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Summary. We consider two basic types of coarse-graining: the Ehrenfests’ coarse-
graining and its extension to a general principle of non-equilibrium thermodynamics,
and the coarse-graining based on uncertainty of dynamical models and ε-motions
(orbits). Non-technical discussion of basic notions and main coarse-graining theo-
rems are presented: the theorem about entropy overproduction for the Ehrenfests’
coarse-graining and its generalizations, both for conservative and for dissipative sys-
tems, and the theorems about stable properties and the Smale order for ε-motions of
general dynamical systems including structurally unstable systems. Computational
kinetic models of macroscopic dynamics are considered. We construct a theoreti-
cal basis for these kinetic models using generalizations of the Ehrenfests’ coarse-
graining. General theory of reversible regularization and filtering semigroups in ki-
netics is presented, both for linear and non-linear filters. We obtain explicit expres-
sions and entropic stability conditions for filtered equations. A brief discussion of
coarse-graining by rounding and by small noise is also presented.

1 Introduction

Almost a century ago, Paul and Tanya Ehrenfest in their paper for scientific
Encyclopedia [1] introduced a special operation, the coarse-graining. This op-
eration transforms a probability density in phase space into a “coarse-grained”
density, that is a piece-wise constant function, a result of density averaging in
cells. The size of cells is assumed to be small, but finite, and does not tend to
zero. The coarse-graining models uncontrollable impact of surrounding (of a
thermostat, for example) onto ensemble of mechanical systems.

To understand reasons for introduction of this new notion, let us take a
phase drop, that is, an ensemble of mechanical systems with constant probabil-
ity density localized in a small domain of phase space. Let us watch evolution
of this drop in time according to the Liouville equation. After a long time,
the shape of the drop may be very complicated, but the density value remains
the same, and this drop remains “oil in water.” The ensemble can tend to the
equilibrium in the weak sense only: average value of any continuous function
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Fig. 1. The Ehrenfests’ coarse-graining: two “motion – coarse-graining” cycles in
1D (a, values of probability density are presented by the height of the columns)
and one such cycle in 2D (b, values of probability density are presented by hatching
density).

tends to its equilibrium value, but the entropy of the distribution remains
constant. Nevertheless, if we divide the phase space into cells and supplement
the mechanical motion by the periodical averaging in cells (this is the Ehren-
fests’ idea of coarse-graining), then the entropy increases, and the distribution
density tends uniformly to the equilibrium. This periodical coarse-graining is
illustrated by Fig. 1 for one-dimensional (1D)1 and two-dimensional (2D)
phase spaces.

Recently, we can find the idea of coarse-graining everywhere in statisti-
cal physics (both equilibrium and non-equilibrium). For example, it is the
central idea of the Kadanoff transformation, and can be considered as a back-

1 Of course, there is no mechanical system with one-dimensional phase space, but
dynamics with conservation of volume is possible in 1D case too: it is a motion
with constant velocity.
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ground of the Wilson renormalization group [6] and modern renormalisation
group approach to dissipative systems [7, 8]. 2 It gave a simplest realization
of the projection operators technique [2] long before this technic was devel-
oped. In the method of invariant manifold [3, 4] the generalized Ehrenfests’
coarse-graining allows to find slow dynamics without a slow manifold con-
struction. It is also present in the background of the so-called equation-free
methods [9]. Applications of the Ehrenfests’ coarse-graining outside statisti-
cal physics include simple, but effective filtering [10]. The Gaussian filtering
of hydrodynamic equations that leads to the Smagorinsky equations [14] is,
in its essence, again a version of the Ehrenfests’ coarse-graining. In the first
part of this paper we elaborate in details the Ehrenfests’ coarse-graining for
dynamical systems.

The central idea of the Ehrenfests’ coarse-graining remains the same in
most generalizations: we combine the genuine motion with the periodic par-
tial equlibration. The result is the Ehrenfests’ chain. After that, we can find
the macroscopic equation that does not depend on an initial distribution
and describes the Ehrenfests’ chains as results of continuous autonomous
motion [5, 11]. Alternatively, we can just create a computational procedure
without explicit equations [9]. In the sense of entropy production, the result-
ing macroscopic motion is “more dissipative” than initial (microscopic) one.
It is the theorem about entropy overproduction. In its general form it was
proven in [12].

Kinetic models of fluid dynamics become very popular during the last
decade. Usual way of model simplification leads from kinetics to fluid dynam-
ics, it is a sort of dimension reduction. But kinetic models go back, and it is the
simplification also. Some of kinetic equations are very simple and even exactly
solvable. The simplest and most popular example is the free flight kinetics,
∂f(x,v, t)/∂t = −∑

i vi∂f(x,v, t)/∂xi, where f(x,v, t) is one-particle distri-
bution function, x is space vector, v is velocity. We can “lift” a continuum
equation to a kinetic model, and than approximate the solution by a chain,
each link of which is a kinetic curve with a jump from the end of this curve
to the beginning of the next link. In this paper, we describe how to construct
these curves, chains, links and jumps on the base of Ehrenfests’ idea. Kinetic
model has more variables than continuum equation. Sometimes simplification
in modeling can be reached by dimension increase, and it is not a miracle.

In practice, kinetic models in the form of lattice Boltzmann models are in
use [19]. The Ehrenfests’ coarse-graining provides theoretical basis for kinetic
models. First of all, it is possible to replace projecting (partial equilibration)
by involution (i.e. reflection with respect to the partial equilibrium). This
entropic involution was developed for the lattice Boltzmann methods in [89].
In the original Ehrenfests’ chains, “motion–partial equilibration–motion–...,”
dissipation is coupled with time step, but the chains “motion–involution–

2 See also the paper of A. Degenhard and J. Javier Rodriguez-Laguna in this vol-
ume.
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motion–...” are conservative. The family of chains between conservative (with
entropic involution) and maximally dissipative (with projection) ones give us a
possibility to model hydrodynamic systems with various dissipation (viscosity)
coefficients that are decoupled with time steps.

Large eddy simulation, filtering and subgrid modeling are very popular in
fluid dynamics [13–17]. The idea is that small inhomogeneities should somehow
equilibrate, and their statistics should follow the large scale details of the flow.
Our goal is to restore a link between this approach and initial coarse-raining
in statistical physics. Physically, this type of coarse-graining is transference
the energy of small scale motion from macroscopic kinetic energy to micro-
scopic internal energy. The natural framework for analysis of such transference
provides physical kinetics, where initially exists no difference between kinetic
and internal energy. This difference appears in the continuum mechanic limit.
We proposed this idea several years ago, and an example for moment equa-
tions was published in [18]. Now the kinetic approach for filtering is presented.
The general commutator expansion for all kind of linear or non-linear filters,
with constant or with variable coefficients is constructed. The condition for
stability of filtered equation is obtained.

The upper boundary for the filter width ∆ that guaranties stability of the
filtered equations is proportional to the square root of the Knudsen number.
∆/L ∼

√
Kn (where L is the characteristic macroscopic length). This scaling,

∆/L ∼
√

Kn, was discussed in [18] for moment kinetic equations because
different reasons: if ∆/L ≫

√
Kn then the Chapman–Enskog procedure for

the way back from kinetics to continuum is not applicable, and, moreover,
the continuum description is probably not valid, because the filtering term
with large coefficient ∆/L violates the conditions of hydrodynamic limit. This
important remark gives the frame for η scaling. It is proven in this paper for
the broad class of model kinetic equations. The entropic stability conditions
presented below give the stability boundaries inside this scale.

Several other notions of coarse-graining were introduced and studied for
dynamical systems during last hundred years. In this paper, we shall consider
one of them, the coarse-graining by ε-motions (ε-orbits, or pseudo orbits) and
briefly mention two other types: coarse-graining by rounding and by small
random noise.

ε-motions describe dynamics of models with uncertainty. We never know
our models exactly, we never deal with isolated systems, and the surrounding
always uncontrollably affect dynamics of the system. This dynamics can be
presented as a usual phase flow supplemented by a periodical ε-fattening: after
time τ , we add a ε-ball to each point, hence, points are transformed into sets.
This periodical fattening expands all attractors: for the system with fattening
they are larger than for original dynamics.

Interest to the dynamics of ε-motions was stimulated by the famous work
of S. Smale [20]. This paper destroyed many naive dreams and expectations.
For generic 2D system the phase portrait is the structure of attractors (sinks),
repellers (sources), and saddles. For generic 2D systems all these attractors
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are either fixed point or closed orbits. Generic 2D systems are structurally
stable. It means that they do not change qualitatively after small perturba-
tions. Our dream was to find a similar stable structure in generic systems for
higher dimensions, but S. Smale showed it is impossible: Structurally stable
systems are not dense! Unfortunately, in higher dimensions there are regions
of dynamical systems that can change qualitatively under arbitrary small per-
turbations.

One of the reasons to study ε-motions (flow with fattening) and systems
with sustained perturbations was the hope that even small errors coarsen the
picture and can wipe some of the thin peculiarities off. And this hope was
realistic, at least, partially [21–23]. The thin peculiarities that are responsible
for appearance of regions of structurally unstable systems vanish after the
coarse-graining via arbitrary small periodical fattening. All the models have
some uncertainty, hence, the features of dynamics that are unstable under
arbitrary small coarse-graining are unobservable.

Rounding is a sort of coarse-graining that appears automatically in com-
puter simulations. It is very natural that in era of intensive computer sim-
ulation of complex dynamics the coarse-graining by rounding attracted spe-
cial attention [24–30]. According to a very idealized popular dynamic model,
rounding might be represented as restriction of shift in given time τ onto ε-
net in phase space. Of courses, the restriction includes some perturbation of
dynamics (Fig. 2). The formal definition of rounding action includes a tiling:
around any point of the ε-net there is a cell, these cells form a tiling of the
phase space, and rounding maps a cell into corresponding point of the ε-net.
These cells have equal volumes if there are no special reasons to make their
volumes different. If this volume is dynamically invariant then, for sufficiently
large time of motion between rounding steps, all the mixing dynamical sys-
tems with rounding can be described by an universal object. This is a random
dynamical system, the random map of a finite set: any point of the ε-net can
be the image of a given point with probability 1/m (where m is the number
of points in the ε-net). The combinatorial theory of such random graphs is
well–developed [31].

After rounding, some unexpected properties of dynamics appear. For ex-
ample, even for transitive systems with strong mixing significant part of points
of the ε-net becomes transient after rounding. Initially, attractor of such a
continuous system is the whole phase space, but after rounding attractor of
discrete dynamical system on the ε-net includes, roughly speaking, a half of its
points (or, more precisely, the expectation of the number of transient points is
m(e − 1)/e, where m is number of points, e = 2.7...). In some circumstances,
complicated dynamics has a tendency to collapse to trivial and degenerate
behaviour as a result of discretizations [27]. For systems without conserva-
tion of volume, the number of periodic points after discretization is linked to
the dimension of the attractor d. The simple estimates based on the random
map analysis, and numerical experiments with chaotic attractors give ∼ ε−d

for the number of periodic points, and ∼ ε−d/2 for the scale of the expected
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Fig. 2. Motion, rounding and “motion with rounding” for a dynamical system (a),
and the universal result of motion with rounding: a random dynamical system (b).

period [26, 30]. The first of them is just the number of points in ε-net in d-
dimensional compact, the second becomes clear after the following remark.
Let us imagine a random walk in a finite set with m elements (a ε-net). When
the length of the trajectory is of order

√
m then the next step returns the

point to the trajectory with probability ∼ 1/
√

m, and a loop appears with
expected period ∼ √

m (a half of the trajectory length). After ∼ √
m steps

the probability of a loop appearance is near 1, hence, for the whole system
the expected period is ∼ √

m ∼ ε−d/2.
It is easy to demonstrate the difference between coarse-graining by fat-

tening and coarse-graining by rounding. Let us consider a trivial dynamics
on a connected phase space: let the shift in time be identical transformation.
For coarse-graining by fattening the ε-motion of any point tends to cover the
whole phase space for any positive ε and time t → ∞: periodical ε-fattening
with trivial dynamics transforms, after time nτ , a point into the sum of n ε-
balls. For coarse-graining by rounding this trivial dynamical system generates
the same trivial dynamical system on ε-net: nothing moves.

Coarse-graining by small noise seems to be very natural. We add small
random term to the right hand side of differential equations that describe
dynamics. Instead of the Liouville equation for probability density the Fokker–
Planck equation appears. There is no fundamental difference between various
types of coarse-graining, and the coarse-graining by ε-fattening includes major
results about the coarse-graining by small noise that are insensitive to most
details of noise distribution. But the knowledge of noise distribution gives
us additional tools. The action functional is such a tool for the description
of fluctuations [32]. Let Xε(t) be a random process “dynamics with ε-small
fluctuation” on the time interval [0, T ]. It is possible to introduce such a
functional S[ϕ] on functions x = ϕ(t) (t ∈ [0, T ]) that for sufficiently small
ε, δ > 0

P{‖Xε − ϕ‖ < δ} ≈ exp(−S[ϕ]/ε2).
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Action functional is constructed for various types of random perturbations
[32]. Introduction to the general theory of random dynamical systems with
invariant measure is presented in [33].

In following sections, we consider two types of coarse-graining: the Ehren-
fests’ coarse-graining and its extension to a general principle of non-equilibrium
thermodynamics, and the coarse-graining based on the uncertainty of dynam-
ical models and ε-motions.

2 The Ehrenfests’ Coarse-graining

2.1 Kinetic equation and entropy

Entropy conservation in systems with conservation of phase volume

The Erenfest’s coarse-graining was originally defined for conservative3 sys-
tems. Usually, Hamiltonian systems are considered as conservative ones, but
in all constructions only one property of Hamiltonian systems is used, namely,
conservation of the phase volume dΓ (the Liouville theorem). Let X be phase
space, v(x) be a vector field, dΓ = dnx be the differential of phase volume.
The flow,

dx

dt
= v(x), (1)

conserves the phase volume, if divv(x) = 0. The continuity equation,

∂f

∂t
= −

∑

i

∂(fvi(x))

∂xi
, (2)

describes the induced dynamics of the probability density f(x, t) on phase
space. For incompressible flow (conservation of volume), the continuity equa-
tion can be rewritten in the form

∂f

∂t
= −

∑

i

vi(x)
∂f

∂xi
. (3)

This means that the probability density is constant along the flow: f(x, t +
dt) = f(x − v(x)dt, t). Hence, for any continuous function h(f) the integral

H(f) =

∫

X

h(f(x)) dΓ (x) (4)

3 In this paper, we use the term “conservative” as an opposite term to “dissipative:”
conservative = with entropy conservation. Another use of the term “conservative
system” is connected with energy conservation. For kinetic systems under con-
sideration conservation of energy is a simple linear balance, and we shall use the
first sense only.
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does not change in time, provided the probability density satisfies the con-
tinuity equation (2) and the flow v(x) conserves the phase volume. For
h(f) = −f ln f integral (4) gives the classical Boltzmann–Gibbs–Shannon
(BGS) entropy functional:

S(f) = −
∫

X

f(x) ln(f(x)) dΓ (x). (5)

For flows with conservation of volume, entropy is conserved: dS/dt ≡ 0 .

Kullback entropy conservation in systems with regular invariant distribution

Suppose the phase volume is not invariant with respect to flow (1), but a
regular invariant density f∗(x) (equilibrium) exists:

∑

i

∂(f∗(x)vi(x))

∂xi
= 0. (6)

In this case, instead of an invariant phase volume dΓ , we have an invariant
volume f∗(x) dΓ . We can use (6) instead of the incompressibility condition
and rewrite (2):

∂(f(x, t)/f∗(x))

∂t
= −

∑

i

vi(x)
∂(f(x, t)/f∗(x))

∂xi
. (7)

The function f(x, t)/f∗(x) is constant along the flow, the measure f∗(x) dΓ (x)
is invariant, hence, for any continuous function h(f) integral

H(f) =

∫

X

h(f(x, t)/f∗(x))f∗(x) dΓ (x) (8)

does not change in time, if the probability density satisfies the continuity
equation. For h(f) = −f ln f integral (8) gives the Kullback entropy functional
[42]:

SK(f) = −
∫

X

f(x) ln

(
f(x)

f∗(x)

)
dΓ (x). (9)

This situation does not differ significantly from the entropy conservation in
systems with conservation of volume. It is just a kind of change of variables.

General entropy production formula

Let us consider the general case without assumptions about phase volume
invariance and existence of a regular invariant density (6). In this case, let a
probability density f(x, t) be a solution of the continuity equation (2). For
the BGS entropy functional (5)

dS(f)

dt
=

∫

X

f(x, t)divv(x) dΓ (x), (10)
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if the left hand side exists. This entropy production formula can be easily
proven for small phase drops with constant density, and then for finite sums
of such distributions with positive coefficients. After that, we obtain formula
(10) by limit transition.

For a regular invariant density f∗(x) (equilibrium) entropy S(f∗) exists,
and for this distribution dS(f)/dt = 0, hence,

∫

X

f∗(x)divv(x) dΓ (x) = 0. (11)

Entropy production in systems without regular equilibrium

If there is no regular equilibrium (6), then the entropy behaviour changes
drastically. If volume of phase drops tends to zero, then the BGS entropy (5)
and any Kullback entropy (9) goes to minus infinity. The simplest example
clarifies the situation. Let all the solutions converge to unique exponentially
stable fixed point x = 0. In linear approximation dx/dt = Ax and S(t) =
S(0) + t trA. Entropy decreases linearly in time with the rate trA (trA =
divv(x), trA < 0), time derivative of entropy is trA and does not change in
time, and the probability distribution goes to the δ-function δ(x). Entropy of
this distribution does not exist (it is “minus infinity”), and it has no limit
when f(x, t) → δ(x).

Nevertheless, time derivative of entropy is well defined and constant, it is
trA. For more complicated singular limit distributions the essence remains the
same: according to (10) time derivative of entropy tends to the average value
of divv(x) in this limit distribution, and entropy goes linearly to minus infinity
(if this average in not zero, of course). The order in the system increases. This
behaviour could sometimes be interpreted as follows: the system is open and
produces entropy in its surrounding even in a steady–state. Much more details
are in review [41].4

Starting point: a kinetic equation

For the formalization of the Ehrenfests’ idea of coarse-graining, we start from
a formal kinetic equation

df

dt
= J(f) (12)

with a concave entropy functional S(f) that does not increase in time. This
equation is defined in a convex subset U of a vector space E.

4 Applications of this formalism are mainly related to Hamiltonian systems in so-
called force thermostat, or, in particular, isokinetic thermostat. These thermostats
were invented in computational molecular dynamics for acceleration of compu-
tations, as a technical trick. From the physical point of view, this theory can be
considered as a theory about a friction of particles on the space, the “ether fric-
tion.” For isokinetic thermostats, for example, this “friction” decelerates some of
particles, accelerates others, and keeps the kinetic energy constant.
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Let us specify some notations: ET is the adjoint to the E space. Adjoint
spaces and operators will be indicated by T , whereas the notation ∗ is ear-
marked for equilibria and quasi-equilibria.

We recall that, for an operator A : E1 → E2, the adjoint operator, AT :
ET

1 → ET
2 is defined by the following relation: for any l ∈ ET

2 and ϕ ∈ E1,
l(Aϕ) = (AT l)(ϕ).

Next, DfS(f) ∈ ET is the differential of the functional S(f), D2
fS(f)

is the second differential of the functional S(f). The quadratic functional
D2

fS(f)(ϕ,ϕ) on E is defined by the Taylor formula,

S(f + ϕ) = S(f) + DfS(f)(ϕ) +
1

2
D2

fS(f)(ϕ,ϕ) + o(‖ϕ‖2). (13)

We keep the same notation for the corresponding symmetric bilinear form,
D2

fS(f)(ϕ,ψ), and also for the linear operator, D2
fS(f) : E → ET , defined by

the formula (D2
fS(f)ϕ)(ψ) = D2

fS(f)(ϕ,ψ). In this formula, on the left hand

side D2
fS(f) is the operator, on the right hand side it is the bilinear form.

Operator D2
fS(f) is symmetric on E, D2

fS(f)T = D2
fS(f).

In finite dimensions the functional DfS(f) can be presented simply as a
row vector of partial derivatives of S, and the operator D2

fS(f) is a matrix
of second partial derivatives. For infinite–dimensional spaces some complica-
tions exist because S(f) is defined only for classical densities and not for all
distributions. In this paper we do not pay attention to these details.

We assume strict concavity of S, D2
fS(f)(ϕ,ϕ) < 0 if ϕ 6= 0. This means

that for any f the positive definite quadratic form −D2
fS(f)(ϕ,ϕ) defines a

scalar product
〈ϕ,ψ〉f = −(D2

fS)(ϕ,ψ). (14)

This entropic scalar product is an important part of thermodynamic formal-
ism. For the BGS entropy (5) as well as for the Kullback entropy (9)

〈ϕ,ψ〉f =

∫
ϕ(x)ψ(x)

f(x)
dx. (15)

The most important assumption about kinetic equation (12) is: entropy
does not decrease in time:

dS

dt
= (DfS(f))(J(f)) ≥ 0. (16)

A particular case of this assumption is: the system (12) is conservative and
entropy is constant. The main example of such conservative equations is the
Liouville equation with linear vector field J(f) = −Lf = {H, f}, where {H, f}
is the Poisson bracket with Hamiltonian H.

For the following consideration of the Ehrenfests’ coarse-graining the un-
derlying mechanical motion is not crucial, and it is possible to start from the
formal kinetic equation (12) without any mechanical interpretation of vec-
tors f . We develop below the coarse-graining procedure for general kinetic
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equation (12) with non-decreasing entropy (16). After coarse-graining the en-
tropy production increases: conservative systems become dissipative ones, and
dissipative systems become “more dissipative.”

2.2 Conditional equilibrium instead of averaging in cells

Microdescription, macrodescription and quasi-equilibrium state

Averaging in cells is a particular case of entropy maximization. Let the phase
space be divided into cells. For the ith cell the population Mi is

Mi = mi(f) =

∫

celli

f(x) dΓ (x).

The averaging in cells for a given vector of populations M = (Mi) produces
the solution of the optimization problem for the BGS entropy:

S(f) → max, m(f) = M, (17)

where m(f) is vector (mi(f)). The maximizer is a function f∗
M (x) defined by

the vector of averages M .
This operation has a well-known generalization. In the more general state-

ment, vector f is a microscopic description of the system, vector M gives a
macroscopic description, and a linear operator m transforms a microscopic
description into a macroscopic one: M = m(f). The standard example is
the transformation of the microscopic density into the hydrodynamic fields
(density–velocity–kinetic temperature) with local Maxwellian distributions as
entropy maximizers (see, for example, [4]).

For any macroscopic description M , let us define the correspondent f∗
M as a

solution to optimization problem (17) with an appropriate entropy functional
S(f) (Fig. 3). This f∗

M has many names in the literature: MaxEnt distribu-
tion, reference distribution (reference of the macroscopic description to the
microscopic one), generalized canonical ensemble, conditional equilibrium, or
quasi-equilibrium. We shall use here the last term.

The quasi-equilibrium distribution f∗
M satisfies the obvious, but important

identity of self-consistency:
m(f∗

M ) = M, (18)

or in differential form

m(DMf∗
M ) = 1, i.e. m((DMf∗

M )a) ≡ a. (19)

The last identity means that the infinitesimal change in M calculated through
differential of the quasi-equilibrium distribution f∗

M is simply the infinitesimal
change in M . For the second differential we obtain

m(D2
Mf∗

M ) = 0, i.e. m((D2
Mf∗

M )(a, b)) ≡ 0. (20)
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Fig. 3. Relations between a microscopic state f , a corresponding macroscopic state
M = m(f), and a quasi-equilibrium state f∗

M .

Following [4] let us mention that most of the works on nonequilibrium
thermodynamics deal with quasi-equilibrium approximations and corrections
to them, or with applications of these approximations (with or without correc-
tions). This viewpoint is not the only possible but it proves very efficient for
the construction of a variety of useful models, approximations and equations,
as well as methods to solve them.

From time to time it is discussed in the literature, who was the first to in-
troduce the quasi-equilibrium approximations, and how to interpret them. At
least a part of the discussion is due to a different role the quasi-equilibrium
plays in the entropy-conserving and in the dissipative dynamics. The very
first use of the entropy maximization dates back to the classical work of G.
W. Gibbs [47], but it was first claimed for a principle of informational sta-
tistical thermodynamics by E. T. Jaynes [48]. Probably, the first explicit and
systematic use of quasiequilibria on the way from entropy-conserving dynam-
ics to dissipative kinetics was undertaken by D. N. Zubarev. Recent detailed
exposition of his approach is given in [49].

For dissipative systems, the use of the quasi-equilibrium to reduce descrip-
tion can be traced to the works of H. Grad on the Boltzmann equation [50]. A
review of the informational statistical thermodynamics was presented in [51].
The connection between entropy maximization and (nonlinear) Onsager rela-
tions was also studied [52, 53]. Our viewpoint was influenced by the papers
by L. I. Rozonoer and co-workers, in particular, [54–56]. A detailed exposi-
tion of the quasi-equilibrium approximation for Markov chains is given in the
book [34] (Chap. 3, Quasi-equilibrium and entropy maximum, pp. 92-122),
and for the BBGKY hierarchy in the paper [57].
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The maximum entropy principle was applied to the description of the
universal dependence of the three-particle distribution function F3 on the two-
particle distribution function F2 in classical systems with binary interactions
[58]. For a discussion of the quasi-equilibrium moment closure hierarchies for
the Boltzmann equation [55] see the papers [59–61]. A very general discussion
of the maximum entropy principle with applications to dissipative kinetics is
given in the review [62]. Recently, the quasi-equilibrium approximation with
some further correction was applied to the description of rheology of polymer
solutions [64,65] and of ferrofluids [66,67]. Quasi-equilibrium approximations
for quantum systems in the Wigner representation [70,71] was discussed very
recently [63].

We shall now introduce the quasi-equilibrium approximation in the most
general setting. The coarse-graining procedure will be developed after that as
a method for enhancement of the quasi-equilibrium approximation [5].

Quasi-equilibrium manifold, projector and approximation

A quasi-equilibrium manifold is a set of quasi-equilibrium states f∗
M parame-

terized by macroscopic variables M . For microscopic states f the correspon-
dent quasi-equilibrium states are defined as f∗

m(f). Relations between f , M ,
f∗

M , and f∗
m(f) are presented in Fig. 3.

A quasi-equilibrium approximation for the kinetic equation (12) is an equa-
tion for M(t):

dM

dt
= m(J(f∗

M )). (21)

To define Ṁ in the quasi-equilibrium approximation for given M , we find the
correspondent quasi-equilibrium state f∗

M and the time derivative of f in this
state J(f∗

M ), and then return to the macroscopic variables by the operator m.
If M(t) satisfies (21) then f∗

M(t) satisfies the following equation

df∗
M

dt
= (DMf∗

M )

(
dM

dt

)
= (DMf∗

M )(m(J(f∗
M ))). (22)

The right hand side of (22) is the projection of vector field J(f) onto the
tangent space of the quasi-equilibrium manifold at the point f = f∗

M . After
calculating the differential DMf∗

M from the definition of quasi-equilibrium
(17), we obtain df∗

M/dt = πf∗
M

J(f∗
M ), where πf∗

M
is the quasi-equilibrium

projector:

πf∗
M

= (DMf∗
M )m =

(
D2

fS
)−1

f∗
M

mT
(
m

(
D2

fS
)−1

f∗
M

mT
)−1

m. (23)

It is straightforward to check the equality π2
f∗

M
= πf∗

M
, and the self-adjointness

of πf∗
M

with respect to entropic scalar product (14). In this scalar product,
the quasi-equilibrium projector is the orthogonal projector onto the tangent
space to the quasi-equilibrium manifold. The quasi-equilibrium projector for
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*
Mf
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Fig. 4. Quasi-equilibrium manifold Ω, tangent space Tf∗
M

Ω, quasi-equilibrium pro-
jector πf∗

M
, and defect of invariance, ∆f∗

M
= J − πf∗

M
(J).

a quasi-equilibrium approximation was first constructed by B. Robertson [68].
Thus, we have introduced the basic constructions: quasi-equilibrium man-

ifold, entropic scalar product, and quasi-equilibrium projector (Fig. 4).

Preservation of dissipation

For the quasi-equilibrium approximation the entropy is S(M) = S(f∗
M ). For

this entropy,
dS(M)

dt
=

(
dS(f)

dt

)

f=f∗
M

, (24)

Here, on the left hand side stands the macroscopic entropy production for the
quasi-equilibrium approximation (21), and the right hand side is the micro-
scopic entropy production calculated for the initial kinetic equation (12). This
equality implies preservation of the type of dynamics [34, 35]:

• If for the initial kinetics (12) the dissipativity inequality (16) holds then
the same inequality is true for the quasi-equilibrium approximation (21);

• If the initial kinetics (12) is conservative then the quasi-equilibrium ap-
proximation (21) is conservative also.

For example, let the initial kinetic equation be the Liouville equation for a
system of many identical particles with binary interaction. If we choose as
macroscopic variables the one-particle distribution function, then the quasi-
equilibrium approximation is the Vlasov equation. If we choose as macroscopic
variables the hydrodynamic fields, then the quasi-equilibrium approximation
is the compressible Euler equation with self–interaction of liquid. Both of these
equations are conservative and turn out to be even Hamiltonian systems [69].
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Measurement of accuracy

Accuracy of the quasi-equilibrium approximation near a given M can be mea-
sured by the defect of invariance (Fig. 4):

∆f∗
M

= J(f∗
M ) − πf∗

M
J(f∗

M ). (25)

A dimensionless criterion of accuracy is the ratio ‖∆f∗
M
‖/‖J(f∗

M )‖ (a “sine”
of the angle between J and tangent space). If ∆f∗

M
≡ 0 then the quasi-

equilibrium manifold is an invariant manifold, and the quasi-equilibrium ap-
proximation is exact. In applications, the quasi-equilibrium approximation is
usually not exact.

The Gibbs entropy and the Boltzmann entropy

For analysis of micro-macro relations some authors [77, 78] call entropy S(f)
the Gibbs entropy, and introduce a notion of the Boltzmann entropy. Boltz-
mann defined the entropy of a macroscopic system in a macrostate M as the
log of the volume of phase space (number of microstates) corresponding to
M . In the proposed level of generality [34, 35], the Boltzmann entropy of the
state f can be defined as SB(f) = S(f∗

m(f)). It is entropy of the projection of f

onto quasi-equilibrium manifold (the “shadow” entropy). For conservative sys-
tems the Gibbs entropy is constant, but the Boltzmann entropy increases [35]
(during some time, at least) for motions that start on the quasi-equilibrium
manifold, but not belong to this manifold.

These notions of the Gibbs or Boltzmann entropy are related to micro-
macro transition and may be applied to any convex entropy functional, not
the BGS entropy (5) only. This may cause some terminological problems (we
hope, not here), and it may be better just to call S(f∗

m(f)) the macroscopic
entropy.

Invariance equation and the Chapman–Enskog expansion

The first method for improvement of the quasi-equilibrium approximation
was the Chapman–Enskog method for the Boltzmann equation [79]. It uses
the explicit structure of singularly perturbed systems. Many other methods
were invented later, and not all of them use this explicit structure (see, for
example review in [4]). Here we develop the Chapman–Enskog method for
one important class of model equations that were invented to substitute the
Boltzmann equation and other more complicated systems when we don’t know
the details of microscopic kinetics. It includes the well-known Bhatnagar–
Gross–Krook (BGK) kinetic equation [38] , as well as wide class of generalized
model equations [39].

As a starting point we take a formal kinetic equation with a small param-
eter ǫ

df

dt
= J(f) = F (f) +

1

ǫ
(f∗

m(f) − f). (26)
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The term (f∗
m(f) − f) is non-linear because nonlinear dependency f∗

m(f) on

m(f).
We would like to find a reduced description valid for macroscopic vari-

ables M . It means, at least, that we are looking for an invariant manifold
parameterized by M , f = fM , that satisfies the invariance equation:

(DMfM )(m(J(fM ))) = J(fM ). (27)

The invariance equation means that the time derivative of f calculated
through the time derivative of M (Ṁ = m(J(fM ))) by the chain rule co-
incides with the true time derivative J(f). This is the central equation for the
model reduction theory and applications. First general results about existence
and regularity of solutions to that equation were obtained by Lyapunov [83]
(see review in [3, 4]). For kinetic equation (26) the invariance equation has a
form

(DMfM )(m(F (fM ))) = F (fM ) +
1

ǫ
(f∗

M − fM ), (28)

because the self-consistency identity (18).
Due to presence of small parameter ǫ in J(f), the zero approximation is

obviously the quasi-equilibrium approximation: f
(0)
M = f∗

M . Let us look for fM

in the form of power series: fM = f
(0)
M + ǫf

(1)
M + . . .; m(f

(k)
M ) = 0 for k ≥ 1.

From (28) we immediately find:

f
(1)
M = F (f

(0)
M ) − (DMf

(0)
M )(m(F (f

(0)
M ))) = ∆f∗

M
. (29)

It is very natural that the first term of the Chapman–Enskog expansion for
model equations (26) is just the defect of invariance for the quasi-equilibrium
approximation. Calculation of the following terms is also straightforward.

The correspondent first–order in ǫ approximation for the macroscopic
equations is:

dM

dt
= m(F (f∗

M )) + ǫm((DfF (f))f∗
M

∆f∗
M

). (30)

We should remind that m(∆f∗
M

) = 0. The last term in (28) vanishes in macro-
scopic projection for all orders.

The typical situation for the model equations (26) is: the vector field F (f)
is conservative, (DfS(f))F (f) = 0. In that case, the first term m(F (f∗

M )) also
conserves the correspondent Boltzmann (i.e. macroscopic, but not obligatory
BGS) entropy S(f∗

M ). But the straightforward calculation of the Boltzmann
entropy S(f∗

M ) production for the first-order Chapman–Enskog term in equa-
tion (30) gives us for conservative F (f):

dS(M)

dt
= ǫ〈∆f∗

M
,∆f∗

M
〉f∗

M
≥ 0. (31)

where 〈•, •〉f is the entropic scalar product (14). The Boltzmann entropy
production in the first Chapman–Enskog approximation is zero if and only if
∆f∗

M
= 0, i.e. if at point M the quasi-equilibrium manifold is locally invariant.
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M

dM/dt=F(M)  ??? 
Macroscopic equation

The chain

df/dt=J(f) QE manifold 

Fig. 5. The Ehrenfests’ chain.

To prove (31) we differentiate the conservativity identity:

(DfS(f))F (f) ≡ 0 (32)

(D2
fS(F ))(F (f), a) + (DfS(f))((DfF (f))a) ≡ 0

(DfS(f))((DfF (f))a) ≡ 〈F (f), a〉f ,

use the last equality in the expression of the entropy production, and take
into account that the quasi-equilibrium projector is orthogonal, hence

〈F (f∗
M ),∆f∗

M
〉f∗

M
= 〈∆f∗

M
,∆f∗

M
〉f∗

M
.

Below we apply the Chapman–Enskog method to the analysis of filtered
BGK equation.

2.3 The Ehrenfests’ Chain, Macroscopic Equations and Entropy

production

The Ehrenfests’ Chain and entropy growth

Let Θt be the time shift transformation for the initial kinetic equation (12):

Θt(f(0)) = f(t).

The Ehrenfests’ chain (Fig. 5) is defined for a given macroscopic variables
M = m(f) and a fixed time of coarse-graining τ . It is a chain of quasi-
equilibrium states f0, f1, . . .:

fi+1 = f∗
m(Θτ (fi))

. (33)
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To get the next point of the chain, fi+1, we take fi, move it by the time shift
Θτ , calculate the corresponding macroscopic state Mi+1 = m(Θτ (fi)), and
find the quasi-equilibrium state f∗

Mi+1
= fi+1.

If the point Θτ (fi) is not a quasi-equilibrium state, then S(Θτ (fi)) <
S(f∗

m(Θτ (fi))
) because of quasi-equilibrium definition (17) and strict concavity

of entropy. Hence, if the motion between fi and Θτ (fi) does not belong to
the quasi-equilibrium manifold, then S(fi+1) > S(fi), entropy in the Ehren-
fests’ chain grows. The entropy gain consists of two parts: the gain in the
motion (from fi to Θτ (fi)), and the gain in the projection (from Θτ (fi) to
fi+1 = f∗

m(Θτ (fi))
). Both parts are non-negative. For conservative systems the

first part is zero. The second part is strictly positive if the motion leaves
the quasi-equilibrium manifold. Hence, we observe some sort of duality be-
tween entropy production in the Ehrenfests’ chain and invariance of the quasi-
equilibrium manifold. The motions that build the Ehrenfests’ chain restart pe-
riodically from the quasi-equilibrium manifold and the entropy growth along
this chain is similar to the Boltzmann entropy growth in the Chapman–Enskog
approximation, and that similarity is very deep, as the exact formulas show
below.

The natural projector and macroscopic dynamics

How to use the Ehrenfests’ chains? First of all, we can try to define the macro-
scopic kinetic equations for M(t) by the requirement that for any initial point
of the chain f0 the solution of these macroscopic equations with initial con-
ditions M(0) = m(f0) goes through all the points m(fi): M(nτ) = m(fn)
(n = 1, 2, . . .) (Fig. 5) [5] (see also [4]). Another way is an “equation–free
approach” [9] to the direct computation of the Ehrenfests’ chain with a com-
bination of microscopic simulation and macroscopic stepping.

For the definition of the macroscopic equations only the first link of the
Ehrenfests’ chain is necessary. In general form, for an ansatz manifold Ω, pro-
jector π : U → Ω of the vicinity of Ω onto Ω, phase flow of the initial kinetic
equation Θt, and macroscopic phase flow Θ̃t on Ω the matching condition is
(Fig. 6):

π(Θτ (f)) = Θ̃τ (f) for any f ∈ Ω. (34)

We call this projector of the flow Θ onto an ansatz manifold Ω by fragments
of trajectories of given duration τ the natural projector in order to distinguish
it from the standard infinitesimal projector of vector fields on tangent spaces.

Let us look for the macroscopic equations of the form

dM

dt
= Ψ(M) (35)

with the phase flow Φt: M(t) = ΦtM(0). For the quasi-equilibrium manifold
and projector the matching condition (34) gives

m(Θτ (f∗
M )) = Φτ (M) for any macroscopic state M. (36)
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Fig. 6. Projection of segments of trajectories: The microscopic motion above the
manifold Ω and the macroscopic motion on this manifold. If these motions begin
in the same point on Ω, then, after time τ , projection of the microscopic state
onto Ω should coincide with the result of the macroscopic motion on Ω. For quasi-
equilibrium Ω, projector π : E → Ω acts as π(f) = f∗

m(f).

This condition is the equation for the macroscopic vector field Ψ(M). The
solution of this equation is a function of τ : Ψ = Ψ(M, τ). For sufficiently
smooth microscopic vector field J(f) and entropy S(f) it is easy to find the
Taylor expansion of Ψ(M, τ) in powers of τ . It is a straightforward exercise
in differential calculus. Let us find the first two terms: Ψ(M, τ) = Ψ0(M) +
τΨ1(M) + o(τ). Up to the second order in τ the matching condition (36) is

m(J(f∗
M ))τ + m((DfJ(f))f=f∗

M
(J(f∗

M )))
τ2

2

= Ψ0(M)τ + Ψ1(M)τ2 + (DMΨ0(M))(Ψ0(M))
τ2

2
. (37)

From this condition immediately follows:

Ψ0(M) = m(J(f∗
M )); (38)

Ψ1(M) =
1

2
m[(DfJ(f))f=f∗

M
(J(f∗

M )) − (DMJ(f∗
M ))(m(J(f∗

M )))]

= m((DfJ(f))f=f∗
M

∆f∗
M

)

where ∆f∗
M

is the defect of invariance (25). The macroscopic equation in the
first approximation is:
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dM

dt
= m(J(f∗

M )) +
τ

2
m((DfJ(f))f=f∗

M
∆f∗

M
). (39)

It is exactly the first Chapman–Enskog approximation (30) for the model ki-
netics (26) with ε = τ/2. The first term m(J(f∗

M )) gives the quasi-equilibrium
approximation, the second term increases dissipation. The formula for entropy
production follows from (39) [11]. If the initial microscopic kinetic (12) is con-
servative, then for macroscopic equation (39) we obtain as for the Chapman–
Enskog approximation:

dS(M)

dt
=

τ

2
〈∆f∗

M
,∆f∗

M
〉f∗

M
, (40)

where 〈•, •〉f is the entropic scalar product (14). From this formula we see
again a duality between the invariance of the quasi-equilibrium manifold and
the dissipativity: entropy production is proportional to the square of the defect
of invariance of the quasi-equilibrium manifold.

For linear microscopic equations (J(f) = Lf) the form of the macroscopic
equations is

dM

dt
= mL

[
1 +

τ

2
(1 − πf∗

M
)L

]
f∗

M , (41)

where πf∗
M

is the quasi-equilibrium projector (23).

The Navier–Stokes equation from the free flight dynamics

The free flight equation describes dynamics of one-particle distribution func-
tion f(x,v) due to free flight:

∂f(x,v, t)

∂t
= −

∑

i

vi
∂f(x,v, t)

∂xi
. (42)

The difference from the continuity equation (2) is that there is no velocity
field v(x), but the velocity vector v is an independent variable. Equation (42)
is conservative and has an explicit general solution

f(x,v, t) = f0(x − vt,v). (43)

The coarse-graining procedure for (42) serves for modeling kinetics with an
unknown dissipative term I(f)

∂f(x,v, t)

∂t
= −

∑

i

vi
∂f(x,v, t)

∂xi
+ I(f). (44)

The Ehrenfests’ chain realizes a splitting method for (44): first, the free flight
step during time τ , than the complete relaxation to a quasi-equilibrium dis-
tribution due to dissipative term I(f), then again the free flight, and so on.
In this approximation the specific form of I(f) is not in use, and the only
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parameter is time τ . It is important that this hypothetical I(f) preserves
all the standard conservation laws (number of particles, momentum, and en-
ergy) and has no additional conservation laws: everything else relaxes. Fol-
lowing this assumption, the macroscopic variables are: M0 = n(x, t) =

∫
fdv,

Mi = nui =
∫

vifdv (i = 1, 2, 3), M4 = 3nkBT
m + nu2 =

∫
v2fdv. The zero-

order (quasi-equilibrium) approximation (21) gives the classical Euler equa-
tion for compressible non-isothermal gas. In the first approximation (39) we
obtain the Navier–Stokes equations:

∂n

∂t
= −

∑

i

∂(nui)

∂xi
,

∂(nuk)

∂t
= −

∑

i

∂(nukui)

∂xi
− 1

m

∂P

∂xk

+
τ

2

1

m

∑

i

∂

∂xi

[
P

(
∂uk

∂xi
+

∂ui

∂xk
− 2

3
δkidivu

)]
, (45)

∂E
∂t

= −
∑

i

∂(Eui)

∂xi
− 1

m

∑

i

∂(Pui)

∂xi
+

τ

2

5kB

2m2

∑

i

∂

∂xi

(
P

∂T

∂xi

)
,

where P = nkBT is the ideal gas pressure, E = 1
2

∫
v2f dv = 3nkBT

2m + n
2 u2 is

the energy density per unite mass (P = 2m
3 E − mn

3 u2, T = 2m
3nkB

E − m
3kB

u2),
and the underlined terms are results of the coarse-graining additional to the
quasi-equilibrium approximation.

The dynamic viscosity in (45) is µ = τ
2nkBT . It is useful to compare this

formula to the mean–free–path theory that gives µ = τcolnkBT = τcolP , where
τcol is the collision time (the time for the mean–free–path). According to these
formulas, we get the following interpretation of the coarse-graining time τ for
this example: τ = 2τcol.

The equations obtained (45) coincide with the first–order terms of the
Chapman–Enskog expansion (30) applied to the BGK equations with τcol =
τ/2 and meet the same problem: the Prandtl number (i.e., the dimensionless
ratio of viscosity and thermal conductivity) is Pr = 1 instead of the value
Pr = 2

3 verified by experiments with perfect gases and by more detailed theory
[80] (recent discussion of this problem for the BGK equation with some ways
for its solution is presented in [81]).

In the next order in τ we obtain the stable post–Navier–Stokes equa-
tions instead of the unstable Burnett equations that appear in the Chapman–
Enskog expansion [11, 76]. Here we can see the difference between two ap-
proaches.

Persistence of invariance and mistake of differential pursuit

L.M. Lewis called a generalization of the Ehernfest’s approach a “unifying
principle in statistical mechanics,” but he created other macroscopic equa-
tions: he produced the differential pursuit (Fig. 7a)
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a)

M

dM/dt=(m(f( ))-M)/
  Differential pursuit 

df/dt=J(f)
QE manifold

m(f( ))M=m(f(0))

b)

M

df/dt=J(f)

Invariant QE manifold

True motion

Differential pursuit

Fig. 7. Differential pursuit of the projection point (a). The mistake of differential
pursuit (b): invariant manifold should preserve its invariance, but it does not!

dM

dt
=

m(Θτ (f∗
M )) − M

τ
(46)

from the full matching condition (34). This means that the macroscopic mo-
tion was taken in the first-order Tailor approximation, while for the micro-
scopic motion the complete shift in time (without the Taylor expansion) was
used. The basic idea of this approach is a non-differential time separation: the
infinitesimal shift in macroscopic time is always such a significant shift for
microscopic time that no Taylor approximation for microscopic motion may
be in use. This sort of non-standard analysis deserves serious attention, but
its realization in the form of the differential pursuit (46) does not work prop-
erly in many cases. If the quasi-equilibrium manifold is invariant, then the
quasi-equilibrium approximation is exact and the Ehrenfests’ chain (Fig. 5)
just follows the quasi-equilibrium trajectory. But the differential pursuit does
not follow the trajectory (Fig. 7b); this motion leaves the invariant quasi-
equilibrium manifolds, and the differential pursuit does not approximate the
Ehrenfests’ chain, even qualitatively.

Ehrenfests’ coarse-graining as a method for model reduction

The problem of model reduction in dissipative kinetics is recognized as a
problem of time separation and construction of slow invariant manifolds. One
obstacle on this way is that the slow invariant manifold is the thing that
many people would like to find, but nobody knows exactly what it is. There
is no conventional definition of slow invariant manifold without explicit small
parameter that tends to zero. It seems now that the most reasonable way for
such a definition is the analysis of induced dynamics of manifolds immersed
into phase space. Fixed points of this dynamics are invariant manifolds, and
asymptotically stable (stable and attracting) fixed points are slow invariant
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Initial ansatz manifold

Hypothetic attractive invariant manifold

Fig. 8. Natural projector and attractive invariant manifolds. For large τ , the natural
projector gives the approximation of projection of the genuine motion from the
attractive invariant manifold onto the initial ansatz manifold Ω.

manifolds. This concept was explicitly developed very recently [3, 4, 84], but
the basic idea was used in earlier applied works [35,85].

The coarse-graining procedure was developed for erasing some details of
the dynamics in order to provide entropy growth and uniform tendency to
equilibrium. In this sense, the coarse-graining is opposite to the model reduc-
tion, because for the model reduction we try to find slow invariant manifolds
as exactly, as we can. But unexpectedly the coarse-graining becomes a tool
for model reduction without any “erasing.”

Let us assume that for dissipative dynamics with entropy growth there
exists an attractive invariant manifold. Let us apply the Ehrenfests’ coarse-
graining to this system for sufficiently large coarse-graining time τ . For the
most part of time τ the system will spend in a small vicinity of the attractive
invariant manifold. Hence, the macroscopic projection will describe the projec-
tion of dynamics from the attractive invariant manifold onto ansatz manifold
Ω. As a result, we shall find a shadow of the proper slow dynamics without
looking for the slow invariant manifold. Of course, the results obtained by
the Taylor expansion (37–39) are not applicable for the case of large coarse-
graining time τ , at least, directly. Some attempts to utilize the idea of large
τ asymptotic are presented in [4] (Ch. 12).

One can find a source of this idea in the first work of D. Hilbert about
the Boltzmann equation solution [40] (a recent exposition and development of
the Hilbert method is presented in [86] with many examples of applications).
In the Hilbert method, we start from the local Maxwellian manifold (that is,
quasi-equilibrium one) and iteratively look for “normal solutions.” The nor-
mal solutions fH(v, n(x, t), u(x, t), T (x, t)) are solutions to the Boltzmann
equation that depend on space and time only through five hydrodynamic
fields. In the Hilbert method no final macroscopic equation arises. The next
attempt to utilize this idea without macroscopic equations is the “equation
free” approach [9, 87].
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The Ehrenfests’ coarse-graining as a tool for extraction of exact macro-
scopic dynamics was tested on exactly solvable problems [73]. It gives also a
new approach to the fluctuation–dissipation theorems [72].

2.4 Kinetic models, entropic involution, and the second–order

“Euler method”

Time-step – dissipation decoupling problem

Sometimes, the kinetic equation is much simpler than the coarse-grained dy-
namics. For example, the free flight kinetics (42) has the obvious exact ana-
lytical solution (43), but the Euler or the Navier–Stokes equations (45) seem
to be very far from being exactly solvable. In this sense, the Ehrenfests’ chain
(33) (Fig. 5) gives a stepwise approximation to a solution of the coarse-grained
(macroscopic) equations by the chain of solutions of the kinetic equations.

If we use the second-order approximation in the coarse-graining proce-
dure (37), then the Ehrenfests’ chain with step τ is the second–order (in
time step τ) approximation to the solution of macroscopic equation (39). It
is very attractive for hydrodynamics: the second–order in time method with
approximation just by broken line built from intervals of simple free–flight
solutions. But if we use the Ehrenfests’ chain for approximate solution, then
the strong connection between the time step τ and the coefficient in equations
(39) (see also the entropy production formula (40)) is strange. Rate of dissipa-
tion is proportional to τ , and it seems to be too restrictive for computational
applications: decoupling of time step and dissipation rate is necessary. This
decoupling problem leads us to a question that is strange from the Ehrenfests’
coarse-graining point of view: how to construct an analogue to the Ehrenfests’
coarse-graining chain, but without dissipation? The entropic involution is a
tool for this construction.

Entropic involution

The entropic involution was invented for improvement of the lattice–Boltzmann
method [89]. We need to construct a chain with zero macroscopic entropy pro-
duction and second order of accuracy in time step τ . The chain consists of
intervals of solution of kinetic equation (12) that is conservative. The time
shift for this equation is Θt. The macroscopic variables M = m(f) are cho-
sen, and the time shift for corresponding quasi-equilibrium equation is (in

this section) Θ̃t. The standard example is: the free flight kinetics (42,43) as
a microscopic conservative kinetics, hydrodynamic fields (density–velocity–
kinetic temperature) as macroscopic variables, and the Euler equations as a
macroscopic quasi-equilibrium equations for conservative case (see (45), not
underlined terms).

Let us start from construction of one link of a chain and take a point
f1/2 on the quasi-equilibrium manifold. (It is not an initial point of the link,
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f0, but a “middle” one.) The correspondent value of M is M1/2 = m(f1/2).
Let us define M0 = m(Θ−τ/2(f1/2)), M1 = m(Θτ/2(f1/2)). The dissipative
term in macroscopic equations (39) is linear in τ , hence, there is a symme-
try between forward and backward motion from any quasiequilibrium initial
condition with the second-order accuracy in the time of this motion (it be-
came clear long ago [35]). Dissipative terms in the shift from M0 to M1/2

(that decrease macroscopic entropy S(M)) annihilate with dissipative terms
in the shift from M1/2 to M1 (that increase macroscopic entropy S(M)). As

the result of this symmetry, M1 coincides with Θ̃τ (M0) with the second-order
accuracy. (It is easy to check this statement by direct calculation too.)

It is necessary to stress that the second-order accuracy is achieved on the
ends of the time interval only: Θ̃τ (M0) coincides with M1 = m(Θτ (f0)) in the
second order in τ

m(Θτ (f0)) − Θ̃τ (M0) = o(τ2).

On the way Θ̃t(M0) from M0 to Θ̃τ (M0) for 0 < t < τ we can guarantee the
first-order accuracy only (even for the middle point). It is essentially the same
situation as we had for the Ehrenfests’ chain: the second order accuracy of the
matching condition (36) is postulated for the moment τ , and for 0 < t < τ the
projection of the m(Θt(f0)) follows a solution of the macroscopic equation (39)
with the first order accuracy only. In that sense, the method is quite different
from the usual second–order methods with intermediate points, for example,
from the Crank–Nicolson schemes. By the way, the middle quasi-equilibrium
point, f1/2 appears for the initiation step only. After that, we work with the
end points of links.

The link is constructed. For the initiation step, we used the middle
point f1/2 on the quasi-equilibrium manifold. The end points of the link,
f0 = Θ−τ/2(f1/2) and f1 = Θτ/2(f1/2) don’t belong to the quasi-equilibrium
manifold, unless it is invariant. Where are they located? They belong a surface
that we call a film of non-equilibrium states [4,74,75]. It is a trajectory of the
quasi-equilibrium manifold due to initial microscopic kinetics. In [4,74,75] we
studied mainly the positive semi-trajectory (for positive time). Here we need
shifts in both directions.

A point f on the film of non-equilibrium states is naturally parameterized
by M, τ : f = qM,τ , where M = m(f) is the value of the macroscopic variables,
and τ(f) is the time of shift from a quasi-equilibrium state: Θ−τ (f) is a quasi-
equilibrium state. In the first order in τ ,

qM,τ = f∗
M + τ∆f∗

M
, (47)

and the first-order Chapman–Enskog approximation (29) for the model BGK
equations is also here with τ = ǫ. (The two–times difference between kinetic
coefficients for the Ehrenfests’ chain and the first-order Chapman–Enskog ap-
proximation appears because for the Ehrenfests’ chain the distribution walks
linearly between qM,0 and qM,τ , and for the first-order Chapman–Enskog ap-
proximation it is exactly qM,τ .)
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For each M and positive s from some interval ]0, ς[ there exist two such
τ±(M, s) (τ+(M, s) > 0, τ−(M, s) < 0) that

S(qM,τ±(M,s)) = S(M) − s. (48)

Up to the second order in τ±

s =
τ2
±

2
〈∆f∗

M
,∆f∗

M
〉f∗

M
+ o(τ2

±) (49)

(compare to (40)), and

τ+ = −τ− + o(τ−); |τ±| =

√
s

〈∆f∗
M

,∆f∗
M
〉f∗

M

(1 + o(1)). (50)

Equation (48) describes connection between entropy change s and time co-
ordinate τ on the film of non-equilibrium states, and (49) presents the first
non-trivial term of the Taylor expansion of (48).

The entropic involution IS is the transformation of the film of non-
equilibrium states:

IS(qM,τ±) = qM,τ∓ . (51)

This involution transforms τ+ into τ−, and back. For a given macroscopic
state M , the entropic involution IS transforms the curve of non-equilibrium
states qM,τ into itself.

In the first order in τ it is just reflection qM,τ → qM,−τ . A partial lineariza-
tion is also in use. For this approximation, we define nonlinear involutions of
straight lines parameterized by α, not of curves:

I0
S(f) = f∗

m(f) − α(f − f∗
m(f)), α > 0, (52)

with condition of entropy conservation

S(I0
S(f)) = S(f). (53)

The last condition serves as equation for α. The positive solution is unique and
exists for f from some vicinity of the quasi-equilibrium manifold. It follows
from the strong concavity of entropy. The transformation I0

S (53) is defined
not only on the film of non-equilibrium states, but on all distributions (mi-
croscopic) f that are sufficiently closed to the quasi-equilibrium manifold.

In order to avoid the stepwise accumulation of errors in entropy produc-
tion, we can choose a constant step in a conservative chain not in time, but in
entropy. Let an initial point in macro-variables M0 be given, and some s > 0
be fixed. We start from the point f0 = qM,τ−(M0,s). At this point, for t = 0,
S(m(Θ0(f0)))) − s = S((Θ0(f0))) (Θ0 = id). Let the motion Θt(f0) evolve
until the equality S(m(Θt(f0))) − s = S(Θt(f0)) is satisfied next time. This
time will be the time step τ , and the next point of the chain is:
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a)
M0 M1/2 M1

f0

f1

(f1)

f2

IS
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(f0)
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MM0

f0

f1

(f0)
(f1)

f2

IS IS

*
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I

II
III

IV

M1 M2

Fig. 9. The regular (a) and irregular (b) conservative chain. Dissipative terms for the
regular chain give zero balance inside each step. For the irregular chain, dissipative
term of part I (the first step) annihilates with dissipative term of part IV (the second
step), as well, as annihilate dissipartive terms for parts II and III.

f1 = IS(Θτ (f0)). (54)

We can present this construction geometrically (Fig. 9a). The quasi-equilibrium
manifold, M∗ = {qM,0}, is accompanied by two other manifolds, M∗

±(s) =
{qM,τ±(M,s)}. These manifolds are connected by the entropic involution:
ISM∗

±(s) = M∗
∓(s). For all points f ∈ M∗

±(s)

S(f) = S(f∗
m(f)) − s.

The conservative chain starts at a point on f0 ∈ M∗
−(s), than the solution of

initial kinetic equations, Θt(f0), goes to its intersection with M∗
+(s), the mo-

ment of intersection is τ . After that, the entropic involution transfers Θτ (f0)
into a second point of the chain, f1 = IS(Θτ (f0)) ∈ M∗

−(s).

Irregular conservative chain

The regular geometric picture is nice, but for some generalizations we need
less rigid structure. Let us combine two operations: the shift in time Θτ and
the entropic involution IS . Suppose, the motions starts on a point f0 on the
film of non-equilibrium states, and

fn+1 = IS(Θτ (fn)). (55)

This chain we call an irregular conservative chain, and the chain that moves
from M∗

−(s) to M∗
+(s) and back, the regular one. For the regular chain the

dissipative term is zero (in the main order in τ) already for one link because
this link is symmetric, and the macroscopic entropy (S(M)) loose for a motion
from M∗

−(s) to M∗ compensate the macroscopic entropy production on a
way from M∗ to M∗

+(s). For the irregular chain (55) with given τ such a
compensation occurs in two successive links (Fig. 9b) in main order in τ .
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a)
M0 M1/2 M1
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+ (f0)
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b)
M0 M1/2 M1

f0 IS( (f0))

*
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Dissipation
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Fig. 10. Realization of dissipative chain by the extra time ϑ on the base of a regular
conservative chain (a), and by the incomplete involution on the base of an irregular
conservative chain (b).

Kinetic modeling for non-zero dissipation. 1. Extension of regular chains

The conservative chain of kinetic curves approximates the quasi-equilibrium
dynamics. A typical example of quasi-equilibrium equations (21) is the Euler
equation in fluid dynamics. Now, we combine conservative chains construction
with the idea of the dissipative Ehrenfests’ chain in order to create a method
for kinetic modeling of dissipative hydrodynamics (“macrodynamics”) (39)
with arbitrary kinetic coefficient that is decoupled from the chain step τ :

dM

dt
= m(J(f∗

M )) + κ(M)m[(DfJ(f))f=f∗
M

∆f∗
M

]. (56)

Here, a kinetic coefficient κ(M) ≥ 0 is a non-negative function of M . The
entropy production for (10) is:

dS(M)

dt
= κ(M)〈∆f∗

M
,∆f∗

M
〉f∗

M
. (57)

Let us start from a regular conservative chain and deform it. A chain that
approximates solutions of (56) can be constructed as follows (Fig. 10a). The
motion starts from f0 ∈ M∗

−(s), goes by a kinetic curve to intersection with
M∗

+(s), as for a regular conservative chain, and, after that, follows the same
kinetic curve an extra time ϑ. This motion stops at the moment τ + ϑ at the
point Θτ+ϑ(f0) (Fig. 10a). The second point of the chain, f1 is the unique
solution of equation

m(f1) = m(Θτ+ϑ(f0)), f1 ∈ M∗
−(s). (58)

The time step is linked with the kinetic coefficient:

κ =
ϑ

2
+ o(τ + ϑ). (59)

For entropy production we obtain the analogue of (40)
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dS(M)

dt
=

ϑ

2
〈∆f∗

M
,∆f∗

M
〉f∗

M
+ o(τ + ϑ). (60)

All these formulas follow from the first–order picture. In the first order of the
time step,

qM,τ = f∗
M + τ∆f∗

M
;

IS(f∗
M + τ∆f∗

M
) = f∗

M − τ∆f∗
M

;

f0 = f∗
M0

− τ

2
∆f∗

M0
;

Θt(f0) = f∗
M(t) +

(
t − τ

2

)
∆f∗

M0
, (61)

and up to the second order of accuracy (that is, again, the first non-trivial
term)

S(qM,τ ) = S(M) +
τ2

2
〈∆f∗

M
,∆f∗

M
〉f∗

M
. (62)

For a regular conservative chains, in the first order

f1 = f∗
M(τ) −

τ

2
∆f∗

M0
. (63)

For chains (58), in the first order

f1 = f∗
M(τ+ϑ) −

τ

2
∆f∗

M0
. (64)

Kinetic modeling for non-zero dissipation. 2. Deformed involution in
irregular chains

For irregular chains, we introduce dissipation without change of the time step
τ . Let us, after entropic involution, shift the point to the quasi-equilibrium
state (Fig. 10) with some entropy increase σ(M). Because of entropy produc-
tion formula (57),

σ(M) = τκ(M)〈∆f∗
M

,∆f∗
M
〉f∗

M
. (65)

This formula works, if there is sufficient amount of non-equilibrium entropy,
the difference S(Mn)− S(fn) should not be too small. In average, for several
(two) successive steps it should not be less than σ(M). The Ehrenfests’ chain
gives a limit for possible value of κ(M) that we can realize using irregular
chains with overrelaxation:

κ(M) <
τ

2
. (66)

Let us call the value κ(M) = τ
2 the Ehrenfests’ limit. Formally, it is possible

to realize a chain of kinetic curves with time step τ for κ(M) > τ
2 on the other

side of the Ehrenfests’ limit, without overrelaxation (Fig. 11).
Let us choose the following notation for non-equilibrium entropy: s0 =

S(M0) − S(f0), s1 = S(M1) − S(f1), sτ (M) = τ2

2 〈∆f∗
M

,∆f∗
M
〉f∗

M
. For the

three versions of steps (Fig. 11) the entropy gain σ = s(f1) − S(IS(Θτ (f0)))
in the main order in τ is:
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(f0)

f1

= /2

f0

(f0)

f1

> /2

*
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*
M

Fig. 11. The Ehrenfests’ limit of dissipation: three possible links of a dissipative
chain: overrelaxation, κ(M) < τ

2
(〈σ〉 = sτ − 2

√
sτ 〈s0〉), Ehrenfests’ chain, κ(M) =

τ
2

(σ = sτ ), and underrelaxation, κ(M) > τ
2

(〈σ〉 = sτ + 2
√

sτ 〈s0〉).

• For overrelaxation (κ(M) < τ
2 ) σ = sτ + s0 − s1 − 2

√
sτs0;

• For the Ehrenfests’ chain (full relaxation, κ(M) = τ
2 ) s0 = s1 = 0 and

σ = sτ ;
• For underrelaxation (κ(M) > τ

2 ) σ = sτ + s0 − s1 + 2
√

sτs0.

After averaging in successive steps, the term s0 − s1 tends to zero, and
we can write the estimate of the average entropy gain 〈σ〉: for overrelaxation
〈σ〉 = sτ − 2

√
sτ 〈s0〉 and for underelaxation 〈σ〉 = sτ + 2

√
sτ 〈s0〉.

In the really interesting physical problems the kinetic coefficient κ(M)
is non-constant in space. Macroscopic variables M are functions of space,
κ(M) is also a function, and it is natural to take a space-dependent step of
macroscopic entropy production σ(M). It is possible to organize the involu-
tion (incomplete involution) step at different points with different density of
entropy production step σ.

Which entropy rules the kinetic model?

For linear kinetic equations, for example, for the free flight equation (42) there
exist many concave Lyapunov functionals (for dissipative systems) or integrals
of motion (for conservative systems), see, for example, (4).

There are two reasonable conditions for entropy choice: additivity with
respect to joining of independent systems, and trace form (sum or integral of
some function h(f, f∗)). These conditions select a one-parametric family [43,
44], a linear combination of the classical Boltzmann–Gibbs–Shannon entropy
with h(f) = −f ln f and the Burg Entropy with h(f) = ln f , both in the
Kullback form:

Sα = −α

∫
f ln

f

f∗
dΓ (x) + (1 − α)

∫
f∗ ln

f

f∗
dΓ (x),

where 1 ≥ α ≥ 0, and f∗dΓ is invariant measure. Singularity of the Burg term
for f → 0 provides the positivity preservation in all entropic involutions.
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If we weaken these conditions and require that there exists such a mono-
tonic (nonlinear) transformation of entropy scale that in one scale entropy is
additive, and in transformed one it has a trace form, then we get additionally
a family of Renyi–Tsallis entropies with h(f) = 1−fq

1−q [44] (these entropies and

their applications are discussed in details in [45]).
Both the Renyi–Tsallis entropy and the Burge entropy are in use in the

entropic lattice Boltzmann methods from the very beginning [46, 89]. The
connection of this entropy choice with Galilei invariance is demonstrated in
[46].

Elementary examples

In the most popular and simple example, the conservative formal kinetic
equations (12) is the free flight equation (42). Macroscopic variables M are
the hydrodynamic fields: n(x) =

∫
f(x,v) dv, n(x)u(x) =

∫
vf(x,v) dv,

3n(x)kBT/2m = 1
2

∫
v2f(x,v) dv − 1

2n(x)u2(x), where m is particle mass.
In 3D at any space point we have five independent variables.

For a given value of five macroscopic variables M = {n,u, T} (3D), the
quasi-equilibrium distribution is the classical local Maxwellian:

f∗
M (x,v) = n

(
2πkBT

m

)−3/2

exp

(
−m(v − u)2

2kBT

)
, (67)

The standard choice of entropy for this example is the classical Boltzmann–
Gibbs–Shannon entropy (5) with entropy density s(x). All the involution op-
erations are performed pointwise: at each point x we calculate hydrodynamic
moments M , the correspondent local Maxwellian (67) f∗

M , and find the en-
tropic inversion at this point with the standard entropy. For dissipative chains,
it is useful to take the dissipation (the entropy density gain in one step) pro-
portional to the S(M) − S(f), and not with fixed value.

The special variation of the discussed example is the free flight with finite
number of velocities: f(x,v) =

∑
i fi(x)δ(v−vi). Free flight does not change

the set of velocities {v1, . . . . . . vn}. If we define entropy, then we can define an
equilibrium distribution for this set of velocity too. For the entropy definition
let us substitute δ-functions in expression for f(x,v) by some “drops” with
unite volume, small diameter, and fixed density that may depend on i. After
that, the classical entropy formula unambiguously leads to expression:

s(x) = −
∑

i

fi(x)

(
ln

fi(x)

f0
i

− 1

)
. (68)

This formula is widely known in chemical kinetics (see elsewhere, for exam-
ple [34–36]). After classical work of Zeldovich [37] (1938), this function is
recognized as a useful instrument for analysis of chemical kinetic equations.
Vector of values f0 = f0

i gives us a “particular equilibrium:” for M = m(f0)
the conditional equilibrium (s → max, M = m(f0)) is f0. With entropy (68)
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we can construct all types of conservative and dissipative chains for discrete
set of velocities. If we need to approximate the continuous local equilibria and
involutions by our discrete equilibria and involutions, then we should choose
a particular equilibrium distribution

∑
i f0

i δ(v − vi) in velocity space as an
approximation to the Maxwellian f∗0(v) with correspondent value of macro-
scopic variables M0 calculated for the discrete distribution f0: n =

∑
i f0

i ,
... This approximation of distributions should be taken in the weak sense. It
means that vi are nodes, and f0

i are weights for a cubature formula in 3D
space with weight f∗0(v):

∫
p(v)f∗0(v) dv ≈

∑

i

p(vi)f
0
i . (69)

There exist a huge population of cubature formulas in 3D with Gaussian
weight that are optimal in various senses [95]. Each of them contains a hint
for a choice of nodes vi and weights f0

i for the best discrete approximation of
continuous dynamics. Applications of this entropy (68) to the lattice Boltz-
mann models are developed in [93].

There is one more opportunity to use entropy (68) and related involutions
for discrete velocity systems. If for some of components fi = 0, then we can
find the correspondent positive equilibrium, and perform the involution in the
whole space. But there is another way: if for some of velocities fi = 0, then we
can reduce the space, and find an equilibrium for non-zero components only,
for the shortened list of velocities. These boundary equilibria play important
role in the chemical thermodynamic estimations [96].

This approach allows us to construct systems with variable in space set
of velocities. There could be “soft particles” with given velocities, and the
density distribution in these particles changes only when several particles
collide. In 3D for the possibility of a non-trivial equilibrium that does not
obligatory coincide with the current distribution we need more than 5 different
velocity vectors, hence, a non-trivial collision (≈ entropic inversion) is possible
only for 6 one-velocity particles. If in a collision participate 5 one-velocity
particles or less, then they are just transparent and don’t interact at all. For
more moments, if we add some additional fields (stress tensor, for example),
the number of velocity vectors that is necessary for non-trivial involution
increases.

Lattice Boltzmann models: lattice is not a tool for discretization

In this section, we presented the theoretical backgrounds of kinetic modeling.
These problems were discussed previously for development of lattice Boltz-
mann methods in computational fluid dynamics. The “overrelaxation” ap-
peared in [88]. In papers [90, 91] the overrelaxation based method for the
Navier–Stokes equations was further developed, and the entropic involution
was invented in [89]. Due to historical reasons, we propose to call it the Karlin–
Succi involution. The problem of computational stability of entropic lattice
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Boltzmann methods was systematically analyzed in [93,94]. H-theorem for lat-
tice Boltzmann schemes was presented with details and applications in [92].
For further discussion and references we address to [19].

In order to understand links from the Ehrenfests’ chains to the lattice
Boltzmann models, let us take the model with finite number of velocity vec-
tors and entropy (68). Let the velocities from the set {v1, . . . . . . vn} be auto-
morphisms of some lattice L: L + vi = L. Then the restriction of free flight
in time τ on the functions on the lattice τL is exact. It means that the free
flight shift in time τ , f(x, v) 7→ f(x − vτ, v) is defined on functions on the
lattice, because viτ are automorphisms of τL. The entropic involution (com-
plete or incomplete one) acts pointwise, hence, the restriction of the chains
on the lattice τL is exact too. In that sense, the role of lattice here is essen-
tially different from the role of grid in numerical methods for PDE. All the
discretization contains in the velocity set {v1, . . . . . . vn}, and the accuracy of
discretization is the accuracy of cubature formulas (69).

The lattice τL is a tool for presentation of velocity set as a subset of L

automorphism group. At the same time, it is a perfect screen for presentation
of the chain dynamics, because restriction of that dynamics on this lattice is
an autonomous dynamic of lattice distribution. (Here we meet a rather rare
case of exact model reduction.)

The boundary conditions for the lattice Boltzmann models deserve special
attention. There were many trials of non-physical conditions until the proper
(and absolutely natural) discretization of well-known classical kinetic bound-
ary conditions (see, for example, [80]) were proposed [97]. It is necessary and
sufficient just to describe scattering of particles on the boundary with maxi-
mal possible respect to the basic physics (and given proportion between elastic
collisions and thermalization).

3 Coarse-graining by filtering

The most popular area for filtering applications in mathematical physics is
the Large Eddy Simulation (LES) in fluid dynamics [17]. Perhaps, the first
attempt to turbulence modeling was done by Boussinesq in 1887. After that,
Taylor (1921, 1935, 1938) and Kolmogorov (1941) have provided the bases of
the statistical theory of turbulence. The Kolmogorov theory of turbulence self
similarity inspired many attempts of so-called subgrid-scale modeling (SGS
model): only the large scale motions of the flow are solved by filtering out the
small and universal eddies. For the dynamic subgrid-scale models a filtering
step is required to compute the SGS stress tensor. The filtering a hydrody-
namic field is defined as convoluting the field functions with a filtering kernel,
as it is done in electrical engineering:

{n, nu, nT}(x) =

∫
G(x − y){n, nu, nT}(y) dy. (70)
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Various filter kernels are in use. Most popular of them are:

1. The box filter G(x) = H(∆/2 − |x|)/∆;
2. The Gaussian filter G(x) = 1

∆

√
6/π exp (−6x2/∆2),

where ∆ is the filter width (for the Gaussian filter, ∆/2 =
√

3σ, this conven-
tion corresponds to 91.6% of probability in the interval [−∆/2,+∆/2] for the
Gaussian distribution) , H is the Heaviside function, G(x) =

∏
i G(xi).

In practical applications, implicit filtering is sometimes done by the grid
itself. This filtering by grids should be discussed in context of the Whittaker–
Nyquist–Kotelnikov–Shannon sampling theory [98,99]. Bandlimited functions
(that is, functions which Fourier transform has compact support) can be ex-
actly reconstructed from their values on a sufficiently fine grid by the Nyquist-
Shannon interpolation formula and its multidimensional analogues. If, in 1D,
the Fourier spectrum of f(x) belongs to the interval [−kmax, kmax], and the
grid step h is less than π/kmax (it is, twice less than the minimal wave length),
then this formula gives the exact representation of f(x) for all points x:

f(x) =

+∞∑

n=−∞

f(nh)sinc
(
π

[x

h
− n

])
, (71)

where sinc(x) = sin x
x . That interpolation formula implies an exact differenti-

ation formula in the nodes:

df(x)

dx

∣∣∣∣
x=nh

= 2π
∞∑

k=1

(−1)k+1 f((n + k)h) − f((n − k)h)

2kh
. (72)

Such “long tail” exact differentiation formulas are useful under assumption
about bounded Fourier spectrum.

As a background for SGS modeling, the Boussinesq hypothesis is widely
used. This hypothesis is that the turbulent terms can be modeled as di-
rectly analogues to the molecular viscosity terms using a “turbulent viscosity.”
Strictly speaking, no hypothesis are needed for equation filtering, and below a
sketch of exact filtering theory for kinetic equations is presented. The idea of
reversible regularization without apriory closure assumptions in fluid dynam-
ics was proposed by Leray [13]. Now it becomes popular again [100,102,103].

3.1 Filtering as auxiliary kinetics

Idea of filtering in kinetics

The variety of possible filters is too large, and we need some fundamental
conditions that allow to select physically reasonable approach.

Let us start again from the formal kinetic equation (12) df/dt = J(f)
with concave entropy functional S(f) that does not increase in time and is
defined in a convex subset U of a vector space E.

The filter transformation Φ∆ : U → U , where ∆ is the filter width, should
satisfy the following conditions:
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1. Preservation of conservation laws: for any basic conservation law of the
form C[f ] = const filtering does not change the value C[f ]: C[Φ∆(f)] =
C[f ]. This condition should be satisfied for the whole probability or for
number of particles (in most of classical situations), momentum, energy,
and filtering should not change the center of mass, this is not so widely
known condition, but physically obvious consequence of Galilei invariance.

2. The Second Law (entropy growth): S(Φ∆(f)) ≥ S(f).

It is easy to check the conservation laws for convoluting filters (70), and here
we find the first benefit from the kinetic equation filtering: for usual kinetic
equations and all mentioned conservation laws functionals C[f ] are linear,
and the conservation preservation conditions are very simple linear restric-
tions on the kernel G (at least, far from the boundary). For example, for the
Boltzmann ideal gas distribution function f(x,v), the number of particles,
momentum, and energy conserve in filtering f(x,v) =

∫
G(x − y)f(y,v) dy,

if
∫

G(x) dx = 1; for the center of mass conservation we need also a symmetry
condition

∫
xG(x) dx = 0. It is necessary to mention that usual filters extend

the support of distribution, hence, near the boundary the filters should be
modified, and boundary can violate the Galilei invariance, as well, as momen-
tum conservation. We return to these problems in this paper later.

For continuum mechanics equations, energy is not a linear functional, and
operations with filters require some accuracy and additional efforts, for ex-
ample, introduction of spatially variable filters [101]. Perhaps, the best way
is to lift the continuum mechanics to kinetics, to filter the kinetic equation,
and then to return back to filtered continuum mechanics. On kinetic level,
it becomes obvious how filtering causes the redistribution of energy between
internal energy and mechanical energy: energy of small eddies and of other
small-scale inhomogeneities partially migrates into internal energy.

Filtering semigroup

If we apply the filtering twice, it should lead just just to increase of the filter
width. This natural semigroup condition reduces the set of allowed filters
significantly. The approach based on filters superposition was analyzed by
Germano [15] and developed by many successors. Let us formalize it in a form

Φ∆′(Φ∆(f)) = Φ∆′′(f), (73)

where ∆′′(∆′,∆) is a monotonic function, ∆′′ ≥ ∆′ and ∆′′ ≥ ∆.
The semigroup condition (73) holds for the Gaussian filter with ∆′′2 =

∆′2 +∆2, and does not hold for the box filter. It is convenient to parameterize
the semigroup {Φ∆|∆ ≥ 0} by an additive parameter η ≥ 0 (“auxiliary time”):
∆ = ∆(η), Φη ◦ Φη′ = Φη+η′ , Φ0 = id. Further we use this parameterization.

Auxiliary kinetic equation

The filtered distribution f(η) = Φη(f0) satisfies differential equation
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df(η)

dη
= φ(f(η)), where φ(f) = lim

η→0

Φη(f) − f

η
. (74)

For Gaussian filters this equation is the simplest diffusion equation df(η)/dη =
∆f (here ∆ is the Laplace operator).

Due to physical restrictions on possible filters, auxiliary equation (74) has
main properties of kinetic equations: it respects conservation laws and the
Second Law. It is also easy to check that in the whole space (without boundary
effects) diffusion, for example, does not change the center of mass.

So, when we discuss filtering of kinetics, we deal with two kinetic equations
in the same space, but in two times t and η: initial kinetics (12) and filtering
equation (74). Both have the same conservation laws and the same entropy.

3.2 Filtered kinetics

Filtered kinetic semigroup

Let Θt be the semigroup of the initial kinetic phase flow. We are looking for
kinetic equation that describes dynamic of filtered distribution Φηf for given
η. Let us call this equation with correspondent dynamics the filtered kinetics.
It is the third kinetic equation in our consideration, in addition to the initial
kinetics (12) and the auxiliary filtering kinetics (74). The natural phase space
for this filtered kinetics is the set of filtered distributions Φη(U). For the phase
flow of the filtered kinetics we use notation Ψ(η) t This filtered kinetics should
be the exact shadow of the true kinetics. It means that the motion Ψ(η) t(Φηf0)
is the result of filtering of the true motion Θt(f0): for any f0 ∈ U and t > 0

Ψ(η) t(Φηf0) = Φη(Θt(f0)). (75)

This equality means that

Ψ(η) t = Φη ◦ Θt ◦ Φ−η (76)

The transformation Φ−η is defined on the set of filtered distributions Φη(U),
as well as Ψ(η) t is. Now it is necessary to find the vector field

ψ(η)(f) =
dΨ(η) t(f)

dt

∣∣∣∣
t=0

on the base of conditions (75), (76). This vector field is the right-hand side of
the filtered kinetic equations

df

dt
= ψ(η)(f). (77)

From (76) immediately follows:
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dψ(η)(f)

dη
= (Dfφ(f))ψ(η)(f) − (Dfψ(η)(f))φ(f) = [ψ(η), φ](f), (78)

where [ψ, φ] is the Lie bracket of vector fields.
In the first approximation in η

ψ(η)(f) = J(f)+η((Dfφ(f))J(f)− (DfJ(f))φ(f)) = J(f)+η[J, φ](f), (79)

the Taylor series expansion for ψ(η)(f) is

ψ(η)(f) = J(f) + η[J, φ](f) +
η2

2
[[J, φ], φ](f) + . . . +

ηn

n!
[. . . [J, φ], ...φ]︸ ︷︷ ︸

n

(f) + . . .

(80)
We should stress again that filtered equations (77) with vector field ψ(η)(f)
that satisfies (78) is exact and presents just a shadow of the original kinetics.
Some problems may appear (or not) after truncating the Taylor series (80),
or after any other approximation.

So, we have two times: physical time t and auxiliary filtering time η, and
four different equations of motion in these times:

• initial equation (12) (motion in time t),
• filtering equation (74) (motion in time η),
• filtered equation (77) (motion in time t),
• and equation for the right hand side of filtered equation (78) (motion in

time η).

Toy example: advection + diffusion

Let us consider kinetics of system that is presented by one scalar density in
space (concentration), with only one linear conservation law, the total number
of particles.

In the following example the filtering equation (74) is

∂f(x, η)

∂η
= ∆f(x, η) (= φ(f)). (81)

The differential of φ(f) is simply the Laplace operator ∆. The correspondent
3D heat kernel (the fundamental solution of (81)) is

K(η,x − ξ) =
1

(4πη)3/2
exp

(
− (x − ξ)2

4η

)
. (82)

After comparing this kernel with the Gaussian filter we find the filter width
∆ =

√
24η.

Here we consider the diffusion equation (81) in the whole space with zero
conditions at infinity. For other domains and boundary conditions the filtering
kernel is the correspondent fundamental solution.
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The equation for the right hand side of filtered equation (78) is

dψ(η)(f)

dη
= ∆(ψ(η)(f)) − (Dfψ(η)(f))(∆f) (= [ψ, φ](f)). (83)

For the toy example we select the advection + diffusion equation

∂f(x, t)

∂t
= κ∆f(x, t) − div(v(x)f(x, t)) (= J(f)). (84)

where κ > 0 is a given diffusion coefficient, v(x) is a given velocity field. The
differential DfJ(f) is simply the differential operator from the right hand
side of (84), because this vector field is linear. After simple straightforward
calculation we obtain the first approximation (79) to the filtered equation:

[J, φ](f) = ∆(J(f)) − (DfJ(f))(∆f) = −∆[div(vf)] + div(v∆f) (85)

= div[v∆f − ∆(vf)] = −div

[
f∆v + 2

∑

r

∂v

∂xr

∂f

∂xr

]

= −div(f∆v) −
∑

i

∂

∂xi

[
∑

r

(
∂vi

∂xr
+

∂vr

∂xi

)
∂f

∂xr

−
∑

r

∂f

∂xr

(
∂vi

∂xr
− ∂vr

∂xi

)]

= −
∑

i

∂

∂xi

[
∑

r

(
∂vi

∂xr
+

∂vr

∂xi

)
∂f

∂xr

]
−

∑

r

∂

∂xr

(
f

∂divv

∂xr

)
.

The resulting equations in divergence form are

∂f(x, t)

∂t
= J(f) + η[J, φ](f) (86)

= −div

(
−κ∇f + (v + η∆v)f + 2η

∑

r

∂v

∂xr

∂f

∂xr

)

= div((κ − 2ηS(x))∇f(x, t)) − div((v(x) + η∇divv(x))f(x, t)),

where S(x) = (Sij) = 1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
is the strain tensor. In filtered equations

(86) the additional diffusivity tensor −2ηS(x) and the additional velocity
η∇divv(x) are present. The additional diffusivity tensor −2ηS(x) may be
not positive definite. The positive definiteness of the diffusivity tensor κ −
2ηS(x) may be also violated. For arbitrary initial condition f0(x) it may
cause some instability problems, but we should take into account that the
filtered equations (86) are defined on the space of filtered functions for given
filtering time η. On this space the negative diffusion (∂tf = −∆f) is possible
during time η. Nevertheless, the approximation of exponent (80) by the linear
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term (79) can violate the balance between smoothed initial conditions and
possible negative diffusion and can cause some instabilities.

Some numerical experiments with this model (86) for incompressible flows
(divv = 0) are presented in [103].

Let us discuss equation (83) in more details. We shall represent it as the
dynamics of the filtered advection flux vector Π. The filtered equation for
any η should have the form: ∂f/∂t = −div(−κ∇f + Π(f)), where

Π(f) =




∑

j1,j2,j3≥0

aj1j2j3(x, η)∂j1j2j3
x


 f(x), (87)

where

∂j1j2j3
x =

(
∂

∂x1

)j1 (
∂

∂x2

)j2 (
∂

∂x3

)j3

(88)

For coefficients aj1j2j3(x, η) equation (83) is

∂aj1j2j3(x, η)

∂η
= ∆aj1j2j3(x, η) (89)

+ 2
∂aj1−1 j2j3(x, η)

∂x1
+ 2

∂aj1j2−1 j3(x, η)

∂x2
+ 2

∂aj1j2j3−1(x, η)

∂x3
.

The initial conditions are: a000(x, 0) = v(x), aj1j2j3(x, 0) = 0 if at least one
of jk > 0. Let us define formally aj1j2j3(x, η) ≡ 0 if at least one of jk is
negative.

We shall consider (89) in the whole space with appropriate conditions at
infinity. There are many representation of solution to this system. Let us use
the Fourier transformation:

∂âj1j2j3(k, η)

∂η
= −k2âj1j2j3(k, η) (90)

+2i(k1âj1−1 j2j3(k, η) + k2âj1j2−1 j3(k, η) + k3âj1j2j3−1(k, η)).

Elementary straightforward calculations give us:

âj1j2j3(k, η) = (2iη)|j|e−k2η kj1
1 kj2

2 kj3
3

j1!j2!j3!
v̂(k), (91)

where |j| = j1 + j2 + j3. To find this answer, we consider all monotonic
paths on the integer lattice from the point (0, 0, 0) to the point (j1, j2, j3). In
concordance with (90), every such a path adds a term

(2iη)|j|

|j|! e−k2ηkj1
1 kj2

2 kj3
3 v̂(k)

to âj1j2j3(k, η). The number of these paths is |j|!/(j1!j2!j3!).
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The inverse Fourier transform gives

aj1j2j3(x, η) = (2η)|j|−3/2 ∂j1j2j3
x

j1!j2!j3!

∫
exp− (x − y)2

4η
v(y) dy. (92)

Finally, for Π we obtain

Π(f) (93)

=
∑

j1,j2,j3≥0

(2η)|j|−3/2

j1!j2!j3!

(
∂j1j2j3

x

∫
exp− (x − y)2

4η
v(y) dy

)
∂j1j2j3

x f(x).

By the way, together with (93) we received the following formula for the
Gaussian filtering of products [103]. If the semigroup Φη is generated by the
diffusion equation (81), then for two functions f(x), g(x) in Rn (if all parts
of the formula exist):

Φη(fg) =
∑

j1,j2,...jn≥0

(2η)|j|−n/2

j1!j2! . . . jn!
(∂j1j2...jn

x Φη(f))(∂j1j2...jn
x Φη(g)). (94)

Generalization of this formula for a broader class of filtering kernels for con-
volution filters is described in [16]. This is simply the Taylor expansion of the
Fourier transformation of the convolution equality Ψt = Φ ◦ Θt ◦ Φ−1, where
Φ is the filtering transformation (see (76)).

For filtering semigroups all such formulas are particular cases of the com-
mutator expansion (80), and calculation of all orders requires differentiation
only. This case includes non-convolution filtering semigroups also (for exam-
ple, solutions of the heat equations in a domain with given boundary condi-
tions, it is important for filtering of systems with boundary conditions), as
well as semigroups of non-linear kinetic equation.

Nonlinear filtering toy example

Let us continue with filtering of advection + diffusion equation (84) and accept
the standard assumption about incompressibility of advection flow v: divv =
0. The value of density f does not change in motion with the advection flow,
and for diffusion the maximum principle exists, hence, it makes sense to study
bounded solutions of (84) with appropriate boundary conditions, or in the
whole space. Let us take max f < A. This time we use the filtering semigroup

∂f(x, η)

∂η
= −div(−(A − f)∇f) = (A − f)∆f(x, η) − (∇f)2 (= φ(f)). (95)

This semigroup has slightly better properties of reverse filtering (at least, no
infinity in values of f). The first-order filtered equation (79) for this filter is
(compare to (85):
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∂f(x, t)

∂t
= J(f) + η[J, φ](f) (96)

= −div[−κ∇(f + η(∇f)2) + 2η(A − f)S∇f + vf ].

Here, S is the strain tensor, the term −2η(A− f)S is the additional (nonlin-
ear) tensor diffusivity, and the term ηκ∇(∇f)2 describes the flux from areas
with high f gradient. Because this flux vanishes near critical points of f , it
contributes to creation of a patch structure.

In the same order in η, it is convenient to write:

∂f(x, t)

∂t
= −div[−(κ − 2η(A − f)S)∇(f + η(∇f)2) + vf ].

The nonlinear filter changes not only the diffusion coefficient, but the
correspondent thermodynamic force also: instead of −∇f we obtain −∇(f +
η(∇f)2). This thermodynamic force depends on f gradient and can participate
in the pattern formation.

LES + POD filters

In the title, LES stands for Large Eddy Simulation, as it is before, and POD
stands for Proper Orthogonal Decomposition. POD [104] is an application of
principal component analysis [105] for extraction of main components from
the flow dynamics. The basic procedure is quite simple. The input for POD is
a finite set of flow images (a sample) {f1, . . . , fn}. These images are functions
in space, usually we have the values of these function on a grid. In the space of
functions an inner product is given. The first choice gives the L2 inner product∫

fg dx, or energetic one, or one of the Sobolev’s space inner products. The
mean point ψ0 =

∑
i fi/n minimizes the sum of distance squares

∑
i(fi−ψ0)

2.
The first principal component ψ1 minimizes the sum of distance squares from
points fi to a straight line {ψ0+αψ1 | α ∈ R}, the second principal component,
ψ2, is orthogonal to ψ1 and minimizes the sum of distance squares from points
fi to a plain {ψ0 + α1ψ1 + α2ψ2 | α1,2 ∈ R}, and so on. Vectors of principal
components ψi are the eigenvectors of the sample covariance matrix Σ, sorted
by decreasing eigenvalue λi, where

Σ =
1

n

∑

i

(fi − ψ0) ⊗ (fi − ψ0)
T =

1

n

∑

i

|fi − ψ0〉〈fi − ψ0|. (97)

The projection of a field f on the plane of the k first principal components
is ψ0 + Pk(f), where Pk is the orthogonal projector on the space spanned by
the first k components:

Pk(φ) =
∑

1≤j≤k

ψj(ψj , φ). (98)

The average square distance from the sample points fi to the plane of the k
first principal components is
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σ2
j =

∑

j>k

λj = trΣ −
∑

1≤j≤k

λj

(
trΣ =

1

n

∑

i

(fi − ψ0)
2

)
. (99)

This number, σj , measures the accuracy of substitution of the typical (in
this sample) field f by its projection on the plane of the k first principal
components.

Among many applications of POD in fluid dynamics at least two have
direct relations to the coarse-graining:

• Postprocessing, that is, analysis of an experimentally observed or numer-
ically computed flow regime in projection on the finite-dimensional space
of the first principal components;

• Creation of “optimal” Galerkin approximations (Galerkin POD, [106]). In
this approach, after finding principal components from sampled images
of flow, we project the equations on the first principal components, and
receive a reduced model.

In addition to radical and irreversible step from initial equations to Galerkin
POD, we can use POD filtering semigroup. It suppresses the component of
field orthogonal to selected k first principal components, but makes this re-
versibly. The filtering semigroup is generated by auxiliary equation

df(η)

dη
= φ(f(η)) = −(1 − Pk)(f − ψ0). (100)

The filter transformation in explicit form is

Uη(f) = ψ0 + (Pk + e−η(1 − Pk))(f − ψ0). (101)

with explicit reverse transformation U−η.

For equations of the form (12) ḟ = J(f), the POD filtered equations are

df

dt
= (DfUη(f))U−η(f)(J(U−η(f))) = (Pk + e−η(1 − Pk))(J(U−ηf)). (102)

These equations have nonconstant in space coefficients, because Pk is com-
bined from functions ψi. They are also non-local, because Pk includes integra-
tion, but this non-locality appears in the form of several inner products (mo-
ments) only. Of course, this approach can be combined with usual filtering,
nonlinear Galerkin approximations [107], and non-linear principal manifold
approaches [108].

Main example: the BGK model kinetic equation

The famous BGK model equation substitutes the Boltzmann equation in all
cases when we don’t care about exact collision integral (and it is rather often,
because usually it is difficult to distinguish our knowledge about exact collision
kernel from the full ignorance).
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For the one-particle distribution function f(x,v, t) the BGK equation
reads:

∂f(x,v, t)

∂t
+

∑

i

vi
∂f(x,v, t)

∂xi
=

1

τcol
(f∗

m(f)(x,v) − f(x,v, t)), (103)

where m(f) = M(t) is the cortege of the hydrodynamic fields that corresponds
to f(x,v, t), and f∗

m(f) is the correspondent local Maxwellian. Let us rescale
variables x, v, t: we shall measure x in some characteristic macroscopic units
L, v in units of thermal velocity vT for a characteristic temperature, t in units
L/vT . Of course, there is no exact definition of the “characteristic time” or
length, but usually it works if not take it too serious. After rescaling, the BGK
equation remains the same, only the parameter becomes dimensionless:

∂f(x,v, t)

∂t
+

∑

i

vi
∂f(x,v, t)

∂xi
=

1

Kn
(f∗

m(f)(x,v) − f(x,v, t)), (104)

where Kn = l/L is the dimensionless Knudsen number (and l is the mean–
free–path). It is the small parameter in the kinetics – fluid dynamics transition.
If the Kn & 1 then the continuum assumption of fluid mechanics is no longer
a good approximation and kinetic equations must be used.

It is worth to mention that the BGK equation is non-linear. The term
f∗

m(f) depends non-linearly on moments m(f), and, hence, on the distribution

density f too. And f∗
m(f) is the only term in (103) that don’t commute with

the Laplace operator from the filtering equation (81). All other terms do not
change after filtering.

According to (79), in the first order in η the filtered BGK equation is

∂f

∂t
+

∑

i

vi
∂f

∂xi
(105)

=
1

Kn
(f∗

m(f) − f) +
η

Kn
(D2

Mf∗
M )M=m(f)(∇M,∇M)M=m(f).

The last notation may require some explanations: (D2
Mf∗

M ) is the second dif-
ferential of f∗

M , for the BGK model equation it is a quadratic form in R5 that
parametrically depends on moment value M = {M0,M1,M2,M3,M4}. In the
matrix form, the last expression is

(D2
Mf∗

M )M=m(f)(∇M,∇M)M=m(f) (106)

=

3∑

r=1

4∑

i,j=0

(
∂2f∗

M

∂MiMj

)

M=m(f)

∂Mi

∂xr

∂Mj

∂xr
.

This expression depends on the macroscopic fields M only. From identity
(20) it follows that the filtering term gives no inputs in the quasi-equilibrium
approximation, because m(D2

Mf∗
M ) = 0.
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This fact is a particular case of the general commutation relations for
general quasi-equilibrium distributions. Let a linear operator B acts in the
space of distributions f , and there exists such a linear operator b which acts
in the space of macroscopic states M that mB = bm. Then

m(Bf∗
m(f) − (Dff∗

m(f))(Bf)) = 0. (107)

This means that the macroscopic projection of the Lie bracket for the vector
fields of equations ∂ηf = Bf (a field φ) and ∂tf = f∗

m(f) − f (a field θ) is

zero: m([θ, φ]) = 0.5 These commutation relations follow immediately from
the self-consistency identities (18), (19), if we use relations mB = bm to
carry m through B. In the case of BGK equation, relations (107) hold for
any linear differential or pseudodifferential operator B = Q(x, ∂/∂x) that
acts on functions of x. In this case, b = B, if we use the same notation for
differentiation of functions and of vector-functions.

Relations (107) imply a result that deserves special efforts for physical
understanding: the filtered kinetic equations in zero order in the Knudsen
number produce the classical Euler equations for filtered hydrodynamic fields
without any trace of the filter terms. At the same time, direct filtering of the
Euler equation adds new terms.

To obtain the next approximation we need the Chapman–Enskog method
for equation (105). We developed a general method for all equations of this
type (29), and now apply this method to the filtered BGK equation. Let us
take in (26) ǫ = Kn, F (f) = F0(f) + Ffilt(f), where F0 = −v∂/∂x is the free
flight operator and

Ffilt(f) =
η

Kn
(D2

Mf∗
M )M=m(f)(∇M,∇M)M=m(f). (108)

In these notations, for the zero term in the Chapman–Enskog expansion we

have f
(0)
M = f∗

M , and for the first term

f
(1)
M = fNS

M + ffilt
M = ∆NS

f∗
M

+ ∆filt
f∗

M
, (109)

fNS
M = ∆NS

f∗
M

= F0(f
∗
M ) − (DMf∗

M )(m(F0(f
∗
M )))

ffilt
M = ∆filt

f∗
M

= Ffilt(f) (because m(Ffilt(f)) = 0),

where NS stands for Navier–Stokes. The correspondent continuum equations
(30) are

dM

dt
= m(F0(f

∗
M )) + Kn m(F0(∆

NS
f∗

M
+ ∆filt

f∗
M

)). (110)

Here, the first term includes non-dissipative terms (the Euler ones) of the
Navier–Stokes equations, and the second term includes both the dissipative
terms of the Navier–Stokes equations and the filtering terms. Let us collect
all the classical hydrodynamic terms together:

5 The term −f gives zero input in these Lie brackets for any linear operator B.
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∂M(x, t)

∂t
= . . . . . . . . . . . .︸ ︷︷ ︸

NS terms

+Kn m

(
v

∂

∂x
Ffilt(f)

)
(111)

= . . . . . . . . . . . .︸ ︷︷ ︸
NS terms

+ηm


v

∂

∂x

3∑

r=1

4∑

i,j=0

∂2f∗
M

∂MiMj

∂Mi

∂xr

∂Mj

∂xr


 ,

The NS terms here are the right hand sides of the Navier–Stokes equations
for the BGK kinetics (45) (with τ = 2τcol = 2Kn). Of course, (111) is one of
the tensor viscosity – tensor diffusivity models. Its explicit form for the BGK
equation and various similar model equations requires several quadratures:

Cij = m


v

∂

∂x

3∑

r=1

4∑

i,j=0

∂2f∗
M

∂MiMj


 (112)

(for the Maxwell distributions f∗
M that are just Gaussian integrals).

Entropic stability condition for the filtered kinetic equations

Instability of filtered equations is a well-known problem. It arises because
the reverse filtering is an ill-posed operation, the balance between filter and
reverse filter in (76) may be destroyed by any approximation, as well as a
perturbation may move the hydrodynamic field out of space of pre-filtered
fields. (And the general filtered equations are applicable for sure in that space
only.)

Analysis of entropy production is the first tool for stability check. This is a
main thermodynamic realization of the Lyapunov functions method (invented
in physics before Lyapunov).

The filtration term Ffilt(f) (108) in the filtered BGK equation (105) does
not produce the Boltzmann (i.e. macroscopic) entropy S(f∗

m(f)), but is not
conservative. In more details:

1. (DMS(f∗
M ))(m(Ffilt(f

∗
m(f)))) ≡ 0, because m(Ffilt(f)) ≡ 0;

2. (DfS(f))f∗
m(f)

(Ffilt(f
∗
m(f))) = (DMS(f∗

M ))(m(Ffilt(f
∗
m(f)))) ≡ 0;

3. (DfS(f))f∗
m(f)

(Ffilt(f)) = (DfS(f))f∗
m(f)

(Ffilt(f
∗
m(f))) ≡ 0, because Ffilt(f)

depends on f∗
m(f) only;

4. But for any field Ffilt(f) that depends on f∗
m(f) only, if the conservativ-

ity identity (32) (DfS(f))f (Ffilt(f)) ≡ 0 is true even in a small vicinity
of quasi-equilibria, then Ffilt(f) ≡ 0. Hence, the non-trivial filter term
Ffilt(f) cannot be conservative, the whole field F (f) = F0(f) + Ffilt(f) is
not conservative, and we cannot use the entropy production formula (31).

Instead of (31) we obtain

dS(M)

dt
= Kn〈∆NS

f∗
M

,∆NS
f∗

M
〉f∗

M
+ η〈∆NS

f∗
M

,∆filt
f∗

M
〉f∗

M
. (113)
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The entropic stability condition for the filtered kinetic equations is:

dS(M)/dt ≥ 0, i.e. Kn〈∆NS
f∗

M
,∆NS

f∗
M
〉f∗

M
+ η〈∆NS

f∗
M

,∆filt
f∗

M
〉f∗

M
≥ 0. (114)

There exists a plenty of convenient sufficient conditions, for example,

η ≤ Kn
|〈∆NS

f∗
M

,∆filt
f∗

M
〉f∗

M
|

〈∆NS
f∗

M
,∆NS

f∗
M
〉f∗

M

; or η ≤ Kn

√√√√ 〈∆filt
f∗

M
,∆filt

f∗
M
〉f∗

M

〈∆NS
f∗

M
,∆NS

f∗
M
〉f∗

M

. (115)

The upper boundary for η that guaranties stability of the filtered equa-
tions is proportional to Kn. For the Gaussian filter width ∆ this means
∆ = L

√
24η ∼

√
Kn (where L is the characteristic macroscopic length). This

scaling, ∆/L ∼
√

Kn, was discussed in [18] for moment kinetic equations be-
cause different reasons: if ∆/L ≫

√
Kn then the Chapman–Enskog procedure

is not applicable, and, moreover, the continuum description is probably not
valid, because the filtering term with large coefficient η violates the conditions
of hydrodynamic limit. This important remark gives the frame for η scaling,
and (114), (115) give the stability boundaries inside this scale.

4 Errors of Models, ε-trajectories and Stable Properties

of Structurally Unstable Systems

4.1 Phase flow, attractors and repellers

Phase flow

In this section, we return from kinetic systems to general dynamical systems,
and lose such specific tools as entropy and quasi-equilibrium. Topological dy-
namics gives us a natural language for general discussion of limit behavior and
relaxation of general dynamical systems [109]. We discuss a general dynami-
cal system as a semigroup of homeomorphisms (phase flow transformations):
Θ(t, x) is the result of shifting point x in time t.

Let the phase space X be a compact metric space with the metrics ρ,

Θ : [0,∞[×X → X (116)

be a continuous mapping for any t ≥ 0; let mapping Θ(t, ·) : X → X be
homeomorphism of X into subset of X and let these homeomorphisms form
monoparametric semigroup:

Θ(0, ·) = id, Θ(t, Θ(t′, x)) = Θ(t + t′, x) (117)

for any t, t′ ≥ 0, x ∈ X.
Below we call the semigroup of mappings Θ(t, ·) a semiflow of homeomor-

phisms (or, for short, semiflow), or simply system (116). We assume that the
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continuous map Θ(t, x) is continued to negative time t as far as it is possible
with preservation of the semigroup property (117). For phase flow we use also
notations Θt and Θt(x). For any given x ∈ X, x-motion is a function of time
Θ(t, x), x-motion is the whole motion if the function is defined on the whole
axis t ∈] −∞,∞[. The image of x-motion is the x-trajectory.

Attractors and repellers

First of all, for the description of limit behaviour we need a notion of an
ω-limit set.

A point p ∈ X is called ω- (α-)-limit point of the x-motion (correspondingly
of the whole x-motion), if there is such a sequence tn → ∞ (tn → −∞) that
Θ(tn, x) → p as n → ∞. The totality of all ω- (α-)-limit points of x-motion is
called its ω- (α-)-limit set and is denoted by ω(x) (α(x)).

A set W ⊂ X is called invariant set, if, for any x ∈ W , the x-motion is
whole and the whole x-trajectory belongs to W .

The sets ω(x), α(x) (the last in the case when x-motion is whole) are
nonempty, closed, connected, and invariant.

The set of all ω-limit points of the system ωΘ =
⋃

x∈X ω(x) is nonempty
and invariant, but may be disconnected and not closed. The sets ω(x) might
be considered as attractors, and the sets α(x) as repellers (attractors for t →
−∞). The system of these sets represents all limit behaviours of the phase
flow.

Perhaps, the most constructive idea of attractor definition combines pure
topological (metric) and measure points of view. A weak attractor [113] is a
closed (invariant) set A such that the set B(A) = {x | ω(x) ⊂ A} (a basin
of attraction) has strictly positive measure. A Milnor attractor [112] is such
a weak attractor that there is no strictly smaller closed A′ $ A so that B(A)
coincides with B(A′) up to a set of measure zero. If A is a Milnor attractor
and for any closed invariant proper subset A′ $ A the set B(A′) has zero
measure, then we say that A is a minimal Milnor attractor.

Below in this section we follow a purely topological (metric) point of view,
but keep in mind that its combination with measure–based ideas create a
richer theory.

The dream of applied dynamics

Now we can formulate the “dream of applied dynamics.” There is such a finite
number of invariant sets A1, . . . An that:

• Any attractor or repeller is one of the Ai;
• The following relation between sets A1, . . . An is acyclic: Ai º Aj if there

exists such x that α(x) = Ai and ω(x) = Aj ;
• The system A1, . . . An with the preorder Ai º Aj does not change qual-

itatively under sufficiently small perturbations of the dynamical system:
all the picture can be restored by a map that is close to id.
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For generic two-dimensional systems this dream is the reality: there is a finite
number of fixed points and closed orbits such that any motion goes to one of
them at t → ∞, and to another one at t → −∞ for a whole motion.

The multidimensional analogues of generic two-dimensional systems are
the Morse–Smale systems. For them all attractors and repellers are fixed
points or closed orbits. The relation Ai º Aj for them is the Smale order.
But the class of the Morse–Smale systems is too narrow: there are many
systems with more complicated attractors, and some of these systems are
structurally stable and do not change qualitatively after sufficiently small
perturbations.6 It is necessary to take into account that typically some of mo-
tions have smaller attractors (for example, in Ai exists a dense set of closed
orbits), and ω(x) = Aj not for all, but for almost all x. Finally, the “dream
of applied dynamics” was destroyed by S. Smale [20]. He demonstrated that
“structurally stable systems are not dense.” It means that even the last item
of this dream contradicts the multidimensional reality.

4.2 Metric coarse-graining by ε-motions

ε-motions

The observable picture must be structurally stable. Any real system exists
under the permanent perturbing influence of the external world. It is hardly
possible to construct a model taking into account all such perturbations. Be-
sides that, the model describes the internal properties of the system only
approximately. The discrepancy between the real system and the model aris-
ing from these two circumstances is different for different models. So, for the
systems of celestial mechanics it can be done very small. Quite the contrary,
for chemical engineering this discrepancy can be if not too large but not such
small to be neglected. Structurally unstable features or phase portrait should
be destroyed by such an unpredictable divergence of the model and reality.
The perturbations “conceal” some fine details of dynamics, therefore these
details become irrelevant to analysis of real systems.

There are two traditional approaches to the consideration of perturbed
motions. One of them is to investigate the motion in the presence of small
sustained perturbations [119, 120, 122], the other is the study of fluctuations
under the influence of small stochastic perturbations [32, 33]. In this section,
we join mainly the first direction.

A small unpredictable discrepancy between the real system and the dy-
namical model can be simulated by periodical “fattening.” For a set A ⊂ X
its ε-fattening is the set

Aε = {x | ρ(x, y) < ε for all y ∈ A}. (118)

6 Review of modern dynamics is presented in [110,111]
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a)
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-tube

(t, (t0))

(t0+t)

0 t

b)

-tube

( , )-motion (t)

Fragments of genuine 

motions duration

Fig. 12. An (ε, τ)-motion Θε(t0 + t) (t ∈ [0, τ ]) in the ε-tube near a genuine motion
Θ(t, Θε(t0)) (t ∈ [0, τ ]) duration τ (a), and an (ε, τ)-motion Θε(t) with fragments
of genuine motions duration τ in the ε-tube near Θε(t) (b).

Instead of one x-motion we consider motion of a set, A(t) = ΘtA, and combine
this motion with periodical ε-fattening for a given period τ . For superposition
of Θτ with ε-fattening we use the notation Θε

τ :

Θε
τA = (ΘτA)ε (119)

For t ∈ [nτ, (n+1)τ [ We need to generalize this definition for t ∈ [nτ, (n+1)τ [:

Θε
tA = Θt−nτ ((Θε

τ )nA). (120)

Analysis of these motions of sets gives us the information about dynamics
with ε-uncertainty in model. Single-point sets are natural initial conditions
for such motions.

One can call this coarse-graining the metric coarse-graining, and the Eren-
fest’s coarse-graining for dynamics of distribution function might be called
the measure coarse-graining. The concept of metric–measure spaces (mm-
spaces [123]) gives the natural framework for analysis of various sorts of
coarse-graining.

It is convenient to introduce individual ε-motions. A function of time Θε(t)
with values in X, defined at t ≥ 0, is called (ε, x)-motion (ε > 0), if Θε(0) = x
and for any t0 ≥ 0, t ∈ [0, τ ] the inequality ρ(Θε(t0 + t), Θ(t, Θε(t0))) < ε
holds. In other words, if for an arbitrary point Θε(t0) one considers its motion
due to phase flow of dynamical system, this motion will diverge Θε(t0 + t)
from no more than at ε for t ∈ [0, τ ]. Here [0, τ ] is a certain interval of time, its
length τ is not very important (it is important that it is fixed), because later
we shall consider the case ε → 0. For a given τ we shall call the (ε, x)-motion
(ε, x, τ)-motion when reference to τ is necessary. On any interval [t0, t0 +τ ] an
(ε, x, τ)-motion deviates from a genuine motion not further than on distance
ε if these motions coincide at time moment t0 (Fig. 12a). If a genuine motion
starts from a point of an (ε, x, τ)-trajectory, it remains in the ε-tube near that
(ε, τ)-motion during time τ (Fig. 12b).
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Limit sets of ε-motions

Let us study the limit behaviour of the coarse-grained trajectories Θε
tA, and

than take the limit ε → 0. For systems with complicated dynamics, this limit
may differ significantly from the limit behaviour of the original system for
ε = 0. This effect of the perturbation influence in the zero limit is a “smile of
a Cheshire cat:” the cat tends to disappear, leaving only its smile hanging in
the air.

For any Θε(t) the ω-limit set ω(Θε) is the set of all limit points of Θε(t)
at t → ∞. For any x ∈ X a set ωε(x) is a totality of all ω-limit points of all
(ε, x)-motions:

ωε(x) =
⋃

Θε(0)=x

ω(Θε).

For ε → 0 we obtain the set

ω0(x) =
⋂

ε>0

ωε(x).

Firstly, it is necessary to notice that ωε(x) does not always tend to ω(x) as
ε → 0: the set ω0(x) may not coincide with ω(x, k).

The sets ω0(x) are closed and invariant. Let x ∈ ω0(x). Then for any ε > 0
there exists periodical (ε, x)-motion (This is a version of Anosov’s C0-closing
lemma [111,114]).

The function ω0(x) is upper semicontinuous. It means that for any se-
quence xi → x all limit points of all sequences yi ∈ ω0(xi) belong to ω0(x).

In order to study the limit behaviour for all initial conditions, let us join
all ω0(x):

ω0 =
⋃

x∈X

ω0(x) =
⋃

x∈X

⋂

ε>0

ωε(x) =
⋂

ε>0

⋃

x∈X

ωε(x). (121)

The set ω0 is closed and invariant. If y ∈ ω0 then y ∈ ω0(y). If Q ⊂ ω0 and Q
is connected, then Q ⊂ ω0(y) for any y ∈ Q.7

The ε-motions were studied earlier in differential dynamics, in connection
with the theory of Anosov about ε-trajectories and its applications [114–118].
For systems with hyperbolic attractors an important ε-motion shadowing
property was discovered: for a given η > 0 and sufficiently small ε > 0 for
any ε-motion Θε(t) there exists a motion of the non-perturbed system Θ(t, x)
that belongs to η - neighborhood of Θε(t):

ρ(Θε(φ(t)), Θ(t, x)) < η,

for t > 0 and some monotonous transformation of time φ(t) (t−φ(t) = O(εt)).
The sufficiently small coarse-graining changes nothing in dynamics of systems
with this shadowing property, because any ε-motion could be approximated
uniformly by genuine motions on the whole semiaxis t ∈ [0,∞[.

7 For all proofs here and below in this section we address to [22,23].
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Preorder and equivalence generated by dynamics

Let x1, x2 ∈ X. Let us say x1 %Θ x2 if for any ε > 0 there exists such a
(ε, x1)-motion Θε(t) (Θε(0) = x1) that Θε(t0) = x2 for some t0 ≥ 0.

Let x1, x2 ∈ X. Say that points x1 and x2 are Θ-equivalent (denotation
x1 ∼Θ x2), if x1 %Θ x2 and x2 %Θ x1.

The relation %Θ is a closed Θ-invariant preorder relation on X:

• It is reflexive: x %Θ x for all x ∈ X;
• It is transitive: x1 %Θ x2 and x2 %Θ x3 implies x1 %Θ x3;
• The set of pairs (x1, x2), for which x1 ∼Θ x2 is closed in X;
• If x1 %Θ x2 then Θ(t, x1) %Θ Θ(t, x2) for any t > 0.

The necessary and sufficient conditions for the preorder %Θ relation are as
follows: x1 %Θ x2 if and only if either x2 ∈ ω0(x1) or x2 = Θ(t, x1) for some
t ≥ 0. Therefore,

ω0(x) = {y ∈ ω0 | x %Θ y} (122)

The relation ∼Θ is a closed Θ-invariant equivalence relation:

• The set of pairs (x1, x2), for which x1 ∼Θ x2 is closed in X;
• If x1 ∼ x2 and x1 6= x2, then x1- and x2-motions are whole and ∼Θ Θ(t, x2)

for any t ∈] −∞,∞[ Θ(t, x1).

If x1 6= x2, then x1 ∼Θ x2 if and only if ω0(x1) = ω0(x2) , x1 ∈ ω0(x1), and
x2 ∈ ω0(x2).

Compare with [32], where analogous theorems are proved for relations
defined by action functional for randomly perturbed dynamics.

The coarsened phase portrait

We present the results about the coarsened phase portrait as a series of the-
orems.

Let us remind, that topological space is called totally disconnected if there
exist a base of topology, consisting of sets which are simultaneously open
and closed. Simple examples of such spaces are discrete space and Cantor’s
discontinuum. In a totally disconnected space all subsets with more than one
element are disconnected. Due to the following theorem, in the coarsened
phase portrait we have a totally disconnected space instead of finite set of
attractors mentioned in the naive dream of applied dynamics.

Theorem 1. The quotient space ω0/ ∼Θ is compact and totally disconnected.

The space ω0/ ∼Θ with the factor-relation %Θ on it is the generalized
Smale diagram with the generalized Smale order on it [22,23].

Attractors and basins of attraction are the most important parts of a
phase portrait. Because of (122), all attractors are saturated downwards. The
set Y ⊂ ω0 is saturated downwards, if for any y ∈ Y ,
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{x ∈ ω0 | y %Θ x} ⊂ Y.

Every saturated downwards subset in ω0 is saturated also for the equivalence
relation ∼Θ and includes with any x all equivalent points. The following the-
orem states that coarsened attractors Y (open in ω0 saturated downwards
subsets of ω0) have open coarsened basins of attraction B0(Y ).

Theorem 2. Let Y ⊂ ω0 be open (in ω0) saturated downwards set. Then the
set B0(Y ) = {x ∈ X | ω0(x) ⊂ Y } is open in X.

There is a natural expectation that ω-limit sets can change by jumps on
boundaries of basins of attraction only. For the coarsened phase portrait it is
true.

Theorem 3. The set B of all points of discontinuity of the function ω0(x) is
the subset of first category in X.8 If x ∈ B then Θ(t, x) ∈ B for all t when
Θ(t, x) is defined.

Theorem 4. Let x ∈ X be a point of discontinuity of the function ω0(x).
Then there is such open in ω0 saturated downwards set W that x ∈ ∂B0(W ).

The function ω0(x) is upper semicontinuous, hence, in any point x∗ of
its discontinuity the lower semicontinuity is broken: there exist a point y∗ ∈
ω0(x∗), a number η > 0, and a sequence xi → x∗ such that

ρ(y∗, y) > η for any y ∈ ω0(xi) and all i.

The classical Smale order for hyperbolic systems was defined on a finite
totality A1, . . . An of basic sets that are closed, invariant, and transitive (i.e.
containing a dense orbit). Ai ≻ Aj if there exists such x ∈ X that x-trajectory
is whole, α(x) ⊂ Ai, ω(x) ⊂ Aj . Such special trajectories exist in the general
case of coarsened dynamical system also.

Theorem 5. Let X be connected, ω0 be disconnected. Then there is such x ∈
X that x-motion is whole and x 6∈ ω0. There is also such partition of ω0 that

ω0 = W1 ∪ W2, W ∩ W2 = ∅, αf (x) ⊂ W1, ω0(x) ⊂ W2,

and W1,2 are open and, at the same time, closed subsets of ω0 (it means that
W1,2 are preimages of open–closed subsets of the quotient space ω0/ ∼Θ).

This theorem can be applied, by descent, to connected closures of coarsened
basins of attraction B0(Y ) (see Theorem 2).

Theorems 1–5 give us the picture of coarsened phase portrait of a general
dynamical system, and this portrait is qualitatively close to phase portraits of
structurally stable systems: rough 2D systems, the Morse–Smale systems and
the hyperbolic Smale systems. For proofs and some applications we address
to [22,23].

8 A set of first category, or a meagre set is a countable union of nowhere dense
sets. In a complete metric space a complement of a meagre set is dense (the Baire
theorem).
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Stability of the coarsened phase portrait under smooth perturbations of vector
fields

In order to analyze stability of this picture under the perturbation of the
vector field (or the diffeomorphism, for discrete time dynamics) it is necessary
to introduce Ck ε-fattening in the space of smooth vector fields instead of
periodic ε-fattening of phase points. We shall discuss a Ck-smooth dynamical
system Θ on a compact Cm-manifold M(0 ≤ k ≤ m). Let Θt be the semigroup
of phase flow transformations (shifts in time t ≥ 0) and Uε(Θ) be the set
of phase flows that corresponds to a closed ε-neighborhood of system Θt in
the Ck-norm topology of vector fields. The positive semi-trajectory of phase
point x is a set Θ(x) = {Θt(x): t ≥ 0}. The Ck ε-fattened semi-trajectory is
Θε(x) =

⋃
Φ∈Uε(Θ) Φ(x). Let us take this set with all limits for t → ∞. It is

the closure Θε(x). After that, let us take the limit ε → 0: Px =
⋂

ε>0 Θε(x)
(it is an analogue of Θ(x)∪ω0(x) from our previous consideration for general
dynamical systems). Following [21] let us call this set Px a prolongation of the
semi-trajectory Θ(x).

A trajectory of a dynamical system is said to be stable under Ck constantly-
acting perturbations if its prolongation is equal to its closure: Px = Θ(x)

For a given dynamical system let L(Θ) denote the union of all trajectories
that are stable in the above sense and let L1 be the set of all dynamical systems
Θ for which L(Θ) is dense in phase space: L(Θ) = M . All structurally stable
systems belong to L1. The main result of [21] is as follows:

Theorem 6. The set L1 is a dense Gδ in the space of Ck dynamical systems
with the Ck norm.9

So, for almost all smooth dynamical systems almost all trajectories are
stable under smooth constantly-acting perturbations: this type of stability is
typical.

5 Conclusion

Two basic ideas of coarse-graining are presented. In the Ehrenfests’ inspired
approach the dynamics of distributions with averaging is studied. In the metric
approach the starting point of analysis is dynamics of sets with periodical ε-
fattening.

The main question of the Ehrenfests’ coarse-graining is: where should we
take the coarse-graining time τ? There are two limit cases: τ → 0 and τ → ∞
(physically, ∞ here means the time that exceeds all microscopic time scales).
The first limit, τ → 0, returns us to the quasi-equilibrium approximation. The

9 In a topological space a Gδ set is a countable intersection of open sets. A com-
plement of a dense Gδ set is a countable union of nowhere dense sets. It is a set
of first category, or a meagre set.
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second limit is, in some sense, exact (if it exists). Some preliminary steps in
the study of this limit are made in [4,74,75]. On this way, the question about
proper values of the Prandtl number, as well, as many other similar questions
about kinetic coefficients, has to be solved.

The constructed family of chains between conservative (with the Karlin–
Succi involution) and maximally dissipative (with Ehrenfests’ projection) ones
give us a possibility to model hydrodynamic systems with various dissipation
(viscosity) coefficients that are decoupled with time steps. The collision inte-
gral is successfully substituted by combinations of the involution and projec-
tion.

The direct descendant of the Ehrenfests’ coarse-graining, the kinetic ap-
proach to filtering of continuum equations, seems to be promising and phys-
ically reasonable: if we need to include the small eddies energy into internal
energy, let us lift the continuum mechanics to kinetics where all the energies
live together, make there the necessary filtering, and then come back. Two
main questions: when the obtained filtered continuum mechanics is stable, and
when there is way back from filtered kinetics to continuum mechanics, have
unexpectedly the similar answer: the filter width ∆ should be proportional to
the square root of the Knudsen number. The coefficient of this proportionality
is calculated from the entropic stability conditions.

The metric coarse-graining by ε-motions in the limit ε → 0 gives the stable
picture with the totally disconnected system of basic sets that form sources
and sinks structure in the phase space. Everything looks nice, but now we
need algorithms for effective computation and representation of the coarsened
phase portrait even in modest dimensions 3-5 (for discrete time systems in
dimensions 2-4).

It is necessary to build a bridge between theoretical topological picture
and applied computations. In some sense, it is the main problem of modern
theory of dynamical systems to develop language and tools for constructive
analysis of arbitrary dynamics. Of course, the pure topological point of view
is unsufficient, and we need an interplay between measure and topology of
dynamical systems, perhaps, with inclusion of some physical and probabilistic
ideas.
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tempt to answer. I am grateful to H.C. Öttinger, and L. Tatarinova for scientific
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