)ũ(y, τ , η)dση,

where τ ∈ (0, T ) . Integrating this equality with respect to (y, τ) ∈ Aν0Ω×(t1, t) , t ∈ (t1, T ) ,
we obtain∫

Aν0Ω

ũ2 (y, t, ν̃0) dy +

t∫
t1

∫
∂(Aν0Ω)

cos (ñ, y1) ũ
2 (y, τ , ν̃0) dSydτ =

∫
Aν0Ω

ũ2 (y, t1, ν̃0) dy

−2

t∫
t1

∫
Aν0Ω

ãũ2 (y, τ , ν̃0) dydτ − 2

t∫
t1

∫
Aν0Ω

ũ (y, τ , ν̃0)

 ∫
SN−1

g̃(y, τ , ν̃0, η)ũ(y, τ , η)dση

 dydτ .
Changing variables “backwards” x = A−1

ν0
y and noting that by (2.6)

cos (ñ(y), y1) = cos (n(x), ν0) , we obtain

∫
Ω

u2 (x, t, ν0) dx+

t∫
t1

∫
∂Ω

cos (n, ν0)u
2 (x, τ , ν0) dSxdτ =

∫
Ω

u2 (x, t1, ν0) dx (2.14)
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−2

t∫
t1

∫
Ω

(
au2
)
(x, τ , ν0) dxdτ − 2

t∫
t1

∫
Ω

u (x, τ , ν0)

 ∫
SN−1

g(x, τ , ν0, η)u(x, τ , η)dση

 dxdτ .
Let

Γ (t1, t) = Γ ∩ {(x, t, ν) : t ∈ (t1, t)} ,

Γ− (t1, t) = Γ− ∩ Γ (t1, t) and Γ+ (t1, t) = Γ+ ∩ Γ (t1, t) .

Recalling that ν0 ∈ SN−1 is an arbitrary vector, we can now integrate (2.14) with respect to
ν0 ∈ SN−1. We obtain∫

SN−1

∫
Ω

u2 (x, t, ν) dxdσν +

∫
Γ(t1,t)

cos (n(x), ν)u2 (x, τ , ν) dSxdσνdτ =

∫
SN−1

∫
Ω

u2 (x, t1, ν) dxdσν − 2

t∫
t1

∫
SN−1

∫
Ω

(
au2
)
(x, τ , ν) dxdσνdτ (2.15)

−2

t∫
t1

∫
SN−1

∫
Ω

u (x, τ , ν)

 ∫
SN−1

g(x, τ , ν, η)u(x, τ , η)dση

 dxdσνdτ .

Since Γ (t1, t) = Γ− (t1, t) ∪ Γ+ (t1, t) , Γ− (t1, t) ⊂ Γ− (T ) and cos (n(x), ν) > 0 on Γ+ (t1, t) ,
we have ∫

Γ(t1,t)

cos (n, ν)u2 (x, τ , ν) dSxdσνdτ ≥
∫

Γ−(t1,t)

cos (n, ν)u2 (x, τ , ν) dSxdσνdτ

≥
∫

Γ−(T )

cos (n, ν)u2 (x, τ , ν) dSxdσνdτ = −
∫

Γ−(T )

|cos (n, ν)|u2 (x, τ , ν) dSxdσνdτ

= −‖u‖2
L2

cos(Γ−) = −‖p‖2
L2

cos(Γ−) .

Also, ∣∣∣∣∣∣
t∫

t1

∫
SN−1

∫
Ω

u (x, τ , ν)

 ∫
SN−1

g(x, τ , ν, η)u(x, t, η)dση

 dxdσνdτ

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣
t∫

t1

∫
SN−1

∫
Ω

|u (x, τ , ν)|

 ∫
SN−1

|u (x, t, η)| dση

 dxdσνdτ

∣∣∣∣∣∣
= C

t∫
t1

∫
Ω

 ∫
SN−1

|u (x, τ , ν)| dσν ·
∫

SN−1

|u (x, τ , µ)| dσµ

 dxdτ
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≤ C

t∫
t1

∫
Ω

∫
SN−1

u2 (x, τ , ν) dσνdxdτ .

At the last inequality, we used the Cauchy-Schwarz inequality. Hence we obtain from (2.15)

E(u, t) ≤ E(u, t1) + ‖p‖2
L2

cos(Γ−) + C

t∫
t1

E(u, τ)dτ .

Hence the Gronwall’s inequality leads to (2.5). �
Theorem 2.2. Let Ω ⊂ RN be a strictly convex bounded domain with ∂Ω ∈ C∞ and

conditions (1.2) hold. Let f ∈ L2
(
Ω× SN−1

)
and p ∈ L2

cos (Γ−) be two arbitrary functions.
Consider two functional sequences {fk}∞k=1,{pk}∞k=1 satisfying conditions (2.2) and (2.3a,b)
and such that

lim
k→∞

‖fk − f‖L2(Ω×SN−1) = lim
k→∞

∥∥∥pk − p
√
|cos (n, ν)|

∥∥∥
L2(Γ−)

= 0.

Let uk ∈ C1
tνgrad

(
W
)

be the solution of the boundary value problem (1.4), (2.1), (2.4) with
the initial condition fk and the boundary condition pk. Then there exists a function u ∈
C([0, T ];L2(Ω×SN−1)) such that lim

k→∞
‖uk − u‖C([0,T ];L2(Ω×SN−1)) = 0. Inequality (2.5) holds

for this function u, and

‖u‖C([0,T ];L2(Ω×SN−1)) ≤ C
(
‖f‖L2(Ω×SN−1) + ‖p‖L2

cos(Γ−)

)
. (2.16)

For any pair of functions f ∈ L2 (Ω× Sn−1) and p ∈ L2
cos (Γ−) the resulting function u is

independent of functional sequences {fk}∞k=1 and {pk}∞k=1 .
Proof. The existence of a sequence {pk}∞k=1 satisfying conditions (2.3) and such that

lim
k→∞

∥∥∥pk − p
√

cos (n, ν)
∥∥∥

L2(Γ−)
= 0, follows from the fact that the function p

√
|cos (n, ν)| ∈

L2 (Γ−) and the set of functions satisfying (2.3) is dense in L2 (Γ−) .Also, since the L2
cos (Γ−)−

norm is weaker than the L2 (Γ−)− norm and {pk}∞k=1 is a Cauchy sequence in L2 (Γ−) , then
the sequence {pk}∞k=1 ⊂ L2

cos (Γ−) and it is a Cauchy sequence in L2
cos (Γ−) . Since functions

uk ∈ C1
tνgrad

(
W
)
, then uk ∈ C([0, T ];L2(Ω × SN−1)). Thus, setting t1 = 0, u = uk − u`,

f = fk−f` and p = pk−p` in (2.5) and taking the maximum in t, we see that {uk (x, t, ν)}∞k=1

is a Cauchy sequence in the space C([0, T ];L2(Ω × SN−1)). Hence we define the function
u (x, t, ν) as u := lim

k→∞
uk in C([0, T ];L2(Ω × SN−1)). Since (2.5) holds for functions uk, it

also holds for the function u, which implies (2.16). The independence of the function u on
specific sequences {fk}∞k=1 and {pk}∞k=1 follows from (2.5). �

Definition 2.1. Let Ω ⊂ RN be a strictly convex bounded domain with ∂Ω ∈ C∞ and
functions a and g satisfy conditions (1.2). Let the function u ∈ C([0, T ];L2(Ω × SN−1))
be the one obtained as the limit described in Theorem 2.2. Then we call this function u
the weak solution of the initial boundary value problem (1.1), (1.4), (2.1) with the initial
condition f ∈ L2

(
Ω× SN−1

)
and the boundary condition p ∈ L2

cos (Γ−) .
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By (2.16) the limit u is independent of choices of sequences fk, pk. Thus the following
theorem follows from Theorem 2.2 and Definition 2.1.

Theorem 2.3. Let Ω ⊂ RN be a strictly convex bounded domain with ∂Ω ∈ C∞ and
conditions (1.2) hold. Then for each pair of functions f ∈ L2 (Ω× Sn−1) and p ∈ L2

cos (Γ−)
the weak solution u ∈ C([0, T ];L2(Ω × SN−1)) of the problem (1.1), (1.4), (2.1) exists, is
unique and (2.16) holds.

Consider now the adjoint problem (1.6)-(1.8). Similarly with (2.4) and following the same
considerations, we rewrite the equation (1.6) as

vt +
d

ds
v (x+ sν, t, ν) |s=0 −a(x, t, ν)v −

∫
SN−1

g(x, t, µ, ν)v(x, t, µ)dσµ = 0 in W. (2.17)

The following result follows immediately from Lemma 2.2 and Theorems 2.1-2.3 via the
change of variables t⇔ τ = T − t.

Theorem 2.4. Let Ω ⊂ RN be a strictly convex bounded domain with ∂Ω ∈ C∞and
conditions (1.2) hold. Suppose that in (1.7) the function v0 ∈ C∞

(
Ω× SN−1

)
and v0(x, ν) ∈

C∞0 (Ω) ,∀ν ∈ SN−1. Let the function v ∈ C1
tνgrad

(
W
)

be a solution of the problem (1.7),
(1.8), (2.17) (Theorem 2.1). Denote

E(v, t) =

∫
Ω

∫
SN−1

|v(x, t, ν|2 dνdx.

Then there exists a positive constant C = C
(
Ω, T, ‖a‖C(W) , ‖g‖C(W×SN−1)

)
such that for

any two numbers t1, t2 ∈ [0, T ]
E(v, t2) ≤ CE(v, t1). (2.18)

Thus, the solution v ∈ C1
tνgrad

(
W
)

of the problem (1.7), (1.8), (2.17) both exists and is

unique. Next, assume that v0 ∈ L2
(
Ω× SN−1

)
is an arbitrary function. Let {v0k}∞k=1 ⊂

C∞
(
Ω× SN−1

)
be such a sequence that v0k(x, ν) ∈ C∞0 (Ω) ,∀ν ∈ SN−1 and

lim
k→∞

‖v0k − v0‖L2(Ω×SN−1) = 0. Let {vk}∞k=1 ∈ C1
tνgrad

(
W
)

be the sequence of solutions

of the initial boundary value problem (1.7), (1.8), (2.17) with initial conditions vk |t=0=
v0k. Then there exists a function v = v (x, t, ν) ∈ C([0, T ];L2(Ω × SN−1)) such that
lim
k→∞

‖vk − v‖C([0,T ];L2(Ω×SN−1)) = 0. For any given function v0 ∈ L2
(
Ω× SN−1

)
the function

v is independent on the functional sequence {v0k}∞k=1 . Furthermore

‖v‖C([0,T ];L2(Ω×SN−1)) ≤ C‖v0‖L2(Ω×SN−1)). (2.19)

Definition 2.2. We call the function v ∈ C([0, T ];L2(Ω×SN−1)) constructed in Theorem
2.4 the “weak solution” of the adjoint problem (1.6)-(1.8).

Therefore, the following corollary follows from Theorem 2.4
Corollary 2.1. For any function v0 ∈ L2

(
Ω× SN−1

)
there exists a unique weak solution

v ∈ C([0, T ];L2
(
Ω× SN−1

)
) to (1.6) - (1.8). The estimate (2.19) holds for this function v.
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3 Proof of Theorem 1

In this section we prove Theorem 1, assuming that Theorem 2 holds. By Theorem 2.3, for
any function p ∈ L2

cos(Γ−) there exists a unique weak solution u of the problem (1.1), (1.3)
and (1.4). Also, by Corollary 2.1 for any function v0 ∈ L2(Ω× SN−1) there exists a unique
weak solution v of the problem (1.6) - (1.8).

3.1 Generalized trace of the weak solution of the adjoint problem
(1.6)-(1.8)

For the weak solution v of the problem (1.6)-(1.8), we define in this subsection a generalized
trace of the function v |Γ−∈ L2

cos (Γ−). Consider the case when the function p in (1.4) satisfies
conditions (2.3). In addition, assume for a while that the function v0 in (1.7) satisfies the
following tow conditions

v0 ∈ C∞
(
Ω× SN−1

)
(3.1)

and
v0(x, ν) ∈ C∞0 (Ω) ,∀ν ∈ SN−1. (3.2)

Therefore, Theorema 2.1 and 2.3 guarantee that unique solutions u, v ∈ C1
tνgrad

(
W
)

of the
following two initial boundary value problems exist:

ut +
d

ds
u (x+ sν, t, ν) |s=0 +a(x, t, ν)u+

∫
SN−1

g(x, t, ν, µ)u(x, t, µ)dσµ = 0, in W, (3.3)

u |t=0= 0, (3.4)

u |Γ−= p(x, t, ν), (3.5)

and the adjoint problem

vt +
d

ds
v (x+ sν, t, ν) |s=0 −a(x, t, ν)v −

∫
SN−1

g(x, t, µ, ν)v(x, t, µ)dσµ = 0 in W, (3.6)

v(x, T, ν) = v0 (x, ν) , (x, ν) ∈ Ω× SN−1, (3.7)

v |Γ+= 0. (3.8)

By (3.4), we have
T∫

0

utvdt = (uv) (x, T, ν)−
T∫

0

uvtdt. (3.9)

Fix an arbitrary vector ν0 ∈ SN−1. Let Aν0 be an orthogonal matrix satisfying (2.6). Intro-
duce again notations (2.7) - (2.10). In addition, let ṽ(y, t, ν̃0) = v

(
A−1

ν0
y, t, A−1

ν0
ν0

)
. Since in

the new coordinates
d

ds
u (x+ sν0, t, ν0) |s=0= ũy1 (y, t, ν̃0)
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and
d

ds
v (x+ sν0, t, ν0) |s=0= ṽy1 (y, t, ν̃0) ,

then (3.3), (3.6) and (3.9) imply that

∫
Aν0Ω

T∫
0

(−ũy1 − ãũ) (y, t, ν̃0)−
∫

SN−1

g̃(y, t, ν̃0, η)ũ(y, t, η)dση

 ṽ(y, t, ν̃0)dtdy =

∫
Aν0Ω

T∫
0

(ṽy1 − ãṽ) (y, t, ν̃0)−
∫

SN−1

g̃(y, t, η, ν̃0)ṽ(y, t, η)dση

 ũ(y, t, ν̃0)dtdy (3.10)

+

∫
Aν0Ω

(ũṽ) (y, T, ν̃0)dy.

For an arbitrary vector ν ∈ SN−1 denote

∂Ω− (ν) = {x ∈ ∂Ω : (n(x), ν) ≤ 0} , ∂Ω+ (ν) = {x ∈ ∂Ω : (n(x), ν) > 0} .

Hence, by (3.5) and (3.8)

u(x, t, ν) = p(x, t, ν) for x ∈ ∂Ω− (ν) , v(x, t, ν) = 0 for x ∈ ∂Ω+ (ν) . (3.11)

Let p̃ (y, t, ν̃0) = p
(
A−1

ν0
y, t, A−1

ν0
ν̃0

)
. Integrating by parts, we obtain for the two terms in

(3.10)∫
Aν0Ω

(−ũy1 · ṽ) (y, t, ν̃0)dy−
∫

Aν0Ω

(ũ · ṽy1) (y, t, ν̃0)dy = −
∫

∂(Aν0Ω)

(ũ · ṽ) (y, t, ν̃0) cos (ñ, y1) dSy.

Change variables “backwards” y ⇔ x = A−1
ν0
y, ν0 = A−1

ν0
ν̃0 in the last integral and note

again that by (2.6) cos (ñ(y), y1) = cos (n(x), ν0) . Hence, using (3.11), we obtain

−
∫

∂(Aν0Ω)

(p̃ · ṽ) (y, t, ν̃0) cos (ñ, y1) dSy = −
∫
∂Ω

(u · v) (x, t, ν0) cos (n, ν0) dSx

= −
∫

∂Ω−(ν0)

(p · v) (x, t, ν0) cos (n, ν0) dSx.

Hence, integrating with respect to t ∈ (0, T ), we obtain

T∫
0

∫
Ω

(−ũy1 · ṽ) (y, t, ν̃0)dydt−
T∫

0

∫
Ω

(ũ · ṽy1) (y, t, ν̃0)dydt
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= −
T∫

0

∫
∂Ω−(ν0)

p(x, t, ν0)v(x, t, ν0) cos (n, ν0) dSxdt. (3.12)

Changing variables ”backwards” in the rest of integrals of (3.10), substituting (3.12), inte-
grating with respect to ν0 ∈ SN−1 and noting that∫

SN−1

T∫
0

∫
∂Ω−(ν)

(..)dSxdtdσν =

∫
Γ−

(...)dSxdtdσν ,

we obtain

−
∫
Γ−

p(x, t, ν)v(x, t, ν) cos (n, ν) dSxdtdσν =

∫
SN−1

∫
Ω

u(x, T, ν)v(x, T, ν)dxdσν . (3.13)

Since
− cos (n, ν) = |cos (n, ν)| on Γ−,

then (1.9) implies that (3.13) can be rewritten as

〈p, v〉 =

∫
SN−1

∫
Ω

u(x, T, ν)v(x, T, ν)dxdσν . (3.14)

For all functions p ∈ L2
cos(Γ−), we define the linear operator L by

Lp = u(x, T, ν) for (x, ν) ∈ Ω× SN−1, (3.15)

where u ∈ C([0, T ];L2(Ω× SN−1)) is the weak solution of the problem (3.3)-(3.5) (Theorem
2.3). Also, for all functions v0 satisfying conditions (3.2), we define the linear operator K by

Kv0 = v(x, t, ν) for (x, t, ν) ∈ Γ−,

where the function v ∈ C1
tνgrad

(
W
)

is the strong solution of the boundary value problem
(3.6)-(3.8) (Theorem 2.1).

It follows from (3.15) and (2.16) that

‖u(x, T, ν)‖L2(Ω×SN−1) = ‖Lp‖L2(Ω×SN−1) ≤ C ‖p‖L2
cos(Γ−) , ∀p ∈ L2

cos(Γ−).

Hence, the linear operator L : L2
cos(Γ−) → L2

(
Ω× SN−1

)
is bounded,

‖Lp‖L2(Ω×SN−1) ≤ ‖L‖ ‖p‖L2 cos(Γ−) , ∀p ∈ L2
cos (Γ−) . (3.16)

Let [, ] be the scalar product in the Hilbert space L2
(
Ω× SN−1

)
. Hence, it follows from (3.7),

(3.13), (3.14) and (1.9) that for all functions p ∈ L2
cos(Γ−) and all functions v0 satisfying

conditions (3.2) the following equality holds

〈p,Kv0〉 = [Lp, v0] . (3.17)
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Let v0 (x, ν) be an arbitrary given function satisfying conditions (3.1) and (3.2). Denote
p̃ = Kv0. Then by (3.17)

‖Kv0‖2
L2

cos(Γ−) = 〈Kv0, Kv0〉 = 〈p̃, Kv0〉 = [Lp̃, v0] . (3.18)

Using (3.16), (3.18) and the Cauchy-Schwarz inequality, we obtain

‖Kv0‖2
L2

cos(Γ−) = 〈Kv0, Kv0〉 = [Lp̃, v0]

≤ ‖L‖ · ‖p̃‖L2
cos(Γ−) · ‖v0‖L2(Ω×SN−1)

= ‖L‖ · ‖Kv0‖L2
cos(Γ−) · ‖v0‖L2(Ω×SN−1) .

Hence
‖Kv0‖L2

cos(Γ−) ≤ ‖L‖ ‖v0‖L2(Ω×SN−1) . (3.19)

Since the set of functions v0 satisfying conditions (3.1) and (3.2) is dense in L2(Ω×SN−1),
then we can uniquely extend the bounded operator K, which was originally defined on the
set of functions satisfying (3.1) and (3.2), to the bounded operator defined on the whole
space L2(Ω × SN−1). We denote this extension by the same notation: Kv0 = v|Γ− , where
v is the weak solution of the initial boundary value problem (3.6) - (3.8). Hence, it follows
from (3.19) that K : L2(Ω× SN−1) → L2

cos(Γ−) is a bounded linear operator.
Definition 3.1. Let v0 ∈ L2(Ω × SN−1) be an arbitrary function and v be the weak

solution of the adjoint problem (3.6)-(3.8) (Definition 2.2). We call the function Kv0 ∈
L2

cos (Γ−) the generalized trace of the function v on Γ−.

3.2 Application of the theory of closed range operators

It follows from the above that the inequality (3.19) holds for any function v0 ∈ L2(Ω ×
SN−1). This means that (3.17) holds for all functions p ∈ L2

cos (Γ−) and all functions v0 ∈
L2
(
Ω× SN−1

)
. Therefore, the equation (3.17) implies that

L∗ = K. (3.20)

We now apply the estimate (1.11) of Theorem 2. By (1.11) ‖v0‖L2(Ω×SN−1) ≤ C ‖Kv0‖L2
cos(Γ−) .

Hence, combining this estimate with (3.20), we obtain

‖v0‖L2(Ω×SN−1) ≤ C ‖L∗v0‖L2
cos(Γ−) , ∀v0 ∈ L2(Ω× SN−1). (3.21)

The estimate (3.21) implies that the operator L∗ = K is one-to-one and its range R(L∗) =
L∗(L2(Ω × SN−1)) ⊂ L2

cos(Γ−) is closed. It follows immediately now from Lemma 3 on
p. 488 of the classic book of Dunford and Schwartz [5] that the operator L : L2

cos(Γ−) →
L2
(
Ω× SN−1

)
is surjective, i.e., its range is R(L) = L2(Ω× SN−1).

In other words, we have proven that for any function uT (x, ν) ∈ L2
(
Ω× SN−1

)
one

can find such a control function p ∈ L2
cos (Γ−) that Lp = u(x, T, ν) = uT (x, ν), where

u(x, t, ν) ∈ C([0, T ];L2(Ω×SN−1)) is the weak solution of the initial boundary value problem
(3.3)-(3.5). Thus, the proof of Theorem 1 is complete. �
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4 Proof of Theorem 2

Recall that by the definition of the number R (see Introduction)

|x| ≤ R, ∀x ∈ Ω. (4.1)

4.1 Carleman estimate

Consider the function

ψ(x, t) = |x|2 − α

(
t− T

2

)2

, α = const ∈ (0, 1). (4.2)

The Carleman Weight Function is defined as

ϕ(x, t) = exp[λψ(x, t)], (4.3)

where λ > 1 is a parameter. Let c = const ∈ (0, R). Denote

Gc = {(x, t) ∈ Ω× R : ψ(x, t) > c2 }. (4.4a)

Clearly,
Gc1 ⊂ Gc2 if c1 > c2. (4.4b)

The boundary ∂Gc of the domain Gc consists of two parts, ∂Gc = ∂1Gc ∪ ∂2Gc, where

∂1Gc = {(x, t) ∈ Ω× R : x ∈ ∂Ω } and ∂2Gc = Gc ∩
{
ψ(x, t) = c2

}
. (4.4c)

Hence, ∂1Gc is a part of the boundary ∂Ω×R of the time cylinder Ω×R and ∂2Gc is a part
of the level surface (hyperboloid) of the function ψ(x, t).

Lemma 4.1. Let T > 2R. Denote α (R, T ) := (2R/T )2 . Then for all α ∈ [α (R, T ) , 1)
and for all c ∈ (0, R) the domain Gc 6= ∅ and Gc ⊂ Ω× (0, T ).

Proof. The following implication follows from (4.4c)

∂1Gc ⊂ {∂Ω× (0, T )} ⇒ Gc ⊂ Ω× (0, T ).

On the other hand, by (4.2) and (4.4a,c)

∂1Gc ⊂ {∂Ω× (0, T )} ⇔ max
∂Ω

[ψ(x, T )] < c2..

By (4.1) and (4.2)

R2 − α
T 2

4
< c2 ⇒ max

∂Ω
[ψ(x, T )] = max

∂Ω
[ψ(x, 0)] < c2..
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Since T > 2R, then the number α (R, T ) = (2R/T )2 ∈ (0, 1) . On the other hand, for all
α ∈ [α (R, T ) , 1)

R2 − α
T 2

4
≤ R2 − α (R, T )

T 2

4
= R2 −

(
2R

T

)2
T 2

4
= 0 < c2.

Also, since all points of the segment of the straight line connecting points z1 and z2 belong
to the domain Ω, then for all c ∈ (0, R)

[Gc ∩ {t = T/2}] ∩ Ω = {x ∈ Ω : |x| > c} 6= ∅.

�
In any Carleman estimate for a differential operator, only the principal part of this

operator is considered. In other words, a Carleman estimate for a differential operator is
independent on its low order terms. As to the lower order terms they are incorporated on a
later stage when either uniqueness or stability result is proven for a corresponding Cauchy
problem. Hence, we denote

L0u = ut +
d

ds
u (x+ sν, t, ν) |s=0, ∀ν ∈ SN−1. (4.5)

Because of the insufficient smoothness guaranteed by Theorem 2.1 (Remark 2.1), it is con-
venient to formulate the Carleman estimate for the operator L0 in terms of the above vector
ν̃0 = (1, 0, 0, ..., 0)T = Aν0ν0 in (2.6), where ν0 ∈ SN−1 is an arbitrarily chosen unit vector.

Lemma 4.2. (pointwise Carleman estimate). Let T > 2R and in (4.2) the constant
α ∈ [α (R, T ) , 1) (Lemma 4.1). Then for all values of the parameter λ > 1 and for all
functions u ∈ C1

tνgrad

(
W
)

the following pointwise Carleman estimate holds

(L0u)
2ϕ2 ≥ 2λ(1− α)u2ϕ2 +∇ · U + Vt, ∀ (x, t) ∈ Gc, ∀ν ∈ SN−1, (4.6)

where the vector function (U, V ) can be estimated as

|(U, V )| ≤ Cλu2ϕ2 (4.7)

and the vector function U is such that∣∣∣∣∣∣
∫

∂1Gc

(U, n) dSxdt

∣∣∣∣∣∣ ≤ Cλ

∫
∂1Gc

|cos (n, ν)|u2ϕ2dSxdt, ∀ν ∈ SN−1. (4.8)

Proof. By Lemma 4.1 Gc ⊂ Ω × (0, T ). Fix an arbitrary vector ν0 ∈ SN−1. Let
Aν0 =

(
aij

ν0

)n
ij=1

be an orthogonal matrix such that (2.6) is fulfilled. Introduce again notations

(2.7) and (2.8). Then (4.2) and (4.5) imply that

L0ũ = ũt + ũy1 , ψ(y, t) = |y|2 − α

(
t− T

2

)2

, ϕ(y, t) = exp[λψ(y, t)].
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Hence, the resulting domain G̃c has the same form as the original domain Gc. Denote v =
ũ · exp [λψ(y, t)] = ũ · ϕ. Then

ũ = v exp

{
λ

[
α

(
t− T

2

)2

− |y|2
]}

,

ũy1 = (vy1 − 2λy1v) exp [−λψ(y, t)] ,

ũt =

[
vt + 2λα

(
t− T

2

)
v

]
exp [−λψ(y, t)] .

Hence, for this vector ν0

(L0u)
2ϕ2 =

{
(vt + vy1)− 2λ

[
y1 − α

(
t− T

2

)]
v

}2

≥ −4λ

[
y1 − α

(
t− T

2

)]
v (vt + vy1) ={

−2λ

[
y1 − α

(
t− T

2

)]
v2

}
t

− 2λαv2 +

{
−2λ

[
y1 − α

(
t− T

2

)]
v2

}
y1

+ 2λv2

= 2λ (1− α) ũ2ϕ2 +∇y · Ũ + Vt.

Thus,
(L0ũ)

2ϕ2 ≥ 2λ (1− α) ũ2ϕ2 +∇y · Ũ + Ṽt, (4.9a)

where

∇y · Ũ =

{
−2λ

[
y1 − α

(
t− T

2

)]
ũ2ϕ2

}
y1

(4.9b)

and

Ṽt =

{
−2λ

[
y1 − α

(
t− T

2

)]
ũ2ϕ2

}
t

. (4.9c)

The backwards change of variables y → x will replace ∇y · Ũ with ∇x · U and Ṽt with Vt.
Hence, (4.9a) is equivalent with (4.6). It is clear from (4.9b,c) that the estimate (4.7) holds
for the vector function (U, V ).

Thus, to finish the proof, we now need to prove (4.8). Consider the integral∫
G̃c

∇y · Ũdydt.

Obviously, ∫
G̃c

∇y · Ũdydt =

∫
Gc

∇x · Udxdt.
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By the Gauss’ theorem, we have∫
G̃c

∇y · Ũdydt =

∫
∂1G̃c

(
Ũ , ñ

)
dSy,t +

∫
∂2G̃c

(
Ũ , ñ

)
dSy,t. (4.10)

To prove (4.8), we estimate from the above the first integral in the right hand side of (4.10).
Using (4.9b) and recalling again that by (2.6) cos (ñ(y), y1) = cos (n(x), ν0), where x = A−1

ν0
y,

we obtain ∣∣∣∣∣∣∣
∫

∂1G̃c

(
Ũ , ñ

)
dSydt

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣2λ
∫

∂1G̃c

cos (ñ, y1)

[
y1 − α

(
t− T

2

)]
ũ2ϕ2dSydt

∣∣∣∣∣∣∣
≤ Cλ

∫
∂1G̃c

|cos (ñ, y1)| ũ2ϕ2dSydt = Cλ

∫
∂1Gc

|cos (n, ν0)|u2ϕ2dSydt.

On the other hand, ∫
∂1G̃c

(
Ũ , ñ

)
dSydt =

∫
∂1Gc

(U, n) dSxdt.

Hence, ∣∣∣∣∣∣
∫

∂1Gc

(U, n) dSxdt

∣∣∣∣∣∣ ≤ Cλ

∫
∂1Gc

|cos (n, ν0)|u2ϕ2dSydt,

which proves (4.8) for ν = ν0. Since ν0 ∈ SN−1 is an arbitrary vector and (4.9a) holds, then
the proof is complete. �

4.2 Proof of Theorem 2

4.2.1 Strong solution

Since T > 2R, then
√

5R2 + T 2 > 3R. Hence, we choose a number ε = ε (Ω) so small that

0 < ε ≤ min

(
R

3
,

√
5R2 + T 2 − 3R

4

)
. (4.11)

and
{|x| < 3ε} ⊂ Ω. (4.12)

From now on we set α = [1 + α (R, T )] /2 in the function ψ in (4.2), for the sake of the
definiteness, where the number α (R, T ) = (2R/T )2 ∈ (0, 1) was chosen in Lemma 4.1.
Choose the number δ = δ (ε) = ε/20. Since ε/2+3δ ∈ (0, R) , then by Lemma 4.1 and (4.4b)

Gε/2+3δ 6= ∅ and Gε/2+3δ ⊂ Gε/2+2δ ⊂ Gε/2+δ ⊂ Gε/2 ⊂ Ω× (0, T ). (4.13)
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Introduce the “cut-off” function χ(x, t) ∈ C1(Ω× [0, T ]) such that 0 ≤ χ ≤ 1 and

χ(x, t) =

{
1
0

in Gε/2+2δ,
in {Ω× (0, T )}\Gε/2+δ.

. (4.14)

Let the function v ∈ C1
tνgrad

(
W
)

be a solution of the adjoint transport equation (1.6).
For (x, t, ν) ∈ Γ (T ) let the function q(x, t, ν) be its boundary value, v |x∈∂Ω:= q(x, t, ν).
Denote

w(x, t, ν) = v(x, t, ν)χ(x, t). (4.15)

Then

L0w = wt +
d

ds
w (x+ νs, t, ν) |s=0= χ

(
vt +

d

ds
v (x+ νs, t, ν) |s=0

)
+ v

(
χt +

n∑
i=1

νiχi

)
.

Therefore, using (1.6), we obtain

L0w = wt +
d

ds
w (x+ νs, t, ν) |s=0= v

(
χt +

n∑
i=1

νiχi

)
+ χa(x, t, ν)v

+χ

∫
SN−1

g(x, t, µ, ν)v(x, t, µ)dσµ = 0 in W.

Square the both sides of the latter equality, multiply by the function ϕ(x, t), integrate over
Gε/2 and apply the Carleman estimate of Lemma 4.2 to the resulting left hand side. Note
that derivatives χt, χi, i = 1, ..., n are bounded and differ from zero only in the domain
Gε/2+δ\Gε/2+2δ . Hence, (4.7) implies that the corresponding vector function (U, V ) = 0 on
∂2Gε/2. Also, V cos(n, t) = 0 on ∂1Gε/2. Hence, the Gauss’ theorem and (4.8) imply that∣∣∣∣∣∣∣

∫
Gε/2

(∇ · U + Vt) dxdt

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

∂1Gε/2

(U, n) dSxdt

∣∣∣∣∣∣∣ ≤ Cλ

∫
∂1Gε/2

|cos (n, ν)| v2ϕ2dSxdt

= Cλ

∫
∂1Gε/2

|cos (n, ν)| q2ϕ2dSxdt.

Thus, we obtain for all ν ∈ SN−1

2λ(1− α)

∫
Gε/2

w2ϕ2dxdt (4.16)
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≤ C

 ∫
Gε/2

|w|2 +

∫
SN−1

w2dσµ

ϕ2dxdt+

∫
Gε/2

(1− χ)v2ϕ2dxdt


+Cλ

∫
∂1Gε/2

|cos (n, ν)| q2ϕ2dSxdt.

For each c ∈ (0, R) denote Hc = Gc×SN−1, Mc = ∂1Gc×SN−1 and dh = dxdtdσν . Integrate
(4.16) with respect to ν ∈ SN−1. Noticing that

∫
Hε/2

 ∫
SN−1

w2 (x, t, µ) dσµ

ϕ2dh = AN ·
∫

Hε/2

w2ϕ2dh,

where AN is the area of the unit sphere SN−1, we obtain

2λ(1− α)

∫
Hε/2

w2ϕ2dh ≤ (4.17)

≤ C

 ∫
Hε/2

w2ϕ2dh+

∫
Hε/2

(1− χ)v2ϕ2dh

+ Cλ

∫
Mε/2

|cos (n, ν)| q2ϕ2dSxdtdσν .

Choose a λ0 = λ0 (C) > 1 such that C/(λ0(1− α)) < 1. Then

C

∫
Hε/2

w2ϕ2dh ≤ λ(1− α)

∫
Hε/2

w2ϕ2dh, ∀λ > λ0.

Hence, (4.17) leads to

λ

∫
Hε/2

w2ϕ2dh ≤ C

∫
Hε/2

(1− χ)v2ϕ2dh+ Cλ

∫
Mε/2

|cos (n, ν)| q2ϕ2dSxdtdσν , ∀λ > λ0. (4.18)

Estimate from the below the left hand side of inequality (4.18). By (4.14) and (4.15)
w = v in Hε/2+2δ. Also, by (4.13) Hε/2+3δ ⊂ Hε/2+2δ ⊂ Hε/2+δ ⊂ Hε/2 and by (4.4a)

ϕ2(x, t) ≥ exp
[
2λ (ε/2 + 3δ)2] in Hε/2+3δ. Hence,

λ

∫
Hε/2

w2ϕ2dh ≥ λ

∫
Hε/2+3δ

w2ϕ2dh = λ

∫
Hε/2+3δ

v2ϕ2dh (4.19)
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≥ λ exp
[
2λ (ε/2 + 3δ)2] ∫

Hε/2+3δ

v2dh.

Estimate now the right hand side of inequality (4.18) from the above. Since by (4.14)
1− χ(x, t) = 0 in Gε/2+2δ, we have

sup
Hε/2

[
(1− χ)ϕ2

]
≤ exp

[
2λ (ε/2 + 2δ)2] .

Hence, ∫
Hε/2

(1− χ)v2ϕ2dh ≤ exp
[
2λ (ε/2 + 2δ)2] ∫

Hε/2

v2dh. (4.20)

Therefore (4.18)-(4.20) imply that

λ exp
[
2λ (ε/2 + 3δ)2] ∫

Hε/2+3δ

v2dh ≤ C exp
[
2λ (ε/2 + 2δ)2] · ∫

W

v2dh (4.21)

+Cλ

∫
Γ

|cos (n, ν)|q2ϕ2dSxdtsσν .

Let m = sup
Gε/2

[ψ(x, t)]. Then (4.21) leads to

λ exp
[
2λ (ε/2 + 3δ)2] ||v||2L2(Hε/2+3δ) ≤ C exp

[
2λ (ε/2 + 2δ)2] ||v||2L2(W ) + Cλe2λm||q||2L2

cos(Γ),

where the Hilbert space L2
cos (Γ) is defined similarly with L2

cos (Γ−) . Dividing this inequality
by λ exp [2λ(ε/2 + 3δ)2] , we obtain

||v||2L2(Hε/2+3δ) ≤ C exp [−2λδ (ε+ 5δ)] ||v||2L2(W ) + Ce2λm||q||2L2
cos(Γ). (4.22)

An inconvenience of the domain Hε/2+3δ for our goal is that

Hε/2+3δ ∩ {t = T/2} ⊂
(
Ω× SN−1

)
, but

(
Ω× SN−1

)
�Hε/2+3δ ∩ {t = T/2} 6= ∅.

Thus, we now “shift” this domain. Choose an x0 such that |x0| = 3ε/2. By (4.12) x0 ∈ Ω.
Consider the domain

Gε/2(x0) = {(x, t) ∈ Ω× R : |x− x0|2 − α

(
t− T

2

)2

>
(ε

2

)2

} (4.23)

=

{
(x, t) ∈ Ω× R : ψ (x− x0, t) >

(ε
2

)2
}
,
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which is obtained by a shift of the domain Gε/2. We now prove that

Gε/2(x0) ⊂ Ω× (0, T ) . (4.24)

Indeed, since by (4.1)

max
x∈Ω

|x− x0| ≤ |x|+ |x0| ≤ R +
3

2
ε,

using (4.2), we obtain

max
x∈∂Ω

[ψ(x− x0, T )] ≤
(
R +

3

2
ε

)2

− R2

2
− T 2

8
.

It follows from (4.11) that (
R +

3

2
ε

)2

− R2

2
− T 2

8
<
(ε

2

)2

.

Hence,

max
x∈∂Ω

[ψ(x− x0, T )] <
(ε

2

)2

,

which proves (4.24). Also since δ = δ (ε) = ε/20, it follows from (4.23) that the point
(0, T/2) ∈ Gε/2+3δ(x0) ∩ {t = T/2} , which proves that

Gε/2+3δ(x0) ∩ [Ω× (0, T )] 6= ∅.

Hence, the Carleman estimate of Lemma 4.2 is valid for the domain Gε/2(x0). Thus, similarly
to (4.22), we obtain

||v||2
L2(Hε/2+3δ(x0)) ≤ C exp [−2λδ (ε+ 5δ)] ||v||2L2(W ) + Ce2λm||q||2L2

cos(Γ), (4.25)

where Hε/2+3δ (x0) = Gε/2+3δ(x0)× SN−1.
It follows from (4.2) - (4.4a) and (4.23) that

Gε/2+3δ ∩ {t = T/2} =
{
|x| > ε

2
+ 3δ

}
∩ Ω (4.26)

and
Gε/2+3δ (x0) ∩ {t = T/2} =

{
|x− x0| >

ε

2
+ 3δ

}
∩ Ω. (4.27)

Consider the ball B (0, ε/2 + 4δ) ,

B
(
0,
ε

2
+ 4δ

)
=
{
x : |x| < ε

2
+ 4δ

}
=

{
x : |x| < 7

10
ε

}
= B

(
0,

7

10
ε

)
.

By (4.12) B (0, ε/2 + 4δ) ⊂ Ω. We prove now that B (0, ε/2 + 4δ) ⊂ Gε/2+3δ (x0)∩{t = T/2}.
Let x ∈ B (0, ε/2 + 4δ) be an arbitrary point of the ball B. Then

|x− x0| ≥ |x0| − |x| = 3

2
ε− |x| > 3

2
ε− ε

2
− 4δ = ε− 4δ.
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Since δ = ε/20, then ε− 4δ > ε/2 +3δ. Hence,

|x− x0| > ε− 4δ >
ε

2
+ 3δ, ∀x ∈ B

(
0,
ε

2
+ 4δ

)
.

Hence, by (4.27) B (0, ε/2 + 4δ) ⊂
{
Gε/2+3δ(x0) ∩ {t = T/2}

}
. Hence,{

|x| ≤ ε

2
+ 3δ

}
⊂ B

(
0,
ε

2
+ 4δ

)
⊂
{
Gε/2+3δ(x0) ∩ {t = T/2}

}
. (4.28)

Recall that by (4.13) and (4.23) sets{
Gε/2+3δ ∩ {t = T/2}

}
⊂ Ω,

{
Gε/2+3δ(x0) ∩ {t = T/2}

}
⊂ Ω. (4.29)

Therefore, (4.26)-(4.29) lead to

Ω =
(
Gε/2+3δ ∪Gε/2+3δ (x0)

)
∩ {t = T/2}.

Hence, there exists a number η ∈ (0, T/2) such that the layer

Eη =

{
(x, t) : x ∈ Ω,

∣∣∣∣t− T

2

∣∣∣∣ < η

}
⊂
(
Gε/2+3δ ∪Gε/2+3δ (x0)

)
.

Hence, estimates (4.22) and (4.25) imply that

||v||2L2(Eη×SN−1) ≤ C exp [−2λδ (ε+ 5δ)] ||v||2L2(W ) + Ce2λm||q||2L2
cos(Γ).

Hence, by the mean value theorem there exists a number t1 ∈ (T/2− η, T/2 + η) such that

||v (x, t1, ν) ||2L2(Ω×SN−1) ≤
C

2η
exp [−2λδ (ε+ 5δ)] ||v||2L2(W ) +

C

2η
e2λm||q||2L2

cos(Γ).

That is, with a new constant C

||v (x, t1, ν) ||2L2(Ω×SN−1) ≤ C exp [−2λδ (ε+ 5δ)] ||v||2L2(W ) + Ce2λm||q||2L2
cos(Γ). (4.30)

This inequality and the energy estimate (2.16) lead to (with a new constant C)

||v||2L2(W ) ≤ C exp [−2λ (ε+ 5δ)] ||v||2L2(W ) + Ce2λm||q||2L2
cos(Γ). (4.31)

Choose λ ≥ λ0 such that C exp [−2λδ (ε+ 5δ)] < 1/2. Then (4.31) implies that for this λ

‖v‖L2(W ) ≤ C||q||L2
cos(Γ). (4.32)

Using (4.30) and (4.32), we obtain

‖v (x, t1, ν)‖2
L2(Ω×SN−1) ≤ C||q||2L2

cos(Γ).
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Hence, using (2.16), we obtain

‖v (x, T, ν)‖L2(Ω×SN−1) ≤ C||q||L2
cos(Γ). (4.33)

Estimates (4.32) and (4.33) are valid for any strong solution v ∈ C1
tνgrad

(
W
)

of the
adjoint transport equation (1.6) with the boundary condition v |x∈∂Ω= q(x, t, ν). Since in
the above proof only estimates from the above of the low order terms of the operator of
the transport equation were used, then these estimates are also valid for any strong solution
u ∈ C1

tνgrad

(
W
)

of the original equation (1.1) with the boundary condition u |x∈∂Ω= q(x, t, ν)
(the only difference is that v should be replaced with u in (4.32) and (4.33)). Recall now
that Theorem 2 is concerned with the weak solution of the problem (1.6)-(1.8). Hence,
although we work in this subsection with strong solutions, but by (1.8) we need to assume
that v |Γ+= 0. Since v |Γ= q, then setting q |Γ+= 0 and recalling that v |Γ− := (Kv0) (x, t, ν)
we see that (4.32) and (4.33) lead to (1.10) and (1.11) respectively. Thus, Theorem 2 is valid
for strong solutions v ∈ C1

tνgrad(W ) of the equation (1.6) with the boundary condition (1.8).

4.2.2 Weak solution

Consider now an arbitrary function v0 ∈ L2
(
Ω× SN−1

)
and let the function v ∈ L2 (W )

be the weak solution of the problem (1.6)-(1.8). Let {v0k}∞k=1 be a sequence of functions
satisfying conditions (3.1), (3.2) and such that

lim
k→∞

‖v0 − v0k‖L2(Ω×SN−1) = 0. (4.34)

Let {vk}∞k=1 ⊂ C1
tνgrad

(
W
)

be the corresponding sequence of solutions of the problem (1.6)
- (1.8) with the initial condition vk |t=T = v0k. Then by Theorem 2.4

lim
k→∞

‖v − vk‖L2(W ) = 0.

In addition, functions pk := vk|Γ− := Kv0k ∈ L2
cos(Γ−) and by the Definition 3.1 of the

generalized trace of the weak solution, we see that

lim
k→∞

‖p− pk‖L2cos(Γ−) = 0. (4.35)

Replacing v0 with v0k in the estimates (1.10) and (1.11), we see that

‖vk‖L2(W ) ≤ C ‖Kv0k‖L2
cos(Γ−) (4.36)

and
‖v0k‖L2(Ω×SN−1) ≤ C ‖Kv0k‖L2

cos(Γ−) . (4.37)

Since K : L2(Ω×SN−1) → L2
cos(Γ−) is a bounded linear operator (see section 3 after (3.19)),

then the passage to limits in (4.34) - (4.37) yields (1.10) and (1.11) for the weak solution v.
�
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