
Transient random walks on 2d-oriented lattices

Nadine Guillotin-Plantard∗†, Arnaud Le Ny‡

January 5, 2006

Abstract:

We study the asymptotic behavior of the simple random walk on oriented versions of Z2. The
considered lattices are not directed on the vertical axis but unidirectional on the horizontal
one, with random orientations whose distributions are generated by a dynamical system. We
find a sufficient condition on the smoothness of the generation for the transience of the simple
random walk on almost every such oriented lattices, and as an illustration we provide a wide
class of examples of inhomogeneous or correlated distributions of the orientations. For ergodic
dynamical systems, we also prove a strong law of large numbers and, in the particular case
of i.i.d. orientations, we solve an open problem and prove a functional limit theorem in the
space D([0,∞[,R2) of càdlàg functions, with an unconventional normalization.
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1 Introduction

The use of random walks as a tool in mathematical physics is now well established and
they have been for example widely used in classical statistical mechanics to study critical
phenomena [4]. Analogous methods in quantum statistical mechanics require the study of
random walks on oriented lattices, due to the intrinsic non commutative character of the
(quantum) world [3, 13]. Although random walks in random and non-random environments
have been intensively studied for many years, only a few results on random walks on oriented
lattices are known. The recurrence or transience properties of simple random walks on oriented
versions of Z2 are studied in [2] when the horizontal lines are unidirectional towards a random
or deterministic direction. An interesting feature of this model is that, depending on the
orientation, the walk could be either recurrent or transient. In a particular deterministic
case, alternatively oriented horizontally rightwards and leftwards, the recurrence of the simple
random walk is proved, whereas the transience naturally arises when the orientations are all
identical in infinite regions. More surprisingly, it is also proved that the recurrent character
of the simple random walk on Z2 is lost when the orientations are i.i.d. with zero mean.

In this paper, we study more general models and focus on spatially inhomogeneous or
dependent distributions of the orientations. We introduce lattices for which the distribution
of the orientation is generated by a dynamical system and prove that the transience of the
simple random walk still holds under smoothness conditions on this generation. We detail
examples and counterexamples for various standard dynamical systems. For ergodic dynamical
systems, we also prove a strong law of large numbers and, in the case of i.i.d. orientations, a
functional limit theorem with an unconventional normalization due to the random character
of the environment of the walk, solving an open question of [2].

The model and our results are stated in Section 2, Section 3 is devoted to the proofs, while
illustrative examples of such dynamical orientations are given in Section 4.

2 Model and results

2.1 Dynamically oriented lattices

Let S = (E,A, µ, T ) be a dynamical system where (E,A, µ) is a probability space and T is
an invertible transformation of E preserving the measure µ. This system is used to introduce
inhomogeneity or dependencies in the distribution of the random orientations, together with a
function f from E to [0, 1], which satisfies

∫
E fdµ = 1/2 to avoid trivialities. By orientations,

we mean a random field ε = (εy)y∈Z ∈ {−1, +1}Z, i.e. a family ε of {−1, +1}-valued random
variables εy, y ∈ Z, and we distinguish two different approaches to introduce its distribution.

2.1.1 Quenched case:

It describes orientations spatially inhomogeneously distributed. For x ∈ E the quenched law
P(x)

T is the product probability measure on {−1, +1}Z, equipped with the product σ−algebra
F = P({−1, +1})⊗Z, whose marginals can be given by:

P(x)
T (εy = +1) = f(T yx).

To simplify, we have used the same notation for the quenched law and its marginals, which
should be written P(x)

T,y with P(x)
T = ⊗yP

(x)
T,y. This quenched case is an extension of the i.i.d.
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case, with independent but not necessarily identically distributed random variables. These
random variables can be viewed as the increments of a dynamic random walk [5, 6].

2.1.2 Annealed case:

We average on x ∈ E: the distribution of ε is now Pµ defined for all A ∈ F by

Pµ[ε ∈ A] =
∫

E
P(x)

T [ε ∈ A]dµ(x).

The marginals are thus given for all y ∈ Z by

Pµ[εy = +1] =
∫

E
f(T yx)dµ(x) =

∫

E
f(x)dµ(x) =

1
2

and the hypothesis
∫
E fdµ = 1

2 has been taken to get Eµ[εy] = 0. The T -invariance of µ
implies the translation-invariance of Pµ but this latter is not a product measure in general:
The correlations of the dynamical system for the function f , defined for all y ∈ Z by

Cf
µ(y) :=

∫

E
f(x) · f ◦ T y(x)dµ(x)−

∫

E
f(x)dµ(x) ·

∫

E
f ◦ T y(x)dµ(x) (2.1)

=
∫

E
f(x)f(T y(x))dµ(x)− 1

4

are indeed related with the covariance of the ε’s after a short computation:

∀y ∈ Z, Covµ(ε0, εy) = 4 Cf
µ(y). (2.2)

One can thus construct dependent variables whose dependence is directly related to the cor-
relations of the dynamical system. This annealed case leads in Section 4 to another extension
of the i.i.d. case where, independence is dropped but translation-invariance is kept.

2.1.3 Lattices

We use these orientations to build dynamically oriented lattices. They are oriented versions
of Z2: the vertical lines are not oriented and the horizontal ones are unidirectional, the
orientation at a level y ∈ Z being given by the random variable εy (say right if the value is
+1 and left if it is −1). More formally we give the

Definition 1 (Dynamically oriented lattices) Let ε = (εy)y∈Z be a sequence of orienta-
tions defined as previously. The dynamically oriented lattice Lε = (V,Aε) is the (random)
directed graph with (deterministic) vertex set V = Z2 and (random) edge set Aε defined by
the condition that for u = (u1, u2), v = (v1, v2) ∈ Z2, (u, v) ∈ Aε if and only if v1 = u1 and
v2 = u2 ± 1, or v2 = u2 and v1 = u1 + εu2.

2.2 Simple random walk on Lε

We consider the simple random walk M = (Mn)n∈N on Lε. For every realization ε, it is a Z2-
valued Markov chain defined on a probability space (Ω,B,P), whose (ε-dependent) transition
probabilities are defined for all (u, v) ∈ V× V by

P[Mn+1 = v|Mn = u] =





1
3 if (u, v) ∈ Aε

0 otherwise.
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Its transience is proved in [2] for almost every orientation ε when the εy’s are i.i.d. and we
generalize it in this dynamical context when the orientations are either annealed or quenched.

Theorem 1 Assume that ∫

E

1√
f(1− f)

dµ < ∞ (2.3)

then:

1. In the annealed case, for Pµ-a.e. orientation ε, the simple random walk on dynamically
oriented lattice Lε is transient.

2. In the quenched case, for µ-a.e. x ∈ E, for P(x)
T -a.e. realization of the orientation ε, the

simple random walk on the dynamically oriented lattice Lε is transient.

Remarks

1. Non-invertible transformations T of the space E can also be considered and in this case
it is straightforward to extend the conclusions of Theorem 1 if the distribution of the
orientations (εy)y∈Z have marginals defined by P(x)

T (εy = +1) = f(T |y|x). The measure
Pµ is not stationary anymore in the annealed case (see the example of Manneville-
Pomeau maps of the interval in Section 4).

2. In Section 4 we exhibit dynamical systems for which Theorem 1 applies (Bernoulli or
Markov Shifts, Manneville-Pomeau maps), but also counter-examples from a family of
dynamical systems (irrational and rational rotations on the torus). The latter case
provides instructive examples: when the function f satisfies (2.3), the ergodicity (or
not) of the dynamical system is not required, whereas when f does not fulfil (2.3), the
properties of the underlying dynamical system can play a role, e.g. in the non-ergodic
case when, according to the rational angle we choose, the simple random walk on the
corresponding oriented lattice can be transient or recurrent.

2.3 Limit theorems in the ergodic case

Let us assume that the dynamical system S = (E,A, µ, T ) defined in Section 2.1 is ergodic.

Theorem 2 (Strong law of large numbers) The random walk on the lattice Lε has P ⊗
Pµ-almost surely zero speed, i.e.

lim
n→+∞

Mn

n
= (0, 0) P⊗ Pµ − almost surely. (2.4)

2.3.1 Functional limit theorem for i.i.d. orientations

We also answer in this paper to an open question of [2] and obtain a functional limit theorem
with a suitable normalization. We establish that the study of the simple random walk on Lε

is closely related to a simple random walk in a random scenery defined for every n ≥ 1 by

Zn =
n∑

k=0

εYk
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where (Yk)k≥0 is the simple random walk on Z starting from 0. Consider a standard Brownian
motion (Bt)t≥0, denote by (Lt(x))t≥0 its corresponding local time at x ∈ R and introduce a
pair of independent Brownian motions (Z+(x), Z−(x)), x ≥ 0 defined on the same probability
space as (Bt)t≥0 and independent of him. The following process is well-defined for all t ≥ 0:

∆t =
∫ ∞

0
Lt(x)dZ+(x) +

∫ ∞

0
Lt(−x)dZ−(x). (2.5)

It has been proved by Kesten et al. [12] that this process has a self-similar continuous version
of index 3

4 , with stationary increments. We denote D=⇒ for a convergence in the space of
càdlàg functions D([0,∞),R) endowed with the Skorohod topology.

Theorem 3 [Kesten and Spitzer (1979)]

( 1
n3/4

Z[nt]

)
t≥0

D=⇒ (∆t)t≥0. (2.6)

We introduce a real constant m = 1
2 , defined later as the mean of some geometric random

variables related to the behavior of the walk in the horizontal direction1. Using Theorem 3,
we shall prove

Theorem 4 (Functional limit theorem)

( 1
n3/4

M[nt]

)
t≥0

D=⇒ m

(1 + m)3/4
(∆t, 0)t≥0. (2.7)

Remark : It is not surprising that the vertical component is negligible towards n3/4 because
its fluctuations are of order

√
n. We suspect that we have in fact

( 1
n3/4

M
(1)
[nt],

1
n1/2

M
(2)
[nt]

)
t≥0

D=⇒
( m

(1 + m)3/4
∆t, Bt

)
t≥0

but this is not straightforward because the horizontal (M (1)) and vertical (M (2)) components
are not independent. We believe that (Bt)t≥0 and (∆t)t≥0 are independent but this also has
to be proved.

3 Proofs

3.1 Vertical and horizontal embeddings of the simple random walk

The simple random walk M defined on (Ω,B,P) can be decomposed into vertical and horizontal
embeddings by projection to the corresponding axis. The vertical one is a simple random walk
Y = (Yn)n∈N on Z and we define for all n ∈ N its local time at the level y ∈ Z by

ηn(y) =
n∑

k=0

1Yk=y.

1Our results are in fact valid for similar model for which m 6= 1
2

corresponding to non symmetric nearest
neighbors random walks. Of course the transience is not at all surprising in this case, but getting the limit
theorems can be of interest.
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The horizontal embedding is a random walk with N-valued geometric jumps: a doubly infinite
family (ξ(y)

i )i∈N∗,y∈Z of independent geometric random variables of mean m = 1
2 is given and

one defines the embedded horizontal random walk X = (Xn)n∈N by X0 = 0 and for n ≥ 1,

Xn =
∑

y∈Z
εy

ηn−1(y)∑

i=1

ξ
(y)
i

with the convention that the last sum is zero when ηn−1(y) = 0. Of course, the walk Mn does
not coincide with (Xn, Yn) but these objects are closely related: Define for all n ∈ N

Tn = n +
∑

y∈Z

ηn−1(y)∑

i=1

ξ
(y)
i

to be the instant just after the random walk M has performed its nth vertical move. A direct
and useful consequence of this decomposition is the following result [2].

Lemma 1 1. MTn = (Xn, Yn), ∀n ∈ N.

2. For a given orientation ε, the transience of (MTn)n∈N implies the transience of (Mn)n∈N.

3.2 Proof of the transience of the simple random walk

The vertical walk Y , independent of ε, is known to be recurrent with fluctuations of order
√

n.
For any i ∈ N, δi is a strictly positive real number and we write dn,i = n

1
2
+δi to introduce a

partition of Ω between typical or untypical paths of Y :

An =
{
ω ∈ Ω; max

0≤k≤2n
|Yk| < dn,1

} ∩ {
ω ∈ Ω;max

y∈Z
η2n−1(y) < dn,2

}

and
Bn =

{
ω ∈ An;

∣∣∣
∑

y∈Z
εyη2n−1(y)

∣∣∣ > dn,3

}
.

We first consider the joint measures P̃µ = P⊗Pµ (annealed case) or P̃(x)
T = P⊗P(x)

T (quenched
case) and prove that ∑

n∈N
P̃µ[X2n = 0;Y2n = 0] < ∞. (3.8)

By definition

∑

n∈N
P̃µ[X2n = 0;Y2n = 0] =

∫

E

∑
n

P[P(x)
T [X2n = 0;Y2n = 0]]dµ(x)

and we first decompose P̃(x)
T [X2n = 0;Y2n = 0] into

P̃(x)
T [X2n = 0;Y2n = 0;Ac

n] + P̃(x)
T [X2n = 0;Y2n = 0;Bn] + P̃(x)

T [X2n = 0;Y2n = 0;An \Bn].

Some results of the i.i.d. case of [2] still hold uniformly in x and in particular we can prove
using standard techniques the following
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Lemma 2 1. For every x ∈ E,
∑

n∈N P̃
(x)
T [X2n = 0;Y2n = 0;Ac

n] < ∞.

2. For every x ∈ E,
∑

n∈N P̃
(x)
T [X2n = 0;Y2n = 0;Bn] < ∞.

Define the σ-algebras F = σ(Y ) and G = σ(ε) generated by the families of r.v.’s Y and ε.
Then one has

p(x)
n := P̃(x)

T [X2n = 0;Y2n = 0;An \Bn] = E
[
1Y2n=0E

[
1An\Bn

P̃(x)
T

[
X2n = 0

∣∣F ∨ G]∣∣F]]
.

. To prove the theorem, it remains to show that

∫

E

(∑

n∈N
p(x)

n

)
dµ(x) < ∞. (3.9)

Recall that for the simple random walk Y , there exists C > 0 s.t.

P[Y2n = 0] ∼ C · n− 1
2 , n → +∞ (3.10)

and we can prove as in [2] the

Lemma 3 On the set An \Bn, we have uniformly in x ∈ E,

P̃(x)
T

[
X2n = 0

∣∣F ∨ G]
= O

(√
ln n

n

)
. (3.11)

Hence, the transience of the simple random walk is a direct consequence of the following

Proposition 1 It is possible to choose δ1, δ2, δ3 > 0 such that there exists δ > 0 and
∫

E
P̃(x)

T

[
An \Bn

∣∣F]
dµ(x) = O(

n−δ). (3.12)

Proof : We have to estimate, on the event An, the conditional probability

P̃(x)
T [|

∑

y∈Z
ζy| ≤ dn,3

∣∣F]

where ζy = εyη2n−1(y), y ∈ Z. Let G be a centered Gaussian random variable with variance
d2

n,3, (conditionally on F) independent of the random variables ζy’s. Clearly,

P̃(x)
T

[∑
y

ζy ∈ [0, dn,3]
∣∣F]

=
P̃(x)

T

[∑
y ζy ∈ [0, dn,3]; 0 ≤ G ≤ dn,3

∣∣F]

P̃(x)
T [0 ≤ G ≤ dn,3

∣∣F ]

where P̃(x)
T [0 ≤ G ≤ dn,3

∣∣F ] = c > 0 is independent of n. Since G is independent of the
random variables ζy’s and using the symmetry of the Gaussian distribution, we have

P̃(x)
T

[∑
y

ζy ∈ [0, dn,3]; 0 ≤ G ≤ dn,3

∣∣F]
= P̃(x)

T

[∑
y

ζy ∈ [0, dn,3];−dn,3 ≤ G ≤ 0
∣∣F]

.
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Consequently, we obtain

P̃(x)
T

[∑
y

ζy ∈ [0, dn,3]
∣∣F ] ≤ 1

c
P̃(x)

T [|
∑

y

ζy + G| ≤ dn,3

∣∣F]
and

P̃(x)
T

[ ∑
y

ζy ∈ [−dn,3, 0]
∣∣F] ≤ 1

c
P̃(x)

T

[|
∑

y

ζy + G| ≤ dn,3

∣∣F]

and then, we have the following inequality

P̃(x)
T

[|
∑

y

ζy| ≤ dn,3

∣∣F] ≤ 2
c
P̃(x)

T

[|
∑

y

ζy + G| ≤ dn,3

∣∣F]
.

From Plancherel’s formula, we deduce that there exists a constant C > 0 such that

P̃(x)
T

[|
∑

y

ζy + G| ≤ dn,3

∣∣F] ≤ C · dn,3 · In(x) (3.13)

where
In(x) =

∫ π

−π
E

[
eit
P

y∈Z εyη2n−1(y)
∣∣F]

e−t2d2
n,3/2dt.

To use that for tdn,3 small enough, e−t2d2
n,3/2 dominates the term under the expectation, we

split the integral in two parts. For bn = nδ2

dn,3
, we write In(x) = I1

n(x) + I2
n(x) with

I1
n(x) =

∫

|t|≤bn

E
[
eit
P

y∈Z εyη2n−1(y)
∣∣F]

e−t2d2
n,3/2dt

I2
n(x) =

∫

|t|>bn

E
[
eit
P

y∈Z εyη2n−1(y)
∣∣F]

e−t2d2
n,3/2dt.

To control the integral I2
n(x), we write

|I2
n(x)| ≤ C

∫

|t|>bn

e−t2d2
n,3/2dt =

C

dn,3

∫

|s|>nδ2

e−s2/2ds ≤ 2C

dn,3
n−δ2e−n2δ2/2

to get uniformly in x ∈ E

|I2
n(x)| = O(

e−n2δ2/2).

Lemma 4 For δ3 > 2δ2, ∫

E
|I1

n(x)| dµ(x) = O(
n−

3
4
+

δ1
2

)
.

Proof : From the definition of the orientations (εy)y, an explicit formula for the charac-
teristic function φ

(x)
εy of the random variable εy can be given and we deduce that

|φ(x)
εy

(u)|2 = cos2(u) + (2f(T yx)− 1)2 sin2(u) = 1− 4f(T yx)(1− f(T yx)) sin2(u)

and by independence of the ε’s we get

|I1
n(x)| ≤

∫

|t|≤bn

|
∏
y

φ(x)
εy

(η2n−1(y)t)| dt.
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Denote pn,y = η2n−1(y)
2n , Cn = {y : η2n−1(y) 6= 0} and use Hölder’s inequality to get

|I1
n(x)| ≤

∏
y

[( ∫

|t|≤bn

|φ(x)
εy

(η2n−1(y)t)|1/pn,ydt
)pn,y

]
.

Now, using the fact that we work on An, we choose δ3 > 2δ2 s.t. limn bnη2n−1(y) = 0 uniformly
in y. Using sin(x) ≥ 2

πx for x ∈ [0, π
2 ] and exp(−x) ≥ 1− x, one has

|I1
n(x)| ≤

∏

y∈Cn

(
1

η2n−1(y)

∫

|v|≤bnη2n−1(y)
exp

(
− 16

pn,yπ2
f(T yx)(1− f(T yx))v2

)
dv

)pn,y

≤
∏

y∈Cn

(
c1f(T yx)(1−f(T yx))>0√

2nη2n−1(y)f(T yx)(1− f(T yx))

)pn,y

(with c = π3/2/4)

= c exp
[− 1

2

∑

y∈Cn

pn,y log(2nη2n−1(y))
] ·

∏

y∈Cn

(
1f(T yx)(1−f(T yx))>0√
f(T yx)(1− f(T yx))

)pn,y

.

The vector p = (pn,y)y∈Cn defines a probability measure on Cn and we have

−1
2

∑

y∈Cn

pn,y log(2nη2n−1(y)) = − log 2n− 1
2

∑

y∈Cn

pn,y log pn,y = − log 2n +
1
2
H(p)

where H(·) is the entropy of the probability vector p, always bounded by log(card(Cn)). We
thus have on the set An,

|I1
n(x)| ≤ c exp

[
− log 2n +

1
2

log(2dn,1)
] ∏

y∈Cn

(
1{f(T yx)(1−f(T yx))>0}√
f(T yx)(1− f(T yx))

)pn,y

.

By applying Hölder’s inequality and the fact that T preserves the measure µ, we get

∫

E
|I1

n(x)| dµ(x) ≤ C · n− 3
4
+

δ1
2

∫

E

∏

y∈Cn

(
1{f(T yx)(1−f(T yx))>0}√
f(T yx)(1− f(T yx))

)pn,y

dµ(x)

≤ C · n− 3
4
+

δ1
2

∏

y∈Cn

[∫

E

(
1{f(T yx)(1−f(T yx))>0}√
f(T yx)(1− f(T yx))

)
dµ(x)

]pn,y

= C · n− 3
4
+

δ1
2

∫

E

1√
f(x)(1− f(x))

dµ(x). ¦

Now, using (3.13), write with the usual notation dn,3 = n
1
2
+δ3 :

∫

E
P̃(x)

T [An \Bn|F ] dµ(x) ≤ C · dn,3

∫

E

(|I1
n(x)|+ |I2

n(x)|) dµ(x)

and consider δ3 > 2δ2. By the previous lemmata, we have

dn,3 ·
∫

E
|I1

n(x)| dµ(x) = O(
n−

1
4
+δ3+

δ1
2

)
, dn,3 ·

∫

E
|I2

n(x)| dµ(x) = O(
e−n2δ2/2)

and the proposition follows by choosing δ1, δ2, δ3 small enough. ¦
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Combining Equations (3.10), (3.11) and (3.12), we obtain (3.9) and then (3.8). By Borel-
Cantelli’s Lemma, we get :

P̃µ

[
MTn = (0, 0) i.o.

]
= Pµ

[
P
[
MTn = (0, 0) i.o.

]]
= 0

and thus for Pµ-almost every orientation ε, P
[
MTn = (0, 0) i.o.

]
= 0. This proves that

(MTn)n∈N is transient for Pµ-almost every orientation ε, and by Lemma 1, the Pµ-almost sure
transience of the simple random walk on the annealed oriented lattice. Transience in the
quenched case is a direct consequence of the transience in the annealed case.

3.3 Proof of the strong law of large numbers

Lemma 5 (SLLN for the embedded random walk)

lim
n→+∞

MTn

n
= (0, 0) P̃µ-almost surely. (3.14)

Proof : Since (Yn)n≥0 is a simple random walk, Yn
n goes to 0 as n →∞ P̃µ-a.s. as n →∞

and it is enough to prove that (Xn
n ) converges almost surely to 0. Introduce

Zn =
n−1∑

k=0

εYk
=

∑

y∈Z
εyηn−1(y).

Under the probability measure P̃µ, the stationary sequence (εYk
)k≥0 is ergodic [9], so from

Birkhoff’s theorem, as n tends to infinity,

Zn

n
→ E[ε0] = 0 almost surely.

Clearly, Xn −mZn =
∑

y∈Z εy
∑ηn−1(y)

i=1 (ξ(y)
i −m) and for an even integer r

E[(Xn −mZn)r] =
∑

y1∈Z,...yr∈Z
E


εy1 . . . εyr

ηn−1(y1)∑

i1=1

. . .

ηn−1(yr)∑

ir=1

E[(ξ(y1)
i1

−m) . . . (ξ(yr)
ir

−m)|F ∨ G]


 .

The ξ
(y)
i ’s are independent of the vertical walk and the orientations; moreover, the random

variables ξ
(y)
i −m, i ≥ 1, y ∈ Z are i.i.d. and centered, so the summands are non zero if and

only if i1 = . . . = ir and y1 = . . . = yr. Then,

E[(Xn −mZn)r] = nE[(ξ(0)
1 −m)r] := nmr (say).

Let δ > 0. By Tchebychev’s inequality,

P
[ ∣∣∣∣

Xn −mZn

n

∣∣∣∣ ≥ ε
]
≤ 1

δrnr
E[(Xn −mZn)r] ≤ mr

δrnr−1
.

We choose r = 4 and thus from Borel-Cantelli Lemma, we deduce that Xn−mZn
n converges

almost surely to 0 as n goes to infinity. ¦
Using similar techniques, one also proves the
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Lemma 6 The sequence (Tn
n )n≥1 converges P̃µ-a.s. to (1 + m) as n → +∞.

Let us prove now the almost sure convergence of the sequence (Mn
n )n≥1 to (0, 0). Since

the sequence (Tn)n≥1 is strictly increasing, there exists a non-decreasing sequence of integers
sequence (Un≥1)n such that TUn ≤ n < TUn+1. Denote Mn = (M (1)

n ,M
(2)
n ), then we have

M
(1)
n ∈ [min(M (1)

TUn
,M

(1)
TUn+1

), max(M (1)
TUn

,M
(1)
TUn+1

)] and M
(2)
n = M

(2)
TUn

, by definition of the
embedding. The (sub-)sequence (Un)n≥1 is nondecreasing and limn→+∞ Un = +∞, and then
by combining Lemmata 5 and 6, we get that as n → +∞,

MTUn

TUn

→ (0, 0) P̃µ a.s. (3.15)

Now, ∣∣∣∣∣
M

(1)
n

n

∣∣∣∣∣ ≤ max




∣∣∣∣∣∣
M

(1)
TUn

n

∣∣∣∣∣∣
,

∣∣∣∣∣∣
M

(1)
TUn+1

n

∣∣∣∣∣∣


 ≤ max




∣∣∣∣∣∣
M

(1)
TUn

TUn

∣∣∣∣∣∣
,

∣∣∣∣∣∣
M

(1)
TUn+1

TUn

∣∣∣∣∣∣




and ∣∣∣∣∣
M

(2)
n

n

∣∣∣∣∣ =

∣∣∣∣∣∣
M

(2)
TUn

TUn

∣∣∣∣∣∣
· TUn

n
≤

∣∣∣∣∣∣
M

(2)
TUn

TUn

∣∣∣∣∣∣
.

From (3.15), we deduce the almost sure convergence of the coordinates to 0 and then this of
the sequence (Mn

n )n≥1 to (0,0) as n →∞.

3.4 Proof of the functional limit theorem

Proposition 2 The sequence of random processes n−3/4(X[nt])t≥0 weakly converges in the
space D([0,∞[,R) to the process (m∆t)t≥0.

Proof : Let us first prove that the finite dimensional distributions of n−3/4(X[nt])t≥0

converge to those of (m∆t)t≥0 as n →∞. We can rewrite for every n ∈ N, Xn = X
(1)
n + X

(2)
n

where

X(1)
n =

∑

y∈Z
εy

( ηn−1(y)∑

i=1

ξ
(y)
i −m

)
, X(2)

n = m
∑

y∈Z
εyηn−1(y).

Thanks to Theorem 3 the finite dimensional distributions of n−3/4(X(2)
[nt])t≥0 converge to

those of (m∆t)t≥0 as n → ∞. To conclude we show that the sequence of random variables
n−3/4(X(1)

n )n∈N converges for the L2-norm to 0 as n → +∞. We have

E
[
(X(1)

n )2
]

= E
[ ∑

x,y∈Z
εxεy

ηn−1(x)∑

i=1

ηn−1(y)∑

j=1

E[(ξ(x)
i −m)(ξ(y)

j −m)|F ∨ G]
]

From the equality
E[(ξ(x)

i −m)(ξ(y)
j −m)|F ∨ G] = m2δi,jδx,y,

we obtain
n−3/2E

[
(X(1)

n )2
]

= m2n−3/2
∑

x∈Z
ηn−1(x) = m2n−1/2 = o(1). ¦
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Let us recall that MTn = (Xn, Yn) for every n ≥ 1. The sequence of random processes
n−3/4(Y[nt])t≥0 weakly converges in D([0,∞[,R) to 0, thus the sequence of R2−valued ran-
dom processes n−3/4(MT[nt]

)t≥0 weakly converges in D([0,∞[,R2) to the process (m∆t, 0)t≥0.
Theorem 4 follows from this remark and Lemma 6.

4 Examples

The main motivation of this work is the generalization of the transience of the i.i.d. case of
[2] to dependent or inhomogeneous orientations. We obtain various extensions corresponding
to well known examples of dynamical systems such that Bernoulli and Markov shifts, SRB
measures, rotations on the torus, etc., our framework is very general from this point of view.
To get the transience of the walk, we need to generate the orientations by choosing a suitable
function f satisfying (2.3), which requires in some sense the model not to be too close to the
deterministic case: because to satisfy it, f should not be ”µ-too often” 0 or 1. We describe
now the examples providing extensions of the i.i.d. case to various disordered orientations.

1. Shifts: Bernoulli and Markov shifts provide the more natural field of application of
Theorem 1, including a dynamical construction of the i.i.d. case of [2] and a straightforward
extension to inhomogeneous or dependent orientations. Consider the shift transformation T
on the product space E = [0, 1]Z endowed with the Borel σ-algebra, defined by

T : E −→ E

x = (xy)y∈Z 7−→ (Tx)y = xy+1, ∀y ∈ Z.

Bernoulli shifts are considered when one starts from the product Lebesgue measure µ = λ⊗Z

of the Lebesgue measure λ on [0, 1]. It is T -invariant and we choose as generating function f
the projection on the zero coordinate:

f : E −→ [0, 1]
x 7−→ x0.

For all y ∈ Z, we then have f ◦ T y(x) = xy := ξ(y) ∈ [0, 1]. We consider this ξ’s as new
random variables on E whose independence is inherited from the product structure of µ. The
sufficient condition (2.3) becomes

∫ 1

0

dλ(x)√
x(1− x)

< ∞

and the transience holds in this particular case. In the annealed case, the product form of µ
allows another description of the i.i.d. case of [2], for which we check ξ(y) ≡ 1

2 for all y ∈ Z
and Covµ[ε0, εy] = Eµ[ε0εy] = 4E[ξ(0)ξ(y)] − 1 = 0. The result is also valid in the quenched
case, for which the distribution of the orientation has an inhomogeneous product form.

If one considers a measure µ with correlations, then the same holds for Pµ. Consider e.g.
µ to be a (shift-invariant) Markovian measure on [0, 1]Z whose correlations are inherited from
the shift via (2.2), with a stationary distribution π. The transience of the simple random walk
on this particular dynamically oriented lattice holds then for Pµ-a.e. environment as soon as

∫ 1

0

dπ(x)√
x(1− x)

< ∞.

12



It is the case when the invariant measure µ is the usual Lebesgue measure or Lebesgue
measure of index p. In the quenched case, there are no correlations by construction and the
law of the orientations depends on the measurable transformation only. This case is never-
theless different from this of the Bernoulli shift because the typical set of points x for which
the transience holds depends on the measure µ.

2. SRB measures: They provide another source of examples for dependent orientations
generated by transformations on the interval E = [0, 1]. A measure µ of the dynamical system
S is said to be an SRB measure if the empirical measure 1

n

∑n
i=1 δT i(x) converge weakly to

µ for Lebesgue a.e. x. There exist many other definitions of SRB measures, see e.g. [8].
In particular, it has the Bowen boundedness property in the sense that it is close to a Gibbs
measure on some increasing cylinder, i.e. there exists a constant C > 0 such that for all
x ∈ [0, 1] and every n ≥ 1

1
C
≤ µ(Ii1,...,in(x))

exp (
∑n−1

k=0 Φ(T k(x)))
≤ C

where Φ = − log |T ′| and Ii1,...,in is the interval of monotonicity for Tn which contains x.
In some cases, it is possible to control the correlations for SRB measures and we detail now

an example where our transience result holds, the Manneville-Pomeau maps introduced in the
1980’s to study intermittency phenomenon in the study of turbulence in chaotic systems [1].
They are expanding interval maps on E = [0, 1] and the original MP map is given by

T : [0, 1] −→ [0, 1]
x 7−→ T (x) = x + x1+α mod 1.

The existence of an absolutely continuous (w.r.t. the Lebesgue measure on [0, 1]) SRB
invariant measure µ has been established by [15] and the following bounds of Radon-Nikodym
derivative h = dµ

dλ has been proved [14]:

∃C?, C
? > 0 s.t.

C?

xα
< h(x) <

C?

xα
. (4.16)

This measure is known to be mixing, and a polynomial decay of correlation, with a power
β > 0, has even been proved for g regular enough [7, 11, 14, 16] :

| Cg
µ(y) |= O( | y |−β

)
.

The map T is not invertible but we use the remark following Theorem 1. It remains to find
suitable function f who generates orientations for which the simple random walk is transient.
By (4.16), a sufficient condition for the condition (2.3) to hold is

∫ 1

0

dx

xα
√

f(x)(1− f(x))
< ∞

and this is for example true for the function f(x) = 1
2(1+x−T (x)) and the choice of an α < 1

3 .

3. Rotations: We consider the dynamical system S = ([0, 1],B([0, 1]), λ, Tα) where Tα is
the rotation on the torus [0, 1] with angle α ∈ R defined by

x 7−→ x + α mod 1

13



and λ is the Lebesgue measure on [0, 1]. For every function f : [0, 1] 7→ [0, 1] such that∫ 1
0 f(x) dx = 1

2 and ∫ 1

0

dx√
f(x)(1− f(x))

< ∞,

conclusions of Theorem 1 hold uniformly in α. Such functions are called admissible. Every
function uniformly bounded from 0 and 1, with integral 1

2 is admissible. We also allow func-
tions f to take values 0 and 1: for instance, f1(x) = x is admissible although f2(x) = cos2(2πx)
is not. We actually have no explanations about this phenomenon, moreover we do not know
the behavior (recurrence or transience) of the simple random walk on the dynamically oriented
lattice generated by f2.

When the generation function f does not satisfy the condition (2.3), a variety of results can
arise by tuning the angle α to get different types of dynamical systems. Consider f3 = 1[0,1/2[

and take α = 1
2q for q an integer larger or equal to 1; the lattice we obtain is Z2 with undirected

vertical lines and horizontal strips of height q, alternatively oriented to the left then to the
right. The simple random walk on this deterministic and periodic lattice is known to be
recurrent [2] and this provides an example of a non ergodic system where (2.3) is not fulfilled
and the walk recurrent. When the period becomes infinite, i.e. for α = 0, the rotation is just
the identity and the corresponding lattice is Z2 with undirected vertical lines and horizontal
lines all oriented to the right (resp. all to the left) when x ∈ [0, 1/2[ (resp. x /∈ [0, 1/2[). The
simple random walk on this lattice is known to be transient and this gives an example of a
non ergodic system where (2.3) is not fulfilled and the walk transient. In the ergodic case, i.e.
when α is irrational, we suspect the behavior of the walk to exhibit a transition according to
the type of the irrational α. When its approximation by rational numbers via a development
in continuous fraction is considered to be good, i.e. when its type is large, the lattice is ”quasi”
periodic and the walk is believed to be recurrent. On the other hand, the walk is believed to
be transient when this approximation is bad (when the type of the irrational is close to 1). A
deeper study of this particular choice of dynamical system, in progress, is needed to describe
more precisely the transition between recurrence and transience in terms of the type of the
irrational.

5 Comments

We have extended the results of [2] to non-independent or inhomogeneous orientations. In
particular, we have proved that the simple random walk is still transient for a large class of
models. As the walk can be recurrent for deterministic orientations, it would be interesting
to perturb deterministic cases in order to get a full picture of the transience versus recurrence
properties and a more systematic study of this problem is in progress. We believe that the
functional limit theorem could be extended, at least to other ergodic dynamical systems, but
this requires new results on random walks in ergodic random sceneries. In the i.i.d. case,
Campanino et al. have also proved an improvement of the strong law of large numbers for the
random walk in the random scenery Zn: almost surely, Zn

nβ −→ 0 for all β > 3
4 . Together with

our functional limit theorem and the standard results for the vertical walk, this suggests the
conjecture of a local limit theorem, getting a full picture of ”purely random cases”, for which
the condition on the generation f holds. This work is in progress and we also investigate the
limit theorems in more general cases.
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