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Abstract. It is proved that for a prescribed potential V there are many quasi-
periodic solutions of nonlinear wave equations utt−uxx +V (x)u±u3 +O(|u|5) = 0
subject to Dirichlet boundary conditions.

1. Introduction and main results.
In this paper we deal with the existence of the quasi-periodic (or, equivalently,

invariant tori ) of the nonlinear wave equation

utt = uxx − V (x)u− u3 (1.1)

subject to Dirichlet boundary conditions

u(t, 0) = 0 = u(t, π), −∞ < t < +∞, (1.2)

where the potential V is in the square-integrable function space L2[0, π].
The existence of solutions, periodic in time, for non-linear wave (NLW) equa-

tions has been studied by many authors. See [2, 3, 8] and the references theirin,
for example. There are, however, relatively less methods to find a quasi-periodic
solutions of NLW. The KAM (Kolmogorov-Arnold-Moser) theory is a very powerful
tool in constructing families of quasi-periodic solutions for some nearly integrable
Hamiltonian systems of finitely or infinitely many degrees of freedom. Some par-
tial differential equations such as (1.1) may be viewed as an infinitely dimensional
Hamiltonian system. On this line Wayne[12] obtained the time-quasi-periodic so-
lutions of (1.1), when the potential V is lying on the outside of the set of some
“bad” potentials. In [12] the set of all potentials is given some Gaussian measure
and then the set of “bad” potentials is of small measure. At almost the same time,
similar result was obtained by Kuksin[5] provided that the potential V depends on
an n-dimensional external parameter in “a non-degenerate way”. In a word, the
works of Wayne[12] and Kuksin[5] tell us that there are many quasi-periodic solu-
tions of (1.1) for “most” potential V (x). It does not, however, follows that there is
any quasi-periodic solution of (1.1) for a prescribed potential V .
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Bobenko & Kuksin[1] and Pöschel[10] (in alphabetical order) investigated the
case V (x) ≡ m ∈ R. In order to use an infinitely dimensional version of KAM theo-
rem developed by Kuksin[5] and Pöschel[9], it is necessary to assume that there are
some parameters in the Hamiltonian corresponding to (1.1). When V (x) ≡ m > 0,
these parameters can be extracted from the nonlinear term u3 by Birkhoff normal
form[10], or by regarding (1.1) as a perturbation of sine-Gordon/sinh-Gordon equa-
tion[1]. And it was then shown that, for a prescribed potential V (x) ≡ m > 0, there
are many elliptic invariant tori which are the closure of some quasi-periodic solu-
tions of (1.1). See [10] for the details. By Remark 7 in [10, p.274], the same result
holds also true for the parameter values −1 < m < 0. When m ∈ (−∞,−1) \ Z, it
is shown in [13] that there are many hyperbolic-elliptic invariant tori for (1.1).

Naturally, we should ask that whether or not there is any quasi-periodic solution
of (1.1) for a prescribed (not random) potential V (x) which is not necessary to be
constant , for example, V = m + cos x.

In this paper, we will answer this question. To give the statement of our re-
sults, we need to introduce some notations. We study equation (1.1) as an infin-
itely dimensional Hamiltonian system. Following Pöschel[10], the phase space one
may take, for example, the product of the usual Sobolev spaces W = H1

0 ([0, π]) ×
L2([0, π]) with coordinates u and v = ut. The Hamiltonian is then

H =
1
2
〈v, v〉+

1
2
〈Au, u〉+

1
4
u4

where A = d2/dx2 − V (x) and 〈·, ·〉 denotes the usual scalar product in L2. The
Hamiltonian equation of motions are

ut =
∂H

∂v
= v, −vt =

∂H

∂u
= Au + u3.

Our aim is to construct time-quasi-periodic solutions of small amplitude. Such
quasi-periodic solutions can be written in the form

u(t, x) = U(ω1t, · · · , ωnt, x),

where ω1, · · · , ωn are rationally independent real numbers which are called the basic
frequency of u, and U is an analytic function of period 2π in the first n arguments.
Thus, u admits a Fourier series expansion

u(t, x) =
∑

k∈Zn

e
√−1〈k,ω〉tUk(x),

where 〈k, ω〉 =
∑

j kjωj and Uk ∈ L2[0, π] with Uk(0) = Uk(π). Since the quasi-
periodic solutions to be constructed are of small amplitude, (1.1) may be considered
as the linear equation utt = uxx − V (x)u with a small nonlinear perturbation
u3. Let φj(x) and λj (j = 1, 2, ...) be the eigenfunctions and eigenvalues of the
Sturm-Liouville problem−Ay = λy subject to Dirichlet boundary conditions y(0) =
y(π) = 0, respectively. Then every solution of the linear system is the superposition
of their harmonic oscillations and of the form

u(t, x) =
∑

j≥1

qj(t)φj(x), qj(t) = yj cos(
√

λjt + φ0
j )
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with amplitude yj ≥ 0 and initial phase φ0
j . The solution u(t, x) is periodic, quasi-

periodic or almost periodic depending on whether one, finitely many or infinitely
many modes are excited, respectively. In particular, for the choice

Nd = {j1, j2, · · · , jd} ⊂ N, ,

of finitely many modes there is an invariant 2d-dimensional linear subspace ENd

that is completely foliated into rational tori with frequencies λj1 , · · · , λjd
:

ENd
= {(u, v) = (qj1φj1 + · · ·+ qjd

φjd
, q̇j1φj1 + · · ·+ q̇jd

φjd
)}

=
⋃

y∈P̄d

Tj(y),

where Pd = {y ∈ Rd : yj > 0 for 1 ≤ j ≤ d} is the positive quadrant in Rd and

TNd
(y) = {(u, v) : q2

jk
+ λ−2

jk
q̇2
jk

= yk, for 1 ≤ k ≤ d}.

Upon restoring the nonlinearity u3 the invariant manifold ENd
with their quasi-

periodic solutions will not persist in their entirety due to resonance among the
modes and the strong perturbing effect of u3 for large amplitudes. In a sufficiently
small neighborhood of the origin, however, there does persist a large Cantor sub-
family of rotational d-tori which are only slightly deformed. More exactly, we have
the following theorem:

Theorem 1.1. Assume that V (x) is sufficiently smooth in the interval [0, π], and∫ π

0
V (x) dx 6= 0. Let K and N be positive constants large enough. Let Nd = {ip ∈

N : p = 1, 2, · · · , d} with

min Nd > NK, max Nd ≤ C0dNK, and K1 ≤ |ip − iq| ≤ K2, for p 6= q,

where C0 > 1 is an absolute constant and K1,K2, positive constants large enough,
depending on K instead of N .1 Then, for given compact set C∗ in Pd with positive
Lebesgue measure, there is a set C ⊂ C∗ with meas C > 0, a family of d-tori

TNd
(C) =

⋃

y∈C
TNd

(y) ⊂ ENd

over C, and a Lipschitz continuous embedding

Φ : TNd
[C] ↪→ H1

0 ([0, π])× L2([0, π]) = W,

which is a higher order perturbation of the inclusion map Φ0 : ENd
↪→W restricted

to TNd
[C], such that the restriction of Φ to each TNd

(y) in the family is an embedding
of a rotational invariant d-torus for the nonlinear equation (1.1).

Remarks 1. Since Φ is a higher order perturbation of the inclusion map Φ0, using
Theorem 5.1 below we find that the obtained quasi-periodic solution of (1.1) reads
as

u(t, x) =
∑

j∈Nd

√
ξj

λj
cos(ω̃jt) · φj(x) + O(ε2), for any ξ = (ξj)j∈Nd

∈ C,

1Therefore, we still have freedom to let N large enough after fixing K1 and K2.
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where
ω̃j =

√
λj + ε5/4

∑

kl∈Nd

Akjkl
ξl + O(ε2), j, kj ∈ Nd,

Amn =
1

2
√

λmλn

∫ π

0

φ2
m(x)φ2

n(x) dx.

And it follows from Lemma 1 of [10, p.278] that the solution u(t, x) is a classical
smooth solution.

2. The assumption
∫ π

0
V (x) dx 6= 0 is not essential. Using Titchmarsh’s

method[11] we can write

√
λj = j +

c1

j
+

c2

j2
+ · · ·+ cn

jn
+ O

(
1

jn+1

)
,

where cj ’s are some constants depending on V , in particular, c1 = − 1
2π

∫ π

0
V (x) dx.

Then the assumption
∫ π

0
V (x) dx 6= 0 is equivalent to c1 6= 0. The assumption c1 6=

0 is used just only in the proof Lemma 2.3. By overcoming more technical trouble
we can show that Lemma 2.3 still holds true under conditions c1 = 0, · · · , ck−1 = 0
and ck 6= 0 for some 1 ≤ k ≤ n. Therefore the assumption

∫ π

0
V (x) dx 6= 0 can be

nearly replaced by V (x) 6= 0 in the Theorem 1.1. If V (x) ≡ 0, it is well-known open
problem that whether or not there is any quasi-periodic solution of (1.1). Recently
the problem has been answered positively in [14].

3. Theorem 1.1 still holds true for the following equation

utt = uxx − V (x)u± u3 +
∑

m≥k≥2

aku2k+1

where m ≥ is a positive integer and ak’s are some real numbers.
4. The method proving Theorem 1.1 can be applied to NLS equation:

√−1ut − uxx + V (x)u± u3 = 0

subject to Dirichlet boundary conditions.
5. If λ1 > 0, then the obtained invariant tori are elliptic. If λ1 < 0, then the tori

are hyperbolic-elliptic. When λ1 > 0, one can use the KAM theorem by Pöschel[9]
to prove Theorem 1.1. When λ1 < 0, one can use a variant version of the KAM
theorem by Pöschel. See [13] for the variant. For convenience we assume λ1 > 0 in
the following argument.

6. We can give the measure estimate of the set C:

meas C ≥ meas C∗ · (1−O(ε1/13)).

2. Sturm-Liouville problems.
Consider the Sturm-Liouville (S-L) problems

{
l(y) := − d2y

dx2 + V (x)y = λy,

y(0) = y(π) = 0.
(2.0)

It is well known that the S-L problems possess infinite many simple eigenvalues

λ1 < λ2 < · · · < λn < · · · → +∞. (2.1)
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Denotes by φn the normalized eigenfunctions corresponding to λn. Expand the
eigenfunctions φn(x) into odd 2π-periodic functions, and hence their Fourier series
expansions are of the form

φn(x) =
∞∑

m=1

φ̂n(m) sin(mx).

It is well known that the functions φn’s are a normalized orthogonal basis of the
space consisting of the square integrable and odd functions in [−π, π].

Lemma 2.2. For the eigenvalues λn’s and eigenfunctions φn’s we have the follow-
ing asymptotic formulae

µn :=
√

λn = n +
c1

n
+

c2

n2
+

c3

n3
+ O(1/n4) (2.2)

and

φn(x) = κ−1
n

(
sin nx− cos nx

2n

∫ x

0

V (s)ds + φ̃n(x)
)

, (2.3)

where κn > 0 is a constant depending on n such that ||φn||L2 = 1, and

φ̃n(x) = O

(
1
n2

)
, φ̃′n(x) = O

(
1
n

)
, φ̃′′n(x) = O(1), ′ = d

dx
(2.4)

uniformly for x ∈ [0, 2π], and

c1 = − 1
2π

∫ π

0

V (x)dx.

Proof. The proof can be found in [11] and many text books. ¤

Claim. We claim that
κ2

n = π + O(1/n2). (2.5)

In fact, by (2.3) and (2.4), we get

κ2
n = κ2

n

∫ π

−π

φ2
n(x) dx =

∫ π

−π

(sinnx + n−1 cosnxV(x))2 dx + O(n−2)

=
∫ π

−π

sin2 nx dx + n−1

∫ π

−π

V(x) sin 2nx dx + O(n−2)

=
∫ π

−π

sin2 nx dx− (V(π)− V(−π))/2n2 +
1

2n2

∫ π

−π

V ′(x) cos 2nx dx

= π + O(n−2).

Assumption. We assume c1 6= 0 in this paper.

Let K and N be two sufficiently large positive integers which will be specified
later.
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Lemma 2.3. For any i, j, n, l ∈ N, Assume K < i ≤ j ≤ n ≤ l. Then for µi’s we
have

|±µi ± µj ± µn ± µl| > 1
(i + 2)3

,

unless {±i,±j,±n,±l} ⊂ {p,−p, q,−q : p, q ∈ Z}.
Proof. Recall we have assumed 1 ¿ K < i ≤ j ≤ n ≤ l. If there are three plus and
one minus among Υ := ±µi±µj ±µn±µl, then, without loss of generality, we can
write

Υ = i + j + n− l + c1

(
1
i

+
1
j

+
1
n
− 1

l

)
+ O(i−2) + · · ·+ O(l−2).

If i + j + n− l 6= 0, then |Υ| ≥ 1− 4c1K
−1 + O(K−2) > 1/2 when K À 1. And if

i + j + n− l = 0, then

|Υ| = c1

(
1
i

+
1
j

+
1
n
− 1

l

)
− |O(i−2)|

≥ c1

(
1
i

+
1
j

+
1
n
− 1

i + j + n

)
− |O(i−2)|

≥ c1

i
− |O(i−2)|

>
1

(i + 2)3
.

Now let us assume there are two plus and two minus among Υ, say Υ = µi + µj −
µn − µl. If i + j − n − l 6= 0, then, obviously, |Υ| ≥ 1 − |O(i−1)| > 1/2. Now we
assume i + j − n− l = 0. Then, we can write

Υ =c1

(
1
i

+
1
j
− 1

n
− 1

l

)
+ c2

(
1
i2

+
1
j2
− 1

n2
− 1

l2

)

+ c3

(
1
i3

+
1
j3
− 1

n3
− 1

l3

)
+ O(i−4) + · · ·+ O(l−4).

We assume c1 = 1, otherwise we consider c−1Υ. Since i + j = n + l, we can set
n− i = j − l := p. Then p ≥ 1. Thus,

Υ =
1
i
− 1

l
−

(
1

i + p
− 1

l + p

)
+ c2

(
1
i2
− 1

l2
−

(
1

(i + p)2
− 1

(l + p)2

))

+ c3

(
1
i3
− 1

l3
−

(
1

(i + p)3
− 1

(l + p)3

))
+ O(i−4) + · · ·+ O(l−4).

Let

f(t) :=
1

i + t
− 1

l + t
+ c2

(
1

(i + t)2
− 1

(l + t)2

)
+ c3

(
1

(i + t)3
− 1

(l + t)3

)
.

It is easy to verify that for t ≥ 0

−∂tf(t)
l − i

=
i + l + 2t

(i + t)2(l + t)2
(1 + O((i + t)−1) > 0.
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Thus ∂tf(t) < 0. This implies that

f(0)− f(p) ≥ f(0)− f(1).

Write l = i + q with q ≥ 1. Let

g(t) =
1

i + t
+

c2

(i + t)2
+

c3

(i + t)3
− 1

i + t + 1
− c2

(i + t + 1)2
− c3

(i + t + 1)3
.

Then f(0) − f(1) = g(0) − g(q). It is easy to check that ∂tg(t) < 0 for t > 0, and
thus f(0)− f(1) ≥ g(0)− g(1). A simple calculation shows that

g(0)− g(1) =
2

i(i + 1)(i + 2)
+ O(i−4).

Then

Υ = f(0)− f(p) + O(i−4) ≥ 2
i(i + 1)(i + 2)

+ O(i−4) >
1

(i + 2)3
.

So the proof of this lemma is complete. ¤
Now let us pick d positive integers. Let

Nd = {ip ∈ N : p = 1, 2, · · · , d}.

Assume

min Nd > NK, maxNd ≤ C0dNK, and K1 ≤ |ip − iq| ≤ K2, for p 6= q, (2.6)

where C0 > 1 is an absolute constant and K1,K2, large enough, positive constants
depending on K.

Lemma 2.4. For any set S = {i, j, n, l} ⊂ N, assume S ∩ Nd possesses at least
two elements. Then there is a positive constant C depending on max Nd, N and K
such that

|Υ| := |µi ± µj ± µn ± µl| > C, (2.7)

unless {µi, µj , µn, µl} ⊂ {p,−p, q,−q : p, q ∈ R}.
Proof. Assume i ≤ j ≤ n ≤ l without loss of generality.

Case 1. i > K. In this case, all of i, j, n and l are larger than K. Since
S ∩Nd 6= ∅, we have min Nd ≥ i. By Lemma 2.3, we have

|Υ| > 1
(1 + i)3

≥ 1
(1 + min Nd)3

.

Case 2. i ≤ K and j ≤ K. In this case, n, l ∈ Nd. According to the construction
Nd, we have that

|µi ± µj ± µn ± µl| ≥ K1 − CK ≥ 1, if K1 large enough,

where CK > 0 is a constant depending on K. (The constant CK may take different
values in different places in the following argument.)
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Case 3. i ≤ K and K < j ≤ K1/2. Then

|µi ± µj ± µn ± µl| ≥ K1/2− CK ≥ 1 if K1 À 1.

Case 4. i ≤ K and j > K1/2. Since S ∩Nd possesses at least two elements, we
get that j < n ≤ C0dKN in view of max Nd ≤ C0dKN . Observe that

c4 := inf
i≤K;j,n,l∈N

{|µi ± j ± n± l| : µi ± j ± n± l 6= 0} > 0

which depends on K only, independent of N . Thus, if µi ± j ± n± l 6= 0, then

|Υ| ≥ |µi ± j ± n± l| −O(K−1
1 )

≥ c4 −O(K−1
1 ) > c4/2

if K1 À 1. Now we are in position to consider µi ± j ± n± l = 0. For convenience
we assume c1 = 1 without loss of generality. In this case, we have

|Υ| =
∣∣∣∣±

(
1
j

+ O(j−2)
)
±

(
1
n

+ O(n−2)
)
±

(
1
l

+ O(l−2)
)∣∣∣∣ .

For cases (+, +,+), (−,−,−), (+,+,−), clearly we have

|Υ| ≥ 1
j

+ O(j−2) ≥ 1
2C0dKN

.

For case (+,−,+), we get that j < n. (Otherwise, if n = j, we get that −µi = l < 0
by µi + j − n + l = 0. It contradicts to l > 0.)

|Υ| ≥
(

1
j

+ O(j−2)
)
−

(
1
n

+ O(n−2)
)

=
n(1 + O(j−1))− j(1 + O(n−1))

nj

≥ 1
2nj

≥ 1
2(C0dKN)2

.

Finally, let us consider case (+,−,−). In this case we still get that j < n. Oth-
erwise, if n = j, we get that µi = l by µi + j − n − l = 0. It contradicts to
l ≥ n ≥ j > K1/2 > max{µi : i ≤ K} if K1 À 1. Since K1/2 < j < n ≤ l and
i ≤ K, we write O(j−1), O(n−1), O(l−1) = o(1) and µi/l = o(1) for K1 À 1. By
µi + j − n− l = 0, we get

n

l
=

µi + j

l
− 1.

We have now that

|Υ| =
∣∣∣∣
1 + o(1)

j
− 1 + o(1)

n
− 1 + o(1)

l

∣∣∣∣

=
∣∣∣∣
1 + o(1)

j
− 1

n

(
1 + o(1) +

(1 + o(1))n
l

)∣∣∣∣

=
∣∣∣∣
1 + o(1)

j
− 1

n

(
1 + o(1) + (1 + o(1))

(
µi + j

l
− 1

))∣∣∣∣

=
∣∣∣∣
1 + o(1)

j
− 1

n

(
j

l
+ o(1)

)∣∣∣∣

≥ 1 + o(1)
j

− 1
n

(1 + o(1))

≥ 1
2nj

≥ 1
2(C0dKN)2

.
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This completes the proof. ¤
3. Hamiltonian for NLW.

From now on we focus our attention on the nonlinearity u3, since terms of order
five or more will not make any difference. Letting

u =
∑

n

qn(t)φn(x) (3.1)

and inserting it into (1.1) we get

d2qn

dt2
+ µ2

nqn + ε〈ũ3, φn〉L2 = 0, n = 1, 2, · · · (3.2)

where 〈·, ·〉L2 is the usual inner product of L2[0, 2π]. Let

q̃n = µ1/2
n qn, p̃n = µ−1/2

n

dqn

dt
, n ≥ 1. (3.3)

Then we get a Hamiltonian system

˙̃pn = − ∂H

∂q̃n
, ˙̃qn =

∂H

∂p̃n
, n = 1, 2, ... (3.4)

where
H(p̃, q̃) =

1
2

∑

n≥1

µn(p̃2
n + q̃2

n) + εG(q̃) (3.5)

with
G(q̃) =

∑

i,j,n,l

Gijklq̃iq̃j q̃nq̃l (3.6)

Gijnl =
1
4
(µiµjµkµl)−1/2

∫ π

−π

φiφjφnφldx. (3.7)

Let us introduce the complex coordinate change

q̃n =
zn + z̄n√

2
, p̃n =

zn − z̄n√−2
, n ≥ 1,

Then ∑

n≥1

dq̃n ∧ dp̃n =
∑

n≥1

√−1dzn ∧ dz̄n.

Thus the Hamiltonian (3.5) is changed into

H(z, z̄) =
∑

n≥1

µn znz̄n + εG(z, z̄) (3.8)

where
G(z, z̄) =

1
4

∑

i,j,n,l

Gijnl(zi + z̄i)(zj + z̄j)(zn + z̄n)(zl + z̄l), (3.9)

where z = (zj)j∈N ∈ `a,s.
By an argument similar to that of Lemma 3.1 in [4, p.506], we can get the

regularity of the vector fields of G:
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Lemma 3.1. For a ≥ 0 and s > 0, the vector field XG is analytic as a map from
some neighborhood of the origin in `a,s into `a,s+1, with

||XG||a,s+1 = O(||z||3a,s).

Remark. If V (x) is analytic in the strip domain |=x| ≤ σ with σ > 0, then a = σ.
If V (x) is in the Sobolev space Hs(0, π) with s > 0, then a = 0.

Following Pöschel’s[10,p.282] notation, we introduce another set of coordinates
(..., w2, w1, w1, w2, ...) in `a,s

b by setting zj = wj , z̄j = wj where `a,s
b consists of all

bi-infinite sequence with finite norm

||w||2a,s =
∞∑

|j|=1

|wj |2|j|2se2a|j|.

Set Gijnl = G|i||j||n||l|.Then

H(w) =
∑

n≥1

µnwnw−n + εG(w) (3.10)

where
G(w) =

∑

i,j,n,l

Gijnlwiwjwnwl, (3.11)

Lemma 3.2. We have that

κ2
nκ2

m

∫ π

−π

φ2
n(x)φ2

m(x)dx =





κ2
n

2 + O
(

1
m2

)
+ O

(
1

mn|m−n|
)

, m 6= n

κ2
n

2 + π
4 + O

(
1

m2

)
, m = n.

Proof. Set V(x) = (−1/2)
∫ x

0
V (x) dx. By (2.3),

κ2
nκ2

m

∫ π

−π

φ2
n(x)φ2

m(x)dx =
∫ π

−π

φ2
n(x)(sinmx + m−1V(x) cos mx)2 dx + O(m−2)

=
κ2

n

2

∫ π

−π

φ2
n(x) dx + κ2

n

∫ π

−π

φ2
n(x)(

1
m
V(x) sin 2mx− 1

2
cos 2mx) dx + O(m−2)

=
κ2

n

2
+ κ2

n

∫ π

−π

φ2
n(x)(

1
m
V(x) sin 2mx− 1

2
cos 2mx) dx + O(m−2)

(3.12)
where we have used the fact

∫ π

−π
φ2

n(x) dx = 1. Using (2.4) we get

κ2
n

∫ π

−π

φ2
n(x) cos 2mx dx

=
∫ π

−π

(sin nx +
1
n

cosnxV(x) + φ̃n(x))2 cos 2mx dx

=
∫ π

−π

(sin2 nx +
1
n

sin 2nxV(x) + fn(x) + gn(x)) cos 2mx dx
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where
fn(x) = (φ̃n(x) + 2 sin nx +

2
n

cosnxV(x))φ̃n(x)

and
gn(x) =

1
n2

cos2 nxV2(x).

Using (2.4) we get that d2fn(x)/dx2 is bounded on −π, π]. Clearly, d2gn(x)/dx2 is
bounded on −π, π], too. By part integrating we get
∫ π

−π

(fn(x)+gn(x)) cos 2mx dx = − 1
4m2

∫ π

−π

(f ′′n (x)+g′′n(x)) cos 2mx dx = O(m−2).

Therefore,

κ2
n

∫ π

−π

φ2
n(x) cos 2mx dx =

∫ π

−π

(sin2 nx +
1
n

sin 2nxV(x)) cos 2mx dx + O(m−2).

(3.13)
Similarly, we have

κ2
n

m

∫ π

−π

φ2
n(x)V(x) sin 2mx dx =

−1
2m

∫ π

−π

cos 2nx sin 2mxV(x) dx+O(m−2). (3.14)

Observe that
∫ π

−π

(
1
n

sin 2nx cos 2mx +
1
m

cos 2nx sin 2mx

)
V(x) dx

=
∫ π

−π

(
1
2n

+
1

2m

)
V(x) sin 2(m + n)x dx

+
∫ π

−π

(
1

2m
− 1

2n

)
V(x) sin 2(m− n)x dx

=
1

8mn(m + n)

∫ π

−π

V ′′(x) sin 2(m + n)x dx

− 1
8mn(m− n)

∫ π

−π

V ′′(x) sin 2(m− n)x dx

= O(m−2) + O(1/mn|m− n|).

(3.15)

Using (3.12-15), we get

κ2
nκ2

m

∫ π

−π

φ2
n(x)φ2

m(x)dx

=
κ2

n

2
− 1

2

∫ π

−π

sin2 nx cos 2mx dx + O(m−2) + O(1/mn|m− n|).
(3.16)

Notice that

−1
2

∫ π

−π

sin2 nx cos 2mx dx =
{

0, m 6= n,

π/4, m = n.
(3.17)

By (3.16) and (3.17), the proof is complete. ¤
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4. Birkhoff Normal Form.
Let

µ′i =
√−1(sgni)µ|i|.

Consider a Hamilton function

F =
∑

i,j,n,l

Fijnlwiwjwnwl

with coefficients

Fijnl =

{
Gijnl

µ′i+µ′j+µ′n+µ′l
, for ({|i|, |j|, |n|, |l|} ∩Nd)] ≥ 2

0, otherwise,

where S] denotes the number of the elements of the set S. By Lemma 2.4, the
vector fields XF is analytic as a map from some neighborhood of the origin in `a,s

into `a,s+1 with ||XF ||a,s+1 = O(||z||3a,s). Let X1
F be the time-1 map of the flow of

the Hamiltonian vector field εF . Then the Hamiltonian (2.15) is changed by X1
F

into
H = H ◦X1

F =
∑

n≥1

µ̃nwnw−n + εG̃ + R (4.1)

where
G̃ =

∑

i∈Nd;j≥1

Giijjziz̄izj z̄j , (4.2)

R = εO(||ŵ||4a,s) + εO(||ŵ||3a,s||z||a,s) + ε2O(||w||6a,s) (4.3)

and ŵ = (wj)|j|/∈Nd
. For j ∈ Nd, we introduce the action-angle variables as follows:

zj =
√

Ije
√−1θj , z−j =

√
Ije

−√−1θj , j ∈ Nd. (4.4)

Then (3.1) can be written as

H =
∑

n∈Nd

µnIn +
∑

n/∈Nd

µnznz̄n + ε〈AI, I〉+ ε
∑

j /∈Nd

(BI)jzj z̄j + R, (4.5)

where
R = R(I, θ, ŵ) := R((

√
Ije

±√−1θj )j∈Nd
, ŵ) (4.6)

A = (Giijj)i,j∈Nd
, B = (Gjjii)i∈Nd;j /∈Nd

. (4.7)

Remark that A is a matrix of order d× d, B a matrix of order ∞× d. Now let us
introduce the parameter vector ξ and the new action variable ρ as follows

Ij = ε1/4ξj + ρj , j ∈ Nd, ξj ∈ [1, 2], |ρj | < ε. (4.8)

Then
H =

∑

j∈Nd

ωjρj +
∑

j /∈Nd

Ωjzj z̄j + R∗ (4.9)

where we omit a constant which does not affect the dynamics in the Hamiltonian
above, and

ωj = µj + ε5/4(Aξ)j , j ∈ Nd (4.10)

Ωj = µj + ε5/4(Bξ)j , j /∈ Nd (4.11)

R∗ = R(ξ + ρ, θ, w) + ε
∑

j /∈Nd

(Bρ)jzj z̄j + ε〈Aρ, ρ〉. (4.12)
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Lemma 4.1. The matrix A is non-singular, and ||A−1||max ≤ CN2.

Proof. The proof is from Lemma 3.2.

Lemma 4.2. Denote by ω∗ the d vector (ωj)j∈Nd
and Ω the vector of infinite

dimension (Ωj)j /∈Nd
. Then

meas{ξ ∈ [1, 2]d : 〈k, ω∗(ξ)〉+ 〈l, Ω(ξ)〉 = 0} = 0 (4.13)

and
〈l, Ω(ξ)〉 6= 0 on [1, 2]d, (4.14)

for all integer vectors (k, l) ∈ Zd × Z∞ with 1 ≤ |l| ≤ 2 and where “meas ” ≡
Lebesgue measure for sets, |l| =

∑
j |lj | for integer vectors, and 〈·, ·〉 is usual real

(or complex) scalar product.

Proof. Recall that all eigenvalues λn’s of the Sturm-Liouville problem (2.1) are
simple. It follows that (4.14) holds true. Let α = (µj)j∈Nd

and β = (µj)j /∈Nd
. In

order to show (4.13) we have to show that 〈α, k〉 6= 〈β, l〉 or Ak 6= BT l where T
means the transpose of the matrix. Suppose to the contrary that 〈α, k〉 = 〈β, l〉
and Ak = BT l.
Case 1. Assume |l| = 1. In view of (2.5) we have κ2

n = π + O(1/n). When n À 1,
we can write O(1/n) = o(1). By Lemma 3.2, we can write µiµjAij = 1/2π +aij for
i 6= j and µ2

i Aii = 3/4π + aii, and aij = o(1) for i, j ∈ Nd. By Lemma 3.2 again,
we can write µiµjBij = 1/π + bij for i 6= j and bij = o(1) for i ∈ Nd and j /∈ Nd.
Let v = (µ−1

j )j∈Nd
, w = (µ−1

j )j /∈Nd
and k = (k1, ..., kp, ...kd). Multiplying both of

sides of Ak = BT l by 2π, we then have

1
µip

〈k, v〉+
1

2µ2
ip

kp +
d∑

q=1

aipiq

µipµiq

kq =
1

µip

〈l, w〉+
1

µip

∑

j /∈Nd

bipj

µj
lj , (4.15)

where l = (lj)j /∈Nd
. Multiplying both of sides of the equality above by µip and

making sum from p = 1 to d, we get

(d + 1/2)〈k, v〉 = d〈l, w〉+
∑

1≤p≤d;j /∈Nd

bipj

µj
lj −

∑

1≤p,q≤d

aipiq

kq

µiq

(4.16)

Recall that we have assumed min Nd ≥ NK and max Nd ≤ C0dNK. It follows
that ||A−1||max ≤ C(KN)2 and µi = O(KN) for i ∈ Nd. Then

||k||max = ||A−1BT l||max ≤ C||A−1||max||BT l||max ≤ CNK|〈l, w〉|,
where C is a constant depending on d only. Since µiq ≥ NK for iq ∈ Nd, we get
kq/µiq = O(1)〈w, l〉. Note that aipiq = o(1). We then get

aipiq

kq

µiq

= o(1)〈w, l〉. (4.17)

By |l| = 1 and bij = o(1), we have

∑

j /∈Nd

bipj

µj
lj = bipj0 lj0µ

−1
j0

= 〈w, l〉o(1). (4.18)
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Therefore, by (4.16-18) we get

〈k, v〉 = s0〈w, l〉(1 + o(1)), (4.19)

with s0 = d/(d + 1/2). In view of (4.15) and (4.19), we get

kp = µip
s1〈w, l〉(1 + o(1)) (4.20)

where s1 = 2−2s0 = 2
2d+1 . Multiplying the both sides of (4.20) by µip and recalling

that 〈α, k〉 = 〈β, l〉, we get

〈β, l〉 =
d∑

p=1

µ2
ip

s1〈w, l〉(1 + o(1)).

Observe that 〈β, l〉 = 〈w, l〉−1 for |l| = 1. We get

〈w, l〉−2 = (
d∑

p=1

µ2
ip

)s1(1 + o(1)). (4.21)

By (4.20,21) and in view of 0 < s1 < 1, we get

k2
ip

=
µ2

ip∑
j∈Nd

µ2
j

s1(1 + o(1)) < 1, p = 1, ..., d.

This is absurd.
Case 2. Assume |l| = 2. In this case, we can write l = (· · · , lj , · · · , lj0 , · · · , lj′0 · · · )
where lj = 0 for j /∈ {j0, j′0}, and lj0 = ±1, lj′0 = ±1, and j0 ≤ j′0. For convenience
we set µ̃i := κ2

i µi. By Lemma 3.2, we can write µ̃iµ̃jAij = κ2
j/2 + aij/2 for i 6= j

and µ̃2
i Aii = κ2

i /2 + π/4 + aii/2, and aij = O(N−2) for i, j ∈ Nd. By Bij denote
the matrix elements of BT . Note that for Bij we have i ∈ Nd and j /∈ Nd. By
Lemma 3.2 again, we can write µ̃iµ̃jBij = κ2

j/2 + bij/2 and

bij = O

(
1
i2

)
+ O

(
1

ij|i− j|
)

. (4.22)

Let v = (µ−1
j )j∈Nd

, w = (µ−1
j )j /∈Nd

and k = (k1, ..., kp, ...kd). Multiplying both of
sides of Ak = BT l by 2, we then have

1
µ̃ip

〈k, v〉+ 1
2µ̃ipµip

kp +
d∑

q=1

aipiq

µ̃ip µ̃iq

kq =
1

µ̃ip

〈l, w〉+ 1
µ̃ip

∑

j /∈Nd

bipj

µ̃j
lj +

κ2
ip
− π

2µ̃ipκ2
ip

· kp

µip

.

(4.23)
Multiplying both of sides of the equality above by µ̃ip and making sum from p = 1
to d, we get

(d + 1/2)〈k, v〉 =d〈l, w〉+
d∑

p=1

(
bipj0

µ̃j0

lj0 +
bipj′0

µ̃j′0

lj′0

)
−

∑

1≤p,q≤d

aipiq

kq

µ̃iq

+
d∑

p=1

κ2
ip
− π

2κ2
ip

· kp

µip

.

(4.24)
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Recall that we have assumed min Nd ≥ NK and max Nd ≤ C0dNK. In the follow-
ing argument we assume that K is fixed and N À 1.
Sub-case 2.1. Suppose j0 ≥ N2/3. Then µ̃j0 , µ̃j′0 ≥ N2/3. Since ip ∈ Nd , we get
ip ≥ KN , and thus we get µ̃ip

≥ KN/2. Then

||k||max = ||A−1BT l||max ≤ C||A−1||max||BT l||max ≤ CN1/3,

where C is a constant depending on d and K only. Since µ̃iq ≥ NK for iq ∈ Nd,
we get kq/µ̃iq = O(N−2/3). Recall that aipiq = O(N−2). By (2.5), we have
(κ2

ip
− π)/(2κ2

ip
) = O(N−2). We then get

κ2
ip
− π

2κ2
ip

· kp

µip

= O(N−8/3), aipiq

kq

µ̃iq

= O(N−8/3). (4.25)

By (4.22) we have bipj0 , bipj′0 = O(N−5/3). Moreover,

bipj0/µ̃j0 , bipj′0/µ̃j′0 = O(N−8/3). (4.26)

By (4.24,25,26) we get

(d + 1/2)〈k, v〉 = d〈l, w〉+ O(N−8/3). (4.27)

That is,
〈k, v〉 = s0〈l, w〉+ O(N−8/3). (4.28)

By (4.23) and (4.28) we get

kp = s1〈l, w〉µip + O(N−8/3)µip .

Note µ̃ip = O(N). Thus,

kp = s1〈l, w〉µip + O(N−5/3). (4.29)

It follows that

kp+1 − kp = (µip+1 − µip)s1〈l, w〉+ O(N−5/3). (4.30)

Recall that we have chosen Nd with restriction |ip+1 − ip| ≤ K2. Thus, K1/2 ≤
|µip+1 − µip | ≤ 2K2. Besides, there is a absolute constant K3 depending on the
potential function V (x), such that |〈l, w〉| ≤ K3 for |l| ≤ 2. Thus, if there is a
p̄ ∈ {1, · · · , d− 1} such that kp̄+1 6= kp̄, then we have

1 ≤ |kp̄+1 − kp̄| ≤ 2s1K2K3 =
4K2K3

2d + 1
.

This is impossible if d ≥ 2K2K3. If kp+1 = kp for any p ∈ {1, 2, · · · , d− 1}, then by
(4.30) we have that 〈l, w〉 = O(N−5/3). In view of (4.29), we get |kp| = O(N−2/3)
for any p = 1, ..., d. Thus, |kp| is small when N À 1. Since kp is an integer, we
get kp = 0 for all p ∈ {1, · · · , d − 1}. It implies that k = 0. Recall that we have
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supposed 〈α, k〉 = 〈β, l〉 in the beginning of the proof. Thus, 〈β, l〉 = 0. It is
impossible for |l| = 2.
Sub-case 2.2. Suppose j0 ≤ j′0 ≤ N ι with 2/3 < ι < 1. Since ip ≥ KN , we
have |ip − j0|, |ip − j′0| ≥ N/2. In view of (4.22) we get bipj0 = O(N−2) and
bipj′0 = O(N−2). We further suppose that lj0 · lj′0 < 0, say lj0 = 1, lj′0 = −1 with
j0 < j′0. Since the eigenvalues λn’s is simple2, using (2.2) we get that there is a
constant C > 0 such that |µj0 − µj′0 | ≥ 1/C. Now we have the following estimate:

∣∣∣∣
1

〈l, w〉
(

bipj0

µ̃j0

− bipj′0

µ̃j′0

)∣∣∣∣ =

∣∣∣∣∣
κ−2

j0
bipj0 µ̃j′0 − κ−2

j′0
bipj′0 µ̃j0

µj0 − µj′0

∣∣∣∣∣ ≤ CN−(2−ι). (4.31)

This implies
bipj0

µ̃j0

− bipj′0

µ̃j′0

= o(1)〈w, l〉. (4.32)

Moreover,

µ̃ip
BT l = 〈w, l〉+

bipj0

µ̃j0

− bipj′0

µ̃j′0

= 〈w, l〉(1 + o(1)). (4.33)

And then

||k|| = ||A−1BT l|| ≤ d||A−1||||BT l|| ≤ CN〈w, l〉(1 + o(1)), (4.34)

where || · || is max-norm. By (4.23) we have

〈k, v〉+
1

2µip

kp = 〈l, w〉(1 + o(1)). (4.35)

Making sum from p = 1 to p = d we get

〈k, v〉 = s0〈l, w〉(1 + o(1)). (4.36)

By (4.35,36), we get
kp = µips1〈w, l〉(1 + o(1)). (4.37)

It follows that
kp+1 − kp = (µip+1 − µip)s1〈l, w〉(1 + o(1)). (4.38)

Clearly, the left hand of (4.38) is non-zero, when N À 1. Thus,

1 ≤ |kp+1 − kp| ≤ 2s1K2K3 =
4K2K3

2d + 1
.

This is impossible if d ≥ 2K2K3.
Sub-case 2.3. Suppose that j0 < N2/3, j′0 > N2/3 with j′0 − j0 < (N ι′ − N2/3)/2
and 2/3 < ι′ < ι < 1. It follows that j0 < j′0 < N ι. Thus, this case is reduced to
the sub-case 2.2.

2Recall µn =
√

λn.
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Sub-case 2.4. Suppose that j0 < N2/3, j′0 > N2/3 with j′0 − j0 ≥ (N ι′ − N2/3)/2.
It follows that j′0 − j0 ≥ N ι′/4. By (4.22) we get bipj0 , bipj′0 = O(N−1). Thus

∣∣∣∣
1

〈l, w〉
(

bipj0

µ̃j0

− bipj′0

µ̃j′0

)∣∣∣∣ =

∣∣∣∣∣
κ−2

j0
bipj0 µ̃j′0 − κ−2

j′0
bipj′0 µ̃j0

µj0 − µj′0

∣∣∣∣∣

≤|O(N−1)|(j′0 + j0)
j′0 − j0

≤ |O(N−1)| sup
p≥Nι′/4

p + 2j0
p

= |o(1)|

This implies that (4.32) hold true. Thus the further proof is the same as that of
Sub-case 2.2. ¤

Finally we will give out the estimates of the perturbed term R∗ in (4.12). To
this end we need some notations which are taken from [9]. Let `a,s is the Hilbert
space of all complex sequence w = (· · · , w1, w2, · · · ) with

||w||2a,s =
∑

j /∈Nd

|wj |2|j|2se2a|j| < ∞, a, s > 0.

Let θ = (θj)j∈Nd
and ρ = (ρj)j∈Nd

, Z = (zj)j /∈Nd
, and ξ = (ξj)j∈Nd

. Let us
introduce the phase space

Pa,s = T̂d × Cd × `a,s × `a,s 3 (x, y, Z, Z̄),

where T̂d is the complexification of the usual d-torus Td. Set

D(s, r) := {(x, y, Z, Z̄, ) ∈ Pa,s : |Imx| < s, |y| < r2, ||Z||a,s + ||Z̄||a,s < r},

where | · | denotes the sup-norm for complex vectors and || · ||a,s is the norm in the
space `a,s. We define the weighted phase norms

|W |r = |W |s̄,r = |x|+ 1
r2
|y|+ 1

r
||Z||a,s̄ +

1
r
||Z̄||a,s̄

for W = (x, y, z, z̄) ∈ Pa,s̄ with s̄ = s + 1. Denote by Σ the parameter set [1, 2]d.
For a map U : D(s, r)× Σ → Pa,s̄, define its Lipschitz semi-norm |U |Lr :

|U |Lr = sup
ξ 6=ζ

|∆ξζU |r
|ξ − ζ| ,

where ∆ξζU = U(·, ξ)− U(·, ζ), and where the supremum is taken over Σ. Denote
by XR∗ the vector field corresponding the Hamiltonian R∗ with respect to the
symplectic structure dθ ∧ dρ +

√−1dZ ∧ Z̄, namely,

XR∗ = (∂ρR
∗,−∂θR

∗,∇Z̄R∗,−∇ZR∗).
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Lemma 4.3. The perturbation R∗(θ, ρ, Z, Z̄; ξ) is real analytic for real argument
(θ, ρ, Z, Z̄) ∈ D(s, r) for given s, r > 0, and Lipschitz in the parameters ξ ∈ Σ, and
for each ξ ∈ Σ its gradients with respect to Z, Z̄ satisfy

∂ZR∗, ∂Z̄R∗ ∈ A(`a,s, `a,s+1),

where A(`a,s, `a,s+1) denotes the class of all maps from some neighborhood of the
origin in `a,s into `a,s+1, which is real analytic in the real and imaginary parts
of the complex coordinate Z. In addition, for the perturbed term R∗ we have the
following estimates

sup
D(s,r)×Σ

|XR∗ |r ≤ Cε2,

sup
D(s,r)×Σ

|∂ζXR∗ |r ≤ Cε2,

where r = ε1/2.

Proof. By (4.3) and (4.12) the proof is immediately completed. ¤
5. A KAM theorem with application to Hamiltonian (4.9).

In this section we state the KAM theorem. This theorem was first proved by
Kuksin[5,6]. Also see [9]. Here we recite the theorem from [9]. The KAM theorem
was used to show there are plenty of quasi-periodic solutions of some nonlinear
partial differential equations. See [7, 10], for example. Let us consider the pertur-
bations of a family of linear integrable Hamiltonian

H0 =
d∑

j=1

ωj(ξ)yj +
1
2

∞∑

j=d+1

λ̆j(ξ)(u2
j + v2

j ), (5.1)

in d-dimensional angle-action coordinates (x, y) and infinite-dimensional Cartesian
coordinates (u, v) with symplectic structure

d∑

j=1

dxj ∧ dyj +
∞∑

j=d+1

duj ∧ dvj . (5.2)

The tangent frequencies ω∗ = (ω1, ..., ωd) and normal ones λ̆ = (λ̆d+1, λ̆d+2, ...)
depend on d parameters

ξ ∈ Π ⊂ Rd, (5.3)

with Π a closed bounded set of positive Lebesgue measure.
For each ξ there is an invariant d-torus T d

0 = Td×{0, 0, 0} with frequencies ω∗(ξ).
In its normal space described by the uv-coordinates the origin is an elliptic fixed
point with characteristic frequencies λ(ξ). The KAM theorem by Pöschel will show
that the persistence of a large portion of this family of linearly stable rotational tori
under small perturbations H = H0+P of H0. to this end the following assumptions
are made.
Assumption A: Non-degeneracy. The real map ξ 7→ ω∗(ξ) is a lipeomorphism
between Π and its image, that is, a homomorphism which is Lipschitz continuous
in both directions. Moreover,

meas{ξ : 〈k, ω∗(ξ)〉+ 〈l, λ̆(ξ)〉 = 0} = 0 (5.4)
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and
〈l, λ̆(ξ)〉 6= 0 on Π, (5.5)

for all integer vectors (k, l) ∈ Zd × Z∞ with 1 ≤ |l| ≤ 2 and where “meas ” ≡
Lebesgue measure for sets, |l| =

∑
j |lj | for integer vectors, and 〈·, ·〉 is usual real

(or complex) scalar product.
Assumption B Spectral Asymptotic and the Lipschitz property. There exist % ≥ 1
and δ < τ − 1 such that

λ̆j = j% + · · ·+ O(jδ), (5.6)

where the dots stands for fixed lower order term in j, allowing also negative expo-
nents. More precisely, there exists a fixed, parameter-independent sequence λ̂ with
λ̂j = j% + · · · such that the tails λ̆j − λ̂j give rise to a Lipschitz map

λ̆j − λ̂j : Π → `−δ
∞ , (5.7)

where `p
∞ is the space of all real sequences with finite norm |w|p = supj |wj |jp.

Assumption C: Regularity. The perturbation P (x, y, z, z̄; ξ) is real analytic for
real argument (x, y, z, z̄) ∈ D(s, r) for given s, r > 0, and Lipschitz in the parame-
ters ξ ∈ Π, and for each ξ ∈ Π its gradients with respect to z, z̄ satisfy

Pz, Pz̄ ∈ A(`a,p, `a,p̄),
{

p̄ ≥ p for % > 1,

p̄ > p for % = 1,
(5.8)

where A(`a,p, `a,p̄) denotes the class of all maps from some neighborhood of the
origin in `a,p into `a,p̄, which is real analytic in the real and imaginary parts of the
complex coordinate z.

In order to state Pöschel’s theorem, we assume that

|ω∗|LΠ + |λ̆|L−δ,Π ≤ M < ∞, |(ω∗)−1|Lω∗(Π) ≤ L < ∞. (5.9)

In addition,we introduce the notations

〈l〉% = max(1, |
∑

j

j%lj |), Ak = 1 + |k|τ ,

where τ > d + 1 is fixed later. Finally, let Z = {(k, l) 6= 0, |l| ≤ 2} ⊂ Zd × Z∞.
We can now state the basic KAM Theorem which is recited from Pöschel[9]. The

same theorem is also proven by Kuksin[5,6].

Theorem 5.1. (Theorem A in [9].) Suppose H = N + P satisfies assumptions A,
B, and C, and

ε = sup
D(s,r)×Π

|XP |r + sup
D(s,r)×Π

α

M
|XP |Lr ≤ γα, (5.10)

where 0 < α ≤ 1 is a parameter, and γ depends on the parameters described below.
Then there is a Cantor set Πα ⊂ Π with Meas (Πα \ Π) → 0 as α → 0, a
Lipschitz continuous family of torus embedding Φ : Td×Πα → Pa,p̄, and a Lipschitz
continuous map ω̃ : Πα → Rd, such that for each ξ ∈ Πα the map Φ restricted to
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Td×{ξ} is a real analytic embedding of an elliptic rotational torus with frequencies
ω̃(ξ) for the Hamiltonian H at ξ.

Each embedding is analytic on |=x| < s/2, and

|Φ− Φ0|r +
α

M
|Φ− Φ0|Lr ≤ cε/α, (5.11)

|ω̃ − ω∗|+ α

M
|ω̃ − ω∗|L ≤ cε, (5.12)

uniformly on that domain and Πα, where Φ0 : Td×Π → T d
0 is the trivial embedding,

and c ≤ γ−1 depends on the same parameters as γ.
Moreover, there exist a family of Lipschitz maps ω∗j and Λj on Π for 0 ≤ j ∈ Z
satisfying ω∗0 = ω∗, Λ0 = Ω and

|ω∗j − ω∗|+ α

M
|ω∗j − ω∗|L ≤ cε, (5.13)

|Λj − λ̆|−δ +
α

M
|Λj − λ̆|L−δ ≤ cε, (5.14)

such that Π \Πα ⊂
⋃Rj

k,l(α), where

Rj
k,l(α) =

{
ξ ∈ Σ : |〈k, ω∗j (ξ)〉+ 〈l, Λj〉| ≤ α

〈l〉d
Ak

}
, (5.15)

and the union is taken over all j ≥ 0 and (k, l) ∈ Z such that |k| > K02j−1 for
j ≥ 1 with a constant K0 ≥ 1 depending only on d and τ .

Concerning the measure of the “bad” frequency set Π \ Πα, we recite Pöschel’s
Theorem D in [9].

Theorem 5.2. (Theorem D in [9].)Suppose that in Theorem 5.1 the unperturbed
frequencies are affine functions of the parameters. Then there is a constant c such
that

meas(Π \Πα) ≤ c(diamΠ)d−1αµ, µ =

{
1, for % > 1,

κ
κ+1−($/4) , for % = 1,

(5.16)

for all sufficiently small α, where $ is any number in [0, min(p̄− p, 1)), and where,
in the case % = 1, κ is a positive constant such that

λ̆i − λ̆j

i− j
= 1 + O(j−k), i > j (5.17)

uniformly on Π.

Remark. By checking Pöschel’s proof in [9], we find the constant c in Theorem
5.2 equals to LdMd−1.

In order to apply Theorems 5.1 and 5.2 to the Hamiltonian (4.9), we let Π =
Σ = [1, 2]d and

ωj(ξ) = µij + ε5/4(Aξ)ij , ij ∈ Nd, j = 1, ..., d, (5.18)



NONLINEAR WAVE EQUATIONS 21

and, for j = d + 1, d + 2, ...,

λ̆j =
{

µj + ε5/4(Bξ)j , j ≥ max Nd

µj−d + ε5/4(Bξ)j−d, j − d /∈ Nd, j − d ≤ maxNd

(5.19)

In view of Lemmas 4.1 and 4.2, the Assumption A is verified. Set % = 1 and
δ = −1. By (2.2), µj = j + O(1/j). Thus, the Assumption B can be verified
easily, and we see that κ = 2 in Theorem 5.2. The Assumption C can be verified
easily by Lemma 4.3, letting p̄ = p+1, p = s. Using (5.18 ) and (5.19) we find that
(5.9) is satisfied with M = C1ε

5/4 and L = C2ε
−5/4. Let P = R∗. (See (4.12) for

R∗.) Set x = θ, y = ρ, z = Z, r = ε1/2. By Lemma 4.3, the smallness condition
(5.10) is verified by letting α = ε2−ι with ι ¿ 1 fixed. Since κ = 2, we can let
µ = 2/3− ι in Theorem 5.2.

Finally, we finish the proof by using the theorems 5.1 and 5.2.
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