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Abstract. The existence of lower dimensional KAM tori is shown for a class of
nearly integrable Hamiltonian systems where the second Melnikov’s conditions are
relaxed, at the cost of the stronger regularity of the perturbed nonlinear term. As
a consequence, it is proved that there exist many linearly stable invariant tori and
thus quasi-periodic solutions for nonlinear wave equations of non-local nonlinearity
and of higher spatial dimension.

1. Introduction and main results.
Let us begin with the non-linear wave (NLW) equation

utt − uxx + V (x)u + h(x, u) = 0 (1.1)

subject to Dirichlet boundary conditions. The existence of solutions, periodic in
time, for NLW equations has been studied by many authors. See [B-P, Br, L-S]
and the references theirin, for example. While finding quasi-periodic solutions,
the so-called small divisor difficulty arises. The KAM (Kolmogorov-Arnold-Moser)
theory is a very powerful tool to overcome the difficulty. This theory deals with
the existence of invariant tori for nearly integrable Hamiltonian systems. In order
to obtain the quasi-periodic solutions of a partial differential equation, we may
show the existence of the lower (finite) dimensional invariant tori for the infinitely
dimensional Hamiltonian system defined by the equation. Assume the hamiltonian
is of the form:

H = (ω, y) +
∞∑

j=1

Ωjzj z̄j + R(x, y, z, z̄)

with tangential frequencies ω = (ω1, ..., ωn) and normal frequencies Ω = (Ω1, ..., ).
When R ≡ 0, there is a trivial invariant torus x = ωt, y = 0, z = z̄ = 0. The KAM
theory guarantees the persistence of the trivial invariant torus for sufficiently small
perturbation R, provided that the well-known Melnikov conditions are fulfilled:

(k, ω)− Ωj 6= 0 (the first Melnikov’s)

for all k ∈ Zn and 1 ≤ j < ∞, and

(k, ω) + Ωj1 − Ωj2 6= 0 (the second Melnikov’s)
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for all k ∈ Zn and 1 ≤ j1, j2 < ∞, j1 6= j2. See [E,K1,P1,W] for the details. This
KAM theorem can be applied to a wide array of Hamiltonian partial differential
equations of 1-dimensional spatial variable, including (1.1). Kuksin[K1,2] shows
that there are many quasi-periodic solutions of (1.1), assuming that the potential
V depends on an n-dimensional external parameter in some non-degenerate way.
Wayne[W] obtains also the existence of the quasi-periodic solutions of (1.1), when
the potential V is lying on the outside of the set of some “bad” potentials. In
[W], the set of all potentials is given some Gaussian measure and then the set of
“bad” potentials is of small measure. Bobenko & Kuksin[Bo-K] and Pöschel[P2]
investigate the case V (x) ≡ m ∈ (0,∞). By the remark in [P2], the same result
holds also true for the parameter values −1 < m < 0. When m ∈ (−∞,−1) \ Z,
it is shown in [Y1] that there are many hyperbolic-elliptic invariant tori. More
recently, the existence of invariant tori ( thus quasi-periodic solutions) of (1.1) are
shown for any prescribed potential1 V (x) 6= 0 in [Y2] and for V (x) ≡ 0 in [Y3]. In
[C-Y] and [Br-K-S], the equation (1.1) subject to periodic boundary conditions is
investigated.

For NLW equation (1.1) of spatial dimension 1, the multiplicity of normal fre-
quency Ωj is 1 in Dirichlet boundary condition or 2 in periodic boundary condition.
Considering PDE’s with spatial dimension> 1, a significant new problem arises due
to the presence of clusters of normal frequencies of the Hamiltonian system defined
by the PDEs. In this case, the multiplicity of Ωj goes to ∞ as |j| → ∞; con-
sequently, the second Melnikov’s conditions is destroyed seriously, preventing the
application of the KAM theorems mentioned above to Hamiltonian partial differ-
ential equations of higher spatial dimension. Bourgain[Bo1-4] developed another
profound approach, originally proposed by Craig-Wayne in [C-W], and success-
fully obtained the existence of quasi-periodic solutions of the nonlinear Schrödinger
(NLS) equations and NLW equations of higher dimension in space. This method is
called C-W-B method in some references. The techniques used in [C-W] and [Bo1-4]
are based on not KAM theory, but rather on a generalization of Lyapunov-Schmidt
procedure and on techniques by Fröhlich and Spencer[F-S].

The advantage of the KAM approach is, from one hand, to possibly simplify the
proof and, on the other hand, to allow the construction of local normal forms closed
to the considered torus, which could be useful for the better understanding of the
dynamics. For example, in generally, one can easy check the linear stability and
the vanishing Lyapunov exponents.

Naturally, we should ask that whether or not one can establish a new KAM
theorem for some nonlinear partial differential equations, such as NLW and NLS,
of higher spatial dimension.

In a private talk, the present author was told that Eliasson and Kuksin got a
new KAM theorem which could be applied to NLS equations. This is an excited
news! In the present paper,we will prove a variant of the KAM theorem due to
Kuksin[K1] and Pöschel[P1]. In the variant, the requirements of the normal fre-
quencies Ωj ’s are weaker than those in [K1,P1], at the expense of stronger regularity
of nonlinearity. Consequently, we can show that there are many invariant tori which
are linearly stable, for the NLW equations of non-local nonlinear term and higher
spatial dimension:

utt −4u + V (x, ξ)u + Ψ((Ψu)3) = 0, in R× (0, 2π)d (1.2)

1This potential V contains no parameter.
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and
utt −4u + Mξu + Ψ((Ψu)3) = 0, in R× (0, 2π)d (1.3)

subject to Dirichlet boundary condition

u(t, x)|x∈∂[0,2π]d = 0 (1.4)

where 4 is d-Laplacian, the potential V depends on parameter ξ in some kind of
non-degenerate way, and Mξ is a Fourier multiplier, i.e.,

Mξe
√−1(j,x) = ξje

√−1(j,x), ξj ∈ R, j ∈ Zd (1.5)

and Ψ : u 7→ ψ ? u is a convolution operator with a function ψ, even in each entry
of x ∈ Rd. Assume the operator Ψ is smoothing of order2 κ = 577d/2:

Ψ :Hp
0 ([0, 2π]) → H p̄

0 ([0, 2π]), p̄ = p + κ,

||Ψu||Hp̄ l ||Ψu||Hp , ∀ p > d/2.
(1.6)

The variant of the KAM theorem also applies to nonlinear Schrödinger equations
of higher spatial dimension:

√−1ut +Au + Ψ((Ψu)3) = 0, in R× (0, 2π)d (1.7)

subject to b. c. (1.4) where A = −4+Mξ or A = −4+V (x, ξ). Geng and You[G-
Y] also show the existence of stable invariant tori of (1.7) with the regularity κ > 0.
The requirement of the regularity in [G-Y] is weaker than ours, but our result can
apply to nonlinear wave equations (1.2) and (1.3). In addition, Pöschel[P3] shows
that there are many almost periodic solutions of (1.7) when d = 1. The non-local
condition is not satisfactory. It is an intereating problem that whether or not the
non-local condition can be removed.

The paper is organized as follows: In §.2, we formulate a general infinitely di-
mensional KAM theorem designed to deal with the presence of clusters of normal
frequencies of the Hamiltonian system. In §.3, we show how to apply the preceding
KAM theorem to NLW equation (1.3) with b. c. (1.4). Sect.4-8 are devoted to
the proof of the KAM theorem. In §.4, the homological equations are reduced and
solved; in §.5, the symplectic transform X1

F is given out and the new perturbed
term R+ is estimated; in §.6, the iterative lemma is given out; in §.7, The KAM
theorem is proven by using the iterative lemma;in §.8, the measure estimates for
the parameter sets is given out. Some technical lemmas are provided in §.9− 10.

2. A variant of the KAM theorem due to Kuksin and Pöschel.
2.1. Some notations. Denote by (`2, ||·||) the usual space of the square summable

sequences, and by (L2, || · ||) the space of the square integrable functions. By | · |
the Euclidian norm. Let a ≥ 0 and p ≥ d/2. For a sequence u = (uj ∈ C∗ : j ∈ Zd)
with ∗ = 1 or 2, we define its norm as follows:

||u||2a,p =
∑

j∈Zd

|j|2pe2a|j||uj |2. (2.1)

2Here κ = 577d/2 is not optimal. Since the variant of KAM theorem does not hold true for
κ = 0, we do not pursue the optimal κ > 0.



4 XIAOPING YUAN

Let `a,p be the set of all sequences satisfying (2.1). It is easy to see that `a,p is
a Hilbert space with an inner product corresponding to (2.1). When a = 0, we
sometimes write `0,p = `p and || · ||0,p = || · ||p. Introduce the phase space:

P := (Cn/2πZn)× Cn × `p, (2.2)

where n is a given positive integer. We endow P with a symplectic structure

dx ∧ dy +
∑

j∈Zd

du1
j ∧ du2

j , (x, y, u) ∈ P,

where u = (uj)j∈Zd with uj = (u1
j , u

2
j ) ∈ C2. Let

T n
0 = (Rn/2πZn)× {0} × {0} ⊂ P.

Then T n
0 is an torus in P. Introduce a complex neighborhoods of T n

0 in P:

D(s, r) := {(x, y, u) ∈ P : |Imx| < s, |y| < r2, ||u||p < r}

where r, s > 0 are constants.
Recall p̄ = p + κ in (1.6). For p̃ = p or p̃ = p̄, let

Pa,p̃ := Cn × Cn × `a,p̃, ∀a ≥ 0.

Then for r̃ > 0 we define the weighted phase norms

r̃|||W |||a,p̃ = |X|+ 1
r̃2
|Y |+ 1

r̃
||U ||a,p̃

for W = (X,Y, U) ∈ Pa,p̃. Let Π ⊂ Rn be compact and of positive Lebesgue
measure. For a map W : D(s, r)×Π → Pa,p̃, set

r̃|||W |||a,p̃,D(s,r)×Π := sup
(x,ξ)∈D(s,r)×Π

r̃|||W (x, ξ)|||a,p̃

and

r̃|||W |||La,p̃,D(s,r)×Π := max
1≤j≤n

sup
(x,ξ)∈D(s,r)×Π

r̃|||∂ξj W (x, ξ)|||a,p̃, ξ = (ξ1, ..., ξn).

Denote by B(`a∗,p∗ , `a∗,p∗) the set of all bounded linear operators from `a∗,p∗ to
`a∗,p∗ and by ||| · |||a∗,a∗,p∗,p∗ the operator norm.

In the whole of this paper, by C or c a universal constant, whose size may be
different in different place. If f ≤ Cg, we write this inequality as f l g when we
dot not care the size of the constant C. Similarly, if f ≥ Cg we write f m g.

2.2. The statement of the KAM theorem. For two vectors b, c ∈ Ck or Rk, we
write (b, c) =

∑k
j=1 bjcj . Consider an infinitely dimensional Hamiltonian in the

parameter dependent normal form

N0 = (ω0(ξ), y) +
∑

j∈Zd

Ω0
j (ξ)u

2
j , (x, y, u) ∈ P
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where u2
j = u2

j1
+ u2

j2
with uj = (uj1 , uj2) and the phase space P is endowed with

the symplectic form
dx ∧ dy +

∑

j∈Zd

duj1 ∧ duj2 .

The tangent frequencies ω0 = (ω0
1 , · · · , ω0

n) and the normal frequencies Ω0 = (Ω0
j :

j ∈ Zd) depend on n parameters ξ ∈ Π0 ⊂ Rn, Π0 a given compact set of positive

Lebesgue measure. Let J =
(

0 1
−1 0

)
and

Jm = diag(J, ..., J︸ ︷︷ ︸
m

), J = diag(J, ..., J︸ ︷︷ ︸
]

), J∞ = diag(..., J, ..., J, ...︸ ︷︷ ︸
∞

).

The Hamiltonian equation of motion of N0 are

ẋ = ω0(ξ), ẏ = 0, u̇ = J∞Ω0(ξ)u.

Hence, for each ξ ∈ Π0, there is an invariant n-dimensional torus T n
0 = Tn×{0}×

{0} with frequencies ω(ξ). The aim is to prove the persistence of the torus T n
0 , for

“most” (in the sense of Lebesgue measure) values of parameter ξ ∈ Π0, under small
perturbations R of the Hamiltonian N0. To this end the following assumptions are
required.
Assumption A: (Multiplicity.) Give ν0 > 0. Let O0 be the ν0-neighborhood of Π0

in Rn. Assume that3 for all ξ ∈ O0,

Ω0
i (ξ) = Ω0

j (ξ) if |i| = |j|.

Set
N = {|j| : j ∈ Zd} ⊂ R+.

It is easy to see that the set N is countable. For  ∈ N , let

S = {j ∈ Zd : |j| = }
and denote by ] the cardinality of the set S. it is well known that for d ≥ 2
we have ] ≤ d−2+ε where ε > 0 is a small constant, and it can be removed if
d ≥ 5. By Assumption A, we can let Ω̃0

 = Ω0
j if j ∈ Zd and |j| = . And let

Ω̃0 = (Ω̃0
 :  ∈ N ) and Λ0

 = diag (Ω̃0
j : |j| = ). Notice that Λ0

 = Ω̃0
jE] where

E] is the unit matrix of order ]. Let u be the vector consisting in the entries of
uj with |j| = . Thus u is a vector of order ]. Then we can rewrite N0 as

N0 = (ω0(ξ), y) +
∑

∈N
(Λ0

u, u).

Assumption B: (Non-degeneracy.) There are two absolute constant c1, c2 > 0
such that

sup
O0

|det ∂ξω
0(ξ)| ≥ c1, sup

O0

|∂j
ξω| ≤ c2, j = 0, 1.

3This assumption can be relaxed to that the multiplicity of Ω0
j is bounded by c|j|c̄ with constant

c, c̄ > 0. However, this general assumption is not necessary in finding quasi-periodic solutions of
NLS and NLW equations.
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Moreover, assume that both ω0(ξ) and Ω̃0(ξ) are real analytic in each entry ξl

(l = 1, ..., n) of the variable vector ξ ∈ O0.
Assumption C. (Bounded conditions of Normal frequencies.) Assume that there
exists constants c3, c4 > 0 such that

inf
O0

Ω̃0
 ≥ c3, sup

O0

|∂ξΩ̃0
 | ≤ c4 ¿ 1

uniformly for all . In addition, assume there is a constant c5 > 0 such that the
following spectra gap conditions hold true:

|Ω̃0
ı (ξ)− Ω̃0

 (ξ)| ≥ c5ı
−d−d, ı > , ∀ ξ ∈ O0.

Assumption D: (Regularity.) Give s0, r0, and 0 < ε0 ¿ 1. Let εm = ε∧0 (4/3)m

and ςm = ε
4/(2κ−d)
m . Assume the perturbation R0(x, y, u; ξ) can be decomposed into

R0 =
∞∑

m=0

R0m(x, y, u; ξ),

and each term R0m is defined on the domain D(s0, r0)×O0 is analytic in the space
coordinates and also analytic in each entry ξl (l = 1, ..., n) of the parameter vector
ξ ∈ O0, and is real for real argument, as well as, for each ξ ∈ O0 its Hamiltonian
vector field XR0m := (R0m

y ,−R0m
x , J∞R0m

u )T defines a analytic map

XR0m : D(s0, r0) ⊂ P → Pςm,p.

Also assume that XR0m is analytic in each entry of ξ ∈ O0.

Theorem 2.1. Suppose H = N0 + R0 satisfies assumptions A, B, C and D, and
smallness assumption:

r0|||XR0m|||ςm,p,D(s0,r0)×O0 < εm, r0|||XR0m|||Lςm,p,D(s0,r0)×O0
< ε1/3

m , m = 0, 1, 2, ...

Then, for given α ¿ 1, there is a Cantor set Πα ⊂ Π0 with

Meas Πα ≥ ( Meas Π0)(1−O(α)),

a family of torus embedding Φ : Tn×Πα → P and a map ω∗ : Πα → Rn where Φ(·, ξ)
and ω∗(ξ) is analytic in each entry ξj of the parameter vector ξ = (ξ1, ..., ξn) for
other arguments fixed, such that for each ξ ∈ Πα the map Φ restricted to Tn×{ξ} is
a analytic embedding of a rational torus with frequencies ω∗(ξ) for the Hamiltonian
H at ξ.

Each embedding is analytic on D(s0/2) := {x ∈ Cn : |=x| < s0/2}, and

r0|||Φ− Φ0|||0,p,D(s0/2)×Πα
≤ cε0, r0|||Φ− Φ0|||L0,p,D(s0/2)×Πα

≤ cε
1/3
0 ,

|ω∗ − ω| ≤ cε0, |ω∗ − ω|L ≤ cε
1/3
0 ,

where Φ0 is the trivial embedding Tn × Π0 → Tn × {0} × {0}, and c > 0 is a
constant depending on n, α, and r0||| · |||0,p,D(s0/2)×Πα

is defined in the way similar
to r||| · |||a,p,D(s,r)×Π.
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3. Application to nonlinear wave equations of higher dimension.
For technical simplicity, we consider (1.3) instead of (1.2). Essentially, our results

hold true for (1.4). We study equation (1.3) as an infinitely dimensional Hamil-
tonian system. Since the quasi-periodic solutions to be constructed are of small
amplitude, (1.3) may be considered as the linear equation utt = Au with a small
nonlinear perturbation Ψ((Ψu)3) where A = −4+ Mξ. Let φj(x) and µ0

j (j ∈ Zd)
be the eigenfunctions and eigenvalues of the operator A , respectively. By a simple
computation,

φj(x) =
√

2
(2π)d/2

sin(j, x),

and
µ0

j = |j|2 + ξj , |j|2 = j2
1 + · · ·+ j2

d .

Then every solution of the linear system is the superposition of their harmonic
oscillations and of the form

u(t, x) =
∑

j∈Zd

qj(t)φj(x), qj(t) = y0
j cos(

√
µ0

j t)

with amplitude y0
j ≥ 0. The solution u(t, x) is time-periodic, quasi-periodic or

almost periodic of the linear equation, depending on whether one, finitely many or
infinitely many modes are excited, respectively. In particular,

Nn = {j ∈ Zd : 0 ≤ |j| ≤ n0},

where n0 ∈ ∪S = ∪{ = |j| : j ∈ Zd} is given and n =
∑

0≤≤n0
]. The reason

why we choose this Nn is just for convenience. Essentially, we can choose any finite
subset Nn of Zd. Consider the Fourier multiplier Mξ in (1.5). Let

{
ξj ∈ [1, 2], j ∈ Nn

ξj = 0, otherwise .

Observe that (ξj : j ∈ Nn) is a vector of dimension n. For convenience, we write
ξ = (ξj : j ∈ Nn) = (ξ1, ..., ξl, ..., ξn). Note that the eigenvalues µ0

j depends on ξ.
Let Π0 = [1, 2]n and O0 be the ν0-neighborhood of Π0 in Rn. Write

{
√

µ0
j (ξ) : j ∈ Nn} = {ω0

l (ξ) : 1 ≤ l ≤ n}

and
{φj(x) : j ∈ Nn} = {φ0

l : 1 ≤ l ≤ n}.
Let ω0 = (ω0

1 , ..., ω0
n). Then

u0(t, x) =
n∑

l=1

y0
l cosωlt · φ0

l (x)

is a quasi-periodic solution of the linear equation utt = −Au for any ξ ∈ Π0 and
y0 = (y0

1 , ..., y0
n) ∈ Rn

+ . Upon restoring the nonlinearity Ψ((Ψu)3) the quasi-
periodic solutions will not persist in their entirety due to resonance among the



8 XIAOPING YUAN

modes and the strong perturbing effect of Ψ((Ψu)3) for large amplitudes. In a
sufficiently small neighborhood of u = 0 in the space Hp([0, 2π]), however, it will
be shown that there does persist the quasi-periodic solutions u0(t, x)’s which are
only slightly deformed for “most” ξ ∈ Π0.

We study the nonlinear NLW equation (1.3) as an infinite dimensional Hamil-
tonian system. Since the solutions to be constructed are of small amplitude, we
can rewrite (1.3) as

utt −4u + Mξu + εΨ((Ψu)3) = 0, in R× (0, 2π)d (1.3*)

by re-scaling u =
√

εu. To apply Theorem 2.1, we let ε = ε0.
As the phase space one may take, for example, the product of the usual Sobolev

space H1
0 ([0, 2π]d)× L2([0, 2π]d) with coordinates u and v = ut. The Hamiltonian

is then

H =
1
2
〈v, v〉+

1
2
〈Au, u〉+

ε

4

∫ 2π

0

(Ψu)4 dx (3.0)

where 〈·, ·〉 denotes the usual scalar product in L2. Here the Hamiltonian structure
is du ∧ dv. Note that the Dirichlet boundary condition (1.4) is equivalent to

x ∈ Td = Rd/(2πZ)d and u(−x) = −u(x).

Let L2
0(Td) be the subspace of L2(Td) satisfying u(x) = −u(−x), and `20 be the

subspace of `2 satisfies qj = −q−j . Let

F : `20 → L2
0, q 7→ Fq =

∑

j∈Zd

qje
√−1(j,x), q−j = −qj

be the inverse discrete Fourier transform, which defines an isometry between the
two space, and F can be extended into a isometry from `2 to L2. It is obvious that
q ∈ `0,p ⊂ `2 if and only if Fq ∈ Hp([0, 2π]d) ⊂ L2([0, 2π]d). Let

Ψ̃q = F−1Ψ(Fq), ∀ q ∈ `0,p.

Since ψ is even, we have Ψ(Fq) ∈ L2
0 if F(q) ∈ L2

0.
Formally, letting

u =
∑

j∈Zd

q̃j(t)φj(x) (3.1)

and inserting it into (1.3*) and noting {φj : j ∈ Zd} is a real basis of L2
0 we get

d2q̃j

dt2
+ µ0

j q̃j + ε〈Ψ((Ψu)3), φj〉 = 0, j ∈ Zd. (3.2)

Let
qj =

√
µ0

j q̃j , pj =
1√
µ0

j

dq̃j

dt
, j ∈ Zd. (3.3)

Then we get a Hamiltonian system

ṗj = −∂H

∂qj
, q̇j =

∂H

∂pj
, j ∈ Zd (3.4)
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where

H(p, q) =
1
2

∑

j∈Zd

√
µ0

j (p
2
j + q2

j ) + G(Ψ̃q) (3.5)

with
G(q) =

∑

i,j,k,l

Gijklqiqjqkql (3.6)

Gijkl =
ε

4
(µ0

i µ
0
jµ

0
kµ0

l )
−1/2

∫

[0,2π]d
φiφjφkφldx. (3.7)

Since φj(x) = sin(j, x), it is not difficult to verify that Gijkl = 0 unless i±j±k±l = 0
for some combination of plus and minus signs. Hence the sum in (3.6) is restricted
to indices i, j, k, l such that i ± j ± k ± l = 0. Let ∂qG and ∂2

qG are the first and
second derivatives of G, respectively. Then, obviously,

∂qG(q) = (∂ql
G)l∈Zd , ∂ql

G = 4
∑

±i±j±k=l

Gijklqiqjqk, (3.8)

and

∂2
qG(q) =

(
∂2G

∂qk
∂ql

)

k,l∈Zd

,
∂2G

∂qk
∂ql

= 12
∑

±i±j=±k+l

Gijklqiqj , (3.9)

Lemma 3.1. For any a ≥ 0, p > d/2 and q ∈ `a,p, we have ∂qG(q) ∈ `a,p with

||∂qG(q)||a,p l ε||q||3a,p; (3.10)

moreover, ∂2
qG(q) is a bounded linear operator from `a,p to `a,p with

|||∂2
qG(q)|||a,a,p,p l ε||q||2a,p. (3.11)

Proof. Without loss of generality, we assume the sum in (3.8) is restricted to i +
j − k = l and the sum in (3.9) is restricted to i − j = k − l. For convenience, let
|k| = 1 if k is a zero vector. Let

ηik(l) =
|i + k − l||i||k|

|l| e(a/p)(|i+k−l|+|i|+|k|−|l|) (3.12)

It is easy to verify that for any l ∈ Zd and p > d/2,

∑

i,k∈Zd

1
ηik(l)2p

l 1. (3.13)

For any u, v, w ∈ `a,p, let S(u, v, w) = (Sl)l∈Zd with

Sl =
∑

i−j+k=l

Gijkluiujwk. (3.14)
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By the Schwarz inequality,

||S(u, v, w)||2a,p

=
∑

l

|l|2pe2a|l|

∣∣∣∣∣∣
∑

i−j+k=l

Gijkluivjwk

∣∣∣∣∣∣

2

=
∑

l

Gijkl|l|2pe2a|l|

∣∣∣∣∣∣
∑

i,k∈Zd

ηij(l)puivi+k−lwk

ηij(l)p

∣∣∣∣∣∣

2

≤ Cε
∑

l

∑

i,k∈Zd

|i + k − l|2pe2a|i+k−l||vi+k−l|2|i|2pe2a|i||ui|2|k|2pe2a|k||wk|2

≤ Cε||u||2a,p||v||2a,p||w||2a,p.

(3.15)

Note ∂qG(q) = S(q, q, q). Thus, the proof of (3.10) is completed by (3.15). For any
u ∈ `a,p, observing that

∑

l

∑

i−j=k−l

Gijklqiqjul =
∑

i−j+l=k

Gijklqiqjul,

we get
(∂2

qG(q))u = S(q, q, u).

By (3.15),
||(∂2

qG(q))u||a,p ≤ Cε||q||2a,p||u||a,p.

This implies that (3.11) holds true. ¤
In Sect. 10, we will construct a family of operators Tm : `2 ⊃ `0,p̄ → `a,p ⊂ `2

which satisfy Lemma B.3. Now we introduce a Hamiltonian R:

R(q) = R0(q) +
∞∑

m=1

Rm(q) := G(T0Ψ̃(q)) +
∞∑

m=1

(G(TmΨ̃(q))−G(Tm−1Ψ̃(q)))

(3.16)

Lemma 3.2. For q ∈ `0,p with ||q||0,p l 1, we have that

G(Ψ̃(q)) = R(q) (3.17)

||∂qRm(q)||ςm,p l εm, (3.18)

where εm = ε∧(4/3)m and ςm = ε
4/(2κ−d)
m , (m = 0, 1, 2, ...)

Proof. For θ ∈ [0, 1], let

q∗ := Ψ̃(q) + θ(TmΨ̃(q)− Ψ̃(q)).

Note that for any a ≥ 0 and p̄ ≥ p > d/2, we have

||q||a,p ≥ ||q||0,p ≥ ||q||`2 , q ∈ `a,p,
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and
||q||0,p ≤ ||q||0,p̄, q ∈ `0,p̄.

By the definition of Ψ, we have

||Ψ̃(q)||0,p ≤ ||Ψ̃(q)||0,p̄ l ||q||0,p.

In view of Lemma B.3 (10.13),

||θ(TmΨ̃(q)− Ψ̃(q))||0,p ≤ ||Ψ̃(q)||0,p̄ l ||q||0,p.

Thus,
||q∗||0,p l ||q||0,p.

Using Talylor’s formula, we get

|G(TmΨ̃(q))−G(Ψ̃(q))|
=|〈∂qG(q∗), (Tm − 1)Ψ̃(q)〉`2 |
≤||∂qG(q∗)||`2 ||(Tm − 1)Ψ̃(q)||`2
≤||∂qG(q∗)||0,p||(Tm − 1)Ψ̃(q)||0,p

l||q∗||30,pεm+1||Ψ̃(q)||0,p̄ ⇐ Lemma 3.1, B.3(10.13)

≤||q||40,pεm+1 l εm+1 → 0, as m →∞.

This proves (3.17). We are position to show (3.18). Let qm = TmΨ̃(q) and n =
m− 1. By Lemma B.2, ||qm||0,p ≤ ||qm||ςm,p ≤ ||q||0,p. It will be shown in Lemma
B.4 in Sect. 10 that TmΨ̃ is self-adjoint in `2. Then

∂qR0 = T0Ψ̃(∂q0G(q0),

∂qRm = TnΨ̃∂qnG(qn)− TmΨ̃∂qmG(qm).

Furthermore, by (3.10) and Lemma B.2(10.14),

||∂qR0||ς0,p ≤ ||Ψ̃∂q0G(q0)||0,p ≤ ||Ψ̃(∂q0G(q0)||0,p̄

≤ ||∂q0G(q0)||0,p ≤ ε||q0||30,p l ε = ε0,

and

||∂qRm||ςm,p = ||∂q(G(TmΨ̃(q)−G(TnΨ̃(q))||ςm,p

= ||TmΨ̃∂qmG(qm)− TnΨ̃∂qnG(qn)||ςm,p

≤ ||(Tm − Tn)Ψ̃∂qmG(qm)||ςm,p (3.19)

+ ||TnΨ̃ ((∂qmG(qm)− ∂qnG(qn)) ||ςm,p. (3.20)

Thus,
(3.19) l εm||Ψ̃∂qmG(qm)||0,p̄ (⇐ Lemma B.(10.12))

l εm||∂qmG(qm)||0,p (⇐ Definition of Ψ)

l εm||qm||30,p (⇐ (3.10))

≤ εm||q||30,p
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Let q∗ := qn + θ(qm − qn) with θ ∈ [0, 1]. We have

(3.20) ≤ ||TnΨ̃ ((∂qm
G(qm)− ∂qn

G(qn)) ||ςn,p, ςm < ςn

l ||Ψ̃(∂qm
G(qm)− ∂qn

G(qn))||0,p (⇐ Lemma B.3(10.14))

≤ ||Ψ̃(∂qmG(qm)− ∂qnG(qn))||0,p̄

l ||∂qm
G(qm)− ∂qn

G(qn)||0,p (⇐ Definition of Ψ)

= ||∂2
q∗G(q∗)(qm − qn)||0,p (⇐ Taylor’s formula )

≤ |||∂2
q∗G(q∗)|||0,0,p,p||qm − qn||0,p

≤ ε||q∗||20,p||(Tm − Tn)Ψ̃(q)||0,p

≤ ε||q||20,p||(Tm − Tn)Ψ̃(q)||ςm,p

≤ εεm||q||20,p||Ψ̃(q)||0,p̄ (⇐ Lemma B.(10.12))

≤ εεm||q||30,p.

Consequently, if ||q||0,p l 1

||∂qRm||ςm,p ≤ εm||q||30,p l εm.

This completes the proof of this lemma. ¤

Observe that for 1 ≤ l ≤ n, there is a j ∈ Nn such that

ω0
l (ξ) =

√
|j|2 + ξl, (3.21)

and for j ∈ Zd \Nn,

Ω0
j =

√
µ0

j = . (3.22)

It follows from (3.21,22) that Assumptions A, B, C of Theorem 2.1 are fulfilled. Now
let us check Assumption D of Theorem 2.1. Write q = (q, q̄) with q = (qj)j∈Nn and
q̄ = (qj)j /∈Nn

. Let

qj =
√

2(y0
j + yj) cos xj , pj =

√
2(y0

j + yj) sin xj , j ∈ Nn, y ∈ [0, 1]n. (3.23)

Then, in view of (3.17), Hamiltonian (3.5) is transformed into

H = (ω(ξ), y) +
1
2

∑

j /∈Nn

Ω0
j (p

2
j + q2

j ) + R0(x, y, q̄) (3.24)

where

R0(x, y, q̄) = R(q(x, y), q̄) =
∞∑

m=0

Rm(q(x, y), q̄)

with q(x, y) defined by (3.23). Observe that for |=x| ≤ s0, |y| ≤ r0 < 1,

|∂xRm(x, y, q̄)|, |∂yRm(x, y, q̄)|, ||∂q̄Rm(x, y, q̄)||a,p l ||∂qR(q)||a,p.
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Let u = (uj : j /∈ Nn) with uj = (pj , qj) and

XRm = (∂xRm,−∂yRm, J∞∂uRm), ∂uj = (∂pj , ∂qj ).

It follows from Lemma 3.2 that the Assumption D is fulfilled and

r0|||XRm
|||ςm,p,D(s0,r0)×O0 l εm.

Using the fact µ0
j = |j|2 + ξj and (3.6) and (3.7), we get that the vector field XRm

is analytic in each entry of ξ ∈ O0 and

r0|||XRm
|||Lςm,p,D(s0,r0)×O0

l εm.

By invoking Theorem 2.1, we get the invariant torus and thus quasi-periodic solu-
tions for (1.3).

Theorem 3.3. For any 0 < α ¿ 1, there ia a set Πα ⊂ Π0 with

Meas (Π \Πα) ≤ c̃α

(here c̃ > 0 is an absolute constant ) such that for any ξ ∈ Πα, the NLW equation
(1.3)ξ∈Πα possesses a smooth quasi-periodic solution u(t, x) of frequencies ω∗ which
satisfies

|u(t, x)− u0(t, x)| ≤ √
ε

and
|ω∗ − ω0| ≤ ε.

Besides, the solution u(t, x) is linearly stable.

4. The linearized equation.
4.1. split and estimate for small perturbation. Recall that for  ∈ N , the notation

] denotes the number of the elements of the set {j ∈ Zd : |j| = }, and u is
the vector consisting of uj with j ∈ Zd and |j| = . Let E be the unit matrix
of order ]. Let O be an open set in Rn. Consider two infinitely dimensional
vectors u = (uj)j∈Zd and v = (vj)j∈Zd where both uj and vj are in C2. Define
〈u, v〉 =

∑
j∈Zd(uj , vj). Therefore, if write u = (u)∈N and v = (v)∈N where

both u and v are ]-dimensional vectors, then 〈u, v〉 =
∑

∈N (u, v). Let N be
an integrable Hamiltonian:

N = (ω(ξ), y) +
∑

∈N
〈Ω̃(ξ)Eu, u〉+

∑

∈N
〈B(ξ)u, u〉

where B(ω) is a real symmetric matrix of order ] for any ω ∈ O, and all of
the coefficients ω(ξ), Ω̃(ξ) and B(ξ) are analytic in each entry ξj (j = 1, ..., n)
of ξ ∈ O. Moreover, we assume |det∂ω(ξ)

∂ξ
| > c > 0 for all ξ ∈ O. If we write

Λ = diag(Ω̃(ξ)E :  ∈ N ) and B = diag(B :  ∈ N ), then

N = (ω(ξ), y) + 〈Λu, u〉+ 〈Bu, u〉.

We now consider a perturbation H = N+R̀ where R̀ = R̀(x, y, u; ξ) is a Hamiltonian
defined on D(s, r) and depends on the parameter ξ ∈ O. We assume that there are
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quantities ε = ε(r, s,O) and εL = εL(r, s,O) which are dependent on r, s,O such
that

r|||XR̀|||ς,p,D(s,r)×O l ε, r|||XR̀|||Lς,p,D(s,r)×O l εL, ε < εL ¿ 1. (4.1)

For u = (uj)j∈Zd with uj = (u1
j , u

2
j ), write u1 = (u1

j )j∈Zd and u2 = (u2
j )j∈Zd . Let

R =
∑

2|m|+|q1+q2|≤2

∑

k∈Zd,

Rkmq1q2e
√−1(k,x)ym(u1)q1(u2)q2 ,

with the Taylor-Fourier coefficients Rkmq1q2 of R̀ depending on ξ ∈ O, and being
analytic in each entry ξj of ξ, such that the vector field XR : P → Pς,p is real,
analytic in (x, y, u) ∈ D(s, r) and in each entry of ξ ∈ O. We will approximate
R̀ by its partial Taylor-Fourier expansion R. For convenience we decompose R =
R0 + R1 + R2, where Rj ’s (j = 0, 1, 2) comprises all terms with |q + q̄| = j, and
furthermore,

R0 = Rx + (Ry, y),

R1 = 〈Ru, u〉,
R2 = 〈Ruuu, u〉,

where Rx, Ry, Ruu depend on x, ξ. Let D(s) = {x ∈ Cn/2πZn : |=x| < s}. In
order to derive the linearized equation, we need some notations. For any operator
Y : `p → `ς,p ⊂ `p, we regard it as a matrix of infinite dimension. Denote by Y ij ’s
the elements of this matrix. For any ı,  ∈ N , let Yı is the sub-matrix of Y with
Yı = (Y ij)|i|=ı,|j|=. Denote by Y ij

ı the elements of the sub-matrix Yı. We split
the matrix Y as follows: Y = Yg + Yng where Rg is a quasi-diagonal matrix with
Yg = (Y :  ∈ N ) and Yng is a non-diagonal matrix with Yng = Y − Yg. Denote by
Y ij

ng the elements of matrix Yng. Thus, Y ij
ng = 0 if |i| = |j| = . For any vector or

matrix Y dependent on x ∈ D(s), let

[Y ] =
1

(2π)n

∫

Tn

Y (x) dx.

Besides, we suppose that [Rx] = 0 without loss of generality, since the Hamiltonian
dynamics will not be changed by adding (or removing) a constant to (or from) the
Hamiltonian function. Now we give some estimates of R.

Lemma 4.0.
r|||XR|||∗ς,p,D(s,r)×O l r|||XR̀|||∗ς,p,D(s,r)×O ≤ ε∗, (4.2)

ηr|||XR −XR̀|||∗ς,p,D(s,4ηr)×O l η · r|||XR̀|||∗ς,p,D(s,r)×O l ηε∗, (4.3)

for any 0 < η ¿ 1, where ∗ = the blank or L, for example, ε∗ = ε or εL.

Proof. The proof is similar to that of formula (7) of [P1,129].

Lemma 4.1. Under the smallness assumption on R̀, the following estimates hold
true:

|∂xRx|D(s)×O ≤ r2ε, |∂xRx|LD(s)×O ≤ r2εL (4.4)

|Ry|D(s)×O ≤ ε, |Ry|LD(s)×O ≤ εL (4.5)
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||Ru||ς,p;D(s)×O ≤ rε, ||Ru||Lς,p;D(s)×O ≤ rεL (4.6)

|||Ruu|||0,ς,p,p;D(s)×O ≤ ε, |||Ruu|||L0,ς,p,p;D(s)×O ≤ εL (4.7)

Proof. Consider Ruu. Observe that Ruu = ∂u∂uR|u=0 with ∂uj
= (∂u1

j
, ∂u2

j
) and

uj = (u1
j , u

2
j ). By the generalized Cauchy inequality (See Lemma A.3 in [P1]),

|||Ruu|||0,ς,p,p;D(s)×O ≤
1
r
||∂uR||ς,p,D(s,r)×O ≤ r|||XR|||ς,p,D(s,r)×O < ε.

The remaining proof is simple. We omit the details. ¤

It follows from Lemma 4.2 that Ruu is a bounded linear operator from `p to `ς,p

for any x ∈ D(s). Write Ruu = (Rij : i, j ∈ Zd) where Rij ’s are 2 × 2 complex
matrix. In fact,

Rij =
(

∂u1
i
∂u1

j
R ∂u2

i
∂u1

j
R

∂u2
j
∂u1

i
R ∂u2

i
∂u2

j
R

)
.

We see that Rt
ij = Rji where t means the transpose of matrix. Therefore, Ruu is a

symmetric operator. Besides, Ruu is real for real x. Recall Rij is a 2 × 2 matrix.
Denote by |Rij | the maximum norm of matrix.

Lemma 4.2. For |i| ≥ |j|, we have

|Rij |D(s)×O, |Rji|D(s)×O l e−ς|i||i|−p|j|pε. (4.8)

|Rij |LD(s)×O, |Rji|LD(s)×O l e−ς|i||i|−p|j|pεL. (4.9)

Proof. Let u = (uk)k∈Zd with uj = |j|−p(1/
√

2, 1
√

2) and uk = 0 for k 6= j. Then
||u||p = 1. In terms of the definition of the operator norm ||| · |||0,ς,,p,p and (4.7),
we have ∑

l∈Zd

e2ς|l||l|2p|
∑

k∈Zd

Rlkuk|2 ≤ |||Ruu|||20,ς,p,p ≤ ε2,

that is, ∑

l∈Zd

e2ς|l||l|2p|Rlj |2|j|−2p l ε2,

in particular, for |i| > |j|,

|Rij | l e−ς|i||i|−p|j|pε.

The remaining proof is similar. This completes the proof. ¤

Lemma 4.3. For  ∈ N ,

sup
D(s)×O

||R||2 l (d−1)/2e−ςε. (4.10)

sup
D(s)×O

||R||L2 l (d−1)/2e−ςεL. (4.11)



16 XIAOPING YUAN

Proof. Observe a well-known fact in matrix theory:

||R||22 ≤ max
|j|=

∑

|i|=

|Rij | · max
|i|=|j|=

|Rij |

Note that the cardinality of the set {j : |j| = } is bounded by d−2+ε ≤ d−1. By
Lemma 4.2, we have

||R||2 ≤
√∑

|j|=

1 · max
|i|=|j|=

|Rij | l (d−1)/2e−ςε

The proof of the another estimate is the same.

Let Y : `2 → `2 be a matrix of infinity order. Write Y = (Yij : i, jZd). For
M > 0, let ΥMY : `2 → `2 be a matrix of infinity order whose matrix elements are
defined by

(ΥMY )ij =
{

Yij , |i| ≤ M and |j| ≤ M

0, |i| > M or |j| > M.

If Y = (Yj : j ∈ Zd) be a vector in `2. Let ΥMY = ((ΥY )j : j ∈ Zd) is a vector in
`2 defined by

(ΥMY )j =
{

Yj , |j| ≤ M

0, |j| > M.

Lemma 4.4. For 0 < η < 1 and 0 < σ < 1, let M = 4| ln ησn|/ς. Then

||(1−ΥM )Ru||ς/2,p,D(s)×O ≤ rεσnη2, ||(1−ΥM )Ru||Lς/2,p,D(s)×O ≤ η2rσnεL.

Proof. By (4.6) and the definition of Υ,

||(1−ΥM )Ru||ς/2,p,D(s)×O ≤ eςM/2||Ru||ς,p,D(s)×O ≤ rεη2σn.

The remaining inequality is proven similarly. ¤

Lemma 4.5. For 0 < η < 1, let M = 4| ln ησn|/ς. Then

|||(1−ΥM )Ruu|||0,ς/2,p,p,D(s)×O l σnεη2,

|||(1−ΥM )Ruu|||L0,ς/2,p,p,D(s)×O l σnη2εL.

Proof. By (4.8) and the definition of Υ,

|((1−ΥM )Ruu)ij |D(s)×O, |((1−ΥM )Ruu)ji|D(s)×O

≤ eςM/4e−(3/4)ς|i||i|−p|j|pε ≤ e−(3/4)ς|i||i|−p|j|p(εη2σn).

By the same argument as in the proof of Lemma A.2 in Appendix A, we complete
the proof of the first inequality of this lemma. The remaining proof is similar. ¤
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Lemma 4.6. Suppose that r = r0η with a absolute constant r0 > 0 defined in
Theorem 2.1. Let

RM = 〈(1−ΥM )Ru, u〉+ 〈(1−ΥM )Ruuu, u〉.

Then

ηr|||XRM
|||ς/2,p,D(s−σ,ηr)×O l ηε, ηr|||XRM

|||Lς/2,p,D(s−σ,ηr)×O l ηεL.

Proof. This is a easy corollary of Lemmas 4.4 and 4.5. ¤

For K > 0 and a function f(x) =
∑

k∈Zn f̂(k)e
√−1(k,x), define a function ΓKf

by
(ΓKf)(x) =

∑

|k|≤K

f̂(k)e
√−1(k,x).

Lemma 4.7. Let K = | ln η|/σ and RK = (R−RM )− ΓK(R−RM ). We have

r|||XRK
|||ς,p,D(s−σ,r)×O l ηε,

r|||XRK |||Lς,p,D(s−σ,r)×O l ηεL

Proof. Write RK = Rx
K + (Ry

K , y) + 〈Ru
K , u〉+ 〈Ruu

K u, u〉. Note that the terms Rx
K ,

Ry
K , and so on, are analytic in x ∈ D(s). Then by Cauchy’s formula, we have

|R̂x
K(k)| ≤ e−s|k| supD(s) |Rx|, and so on. Observe that |k| > K in those Fourier

coefficients R̂x
K(k)’s. We can get

r|||XRK
|||∗ς,p,D(s−σ,r)×O ≤ e−σK

r|||XR|||ς,p,D(s,r)×O ≤ ηε∗

where ∗ = the blank or L. ¤
Finally, let R = ΓK(R−RM ). Then

R = R+ RM + RK .

Also write
R = Rx + (Ry, y) + 〈Ru, u〉+ 〈Ruuu, u〉.

By Lemma 4.6 and 4.7 we see that Lemmas 4.0, 4.1,4.2,4.3 hold still true after
replacing R by R.

4.2. Derivation of homological equations. The KAM theorem is proven by the
usual Newton-type iteration procedure which involves an infinite sequence of coor-
dinate changes. Each coordinate change is obtained as the time-1 map Xt

F |t=1 of
a Hamiltonian vector field XF . Its generating Hamiltonian F solves the linearized
equation

{F, N} = R− [[R]]

where {·, ·} is Poisson bracket with respect to the symplectic structure dx ∧ dy +
du1 ∧ du2 and [[R]] is defined as

[[R]] = ([Ry], y) + 〈[Ruu
g ]u, u〉.
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It is easy to see that

[[R]] =
∑

0≤|m|≤1,|i|=|j|
R0mijy

mu1
i u

2
j

which is of the same form as N . We are now in position to find a solution of this
equation and give some estimates for the solution. To this end, we suppose that F
is of the same form as R− [[R]], that is, F = F 0 + F 1 + F 2, where

F 0 = F x + 〈F y, y〉,
F 1 = 〈Fu, u〉,
F 2 = 〈Fuuu, u〉,

with F x, F y, Fuu depending on x, ξ. We furthermore suppose that [[F ]] = 0 where
the definition of [[F ]] is the same as [[R]]. Set A(ξ) = Ω̃(ξ)E + B(ξ), A =
diag(A :  ∈ N ).

As in [K1, p.62], now the linearized equation is reduced to the following equa-
tions:

∂F x/∂ω = Rx(x, ξ), (4.12)

∂F y/∂ω = Ry(x, ξ)− [Ry](ξ), (4.13)

∂Fu/∂ω −AJ∞Fu = Ru(x, ξ), (4.14)

∂Fuu/∂ω + FuuJ∞A−AJ∞Fuu = Ruu(x, ξ)− [Ruu
g ](ξ) (4.15*)

where ∂/∂ω = (ω, ∂
∂x ), for example, ∂F y/∂ω = (ω, ∂F y

∂x ). Observe that both A and
J∞ are quasi-diagonal. We can split (4.15*) into the following systems:

∂Fuu
ı /∂ω + Fuu

ı JA −AııJıF
uu
ı = Ruu

ı , [Ruu
 ] = 0, ı,  ≤ M. (4.15)

Recall XR : D(s, r) ⊂ P → Pς,p is real analytic in (x, y, u) ∈ D(s, r) and each
entry of ξ ∈ O.

4.3. Solutions of the homological equations.

Proposition 1. ( Solution of (4.12).) Assume that uniformly on ξ ∈ O,

|(k, ω(ξ))| m α

|k|τ , for all 0 6= k ∈ Zn, |k| ≤ K (4.16)

where α > 0 and τ > n. Then on D(s−σ)×O with 0 < σ < s, the equation (4.12)
has a solution F x(x, ξ) which is analytic in x ∈ D(s−σ) for ξ fixed and analytic in
each ξj , (j = 1, ..., n) for other variables fixed, and which is real for real argument,
such that

|∂xF x|D(s−σ)×O l
r2ε

αστ+n
, |∂xF x|LD(s−σ)×O l

r2εL

ασ2(τ+n)
. (4.17)

Proof. Expanding ∂xRx into Fourier series

∂xRx =
∑

0 6=k∈Zn,|k|≤K

∂̂xRx(k)e
√−1(k,x).
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Since ∂xRx is analytic in x ∈ D(s), we get that the Fourier coefficients ∂̂xRx(k)’s
decay exponentially in k, that is,

|∂̂xRx(k)| l |∂xRx|D(s)×Oe−s|k| l e−s|k|r2ε, (4.18)

where we have used (4.4), since Lemma 4.1 holds true not only for R but also for R.
Expanding ∂xF x into Fourier series as that of ∂xRx and putting them into (4.12),
we get

∂xF x(x, ξ) =
∑

0 6=k∈Zn,|k|≤K

∂̂xRx(k)√−1(k, ω)
e
√−(k,x).

By (4.16), (4.18) as well as Lemma A.1, we get that for x ∈ D(s− σ),

|∂xF x(x, ξ)| l r2ε

α

∑

k∈Zn

|k|τe−|k|σ l
r2ε

α
σ−τ−n.

Applying ∂ξj to both sides of (4.12) and using a method similar to the above, we
can get

|∂xF x(x, ξ)|L l r2εL

ασ2(τ+n)
. ¤

Proposition 2. ( Solution of (4.13).) Assume (4.16) holds true. Then on D(s−
σ)×O with 0 < σ < s, the equation (4.13) has a solution F y(x, ξ) which is analytic
in x ∈ D(s− σ) for ξ fixed and analytic in each ξj , (j = 1, ..., n) for other variables
fixed, and which is real for real argument, such that

|F y|D(s−σ)×O l
ε

αστ+n
, |F y|LD(s−σ)×O l

εL

ασ2(τ+n)

Proof. The proof is the same as that of Prop. 1. We omit it. ¤
We are now in position to find the solution of (4.14). Recall that A = diag(A :

 ∈ N ) with A = Ω̃E + B . We assume that B is symmetric and min Ω̃ ≥
c > 0 and ||B||2 l ε

1/3
0 . Let

Ã = E + Ω̃−1
 B := E + B̃.

Then Ã and B̃ are symmetric and A = Ω̃Ã. In addition, we will assume that
||B̃||2 l ε0

−d. It is easy to see that Ã is positively definite and ||Ã||2 ≤ 1+Cε0.
Write Ru = (R)∈N with R = (Ru

j )|j|=; Similarly, write Fu = (F)∈N . Then
(4.14) can be written as a system of equations:

∂F/∂ω −AJF = R,  ∈ N ,  ≤ M. (4.19)

Multiplying both sides of the above equation by a scalar eς/2p and letting

eς/2pF = F̃, eς/2pR = R̃. (4.20)

Then
∂F̃/∂ω − Ω̃ÃJF̃ = R̃,  ≤ M. (4.21)
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Let R̃ = (R̃)∈N and F̃ = (F̃)∈N .
Letting F̄ = Ã

−1/2
 F̃ and R̄ = Ã

−1/2
 R̃ and Ā =

√−1Ã
1/2
 JÃ

1/2
 , then, by

noting Ω̃ is a scalar, we get

∂F̄/∂ω +
√−1Ω̃ĀF̄ = R̄, (4.22)

Since Ã is (real) symmetric and J is skew-symmetric, we get Ā is hermitian.
Since B(ξ) is analytic in ξj(j = 1, ..., n), it is easy to see that Ā = Ā(ξ)
is analytic in ξj . Therefore we have the following lemma which will be used in
estimating the measure of some non-resonance sets.

Lemma 4.8. Assume B(ξ) is real symmetric and

sup
O
||B(ξ)||2 l ε0

−d, sup
O
||∂ξB(ξ)||2 l −dε

1/3
0 , sup

O
|∂ξΩ̃| ≤ C−d, C ¿ 1.

Let Λ = {λj : |j| = } be the collection of all eigenvalues of Ω̃Ā and Λ = ∪∈NΛ.
Then for any λl ∈ Λ, it is a function of ξ ∈ O and is analytic in each entry4 ξl’s
(l = 1, ..., n)of ξ ∈ O. Moreover,

|λj(ξ)± Ω̃| l −dε0, |j| = 

and
sup
O
|∂ξλj(ξ)| ≤ C−d, |j| = , 0 < C ¿ 1.

Proof. By the assumption, we can write

Ω̃Ā =
√−1Ω̃J + B̄,

with
sup
O
||B̄||2 ≤ ε0

−d, sup
O
||∂ξB̄||2 l ε

1/3
0 −d.

Note that the eigenvalues of
√−1Ω̃J are ±Ω̃’s. The proof is finished by the

combination of Lemmas A.3,4,5 in Section 9. ¤
Proposition 3. Suppose that for any k ∈ Zn and  ≥ 0, λj ∈ Λ and ξ ∈ O, the
following inequality holds true:

|(k, ω(ξ))± λj | m α/(d|k|τ ), |k| ≤ K,  ≤ M, ( 1st Melnikov’s ) (4.23)

where we take |0| as 1 for convenience. Then equation (4.14) has a solution Fu(x, ξ)
which is analytic in x ∈ D(s − σ) for ξ fixed and analytic in each ξj , (j = 1, ..., n)
for other variables fixed, and which is real for real argument, such that

||Fu||ς/2,D(s−σ)×O ≤ ς−dα−1σ−τ−nrε, (4.24)

||Fu||Lς/2,D(s−σ)×O ≤ ς−dα−1σ−2(τ+n)rεL. (4.25)

4The function λl is not necessarily analytic in the whole of ξ. See [Ka] for a example.
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Proof. By (4.23), we get

||((k, ω)E + Ω̃Ā)−1||2 l d|k|τ/α,  ≤ M, |k| ≤ K.

Expand R̄ and F̄ into Fourier series and putting then into (4.22), we get

F̄ =
∑

|k|≤K

((k, ω)E + Ω̃Ā)−1 ̂̄R(k)e
√−1(k,x),  ≤ M. (4.26)

Since R̄ is analytic in x ∈ D(s), we have ||̂̄R(k)||2 l e−s|k| supD(s)×O ||R̄||2.
Therefore, for x ∈ D(s− σ),

||F̄(x)||2 l α−1d sup
D(s)×O

||R̄||2
∑

k∈Zn

|k|τe−σ|k| l dα−1σ−τ−n sup
D(s)×O

||R̄||2.

Notice that ||Ã−1/2
 ||2 = 1 + o(1). It follows that

||F̃(x)||2 ≤ ||F̄(x)||2, ||R̄(x)||2 ≤ ||R̃(x)||2.

We get
||F̃(x)||2 l dα−1σ−τ−n sup

D(s)×O
||R̃||2.

Recalling that
eς/2pF = F̃, eς/2pR = R̃.

Hence,
||F(x)||2 l dα−1σ−τ−n sup

D(s)×O
||R||2.

Finally, noting a simple fact

sup
0≤t

tβe−αt = (β/α)βe−β, for any β, α > 0,

we have

||Fu(x)||ς/2,p =
√∑

≤M

eς2p||F(x)||22

lα−1σ−τ−n sup
D(s)×O

√∑

≤M

(2de−ς)(e2ς2p||R||22)

lς−dα−1σ−τ−n sup
D(s)×O

√∑

≤M

e2ς2p||R||22

=ς−dα−1σ−τ−n sup
D(s)×O

||Ru||ς,p

≤ς−dα−1σ−τ−nrε,

where (4.6) is used in the last inequality, since Lemma 4.1 holds true not only for R
but also for R. Differentiating (4.22) with respect to ξ and repeating the procedure
above, we can prove (4.25). ¤
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Finally we turn to the solutions of the homological equation (4.15). Recall that,
we have let

Ã = E + Ω̃−1
 B := E + B̃.

Thus A = Ω̃Ã. Note that Ω̃ is a scalar. Therefore, the equation (4.15) can be
written as

∂Fı/∂ω + Ω̃FıJÃ − Ω̃ıÃııJıFı = Rı(x, ξ), (4.27)

where we omit the superscript uu of Fuu and Ruu. Let

Ā =
√−1Ã1/2

 JÃ
1/2
 . (4.28)

Notice that B̃ is real symmetric and ||B̃||2 < ε0. It is easy to see that both Ã

and Ā are hermitian and positive and

||Ã||2, ||Ã−1
 ||2, ||Ā||2, ||Ā−1

 ||2 = 1 + o(1). (4.29)

Lemma 4.9. Let M and N be m× n and n× l matrices, respectively. Denote by
|| · ||∞ the maximum norm of matrix. Then

||M ||∞ ≤ ||M ||2, ||MN ||∞ ≤ n||M ||∞||N ||∞.

Proof. The proof is rather simple.

Let
F̄ı = Ã−1/2

ıı FıÃ
−1/2
 , R̄ı = Ã−1/2

ıı RıÃ
−1/2
 . (4.30)

Then (4.27) is changed into

∂F̄ı/∂ω −√−1Ω̃F̄ıĀ +
√−1Ω̃ıĀııF̄ı = R̄ı(x, ξ), [R] = 0, ı,  ≤ M (4.31)

Recall that we have denoted by Λ the collection of the eigenvalues of Ω̃Ā. Write
Λ = {λj : |j| = }. By abuse use of notation, we also by Λ the diagonal matrix
diag(λ : |j| = ). Then there is a unitary matrix Q such that

Ω̃Ā = Q∗
ΛQ. (4.32)

Let
F ı = QııF̄ıQ

∗
, Rı = QııR̄ıQ

∗
. (4.33)

Then (4.31) is changed into

∂F ı/∂ω −√−1(F ıΛ − ΛıF ı) = Rı(x, ξ), [R] = 0, ı,  ≤ M (4.34)

Recall that both F ı and Rı are ı] × ]-matrices. Denote by F ij
ı and Rij

ı the
elements of the matrix F ı and Rı, respectively. Expanding F ij

ı and Rij
ı into

Fourier series and putting them into (4.31) we get

F̂ ij
ı(k) = −√−1

R̂ij
ı(k)

(k, ω)± λi ± λj
,

{ |i| = |j| =  ≤ M, 0 6= |k| ≤ K

|i| 6= |j|, ı,  ≤ M, |k| ≤ K.
(4.35)
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In order to that (4.35) is solvable, we need the 2nd Melnikov’s conditions:5

Assume that for any ξ ∈ O, λi, λj ∈ Λ, we have

|(k, ω)± λi ± λj | m α/(ıdd|k|τ ),
{ |i| = |j| =  ≤ M, 0 6= |k| ≤ K

|i| 6= |j|, ı,  ≤ M, |k| ≤ K.
(4.36)

We assume |i| ≥ |j| without loss of generality. By Lemma 4.2 and Cauchy’s theorem,
we get

|R̂ij
ı(k)| l e−|k|se−ςıı−ppε, |i| ≥ |j|.

Note that (4.30,33) and the fact Qıı is unitary and of order ı] ≤ ıd−2+ε with some
constant 0 < ε ¿ 1. Using Lemma 4.9, we have

|R̂ij
ı(k)| ≤ |R̂ij

ı(k)|(ı]])2 ≤ e−|k|se−ςıı4(d−1)ı−ppε, |i| ≥ |j| (4.37)

Using (4.32,33,34) we get

|F̂ ij
ı(k)| ≤ e−|k|s|k|τε

α
e−ςıı6d−4ı−pp, |i| ≥ |j|; |i|, |j| ≤ M ; |k| ≤ K (4.38)

Moreover, the function

F ij
ı(x, ξ) =

∑

k∈Zn,|k|≤K

F̂ ij
ı(k)e

√−1(k,x)

is well-defined on a small domain D(s− σ)×O and on this domain

|F ij
ı(x, ξ)| ≤ ε

ασn+τ
e−ςıı6d−4ı−pp, |i| ≥ |j|; |i|, |j| ≤ M (4.39)

where Lemma A.1 is used. Using Lemma 4.9 and (4.30,33), we get

|F ij
ı (x, ξ)| ≤ ε

ασn+τ
e−ςıı10d−8ı−pp, |i| ≥ |j|; |i|, |j| ≤ M (4.40)

Note that F̂ (k), ω, λi and λj are analytically dependent on ξj(j = 1, ..., n).
Applying ∂ξj to (4.34) and using the same method as the above, we get

|F ij
ı (x, ξ)|L ≤ εL

ασ2(n+τ)
e−ςıı10d−8ı−pp, |i| ≥ |j|; |i|, |j| ≤ M. (4.41)

Using Lemma A.2 in Appendix A, we have the follow lemma.

Proposition 4. Assume that the non-resonant conditions (4.5) and (5.12) hold
true. Then there is an operator Fuu(x, ξ) defined on D(s − σ) × O solves (4.4*)
and

|||Fuu(x, ξ)|||0,ς/2,p,p ≤
ε

ς12d−8σn+τα
, (4.42)

and

|||Fuu(x, ξ)|||L0,ς/2,p,p ≤
εL

ς12d−8σ2(n+τ)α
. (4.43)

5These conditions are weaker than the usual second Melnikov’s ones as in [P1], but similar to
ones in [B,B-B,B-G].
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5. Symplectic change of variables.
In this section, our procedure is standard and almost the same as that of Section

3 in [P1,p.128-132]. Here we give out the outline of the procedure. See [P1] for the
details.

Coordinate transformation. By Propositions 1-4, we get a Hamiltonian F on
D(s− σ, r) where

F = F x + (F y, y) + 〈Fu, u〉+ 〈Fuuu, u〉

and give estimates of F x, F y, Fu and Fuu. Let XF be the vector field corresponding
to the Hamiltonian F , that is,

XF = (−∂yF, ∂xF, J∞∂uF ),

here ∂uF is the usual `2-gradient. It follows from Prop.1,2,3 and 4 that for
(x, y, u; ξ) ∈ D(s− σ, r)× ξ ∈ O,

r|||XF |||ς/2,p = |∂yF |+ 1
r2
|∂xF |+ 1

r
||J∞∂uF ||ς/2,p

=|F y|+ 1
r2
|∂xF x|+ 1

r
||J∞Fu||ς/2,p +

1
r
||J∞Fuuu||ς/2,p

≤|F y|+ 1
r2
|∂xF x|+ 1

r
||Fu||ς/2,p +

1
r
|||Fuu|||0,ς/2,p,p||u||p

l
1

ασn+τ ς12d−8
· ε,

where we have used 0 < ς < 1 and ||u||p < r. That is,

r|||XF |||ς/2,p,D(s−σ,r)×O l Qε, (5.1)

where
Q =

1
ασ2(n+τ)ς12d−8

. (5.2)

Similarly, we have
r|||XF |||Lς/2,p,D(s−σ,r)×O l QεL. (5.3)

As in [P1,p.129], we introduce the operator norm

r||||||L||||||a,p = sup
W 6=0

r|||LW |||a,p

r|||W |||a,p
.

Using (5.1), (5.3) and the generalized Cauchy’s inequality (See Lemma A.3 of
[P1,p.147]) and the observation that every point in D(s − 2σ, r/2) has at least
||| · |||p,r-distance σ/2 to the boundary of D(s− σ, r), we get

sup
D(s−2σ,r/2,ς/2)×O

r||||||DXF ||||||ς/2,p l σ−1
r|||XF |||ς/2,p,D(s−σ,r)×O ≤ σ−1Qε. (5.4)

sup
D(s−2σ,r/2,ς/2)×O

r||||||DXF ||||||Lς/2,p l σ−1
r|||XF |||Lς/2,p,D(s−σ,r)×O ≤ σ−1QεL, (5.5)
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where DXF is the differential of XF . Assume that σ−1Qε and σ−1QεL are small
enough. (These assumptions will be fulfilled in the following KAM iterations. Also
see (5.12).) Arbitrarily fix ξ ∈ O. By (5.1), the flow Xt

F of the vector field XF

exists on D(s − 3σ, r/4) for t ∈ [−1, 1] and takes the domain into D(s − 2σ, r/2),
and by Lemma A.4 of [P1, p.147], we have

r|||Xt
F − id|||ς/2,p,D(s−3σ,r/4)×O l r|||XF |||ς/2,p,D(s−σ,r)×O l Qε (5.6)

and
r|||Xt

F − id|||Lς/2,p,D(s−3σ,r/4)×O
l exp(r||||||DXF ||||||ς/2,p,D(s−2σ,r/2)×O) · r|||XF |||Lς/2,p,D(s−σ,r)×O
l exp(σ−1Qε)QεL l QεL,

(5.7)

for t ∈ [−1, 1]. Furthermore, by the generalized Cauchy’s inequality,

r||||||DXt
F − I||||||ς/2,p,D(s−4σ,r/8)×O l σ−1Qε, (5.8)

and
r||||||DXt

F − I||||||Lς/2,p,D(s−4σ,r/8)×O l σ−1QεL, (5.9)

The new error term. Subjecting H = N + R̀ to the symplectic transformation
Φ = Xt

F |t=1 we get the new Hamiltonian scale H+ := H◦Φ = H◦X1
F on D(s−5σ, ηr

where 0 < η < 1/8. By Taylor’s formula

H+ = (N + R + (R̀−R)) ◦X1
F

= (N +R+ RM + RK + (R̀−R)) ◦X1
F

= N − {F, N}+
∫ 1

0

{t{F, N}, F} ◦Xt
F dt

+R+
∫ 1

0

{R, F} ◦Xt
F dt + (RM + RK + (R̀−R)) ◦X1

F .

Recall that F solves the linearized equation

{F,N} = R− [[R]].

Thus,
H+ = N+ + R̀+

where
N+ = N + [[R]]

R̀+ = RM ◦X1
F + RK ◦X1

F + (R̀−R) ◦X1
F + RK ◦X1

F +
∫ t

0

{R(t), F} ◦Xt
F dt

with
R(t) = R+ t(R− [[R]]).

Hence, the new perturbing vector field is

XR̀+
= (X1

F )∗(XR̀ −XR + RM + RK) +
∫ t

0

(Xt
F )∗[XR(t), XF ] dt,
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where (Xt
F )∗ is the pull-back of Xt

F and [·, ·] is the commutator of vector fields.
We are now in position to estimate the new perturbing vector field XR̀+

. Let
Y : D(s − σ, r) ⊂ P → Pa,p be a vector field on D(s − σ, r), depending on the
parameter ξ ∈ O. Let U = D(s − 5σ, ηr) × O and V = D(s − 4σ, 2ηr) × O
and W = D(s − 2σ, 4ηr) × O. By (5.9) and the “proof of estimate (12)” of [P1,
p.131-132], we have that for any a > 0,

ηr|||(Xt
F )∗Y |||a,p,U l ηr|||Y |||a,p,V (5.10)

and

ηr|||(Xt
F )∗Y |||La,p,U l ηr|||Y |||La,p,V +

1
ση2 ηr|||Y |||a,p,W · ηr|||XF |||La,p,V . (5.11)

We assume that
εQ/ση2 ≤ εQ/σ2η2 l 1. (5.12)

These assumptions will be fulfilled in the KAM iterative lemma later. By (4.3) and
(5.10,11),

ηr|||(X1
F )∗(XR̀ −XR)|||ς/2,p,U l ηr|||XR̀ −XR|||ς/2,p,V l ηε (5.13)

and
ηr|||(X1

F )∗(XR̀ −XR)|||La,p,U l ηεL +
εη

ση2
QεL l ηεL. (5.14)

Let Dl = D(s − lσ, r/l) × O (l = 1, 2, ...). Recall that (4.2) holds still true after
replacing R by R. By (4.2) and (5.4,5) and using the generalized Cauchy estimate,
following [P1,p.130-131] we get

r|||[XR(t), XF ]|||ς/2,p,D2 l σ−1
r|||XR|||ς/2,p,D1 · r|||XF |||ς/2,p,D1

l σ−1
r|||XR̀|||ς/2,p,D1 · r|||XF |||ς/2,p,D1

l σ−1Qε2 < ηε

(5.15)

and

r|||[XR(t), XF ]|||Lς/2,p,D2

l σ−1
r|||XR̀|||Lς/2,p,D1 r|||XF |||ς/2,p,D1 + σ−1

r|||XR̀|||ς/2,p,D1 r|||XF |||Lς/2,p,D1

l σ−1εLQε + σ−1εQεL < ηεL
(5.16)

Finally, we have

ηr|||Y |||ς/2,p,Dl
l η−2

r|||Y |||ς/2,p,Dl
, ηr|||Y |||Lς/2,p,Dl

l η−2
r|||Y |||Lς/2,p,Dl

, (5.17)

for any vector field Y on Dl’s (l = 1, 2, ...). Collecting all terms above and Lemma
4.6 and 4.7, we then arrive ate the estimates

ηr|||XR̀+
|||ς/2,p,D(s−5σ,ηr)×O l ηε, ηr|||XR̀+

|||Lς/2,p,D(s−5σ,ηr)×O l ηεL. (5.18)

The new normal form. This is N+ = N + [[R]]. Recall

N = (ω(ξ), y) + 〈Λu, u〉+ 〈Bu, u〉
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and
[[R]] = ([Ry], y) + 〈[Ruu

g ]u, u〉.
Let

ω+ = ω + [Ry] (5.19)

and
B+ = B + [Ruu

g ]. (5.20)

Then
N+ = (ω+, y) + 〈Λu, u〉+ 〈B+u, u〉. (5.21)

6. Iterative lemma.
6.1. Iterative constants. As usual, the KAM theorem is proven by the Newton-type
iteration procedure which involves an infinite sequence of coordinate changes. In
order to make our iteration procedure run, we need the following iterative constants:
1. ε0 = ε, εm = ε∧0 (4/3)m, m = 1, 2, ...;
2. α0 = α, αm = α/m2, m = 1, 2, ...;
3. ηm = ε

1/3
m , m = 0, 1, 2, ..;

4. e0 = 0, em = (1−2 + · · ·+ m−2)/2
∑∞

j=1 j−2, (thus, em < 1/2 for all m ∈ N);
5. s0 = s, sm = s0(1− em), m = 1, 2, ..., (thus, sm > s0/2 for all m ∈ N);
6. σm = (sm − sm+1)/10, m = 1, 2, ..., (thus, sm − lσm > sm+1 for 1 ≤ l ≤ 6 and

σ−1
m = O(m2));

7. ςm = ε
4/(2κ−d)
m = ε

1/144d
m , (Recall κ = 577d/2);

8. r0 = r, rm = ηmr0, m = 1, 2, ...;
9. Mm = 2| ln(σn

mηm)|/ςm;
10. Km = | ln ηm|/σm;
11. νm = αm/(2M2d

m Kτ+1
m );

12. Π0 = [1, 2]d, and Πm (m = 1, 2, ...) are defined in Section 8. Om’s are the
νm-neighborhood of Πm in Rn.

6.2. Iterative Lemma. Consider a family of Hamiltonian functions Hl (0 ≤ l ≤ m):

Hl = (ωl(ξ), y) +
∑

∈N
(Ω0

u, u) +
1
2

∑

∈N
(Bl

(ξ)u, u) +
∞∑

℘≥l

R̀l℘(x, y, u; ξ), (6.1)

where the following conditions are imposed:
(l.1). the parameter sets Π0 ⊃ · · · ⊃ · · ·Πl ⊃ · · ·Πm with

Meas Πl ≥ ( Meas Π0)(1− αl/(1 + l)2); (6.2)

The map ξ 7→ ωl(ξ) is analytic in each entry of ξ ∈ Ol, (Ol is the νl-neighborhood
of Πl in Rn.) and

inf
Ol

∣∣∣∣det
∂ωl

∂ξ

∣∣∣∣ ≥ (1− el)c1, sup
Ol

|∂j
ξωl| ≤ elc2, j = 0, 1. (6.3)

(l.2). Bl
 is real symmetric matrix of order ] and analytic in each entry ξk (k =

1, ..., n) of ξ ∈ Ol, and

sup
Ol

||Bl
||2 ≤ −delε0, sup

Ol

||Bl
||L2 ≤ −delε

1/3
0 , for any  ∈ N . (6.4)
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In addition, B0
 ≡ 0.

(l.3). For ℘ ≥ l and 0 ≤ l ≤ m, the perturbation R̀l℘(x, y, u; ξ) is analytic in
the space coordinate domain D(s℘, r℘) and also analytic in each entry ξk (k =
1, ..., n) of the parameter vector ξ ∈ Ol, and is real for real argument; moreover,
its Hamiltonian vector field XR̀l℘ := (R̀l℘

y ,−R̀l℘
x , J∞R̀l℘

u )T defines on D(s℘, r℘) a
analytic map

XR̀l℘ : D(sl, rl) ⊂ P → Pς℘,p. (6.5)

In addition, the vector field XR̀l℘ is analytic in the domain D(s℘, r℘) with small
norms

r℘|||XR̀l℘|||ς℘,p,D(sl,rl)×Ol
l ε℘, r℘

|||XR̀l|||Lς℘,p,D(sl,rl)×Ol
l ε1/3

℘ . (6.6)

Then there is is an absolute positive constant ε∗ enough small such that, if
0 < ε0 < ε∗, there is a set Πm+1 ⊂ Πm, and a change of variables Φm+1 :
Dm+1 := D(sm+1, rm+1) × Om+1 → D(sm, rm) being real6, analytic in (x, y, u) ∈
D(sm+1, rm+1) and each entry ξ ∈ Om+1, as well as following estimates holds true:

rm
|||Φm+1 − id|||ςm/2,p,Dm+1 l ε1/2

m (6.7)

and
rm|||Φm+1 − id|||Lςm/2,p,Dm+1

l ε1/4
m . (6.8)

Furthermore, the new Hamiltonian Hm+1 := Hm ◦ Φm+1 of the form

Hm+1 = (ωm+1, y) +
∑

∈N
(Ω0

u, u) +
1
2

∑

∈N
(Bm+1

 u, u) +
∞∑

℘≥m+1

R̀m+1℘ (6.9)

satisfies all the above conditions (l.1, 2, 3) with l being replaced by m + 1.

6.3. Proof of The Iterative Lemma.
As stated as in the iterative lemma, we have got a family of Hamiltonian functions

Hl’s (l = 0, 1, ..., m) which satisfy the conditions (l.1, 2, 3). We now consider the
Hamiltonian Hm.That is,

Hm = (ωm, y) +
∑

∈N
(Ω0

u, u) +
1
2

∑

∈N
(Bm

 u, u) +
∞∑

℘≥m

R̀m℘ (6.10)

which satisfy the conditions (m.1, 2, 3). First, let us consider

H̆m := (ωm, y) +
∑

∈N
(Ω0

u, u) +
1
2

∑

∈N
(Bm

 u, u) + R̀mm (6.11)

instead of Hm. Let s = sm, η = ηm, r = rm = ηmr0, ε = εm, εL = ε
1/3
m ,

σ = σm, ς = ςm, ω = ωm, Λ = diag (Ω0
 :  ∈ N), B = diag (Bm

 :  ∈ N), and
R̀ = R̀mm := Rm. Clearly, ε < εL. Let

Π = Πm+1 := {ξ ∈ Πm : non-resonant conditions (4.16,23,36) hold. } (6.12)

6The word “real” means Φm+1(z, ξ) = Φm+1(z̄, ξ) for any (z, ξ) ∈ Dm+1.
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Set
Q = Qm =

1

ασ
2(n+τ)
m ς12d−8

m

.

Then
εmQm/(σ2

mη2
m) l m2(n+τ+1)ε

1
3− 12d−8

144d
m /α l ε1/4

m ≤ 1,

if α ¿ ε0. This implies that (5.12) holds true.
By means of the arguments in Section 5, we got that there is a Hamiltonian

Fm defined on7 D(sm − 4σm, rm/8) × Om+1 and a symplectic change of variables
Φm+1 = Xt

Fm
|t=1 with8

rm
|||Φm+1 − id|||ςm/2,p,Dm+1 l Qmεm < ε1/2

m (6.13)

and
rm
|||Φm+1 − I|||Lςm/2,p,Dm+1

l σ−1
m Qmε1/3

m < ε1/4
m (6.14)

rm
||||||DΦm+1 − id||||||ςm/2,p,Dm+1 l Qmεm < ε1/2

m (6.15)

rm
||||||DΦm+1 − id||||||Lςm/2,p,Dm+1

l σ−1
m Qmε1/3

m < ε1/4
m (6.16)

9such that
H+ := H̆m ◦ Φm+1 = Nm+1 + R̀m+1 (6.17)

where10

Nm+1 := N+ = (ωm+1, y) + 〈Λu, u〉+
1
2
〈Bm+1u, u〉 (6.18)

ωm+1 = ωm + [Ry
m] (6.19)

Bm+1 = Bm + [(Ruu
m )g], or Bm+1

 = Bm
 + [(Rm)] (6.20)

and11

rm+1|||XR̀m+1
|||ςm+1,p,Dm+1 l ηmεm = εm+1, (6.21)

rm+1|||XR̀m+1
|||Lςm+1,p,Dm+1

l ηmε1/3
m < ε

1/3
m+1. (6.22)

Verification of the condition ((m + 1).1). According the condition (m.1) we have
infOm | det ∂ξωm| > (1 − em)c1. Using |Ry

m|LD(sm)×Om
≤ ε

1/3
m (See (4.5)), we have

that |∂ξ[Ry
m]| ≤ ε

1/3
m . Thus,

|det ∂ξωm+1| ≥ (1− em)c1 − Cε1/3
m ≥ (1− em+1)c1. (6.23)

In addition, we will verify in Section 9 that

Meas Πm+1 ≥ Meas Π0(1− α/(m + 1)2). (6.24)

7Note Dm+1 := D(sm+1, rm+1)×Πm+1 ⊂ D(sm − 4σm, rm/8)×Om+1.
8See (5.6-9).
9(6.13,14) has fulfilled (6.7,8).
10See (5.19,20,21).
11Note ςm+1 < ςm/2 and ηr = ηmrm < rm+1 and |||X|||a,p ≤ |||X|||b,p if a ≤ b
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Hence, the condition ((m + 1).1) is verified for the tangential frequency ωm+1.

Verification of the condition ((m + 1).2). By the condition (m.2) and Lemma 4.3,
it follows from (6.20) that

||Bm+1
 ||2 ≤ ||Bm

 ||2 + ||[R]||2
≤ emε0

−d + ς−2d
m εm−d < −dem+1ε0.

(6.25)

Similarly, we have
||Bm+1

 ||L2 ≤ −dem+1ε
1/3
0 . (6.26)

The combination of (6.25) and (6.26) verifies the condition ((m + 1).2). This also
fulfills the assumptions in Lemma 4.8.

Verification of the condition ((m + 1).3). Let us consider

Hm+1 := Hm ◦ Φm+1. (6.27)

According to (6.10,11) and (6.17) we get

Hm+1 = Nm+1 + R̀m+1 +
∑

℘≥m+1

R̀m℘ ◦ Φm+1. (6.28)

Observe that

XR̀m℘◦Φm+1
= (Φm+1)∗XR̀m℘ = DΦ−1

m+1XR̀m℘ ◦ Φm+1. (6.29)

By (6.15), we have
rm||||||DΦ−1

m+1||||||ςm,p,Dm+1 l 1. (6.30)

Furthermore, by means of (6.6) with l = m, we get that for ℘ ≥ m + 1

r℘|||XR̀m℘◦Φm+1
|||ς℘,p,D(sm+1,rm+1) ≤ r℘|||XR̀m℘◦Φm+1

|||ς℘,p,D(sm,rm)

≤ rm||||||DΦ−1
m+1||||||ςm,p,Dm+1 · r℘|||XR̀m℘|||ς℘,p,D(sm,rm) l ε℘.

(6.31)

Similarly, by means of (6.8)with with l = m and (6.16), we get

r℘|||XR̀m℘◦Φm+1
|||Lς℘,p,D(sm+1,rm+1)

l ε1/3
℘ , ℘ ≥ m + 1. (6.32)

Let
R̀(m+1)(m+1) = R̀m+1 + R̀m(m+1) ◦ Φm+1, (6.33)

R̀(m+1)℘ = R̀m℘ ◦ Φm+1, ℘ ≥ m + 2. (6.34)

By (6.28),
Hm+1 = Nm+1 +

∑

℘≥m+1

R̀(m+1)℘. (6.35)

By combination of (6.21,22) and (6.31,32), we conclude that (6.6) holds true with
l = m + 1. It is plain that (6.5) holds true with l = m + 1. This complete the
verification of (l.3) with l = m + 1. Therefore, the proof of the iterative lemma is
complete. ¤
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7. Proof of the theorem 2.1.
The proof is similar to that of [P1]. Here we give an outline. By Assumptions

A,B, C, D and the smallness assumption in Theorem 2.1, the conditions (l.1, 2, 3)
in the iterative lemma in Section 6.2 are fulfilled with l = 0. Hence the iterative
lemma applies to H̃. Inductively, we get what as follows:

(i). Domains: for m = 0, 1, 2, ...,

Dm := D(sm, rm)×Om, Dm+1 ⊂ Dm;

(ii). Coordinate changes:

Ψm = Φ1 ◦ · · · ◦ Φm+1 : Dm+1 → D(s0, r0), ;

(iii). Hamiltonian functions H̃m (m = 0, 1, ...) satisfy the conditions (l.1, 2, 3) with l
replaced by m;
Let Π∞ = ∩∞m=0Πm, D∞ = ∩Dm. By the same argument as in [P1, pp.134], we

conclude that Ψm, DΨm, H̃m, XHm
converges uniformly on the domain D∞, and

XH̃∞ ◦Ψ∞ = DΨ∞ ·Xω∗ where

H̃∞ := lim
m→∞

H̃m = (ω∗(ξ), y) +
∑

∈N
(Λ0

u, u) +
1
2

∑

∈N
(B∞

 (ξ)u, u)

here B∞
 = limm→∞Bm

 and Xω∗ is the constant vector field ω∗ on the torus Tn.
Thus, TN × {0} × {0} is an embedding torus with rotational frequencies ω∗(ξ) ∈
ω∗(Π∞) of the Hamiltonian H̃∞. Returning the original Hamiltonian H̃, it has
an embedding torus Φ∞(Tn × {0} × {0}) with frequencies ω∗(ξ). This proves the
Theorem. ¤
8. Verification of Non-resonant conditions–estimate of measure.

In estimating the measure of the resonant zones it is not necessary to distinguish
between the various perturbations ωl and Ωl of the frequencies, since only the size
of the perturbation matters. Therefore, now we write ω and Ω for all of them, and
by Assumptions B and C as well as (6.3) and Lemma 4.8 we have that the map
ξ 7→ ω(ξ) is analytic in each entry of ξ ∈ O here O is a ν-neighborhood of Π, and
there are two absolute constants c1, c2, c3, c4, c > 0 such that

inf
O

∣∣∣∣det
∂ω

∂ξ

∣∣∣∣ ≥ c1, sup
O
|∂j

ξωl| ≤ c2, j = 0, 1, (8.1)

inf
O

λj ≥ c3 > 0, sup
O
|∂ξλj | ≤ c4 ¿ 1. (8.2)

and
inf
O
|λi − λj | ≥ c|i|−d|j|−d, c > 0, |i| > |j|. (8.3)

Lemma 8.1. Under the condition (8.1), there is a subset Ξ1 of Π with Lebesgue
measure MeasΞ1 l α such that for any ξ ∈ Π \ Ξ1, the non-resonant condition
(4.16) is fulfilled, i.e.,

|(k, ω(ξ))| m α

|k|τ , for all k ∈ Zn with 0 6= |k| ≤ K

where α > 0 and τ > n.

Proof. The proof is standard in KAM theory. We omit it. ¤
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Lemma 8.2. Under the condition (8.1) and (8.2), there is a subset Ξ2 of Π with
Meas Ξ2 l α such that for any ξ ∈ Π \ Ξ2, the non-resonant condition (4.23) is
fulfilled, i.e.,

|(k, ω(ξ))± λj(ξ)| m α

d|k|τ , |k| ≤ K, j ≤ M

where α > 0 and τ > n and λj ∈ Λ12.

Proof. Let

Ξ2
k,j = {ξ ∈ Π : |(k, ω(ξ))± λj(ξ)| < α

d|k|τ }, Ξ2 =
⋃

|k|≤K,|j|≤M

Ξ2
k,j ,

and

Ξ̃2
k,j = {η ∈ ω(Π) : |(k, η)± λj(ω−1(η))| < α

d|k|τ }, Ξ̃2 =
⋃

|k|≤K,j∈Zd

Ξ̃2
k,j .

By (8.1) and (8.2),
sup
ω(Π)

|∂ηλj(ω−1(η)| ¿ 1 (8.4)

and
inf

ω(Π)
λj(ω−1(η)) > c > 0. (8.5)

Again by (8.1), we have MeasΞ2 l MeasΞ̃2. Observe that the set Ξ̃2
k,j is empty

when k = 0 and 0 < α ¿ 1, in view of (8.5). In the following argument, suppose
that k 6= 0. Write k = (k1, ..., kn). Suppose k1 6= 0 without loss of generality. By
Lemma (8.4),

|∂η1(k, η))± λj(ω−1(η))| = |k1 ± ∂η1λj(ω−1(η))| ≥ 1/2.

It follows that
Meas Ξ̃2

k,j l
α

d|k|τ .

Hence,

Meas Ξ2 ≤ Meas Ξ̃2 ≤ Meas
⋃

|k|≤K,|j|≤M

Ξ̃2
k,j l

∑

k∈Zn,j∈Zd

α

d|k|τ l α. ¤

Lemma 8.3. Under the condition (8.1) and (8.2), there is a subset Ξ3 of Π with
Meas Ξ3 l α such that for any ξ ∈ Π \ Ξ3, the non-resonant condition (4.36) is
fulfilled, i.e.,

|(k, ω(ξ))± λi(ξ)± λj(ξ)| m α/(ıdd|k|τ ),
{ |i| = |j| =  ≤ M, 0 6= |k| ≤ K

|i| 6= |j|, |i|, |j| ≤ M, |k| ≤ K

Proof. Let

Ξ3
k,i,j =

{
ξ ∈ Π : |(k, ω(ξ))± λi(ξ)± λj(ξ)| < α

1 + |k|τ
1

ıdd

}
,

12See Lemma 4.8 for the definition of Λ.
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and
Ξ3 =

⋃

|k|≤K,|i|,|j|≤M

Ξ3
k,i,j ,

where k 6= 0 when |i| = |j|. It follows from (8.3) that the set Ξ3
k,i,j is empty when

k = 0 and |i| 6= |j|. Therefore assume k = (k1, ...kn) 6= 0. Suppose k1 6= 0 without
loss of generality. Let

Ξ̃3
k,i,j =

{
η ∈ ω(Π) : |(k, η)± λi(ω−1(η))± λj(ω−1(η))| < α

1 + |k|τ
1

ıdd

}
,

and
Ξ̃3 =

⋃

|k|≤K,|i|,|j|≤M

Ξ̃3
k,i,j ,

where k 6= 0 when |i| = |j|. By (8.1), we have MeasΞ3 l MeasΞ̃3. By 8.4, we have

|∂η1(k, η)± λi(ω−1(η))± λj(ω−1(η))| = |k1 ± ∂η1λi ± ∂η1λj | ≥ 1/2.

It follows that
Meas Ξ̃3

k,i,j l
α

|k|τ
1

ıdd
.

Hence

Meas Ξ3 ≤ Meas
⋃

0<|k|≤K,|i|,|j|≤M

Ξ̃3
k,j l

∑

k∈Zd

α

|k|τ
∑

i∈Zd

1
|i|d

∑

j∈Zd

1
|j|d l α. ¤

Lemma 8.4. There is a subset Π+ ⊂ Π with

Meas Π+ ≥ ( Meas Π)(1− Cα). (8.6)

And there is a positive ν+ such that for any ξ ∈ O+, a ν+-neighborhood of Π+, all
resonant conditions in Lemmas 8.1,2,3 hold true.

Proof. Let Π+ = Π \ (Ξ1 ∪ Ξ2 ∪ Ξ3). Then (8,6) holds true clearly. Let

ν+ = α/(2M2dKτ+1).

Since ν+ < ν, we get O+ ⊂ O. Let

f(ξ) = (k, ω(ξ))± λi(ξ)± λj(ξ), |k| ≤ K, |i|, |j| ≤ M.

Then, by (8.1) and (8.2),

sup
O
|∂ξf(ξ)| ≤ |k|c2 + 2c4 l K.

Since O+ is the ν+-neighborhood of Π+, we get that for any ξ ∈ O+, there is a
ξ0 ∈ Π+ such that |ξ − ξ0| < ν+. Thus,

|f(ξ)− f(ξ0)| ≤ sup
O
|∂ξf(ξ)||ξ − ξ0| ≤ Kν+ ≤ α

2M2dKτ
.

Consequently, for ξ ∈ O+ and |k| ≤ K, |i|, |j| ≤ M , we have

|f(ξ)| ≥ |f(ξ0)| − |f(ξ)− f(ξ0)| m α

|i|d|j|d|k|τ −
α

2M2dKτ
≥ α

2|i|d|j|d|k|τ .

This implies that the non-resonant conditions in Lemma 8.3 hold true for ξ ∈ O+.
The remaining proof is similar to that above. ¤



34 XIAOPING YUAN

9. Appendix A. Some Technical lemmas.

Lemma A.1. For µ > 0, ν > 0,the following inequality holds true:

∑

k∈Zd

e−2|k|µ|k|ν ≤ (
ν

e
)ν 1

µν+d
(1 + e)d.

Proof. This Lemma can be found in [B-M-S].

Lemma A.2. Suppose that an operator Y = Y (x, ξ) : `a,p → `a,p is analytically
dependent on x ∈ D(s∗) = {x ∈ Cn : |=x| < s∗} and each entry ξl(l = 1, ..., n) of
ξ ∈ Π, and suppose that following estimates hold true

|Yij |D(s∗)×Π, |Yji|D(s)×Π l e−ς|i||i|β |i|−p|j|pε∗, |i| ≥ |j|, (*)

and
|Yij |LD(s∗)×Π, |Yji|LD(s∗)×Π l e−ς|i||i|β |i|−p|j|pεL∗ , |i| ≥ |j|, (**)

where constants ς, β, ε∗ and εL∗ are positive. Then we have

sup
D(s∗)×Π

|||Y |||0,ς/2,p,p̄ l ς−2d−βε∗, sup
D(s∗)×Π

|||Y |||L0,ς/2,p,p l ς−2d−βεL∗

Proof. Let wi = eς/2|i||i|p. Let Ji = {j ∈ Zd : |j| ≤ |i|} and J i = {j ∈ Zd : |j| >
|i|}. Let Ij = {i ∈ Zd : |i| ≥ |j|} and Ij = {i ∈ Zd : |i| < |j|}. For any u ∈ `p with
||u||p = 1, we have

||Y u||2ς/2,p =
∑

i∈Zd

w2
i |

∑

j∈Zd

Yijuj |2

l
∑

i∈Zd

w2
i

(∑

Ji

|Yij ||uj |+
∑

Ji

|Yij ||uj |
)2

l
∑

i∈Zd

w2
i

(∑

Ji

|Yij ||uj |
)2

+
∑

i∈Zd

w2
i

(∑

Ji

|Yij ||uj |
)2

:= (1) + (2),

where Yij ’s are the matrix elements of Y . Note that {j ∈ Zd : |j| = }] ≤ d−1

where ] = is the cardinality of the set. By assumption (*), we have
∑

Ji

|Yij |eς|i|/2|i|p|j|−p ≤
∑

Ji

e−ς|i|/2|i|βε∗ l
∑

l∈N
ld+β−1e−ςl/2ε∗ l ς−2d−βε∗,

where Lemma A.1 is used in the last inequality. Similarly,
∑

Ij

|Yij |eς|i|/2|i|p|j|−p l ς−2d−βε∗,

∑

Ij

|Yij |eς|i|/2|i|p|j|−p l ς−2d−βε∗,
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and ∑

Ji

|Yij |eς|j|/2|j|p|i|−p l ς−2d−βε∗.

By Hölder inequality, we have

(1) ≤
∑

i

eς|i||i|p
(∑

Ji

|Yij |eς|i|/2|i|p|j|−p

)(∑

Ji

|Yij |e−ς|i|/2|j|p|uj |2
)

l ς−2d−βε∗
∑

i

eς|i||i|p
∑

Ji

|Yij |e−ς|i|/2|j|p|uj |2

l ς−2d−βε∗
∑

j

(
∑

Ij

|Yij |eς|i|/2|i|p|j|−p)(|j|2p|uj |2)

l (ς−2d−βε∗)2
∑

j

|j|2p|uj |2 = (ς−2d−βε∗)2||u||2p = ς−4d−2βε2
∗.

We are now in position to estimate (2). Again by Hölder inequality we have

(2) ≤
∑

i

w2
i

∑

Ji

|Yij |eς|j|/2|j|p|i|−p
∑

Ji

|Yij |e−ς|j|/2|j|−p|i|p|uj |2

l ς−2d−βε∗
∑

i

w2
i

∑

Ji

|Yij |e−ς|j|/2|j|−p|i|p|uj |2

= ς−2d−βε∗
∑

j


∑

Ij

|Yij |eς|i|−ς|j|/2|i|2p+p|j|−p̄−2p


 |j|2p|uj |2

≤ ς−2d−βε∗
∑

j


∑

Ij

|Yij |eς|i|/2|i|p|j|−p


 |j|2p|uj |2

≤ ς−4d−2βε2
∗
∑

j

|j|2p|uj |2 = ς−4d−2βε2
∗.

Consequently, we get that for any (x.ξ) ∈ D(s∗)×Π,

||Y (x, ξ)u||ς/2,p l ς−2d−βε∗, for ||u||p = 1.

That is,
sup

D(s∗)×Π

|||Y |||0,ς/2,p,p l ς−2d−βε∗.

Using the same arguments as above for ∂ξj Yng with j = 1, ..., n and using (**), we
can get the estimates for |||Y |||L0,ς/2,p,p̄. This completes the proof. ¤

Lemma A.3. Suppose that Y = X+Z where both X and Z are hermitian matrices
of order m, and the eigenvalues of Y and X are λ1 ≥ ... ≥ λm and µ1 ≥ ... ≥ µm,
respectively. Then

|λl − µl| ≤ ||Z||2, l = 1, ..., m.

Proof. The proof can be found in most text books on matrix theory.
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Lemma A.4. Consider an n× n complex matrix function Y (ξ) which depends on
the real parameter ξ ∈ R. Let Y (ξ) be a matrix function satisfying conditions:

(i) Y (ξ) is self-adjoint for every ξ ∈ R; i.e., Y (ξ) = (Y (ξ))∗, where star denotes the
conjugate transpose matrix;

(ii) Y (ξ) is an analytic function of the real variable ξ.
Then there exist scalar functions µ1(ξ), · · · , µn(ξ) and a matrix-valued function
U(ξ), which are analytic for real ξ and possess the following properties for every
ξ ∈ R:

Y (ξ) = U(ξ)diag(µ1(ξ), · · · , µn(ξ))U∗(ξ), U(ξ)(U(ξ))∗ = E.

Proof. See [pp.394-396, G-L-R]. ¤
It is worth to point out that this lemma does not hold true for ξ ∈ Rk with

k > 1. See [Ka].

Lemma A.5. Under the same assumptions as in Lemma A.4, we have

|µ′l(ξ)| ≤ ||Y ′(ξ)||2, l = 1, ..., m, here ′ =
d

dξ
.

Proof. See [Ka, p.125]. ¤
10. Appendix B. Theorem on regularity of linear operator.

In order to overcome the difficulty arising from the delicate small divisors of
the form 〈k, ω〉 + λi − λj with |i| 6= |j|, we have to raise up the regularity of
the linear operator Ruu coming from the second term 〈Ruuu, u〉 of the perturbed
Hamiltonian. We start with some natation and definitions. For x = (x1, ..., xd), we
denote Dj = ∂/∂xj , Dk = Dk1

1 ◦ Dk2
2 ◦ · · · ◦ Dkd

d , |k| =
∑d

j=1 kj . We define the
complex strips Ua for all a > 0 as follows:

Ua = {x ∈ Cd/(2πZ)d : |=xj | < a, j = 1, ..., d}.
For a function u : Ua → C and integers p∗ ≥ 0, we introduce the seminorms

|u|a,p∗ = sup
x∈Ua,|k|=p

|Dku(x)|.

When a = 0, we write |u|0,p∗ as |u|p∗ . Let Cp∗(T ) be the set of all functions
defined on T with supx∈T,|k|=p∗ |Dku(x)| < ∞. For p∗ ≥ 0, the Banach spaces
A(a,Cp∗) are then defined as spaces of real holomorphic functions u on Ua (u
being real means u(x) = u(x̄)), with period 2π in each variable and such that
|u|a,p < ∞. Take a function s̃ ∈ C∞0 (R), vanishing outside a compact set and
identically equal to 1 in a neighborhood of 0, and let s be its Fourier transform.
Moreover, we can require s(x) is even function. When x = (x1, ..., xd) ∈ Rd, by a
slight abuse of notation, we denote s(x) = s(x1) · · · s(xd). For a > 0 we introduce
the families of linear operators Sa : Cp(Td) → A(a,Cp), by means of the convolution
Sau = sa?u, sa(z) = a−ds(a−1z):

sa?u(z) = a−d

∫

Rd

s

(
y − z

a

)
u(y) dy, u ∈ Cp(Td).

It is clear that Sau is an entire real holomorphic function on Cd and has period 2π
since u has period 2π.
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Lemma B.1. There exists a constant C = C(p, d) ≥ 1 depending only on positive
integers p and d such that, for all 0 ≤ σ ≤ a,

|(Sa − Sσ)u|σ,p∗ ≤ C|u|p∗ap∗−p∗ , 0 ≤ p∗ ≤ p∗

|(Sa − 1)u|p∗ ≤ C|u|p∗ap∗−p∗

and for α ∈ Nd with |α| ≤ p∗,

sup
|=x|≤a

|DαSau(x)−
∑

|β|≤p∗−|α|

Dα+βu(<x)
β!

(
√−1=x)β | ≤ C|u|p∗ap∗−|α|,

in particular, for |α| = p∗,

|Sau|a,p∗ = sup
|=x|≤a

|DαSau(x)| ≤ (1 + C)|u|p∗ .

Proof. This lemma is the so-called Jackson’s analytic approximation theorem. The
proof consists in a direct check based on standard tools from calculus and some
simple properties of Fourier transform. Refer to [Z].

Remark. If u depends on some parameter ξ ∈ Π ⊂ Rn and if the Lipschitz semi-
norm of u and its x−derivatives are uniformly bounded by |u|Lp , then all estimates
in Lemma 8.1 hold true with | · | replaced by | · |L. The proof in [Z] is still valid
here only if | · | is replaced by | · |L.

Let
Hp∗(Td) = {u ∈ L2(Td) : ||u||2p∗ =

∑

j

|j|2p∗ |û(k)|2 < ∞}.

Define F : `p∗ → Hp∗(Td) by

F(q) =
∑

j

qje
√−1〈j,x〉, q ∈ `p∗ .

By means of Parseval equality, F : `p∗ → Hp∗(Td) is isometric.

Lemma B.2. If u ∈ Hp∗(Td) with p∗ > d/2, then u ∈ Cp∗−d/2(Td) and there is
an absolute constant C such that |u|p∗−d/2 ≤ C||u||p∗ .
Proof. Formally, for k ∈ Rd

+ with |k| = p∗ − d/2 and u ∈ Hp(Td),

Dku =
∑

j

û(j)(
√−1j)ke

√−1〈j,x〉.

Then ∑

j

sup
x∈Td

|û(j)(
√−1j)ke

√−1〈j,x〉| ≤
∑

j

|û(j)||j|p∗−d/2

≤ (
∑

j

|û(j)|2|j|2p∗)1/2 · (
∑

j

1/|j|d)1/2 ≤ C||u||p∗ ,

so u ∈ Cp∗−d/2(Td) and |u|p∗−d/2 ≤ C||u||p∗ .
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Let us now take q ∈ `p∗ . Then u(x) = F(q) ∈ Hp∗ . It is plain that (û(j))j∈Zd =
q. By Lemma B.2, we have u ∈ Cp∗−d(Td) and |u|p∗−d ≤ C||u||p∗ . By Lemma 7.1,
for any 0 < τ < σ, the functions Sτu, Sσu are entire real holomorphic functions
on Cd and has period 2π; moreover, letting p∗ = p̄− d/2 and p∗ = p and recalling
p̄− p = κ and using Lemmas B.1 and B.2 we have the following estimates hold:

|(Sσ − Sτ )u|τ,p l |u|p̄−d/2σ
κ−(d/2) l ||u||p̄σκ−(d/2), (10.1)

and
|(Sτ − 1)u|p l |u|p̄−d/2τ

κ−(d/2) l ||u||p̄σκ−(d/2), (10.2)

|Sσu|σ,p l |u|p. (10.3)

Note that (Sσ − Sτ )u is analytic in the strip |=x| ≤ τ . By means of Cauchy’s
formula and (10.1) we get

|j|p|Ŝτu(j)− Ŝσu(j)| l e−τ |j| · ||u||p̄σκ−(d/2).

It follows that
∑

j∈Zd

|j|2pe2τ |j||Ŝτu(j)− Ŝσu(j)|2 l ||u||2p̄σ2κ−d. (10.4)

Note that ||u||p̄ = ||F(q)||p̄ = ||q||p̄, since F : `p̄ → H p̄(Td) is isometric. Let

qσ(j) = Ŝσu(j), qσ = (qσ(j))j∈Zd .

Then (10.4) implies that qσ − qτ ∈ `τ,p and

||qσ − qτ ||τ,p l ||u||p̄σκ−(d/2) = ||q||p̄σκ−(d/2). (10.5)

By (10.2), we have
||qσ − q||p l ||q||p̄σκ−(d/2). (10.6)

Using (10.3), we get
||qσ||σ,p l ||q||p. (10.7)

For any 0 < σ, we define an operator Tσ : `p̄ → `a,p by means of

Tσq = qσ, q ∈ `p̄.

In view of (10.7), the operator is well defined and bounded. It is plain that Tσ =
F−1◦Sσ ◦F , and it is linear since Sσ and F are linear. We can now rewrite (10.5-7)
as

|||Tσ − Tτ |||0,τ,p̄,p l σκ−(d/2). (10.8)

|||Tσ − 1|||0,0,p̄,p l σκ−(d/2). (10.9)

|||Tσ|||0,σ,p,p l 1. (10.10)

Now, given a decreasing sequence ςm = ε∧m( 4
2κ−d ) ↓ 0 (m = 0, 1, 2, ...)13, we get a

family of bounded linear operators Tm := Tςm from `p to `ςm,p.

13See Section 6.1 for ςm and εm.
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Lemma B.3. There are a family of operators Tm : `0,p → `ςm,p (m = 0, 1, ...) such
that

|||Tm − Tm+1|||0,ςm+1,p̄,p l ε2m < εm+1, (10.12)

|||Tm − 1|||0,0,p̄,p l εm+1, (10.13)

|||Tm|||0,σ,p,p l 1, ∀ 0 ≤ σ ≤ ςm. (10.14)

Proof. This lemma is a direct result of (10.8,9,10). ¤

Lemma B.4. The composition Tm ◦ Ψ̃ of Tm and Ψ̃ is self-adjoint in `20.14

Proof. Let Sm := Sςm . Then the operator Tm ◦ Ψ̃ is self-adjoint in `20 if and only
if the operator Sm := Sm ◦Ψ is is self-adjoint in L2

0. It is easy to verify that

Sm ◦Ψ(u) = (sa?ψ) ? u, a = ςm.

For any u, v ∈ L2
0, (We can assume u, v are real without loss of generality.), then

〈Smu, v〉 =
∫ 2π

0

v(z)(sa?ψ) ? u(z) dz

=
∫ 2π

0

∫ 2π

0

v(z)(sa?ψ)(z − t)u(t) dtdz

=
∫ 2π

0

u(t)
∫ 2π

0

(sa?ψ)(z − t)v(z) dzdt

=
∫ 2π

0

u(t)
∫ 2π

0

(sa?ψ)(t− z)v(z) dzdt

=
∫ 2π

0

u(t)(sa?ψ) ? v(z) dz

= 〈u,Smv〉,

where the fact sa(−x) = s(x) and ψ(−x) = ψ(x) are used in the fourth equality.
Note the operator S is bounded. The proof is complete. ¤
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