
Renormalization of Vector Fields
1

Hans Koch 2

Abstract. These notes cover some of the recent developments in the renormalization of quasiperi-

odic flows. This includes skew flows over tori, Hamiltonian flows, and other flows on Td
×R`. After

stating some of the problems and describing alternative approaches, we focus on the definition

and basic properties of a single renormalization step. A second part deals with the construction

of conjugacies and invariant tori, including shearless tori, and non-differentiable tori for critical

Hamiltonians. Then we discuss properties related to the spectrum of the linearized renormaliza-

tion transformation, such as the accumulation rates for sequences of closed orbits. The last part

describes extensions from “self-similar” to Diophantine rotation vectors. This involves sequences

of renormalization transformations that are related to continued fractions expansions in one and

more dimensions. Whenever appropriate, the discussion of details is restricted to special cases

where inessential technical complications can be avoided.
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1. Background

1.0. Disclaimer

This review is primarily about methods and ideas. It does not intend to give a com-
prehensive list of theorems on invariant tori, conjugacies, bifurcations, and other topics
covered. The main focus is on renormalization group methods for Hamiltonian and other
vector fields. And more specifically, on methods that that implement renormalization as
a dynamical system on a space of Hamiltonians or vector fields. Much of the discussion
is restricted to problems that I have worked on myself, which is not meant to imply that
other work is less important.

1.1. Invariant tori

The general goal is to describe certain asymptotic behavior, like quasiperiodicity, for
continuous-time dynamical systems

u̇ = X(u) . (1.1)

Here, X is a vector field on some manifold M. The flow ΦX associated with X is defined
by Φt

X
(u0) = u(t), where u is the solution of (1.1) with initial condition u(0) = u0 .

In all cases discussed here, M will be a product of the d-torus Td with some other
manifold B. Most of the problems considered involve either invariant tori or conjugacies.
By an invariant torus with rotation vector ω ∈ Rd, we mean a map Γ : Td → M that is
locally one-to-one and satisfies

Γ ◦ Ψt = Φt
X
◦ Γ , Ψt(q) = q + tω . (1.2)

In other words, Γ defines a semi-conjugacy between a restriction (to the range of Γ) of the
original flow ΦX and the linear flow Ψ on the torus. Some true conjugacies ΦX = U◦ΦZ◦U−1

will be discussed as well, where it is possible to conjugate ΦX to the flow for a trivial vector
field Z on all of M.

In order to see some of the difficulties involved in solving equation (1.2), it is useful
to look at the differentiated version

ω · ∇Γ = X ◦ Γ . (1.3)

One of the problems is that the differential operator ω · ∇ is not easily invertible. Its
spectrum, if nontrivial, accumulates at zero in a way that depends on the arithmetic
properties or the rotation vector ω.

1.2. Two direct approaches

One way of trying to solve equation (1.3) is by perturbing about an approximate solution
Γ0 . Substituting Γ = Γ0 + γ and expanding X ◦ (Γ0 + γ) in powers of γ, we obtain an
equation of the form

γ = γ0 + W (γ) , W (γ) =
∑

m>1

D−1Wn (γ)m , (1.4)
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where D = ω ·∇−DX ◦Γ0 . Iterating the map γ 7→ γ0 +W (γ) yields a formal power series
for the torus, also referred to as Lindstedt series. This series is in general highly divergent,
but there are nontrivial situations where resummation techniques can be used to obtain γ
from its Lindstedt series [39].

Interestingly, the problems that one encounters are similarly to those found for Feyn-
man graph expansions in quantum field theory. It is these expansions that lead to the
development of renormalization methods [118]. The divergencies can be associated with
different “scales” in the problem, and by re-normalizing the expansion parameters appro-
priately, the divergencies at any given scale cancel. Applications of renormalization ideas
from quantum field theory to the resummation problem for Lindstedt series can be found
e.g. in [51, 57,58,59]. In this context, renormalization can be viewed as a method for deal-
ing with combinatorial problems and cancellations in certain highly nontrivial perturbation
expansions.

Equation (1.3) also has a vague resemblance to field equations in quantum field theory.
In some special cases, it is possible to make this connection more precise and write (1.3)
as the Euler-Lagrange equation for some functional γ 7→ L1(γ). The modern way of ana-
lyzing such fields is via functional integrals. Expanding these integrals in powers of small
coupling constants yields the above-mentioned Feynman graphs. (Integrals of the same
type also appear in statistical mechanics, where there are usually no small parameters.)
The approach taken in non-perturbative renormalization is to perform the integration one
scale at a time, transforming a Lagrangian Lk at scale k to a new Lagrangian Lk+1 at
scale k + 1, making the map Lk 7→ Lk+1 a dynamical system, if possible. Inspired by
this approach, Bricmont et. al. have devised a renormalization scheme that applies to the
problem of constructing invariant tori [8]. The formalism itself is non-perturbative, but in
practice, the analysis can be carried out only for X close to constant, where γ is small.
Similar ideas have also been applied successfully to the study of PDEs [9].

In the context described here, renormalization can be viewed as a procedure for solving
certain difficult “scale free” problems iteratively, one scale at a time.

1.3. Hamiltonians

The renormalization group approach that we will focus on later is much closer to KAM
theory than to the approaches sketched above. In order to simplify the discussion, we will
restrict our attention to Hamiltonian flows. Consider M = Td ×B, where B is some open
neighborhood of the origin in Rd. A Hamiltonian vector field in action-angle variables
is of the form X = J∇H, with J =

[
0 I

−I 0

]
, where H is the corresponding Hamiltonian, a

differentiable function on M. In other words, the equation u̇ = X(u), with u = (q, p), can
be written as

q̇ = ∇pH , ṗ = −∇qH . (1.5)

The corresponding flow will be denoted by ΦH .
Some basic facts and notation: H is invariant under the flow. The maps Φt

H
are

symplectic, in the sense that they preserve the symplectic form
∑

dqj ∧ dpj . If U is
any symplectic diffeomorphism of M, then the pushforward of X under U is again a
Hamiltonian vector field, with Hamiltonian H ◦ U . Furthermore, U preserves the Poisson
bracket {f, g} = ∇1f · ∇2g −∇2f · ∇1g.
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A change of coordinates (q′, p′) = U(q, p) is canonical if and only if the one-form
p′ · dq′ − p · dq is closed. Locally, this one-form can be written as the differential of some
function, which we will write as p′ · q′ − φ. We will only be interested in cases where φ
is defined globally, as a function of q and p′. In this case, φ will be referred to as the
generating function of U . It satisfies q′ = ∇2φ(q, p′) and p = ∇1φ(q, p′). In particular, if

U = I + u , u(q, p) =
(
Q(q, p), P (q, p)

)
, (1.6)

then we have

Q(q, p) = (∇2φ)
(
q, p + P (q, p)

)
, P (q, p) = −(∇1φ)

(
q, p + P (q, p)

)
. (1.7)

Conversely, given φ not too large, these two equations determine a canonical transformation
of the form (1.6). If φ is small, say of “size ε”, then so are P,Q, and we have

H ◦ U = H(. + ∇2φ , . −∇1φ) + O(ε2) = H + {H,φ} + O(ε2) . (1.8)

1.4. KAM theory

KAM theory [82,5,110,121,26] is concerned with with small perturbations of integrable
Hamiltonians, such as

K(q, p) = ω · p + 1
2 (Mp) · p , (1.9)

with ω ∈ Rd and M a symmetric d×d matrix. The dynamics for K is given by q̇ = ω+Mp
and ṗ = 0. Notice that surfaces of constant p are invariant tori for the flow generated by
K , with frequency vector w(p) = ω + Mp.

The goal is to construct an invariant torus for H = K + h with rotation vector ω, by
iterating the following procedure. Assuming that h is small, say of “size ε”, we have

(K + h) ◦ U = K + {K,φ} + h + O(ε2)

= K −
[
w · ∇1φ − h

]
+ O(ε2) .

(1.10)

Now we try to solve [. . .] = 0 near p = 0, up to an error of order ε2. The equation for the
ν-th Fourier mode of φ is

iw · νφν = hν + O(ε2) . (1.11)

So among other things, the average h0 has to be small near p = 0. Assuming that the
matrix M is nonsingular, this can be achieved by a p-translation, and a restriction to p
near zero. Assuming in addition that ω satisfies a Diophantine condition, equation (1.11)
can be solved for frequencies ν that are not too large. Finally, if we also assume that h is
analytic, so that hν → 0 rapidly as |ν| → ∞, then the equation (1.11) can be solved for all
ν. Thus, the new Hamiltonian (K + h) ◦ U is of the form K + g, with g of order ε2. Now
the procedure is iterated.

The KAM theorem for this situation states that, under the assumptions made above,
the invariant torus with frequency vector ω persists under small perturbations of K.



6 HANS KOCH

0 0.25 0.5 0.75 1
0.5

0.55

0.6

0.65

0.7

y

golden torus

Fig. 1. Some orbits for the standard map with parameter value 0.5 [61].

Notice that the assumptions are also satisfied if ω is replaced by cω, with c 6= 0. The
invariant tori for different values of c lie on different energy surfaces. The average speed
of the motion varies with c, but the winding numbers

lim
t→∞

qj(t)

qd(t)
=

ωj

ωd
(1.12)

do not depend on c. If the goal is to construct an invariant torus with fixed winding
numbers, but unspecified value of c, then the nondegeneracy assumption on the matrix M
can be weakened: M is allowed to have rank d − 1, as long as the range is transversal to
ω. Such Hamiltonians are also referred to as isoenergetically nondegenerate.

The KAM torus for H is obtained as the limit of Γn = U1◦U2◦. . .◦Un as n → ∞, where
Un denotes the canonical transformation used in the n-th step of the iteration described
above. Γn is defined on a domain Td × Bn , with {Bn} a sequence of smaller and smaller
neighborhoods of zero. The limit Γ yields the desired conjugacy

Γ ◦ Φt
K

= Φt
H
◦ Γ , on T

d × {0} . (1.13)

The KAM procedure has clearly a renormalization flavor, although some ingredients
are missing, most notably the scaling. As we will see later, by modifying this algorithm
appropriately, it can be made into a dynamical system. Some earlier steps in this direction
were also taken in [71,72,83].

1.5. Scales

Renormalization applies mainly to systems that involve a natural progression of scales, but
that do not have any preferred scale. The effect of a renormalization operator is to shift
the scales of the system.
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The best known examples in dynamical systems may be the composition operators
R : F 7→ F k (modulo rescaling). Here, and in what follows, F k denotes the k-th iterate
of a map F . These operators have been studied in great detail [128], after the observation
of universality and scaling in one-parameter families of interval maps undergoing period
doubling bifurcations 1 → 2 → . . . → 2n−1 → 2n → . . .. The k = 2 version of R lifts the
inverse cascade to the space of maps, in the sense that F ◦ F has a period 2n−1 whenever
F has a period 2n.

In problems dealing with irrational rotations, the scales come from the arithmetic
properties of the rotation numbers. Consider e.g. the number α = 1/(k + 1/(k + . . .))),
with k some fixed positive integer. (For k = 1, α is the inverse golden mean.) Its continued
fraction approximants un/vn may be obtained as follows:

[
un

vn

]
= Tn

[
0
1

]
, T =

[
0 1
1 k

]
. (1.14)

Consider a circle C, defined by a strictly monotone function C on R, by identifying C(x)
with x for any real x. A simple example would be C0(x) = x − 1. A map on C is a
function M : R → R that commutes with C, and a point x has rotation number u/v for
this map if Cu ◦ Mv(x) = x. In this formulation, a renormalization operator that takes a
pair F =

[
C
M

]
with rotation number un−1/vn−1 to a pair with rotation number un/vn, is

given by

R :

[
C
M

]
7→

[
C0 ◦ M1

C1 ◦ Mk

]
(modulo rescaling) . (1.15)

The pair F0 =
[

C0

M0

]
, with M0(x) = x+α, is a fixed point of R , and it clearly has rotation

number α. Notice that the “exponents” in (1.15) are precisely the matrix elements of T .
This suggests of course a generalization to problems with more than one frequency.

This renormalization operator R (for any k) has been studied in great detail [129].
To give a very simple application, it can be shown e.g. that if F is a small perturbation
of F0 with rotation number α, then Rn(F ) → F0 as n → ∞. This in turn can be used to
establish a conjugacy between F and F0 .

The analogous operator can be defined also for other types of maps. Such an operator
was studies in connection with the breakup of invariant circles in area-preserving maps of
the plane [68, 100, 52, 101, 117].

1.6. Breakup of invariant tori

Let now d = 2 and ω =
[

ϑ−1

1

]
, with ϑ the golden mean 1

2

√
5+ 1

2 . By the KAM theorem, a

Hamiltonian H close to an integrable Hamiltonian like (1.9) has a smooth invariant torus
Γ with winding numbers ωj/ωd . The proof also shows that near this torus, H is essentially
integrable, and so the motion is highly ordered and stable. (The same is true in higher
dimensions.) In the case d = 2, an invariant 2-torus has an even stronger stabilizing effect,
as it divides the (3 dimensional) energy surface containing it into disjoint invariant regions.

Consider a one-parameter family β 7→ Hβ of Hamiltonians on T2 × R2, such as

Hβ(q, p) = ω · p +
1

2
p2
1 + β

[
cos(q1) + cos(q1 − q2)

]
, (1.16)
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which is essentially the Hamiltonian used in [47]. For values of β close to 0, this Hamiltonian
has a golden invariant torus, that is, a smooth invariant torus with winding number ϑ−1.
This torus is observed to persist as β is increased, up to some value β = β∞, where it
breaks up. The breakup is also seen to promote chaotic motion in the form of hyperbolic
orbits with golden mean rotation number.

Before the critical point β∞ , the system has “prominent” periodic orbits (symmetric
Birkhoff orbits) for each of the rotation numbers 1

2 , 2
3 , 3

5 , 5
8 , . . . associated with the continued

fraction expansion of θ−1. Past the critical point, these orbit with rotation number un/vn

turn unstable, at parameter values βn that converge to β∞ in the limit n → ∞. The
convergence is observed to be asymptotically geometric, with

lim
n→∞

βn+1 − βn

βn − βn−1
= δ−1 , δ = 1.6279 . . . . (1.17)

This ration appears to be universal, in the sense that the same values is observed within
a large class of one-parameter families.

The “critical” Hamiltonian Hβ∞ appears to have an invariant torus Γ that is non-
smooth. Near this torus, the motion for Hβn+1 looks like that of Hβn , modulo a scaling
of time (by ϑ) and a scaling of space. The observed eigenvalues of the spatial scaling are

λτ = ϑ, λx = µ∗/λz λy = µ∞/λτ , λz = −0.32606 . . . , (1.18)

with µ∗ = 0.23046 . . .. Again, these values appear to be universal.

1.6-1.6

0.0487

0.0455

v*q

z

Fig. 2. Orbits for a critical Hamiltonian [2]
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When looking for an explanation, anybody that is familiar with statistical mechanics
and phase transitions will immediately try to find an appropriate renormalization group
transformation R, acting on a space of Hamiltonians. The expected picture involves the
existence of a hyperbolic fixed point H∗ for R, such that DR(H∗) has an expanding
eigenvalue δ = 1.6279 . . . , and no other spectrum outside the open unit disk.

2. Renormalization of flows

After introducing a renormalization group (RG) transformation for Hamiltonian flows, and
motivating the choices involved, we generalize the construction to other vector fields on
Td × R`, and to skew flows over Td.

2.1. Hamiltonian systems

The first use of renormalization in connection with the breakup of golden invariant tori
appears to be by Escande and Doveil [48]. Their transformation contained the following
ingredients. One is a frequency scaling H 7→ H ◦ T ,

T (q, p) =
(
Tq, (T ∗)−1p

)
, (2.1)

where T ∗ denotes the transpose of T . Here, T =
[
0 1
1 1

]
. The remaining ingredients are a

scaling of time and momenta, and a canonical change of variables H 7→ H ◦ U , designed
to obtain a renormalized Hamiltonian of the same form as the original Hamiltonian. The
latter was chosen ad-hoc and involved truncations, since only a few selected Fourier modes
were being considered.

An alternative approach by Kadanoff, Shenker, and MacKay [68,100,52,101] uses com-
muting pairs of area-preserving maps. The breakup of invariant circles for these maps pro-
duces the same phenomena (and numbers) as described above. After all, one way to obtain
an area-preserving map it to start with a Hamiltonian on T2 × R2, restrict its motion to
a surface of constant energy, and then consider the return map to an appropriate plane.
Based on the numerical results in [100], there is little doubt that the renormalization pic-
ture correctly describes the observed phenomena. The main drawback with this approach
is that commuting maps do not constitute a manifold, which makes it hard to discuss some
important aspects of renormalization, such as the hyperbolicity of the renormalization op-
erator. (Similar problems are also encountered in one-dimensional dynamics, which lead
to the development of alternative approaches, such as the “cylinder renormalization” for
Siegel disks [125,56].)

The best rigorous result in this line of work is the existence a nontrivial solution
of R3(F ) = F , for a renormalization operator R of the type (1.15), acting on pairs of
reversible maps [117]. Whether this solution F =

[
C
M

]
is a fixed point of R, and whether

its components C and M commute, is not known.
In the Hamiltonian approach, it took much longer before accurate computations be-

came possible [2], although some clear improvements to the original scheme were made
earlier [107,13]; see also [16] and references therein. The difficulty has to do with the
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choice for the change of variables H 7→ H ◦ U . In other problems where renormaliza-
tion has been applied, the analogue of U can be guessed from the observed scaling. This
scaling is typically a contraction on phase space, so it may be reduced to a simple (finite
codimension) normal form. But the torus cannot be contracted.

As it turns out [74], it is still possible to find a RG transformation of the form

R(H) = H ◦ T (mod G), (2.2)

where G is some “group” of similarity transformations. But it appears that this group
needs to be infinite dimensional. Among the possible similarity transformations are

• Scaling of time or energy, H 7→ η−1H − E.
• Scaling of momenta H 7→ µ−1H(., µ.)
• Change of variables H 7→ H ◦ U , with U canonical and homotopic to the identity.

H∗ ◦ T
H ◦ T

H∗ = R(H∗)
R(H)

H

orbit of H
under G

Hamiltonians in normal form

I
+A

Fig. 3. General form of the RG transformation R

The goal is to find a suitable “normal form” for Hamiltonians, and a map H 7→ GH ∈ G,
such that GH(H ◦ T ) is in normal form whenever H is. Using for GH a composition of the
three similarity transformations listed above, we have

R(H) = H ′ ◦ UH′ , H ′ =
1

ηµ
H ◦ Tµ − E , (2.3)

where UH′ is a canonical change of variables,

Tµ(q, p) =
(
Tq, µ(T ∗)−1p

)
. (2.4)

and E, η, µ are normalization constants that may depend on H. We will set E = 0 from
now on, and mostly ignore constant terms in Hamiltonians, since such terms do not change
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the vector field. The constants η and µ can be determined e.g. by prescribing the value of
two coefficients in the Taylor expansion for the torus average of R(H). Choosing a suitable
normal form that also determines UH′ is more delicate. This problem will be discussed in
Subsections 2.2 and 2.3.

We expect R to have at least one integrable fixed point, describing the flow near
smooth invariant tori. Such fixed points are in fact easy to find. To be more specific, let
T be a matrix in SL(d, Z) that has two eigenvectors Tω = ϑ1ω and TΩ = ϑ2Ω, for two
eigenvalues satisfying ϑ1 > 1 > |ϑ2|. Consider the integrable Hamiltonians

K(q, p) = f(p) = (ω · p) +
m

2
(Ω · p)2 , (2.5)

with m > 0, unless specified otherwise. Starting with this Hamiltonian K, computing
K ◦ T , and then applying a momentum and energy scaling (including an angle-dependent
change of variables would be counter-productive here), we obtain

R(K)(q, p) = η−1µ−1f
(
µ(T ∗)−1p

)
− E

= η−1ϑ−1
1 (ω · p) + η−1µϑ−2

2

m

2
(Ω · p)2 − E .

(2.6)

For K to be a fixed point for R, we need an energy scaling η = ϑ−1
1 , and E = 0. Ignoring

for the time being the case m = 0, where the momentum scaling µ is undetermined, we
have µ = ϑ−1

1 ϑ2
2 . Notice that |µ| < 1, due to our condition ϑ1 > 1 > |ϑ2|, meaning that

the momenta p are contracted by the scaling H 7→ µ−1H(., µ.).
So far so good. The problem arises when we try to extend R to Hamiltonians H that

depend on the angle variables q as well. Consider e.g. a space Aρ of Hamiltonians that
are analytic in the domain Dρ , defined by |Imqj | < ρ and |pj | < ρ, with ρ some fixed
positive real number. If H is analytic on Dρ then H ′ = H ◦ Tµ is analytic on T −1

µ Dρ .

But this new the domain is narrower than Dρ in the angular direction ω, by a factor ϑ−1
1 .

The question is whether this loss of analyticity can be restored by a canonical change of
variables H ′ 7→ H ′ ◦ UH′ . At first, this seems unlikely, since UH′ should be close to the
identity for H close to K, if we want R to be a smooth map on Aρ . And a fixed domain
loss cannot be restored by changes of variables arbitrarily close to the identity. What will
save the situation are cancellations.

2.2. Resonant and nonresonant Hamiltonians

Motivated by the above, we start by trying to identify the “good” and “bad” terms in the
Fourier-Taylor series

H(q, p) =
∑

(ν,α)∈I

Hν,αeiν·qpα , pα =
∏

j

p
αj

j , (2.7)

where I = Zd × Zd
+ . The Hamiltonian H is analytic on Dρ if and only if the series (2.7)

converges on Dρ , which is roughly equivalent to

|Hνα| / e−ρ|ν|ρ−|α| , (ν, α) ∈ I . (2.8)
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Here, |.| denotes the `1 norm. In order to identify which of these conditions are violated
for the Hamiltonian H ◦ Tµ , consider its Fourier-Taylor series

(
H ◦ Tµ

)
(q, p) =

∑

(ν,α)∈I

Hν,αei(T∗ν)·q[µ(T ∗)−1p]α . (2.9)

If we consider just the terms with fixed degree |α|, then the “bad” terms can be identified
as those for which |T ∗ν| > |ν|. A more careful analysis has to take into account that the
factor µ|α| in (2.9) improves convergence in directions where |α| → ∞.

Alternatively, we can try to identify the “good” modes eiν·qpα that do not get ex-
panded under composition with Tµ . Among them are the “resonant” modes, which we
now describe. Assume that all eigenvalues of T other than ϑ1 are of modulus < 1. Then
the orthogonal complement of ω is contracted by T ∗, with respect to some norm on Cd

that we will denote by ‖.‖. Given real numbers σ, κ > 0 to be determined later, define

I
+

=
{
(ν, α) ∈ I : |ω · ν| ≤ σ‖ν‖ or |ω · ν| ≤ κ|α|

}
, I

−

= I \ I
+

. (2.10)

The “resonant” part I
+

H of a Hamiltonian H, and its “nonresonant” part I
−

H, are now
defined by restricting the sum in (2.7) to the index set I

+

and I
−

, respectively.
In order to make precise what we mean by non-expanding modes, we need to introduce

a norm. Define Aρ to be the space of Hamiltonians that are analytic on the domain Dρ ,
and continuous on its closure. We equip this space with the norm

‖H‖ρ =
∑

(ν,α)∈I

|Hν,α|eρ‖ν‖ρ|α| . (2.11)

It is now straightforward to prove the following

Proposition 2.1. If σ, |µ| are positive and sufficiently small, and if ρ′ < ρ is sufficiently
close to ρ, then the restriction of H 7→ H ◦ Tµ to I

+Aρ′ is a compact linear operator from
I
+Aρ′ to Aρ , with operator norm ≤ 1.

Proof. Pick (ν, α) in the index set I
+

, and consider the function Eα,ν(q, p) = eiν·qpα.
Then for r > 0,

‖Eν,α ◦ Tµ‖ρ ≤ eρ‖T∗ν‖|cµρ||α|

≤ exp
[
ρ‖T ∗ν‖ − r‖ν‖ + |α| ln

∣∣cµρ/r
∣∣
]
‖Eν,α‖r ,

(2.12)

where c is some constant depending only on T . Consider first r = ρ′. Clearly, the third
term in [. . .] is always non-positive if |µ| > 0 is sufficiently small. If |ω · ν| ≤ σ|ν| then
the sum of the first two terms is also non-positive, provided that σ > 0 has been chosen
sufficiently small. This follows from the fact that ω⊥ is contracted by T ∗. Alternatively,
if |ω · ν| > σ‖ν‖ and thus ‖ν‖ < σ−1κ|α|, then we can make [. . .] ≤ 0 by taking |µ| > 0
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sufficiently small. This shows that the term [. . .] in (2.12) is non-positive. These arguments
clearly extend to r < ρ sufficiently close to ρ. Thus, if H ∈ I

+Ar then

‖H ◦ Tµ‖ρ ≤
∑

(ν,α)∈I
+

|Hν,α| ‖Eν,α ◦ Tµ‖ρ ≤
∑

(ν,α)∈I
+

|Hν,α| ‖Eν,α‖r = ‖H‖r .

The assertion now follows by taking r < ρ′ < ρ and using the fact that the inclusion map
from Aρ′ into Ar is compact. QED

Notice that the resonant modes, which are essentially the ones that cause small de-
nominator problems in KAM theory, are easy to deal with in this approach.

It should be noted also that the smallness conditions in Proposition 2.1 can easily be
replaced by concrete inequalities. To give a concrete example: Using a slightly different
definition of I

+

, an analogue of this proposition is proved in [1] for

|ϑ2| + σ
(
ϑ1 − |ϑ2|

)
<

ρ′

ρ
, 0 <

∣∣∣∣
µ

ϑd

∣∣∣∣ eρκ(ϑ1−|ϑ2|) <
ρ′

ρ
. (2.13)

2.3. The change of variables UH

Proposition 2.1 suggests that we take the resonant Hamiltonians as our “normal form”.
This requires that the change of variables UH′ in equation (2.3) can be chosen in such a
way that

I
−
(
H ′ ◦ UH′

)
= 0 , (2.14)

which makes R(H) again resonant. In other words, the role of UH′ would be to eliminate
nonresonant modes. Now why should this equation be solvable? Roughly speaking, the
reason is that the equation deals mainly with nonresonant functions, which should avoid
small denominator problems.

To be more precise, let K0(q, p) = ω · p, and consider a Hamiltonian H = K0 + h
not too far from K0 . Denote by h+ and h− the resonant and nonresonant parts of h,
respectively, and assume that ε = ‖h−‖ρ is small. If U is a canonical transformation with
nonresonant generating function φ of order ε, then

H ◦ U = H + {H,φ} + O(ε2)

= K0 +
[
h − ω · ∇1φ + {h, φ}

]
+ O(ε2) .

(2.15)

Let us try to solve I
−

(H ◦ U) = 0 to first order in ε. The resulting equation for φ is
I
−

[. . .] = 0, which can be written as

ω · ∇1φ + I
−

ĥφ = h− ,

where ĝ denotes the Hamiltonian vector field associated with a Hamiltonian g, that is,
ĝf = {f, g}. The formal solution of this equation is

(ω · ∇1)φ = (I + L
−

)−1h− , (2.16)
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with

L
−

= I
−

ĥ(ω · ∇1)
−1 = I

−

[
(∇2h) · ∇1

ω · ∇1
− (∇1h) · ∇2

ω · ∇1

]
.

Here L
−

is a linear operator on I
−Aρ . Now by the definition of I

−

, the two operators
(written as fractions) in square brackets are bounded in norm by σ−1 and (ρκ)−1, respec-
tively. Thus, if ‖∇h‖ρ is sufficiently small, such that ‖L−‖ < 1, then equation (2.16) can
be solved by a Neumann series. The solution ψ = ω · ∇1φ belongs to Aρ and is of order
ε. The next step would be to solve equation (1.7) for the functions P and Q defining the
canonical transformation U generated by φ. Notice that what enters this equation is not
φ directly, but its gradient. This gradient is (ω · ∇1)

−1∇ψ, a function for which we have
again convenient bounds.

By construction, the new Hamiltonian H ◦U has a nonresonant part of order ε2. Thus
we can solve equation (2.14) by iterating the step H 7→ H ◦ U described above.

A generalization of this procedure will be described in detail in Subsection 7.4.

Remarks.

◦ This elimination procedure shrinks domains. However, the domain loss tends to zero
with the size of h−. Thus, for near-resonant Hamiltonians, the subsequent step H 7→ H◦Tµ

more than compensates for this domain loss, making R analyticity improving.

◦ It should be stressed that only the nonresonant part of h needs to be small for this
procedure to work. The condition ‖L−‖ < 1 allows for Hamiltonians that are not close to
being integrable.

For completeness, let us state a concrete result about the transformation R. Let
ω = (1, ω2, . . . , ωd) be a fixed vector in Rd, whose components span an algebraic number
field of degree d. We will call such vectors self-similar, for the following reason. It can be
shown [74] that there exists a matrix T ∈ SL(d, Z) with simple eigenvalues ϑj satisfying
ϑ1 > 1 > |ϑ2| ≥ . . . ≥ |ϑd|, such that Tω = ϑ1ω. Consider now a fixed matrix T with
these properties.

Theorem 2.2. [1] Let 0 < ρ < σ/κ. If ρ′ < ρ is sufficiently close to ρ and µ ∈ C satisfies
(2.13), then there exists an open neighborhood B ∈ Aρ′ of K0 such that R : B → Aρ is
well defined, analytic, and compact.

The version of this theorem given in [1] contains additional information about the
domain B.

2.4. Other vector fields

Flows q̇ = X(q) on the torus Td are a special case of the above, as can be seen by restricting
the flow for a Hamiltonian H = p · X(q) to the invariant torus p = 0. For flows that are
not described by a generating function, we have to renormalize the vector field directly.

Let X be a vector field on a manifold M. Consider a change of coordinates x = U(y)
on M. Then ẋ = DU(y)ẏ. So the pullback of X under U is

U∗X = (DU)−1(X ◦ U) . (2.17)
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Consider now M = Td × R`, and vector fields near Z = (ω, 0). In the Hamiltonian
case described earlier, we used a the phase space scaling

T (q, p) = (Tq, µSp) , (2.18)

with S the transposed inverse of T . The same type of scaling is appropriate for other types
of vector fields as well, e.g. with S = I whenever ` 6= d. For the pullback of X = (X ′, X ′′)
under T we have

T ∗X =
(
T−1X ′ ◦ T , µ−1S−1X ′′ ◦ T

)
. (2.19)

The analogue of the renormalization group (RG) transformation (2.3) is now given by

R(X) = η−1U∗
X
T ∗X , (2.20)

where UX is a change of coordinates that eliminates nonresonant modes. Here, η and µ are
normalization constants that may depend on X.

This type of RG transformations has been used e.g. in [94,70,79] to linearize torus flows
and skew systems, and in [78] to construct invariant tori for general flows near Z = (ω, 0).
When dealing with specific classes of flows, it is useful to choose the projections I

±

and the
change of variables UX in such a way that the given class is preserved under renormalization.
The choice given in [78] does this simultaneously for the following four classes, in the case
where G(q, p) = (−q, p). A detailed description of the corresponding elimination procedure
X 7→ U∗

X
X will be given in Subsection 3.4.

(1) Symmetric: Given a diffeomorphism G of M, a vector field X on M is symmetric
with respect to G if G∗X = X. The flow for X commutes with G. The changes of
variables UX are generated by symmetric vector fields as well.

(2) Reversible: If G ◦ G = I, then X is time-reversible with respect to G if G∗X = −X.
The flow for X satisfies G◦Φt

X
◦G = Φ−t

X
. Reversibility is preserved if UX is generated

by symmetric vector fields.
(3) Divergence free: Here, tr(DX) = 0. The flow for X is volume preserving. UX is

generated by divergence free vector fields.
(4) Hamiltonian: This case was discussed earlier. Hamiltonian vector fields are also diver-

gence free. Some are time reversible as well, e.g., if H(q, p) = H(q,−p) then X = J∇H
is reversible with respect to G : (q, p) 7→ (−q, p).

For specific results we refer to [78].

2.5. Skew systems

Here we discuss in more detail a class of flows called skew flows. These are systems of
ODEs with quasiperiodic coefficients. To be more specific, let G be a Lie subgroup of
GL(n, C) or GL(n, R), and let A to be the corresponding Lie algebra. Then one considers
equations of the type

ẏ(t) = F (t)y(t) , y(0) = y0 , (2.21)

with y(t) ∈ G, where F : R → A is a quasiperiodic function with d rationally inde-
pendent frequencies ω1, . . . , ωd . Such systems are encountered e.g. in the study of the
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one-dimensional Schrödinger equation with quasiperiodic potentials, where G = SL(2, R).
The discrete analogue are products of matrices Fi depending quasiperiodically on the index
i. One of the problem is to find the spectrum of products Fm · · ·F2F1 in the limit of large
m. This is trivial in the case where i 7→ Fi is periodic.

We can rewrite (2.21) as

ẏ(t) = f(q0 + tω)y(t) , y(0) = y0 , (2.22)

with f a function on Td, taking values in A. This equation, together with q̇ = ω defines
the a vector field X on the manifold M = Td × G,

X(q, y) =
(
ω, f(q)y

)
, f(q) ∈ A , (q, y) ∈ M . (2.23)

The flow for X is given by

Φt
X
(q0, y0) =

(
q0 + tω, Ψt

X
(q0)y0

)
, (q0, y0) ∈ M , t ∈ R . (2.24)

where t 7→ Ψt
X
(q0) denotes the solution of (2.22) for y0 ∈ G the identity.

Classical Floquet theory shows that if t 7→ q(t) is periodic, and in particular if d = 1,
then the system is reducible. To be more precise, the vector field (2.23) is said to be
reducible if there exists a function U : Td → G, such that

Ψt
X
(q) = U(q + tω)etCU(q)−1 , t ∈ R , q ∈ T

d , (2.25)

for some constant matrix C ∈ A. If ω ∈ Rd is fixed, we will also refer to f as being
reducible. For another characterization of reducibility, considering the map U : M → M,
defined by

U(q, y) =
(
q, U(q)y

)
. (2.26)

The pullback of X = (ω, f .) under this map is given by the equation

(
U∗X

)
(q, y) =

(
ω, (U?f)(q)y

)
, U?f = U−1(f − Dω)U , (2.27)

where Dω = ω · ∇. Modulo smoothness assumptions, (2.25) is equivalent to f = U∗C.
In the quasiperiodic case, solving V?f ≡ C leads to small divisor problems, as in

classical KAM theory. Results based on KAM type methods have been obtained in the
case where G = SL(2, R) [34,111,40], and for compact Lie groups [84,85]. Another approach
to the reducibility problem involves renormalization methods. For discrete time cocycles
over rotations by an irrational angle α, and for G = SU(2), Rychlik introduced in [115]
a renormalization scheme based on a rescaling of first return maps, using the continued
fractions expansion of α. Improvements of this scheme and global (non-perturbative)
results can be found in [86,87,6]. In the context of flows, renormalization techniques were
used in [97] to prove a local normal form theorem for analytic skew systems with a Brjuno
base flow.

Extensions of such RG techniques to skew systems with higher dimensional base maps
or flows have become possible with the introduction in [70] of a suitable multidimensional
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continued fractions algorithm. A renormalization scheme based on this algorithm was
introduced recently in [79]. It applies to Diophantine skew flows on Td × G, for arbitrary
subgroups of GL(n, C) or GL(n, R), and for arbitrary dimensions d, n. In addition, the
smoothness requirements are lowered, from analyticity to a finite degree of differentiability
(depending on d and on the Diophantine exponent). The RG transformations themselves
are restricted to vector fields X = (ω, f .) with f small. Among the general results are
the existence of a stable codimension d manifold (near f = 0) of reducible skew systems.
Other near-constant vector fields are mapped to this case by increasing the dimension of
the torus. In the case d = 2 and G = SL(2, R), the stable manifold is identified with the
set of skew systems having a fixed fibered rotation number (see Subsection 8.4).

The precise results, and the techniques used to prove them, will be described (below
and) in Section 8.

3. A single renormalization group step
This section covers the more technical aspects of renormalization. For skew flows, this
includes explicit estimates of the type needed (later) to deal with general Diophantine
rotation vectors. And for vector fields on Td × R`, we give a complete description of the
main renormalization step: the elimination of nonresonant modes.

3.1. Skew systems: definitions

Skew flows are ideal for the description of a complete RG step, since the analysis is quite
simple: estimating the action of R on resonant frequencies takes a few lines, eliminat-
ing nonresonant frequencies involves little more than the implicit function theorem, and
combining the two is straightforward.

Consider skew flows X = (ω, f) with f close to zero. Given γ ≥ 0, define Fγ to be
the Banach space of integrable functions f : Td → GL(n, C), for which the norm

‖f‖γ = ‖f0‖ +
∑

06=ν∈Zd

‖fν‖(2‖ν‖)γ (3.1)

is finite. Here, fν denotes the ν-th Fourier coefficient of f . Notice that Fγ is roughly
Cγ . The set of functions in Fγ that take values in G or A will be denoted by Gγ or Aγ ,
respectively. We will now drop the subscript γ if no confusion can arise.

A single RG step for skew flows is associated with a unit vector ω ∈ Rd, and a matrix
T in SL(d, Z), which we assume now to be given. Let

T (q, y) =
(
T (q), y

)
. (3.2)

The pullback of X under T is given by
(
T ∗X

)
(q, y) =

(
T−1ω, (T ?f)(q)y

)
, T ?f = f ◦ T . (3.3)

Denote by K(r) the set of vectors in Rn that are contracted by a factor ≤ r by the matrix
T ∗. Choose 0 < σ < τ < 1, if possible, such that

2σ‖T‖ < τ , ω⊥ ⊂ K(τ/2) . (3.4)
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The “resonant” part I
+

f of a function f ∈ F , and its “nonresonant” part I
−

f , are now
defined by the equation

I
±

f(q) =
∑

ν∈I
±

fνeiν·q , (3.5)

where I
+

is the set of integer points in K(τ) and I
−

its complement in Zd. We will show
below that it is possible to find Uf ∈ F close to the identity, such that

I
−U?

f
f = 0 , (3.6)

and such that Uf ∈ G whenever f ∈ A. The renormalized function N (f) and the renor-
malized vector field R(X) are now defined by the equation

N (f) = η−1T ?U?
f
f , R(X) = η−1T ∗U∗

f
X , (3.7)

where η is the norm of T−1ω, so that the torus component of R(X) is again a unit vector.

3.2. Skew systems: estimates

The resonant part of f is easy to deal with:

Lemma 3.1. If f ∈ F satisfies I
−

f = Ef = 0, then ‖T ?f‖ ≤ τγ‖f‖.
Here, Ef denotes the torus-average of f . The proof is one line:

‖T ?f‖ =
∑

06=ν∈I
+

‖fν‖(2‖Sν‖)γ ≤
∑

06=ν∈I
+

‖fν‖(2τ‖ν‖)γ = τγ‖f‖ . (3.8)

Notice the dependence of the contraction factor τγ on the degree of smoothness γ.
Next, before we can solve (3.6), we need to estimate some simple linear operators.

Given any n × n matrix C, define Ĉf = fC − Cf for every function f ∈ F .

Proposition 3.2. Assume that ‖C‖ ≤ σ/4. Then the linear operators Dω = ω · ∇ and

D = Dω + Ĉ commute with I
−

, have bounded inverses when restricted to I
−F , and satisfy

‖D−1
ω I

−‖ ≤ σ−1 , ‖DωD−1
I
−‖ ≤ 2 . (3.9)

Proof. Clearly, Dω, Ĉ, and I
−

commute with each other. The first inequality in (3.9)
follows directly from the fact that |ω · ν| > σ whenever ν belongs to I

−

, which is straight-

forward to check. It implies ‖D−1
ω ĈI

−‖ ≤ 2σ−1‖C‖ ≤ 1/2, and the indicated bound on

DωD−1I
−

= (I + D−1
ω Ĉ)−1I

−

is now obtained via Neumann series. QED

Let us recall at this point some facts about

analytic maps. Let X and Y be Banach spaces over C, and let B ⊂ X be open. We say
that G : B → Y is analytic if it is Fréchet differentiable. Thus, sums, products, and com-
positions of analytic maps are analytic. Equivalently, G is analytic if it is locally bounded,
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and if for all continuous linear maps f : C → X and h : Y → C, the function h ◦ G ◦ f is
analytic. This shows e.g. that uniform limits of analytic functions are analytic. Assuming
that B is a ball of radius r and that F is bounded on B, a third equivalent condition is
that G has derivatives of all orders at the center of B, and that the corresponding Taylor
series has a radius of convergence at least r and agrees with G on B. See e.g. [62] for more
details.

Our next goal is to solve (3.6). Given f = C + h in F with C constant, we seek a
solution of the form U = exp(D−1u), where u is a function in I

−F . We have

I
−U∗f = I

−
[
e−D−1u(f − Dω)eD

−1u
]

= I
−
[(

I −D−1u
)
(C + h − Dω)(I + D−1u

)]
+ O

(
‖h‖‖u‖

)
+ O

(
‖h‖2

)

= I
−
[
h − ĈD−1u − DωD−1

]
+ O

(
‖h‖‖u‖

)
+ O

(
‖u‖2

)

= h − u + O
(
‖h‖‖u‖

)
+ O

(
‖u‖2

)
.

(3.10)

So if ‖h‖ is sufficiently small, then by the implicit function theorem, the equation I
−U∗f = 0

has a solution uf = h + O(‖h‖2), and this solution depends analytically on f .
Wit a bit more work, one gets an explicit bound on uf for ‖C‖ ≤ σ/6 and ‖h‖ ≤ 2−9σ,

and verifies that
‖U∗

f
f − I

+

f‖ ≤ 24σ−1‖h‖2 . (3.11)

As a result, we have

Theorem 3.3. [79] Assume that σ and τ satisfy (3.4). Let f = C + h, with C constant
and Eh = 0. If ‖C‖ < σ/6 and ‖h‖ < 2−9σ, then

N (f) = η−1
[
C + h̃

]
,

∥∥h̃
∥∥ ≤ 3

2τγ‖h‖ ,
∣∣Eh̃

∣∣ ≤ 24σ−1τγ‖h‖2 . (3.12)

N is analytic on the region determined by the given bounds on C and h.

Proof. The function h̃ in equation (3.12) is given by h̃ = T ?
[
I
+

h + (U?
f
f − I

+

f)
]
. Now we

can use Lemma 3.1 and the bound (3.11). In particular, we have

∥∥h̃
∥∥ ≤ τγ

(
‖h‖ + 24σ−1‖h‖2

)
≤ 3

2τγ‖h‖ , (3.13)

as claimed. The analyticity of N follows from the analyticity of the map f 7→ uf , the
uniform convergence of the exponentials in (3.10), and the chain rule. QED

Notice that, by construction, if f belongs to A then so does N (f). Similarly, if f is
real-valued, then so is N (f).

Since this theorem will be used later with ‖T‖ very large, requiring σ to be very small
by (3.4), it should also be noted that the domain of N is roughly of size σ, which is due
to the factor σ−1 in the estimate (3.9).
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3.3. More general vector fields

We start with some basic estimates for analytic vector fields on M = Td × R`, near
Z = (ω, 0). Recall that the RG transformation for such vector fields is given by

R(X) = η−1U∗
X
T ∗

µ X , (3.14)

where UX is a change of coordinates that eliminates nonresonant modes. The definition
of resonant and nonresonant modes is analogous to the one used for Hamiltonians, and
the proof that X 7→ T ∗

µ X is analyticity improving (and thus compact) when restricted to
the resonant subspace is essentially the same as in the Hamiltonian case. Thus, we will
describe here only the elimination procedure X 7→ U∗

X
X. But we will do this in full detail,

since the elimination of nonresonant modes is probably the most crucial part of R. The
version presented here is taken from [78].

We start with some estimates on the flow generated by an analytic vector field Y . On
the spaces Cm we use the `∞ norm, and for linear operators we use the operator norm.

Given ρ > 0, denote by Dρ the set of all vectors (q, p) in Cd × C` characterized
by ‖Imq‖ < ρ and ‖p‖ < ρ. If V is any complex Banach space, an analytic function
f : Dρ → V that is 2π-periodic in each of the variables qj can be written as

f(q, p) =
∑

(ν,α)∈I

fν,αeiν·qpα , ν · q =
∑

j

νjqj pα =
∏

j

p
αj

j , (3.15)

where I = Zd × N`. Define Aρ(V ) to be the space of all functions (3.15) for which the
norm

‖f‖ρ =
∑

(ν,α)∈I

‖fν,α‖eρ|ν|ρ|α| (3.16)

is finite. Here, |ν| =
∑

j |νj |, and |α| is defined analogously. If no ambiguity can arise, we
will simply write Aρ in place of Aρ(V ). The operator norm of a continuous linear map L
on Aρ will be denoted by ‖L‖ρ .

It is easy to check that if V is a Banach algebra, then so is Aρ(V ). Another basic fact
about the spaces Aρ is the following. Let π1(q, p) = (q, 0).

Proposition 3.4. Let 0 ≤ ρ′ ≤ ρ. Let X ∈ Aρ(V ) and Y = (Y ′, Y ′′), with Y ′ ∈ Aρ′

(
Cd

)

and Y ′′ ∈ Aρ′

(
C`

)
. Then

(a) (DX)Y ∈ Aρ′(V ) and ‖(DX)Y ‖ρ′ ≤ (ρ − ρ′)−1‖X‖ρ‖Y ‖ρ′ , if ρ′ < ρ.
(b) X ◦ (π1 + Y ) ∈ Aρ′(V ) and ‖X ◦ (π1 + Y )‖ρ′ ≤ ‖X‖ρ , if ρ′ + ‖Y ′‖ρ′ , ‖Y ′′‖ρ′ ≤ ρ.

The flow ΦY associated with a vector field Y can be estimated e.g. by comparing it
to the flow ΦZ for a constant real vector field Z = (ω, 0). The following bound is obtained
by applying a standard contraction mapping argument to the equation

G(t) =

∫ t

0

[(Y − Z) ◦ Φs
Z ] ◦ [I + G(s)] ds , (3.17)

satisfied by the difference G(t) = Φt
Y − Φt

Z .
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Proposition 3.5. Let τ be a positive real number and Y a vector field in Aρ , such that
τ‖Y −Z‖ρ < r < ρ. Then the equation (3.17) has a unique continuous solution G ∈ Aρ−r

on the interval |t| ≤ τ , and

‖Φt
Y − Φt

Z‖ρ−r ≤ ‖t(Y − Z)‖ρ . (3.18)

Next, we consider the pushforward for the time t map Φt
Y . If X and Y are arbitrary

vector fields, define Ŷ X = [Y,X] = (DX)Y − (DY )X.

Proposition 3.6. Let 0 < r < ρ and t ∈ R. Let Y and X be two vector fields in Aρ ,
satisfying ‖tY ‖ρ ≤ rε and ‖tDY ‖ρ ≤ sε, with ε ≤ 1/6. Then (Φt

Y
)∗X belongs to Aρ−r,

and ∥∥(Φt
Y
)∗X − X

∥∥
ρ−r

≤ 3es‖X‖ρ ε ,
∥∥(Φt

Y
)∗X − X − t[Y,X]

∥∥
ρ−r

≤ 7es‖X‖ρ ε2 .
(3.19)

Proof. It suffices to consider t = 1, since we can rescale (t, Y ) to (1, tY ). Let n be a fixed
positive integer. By using Proposition 3.4, and Cauchy’s formula with contour |z| = 1, to
estimate

(DX)Y = nε
d

dz

[
X ◦

(
I +

z

nε
Y

)]

z=0

, (3.20)

we obtain the bound
‖Ŷ X‖ρ′−r/n ≤ (nε + sε)‖X‖ρ , (3.21)

where ρ′ = ρ. This bound can be iterated n times, with ρ′ decreasing by r/n after each
step, and we find

1

n!

∥∥(
Ŷ

)n
X

∥∥
ρ−r

≤ 1

n!
(n + s)nεn‖X‖ρ

≤ nn

n!
esεn‖X‖ρ ≤ 1

2
(eε)nes‖X‖ρ .

(3.22)

In the last inequality, we have used Stirling’s formula. Now

∥∥(Φ1
Y
)∗X − X

∥∥
ρ−r

=

∥∥∥∥∥

∞∑

n=1

1

n!

(
Ŷ

)n
X

∥∥∥∥∥
ρ−r

≤ ε

2
· es+1

1 − eε
‖X‖ρ , (3.23)

and the first bound in (3.19) follows. The second bound is obtained analogously, with the
sum in (3.23) starting at n = 2. QED

3.4. A general elimination procedure

Denote by A′
ρ the space of vector fields on Dρ whose derivatives belong to Aρ . On this

space consider the norm
‖Y ‖′ρ = ‖DY ‖ρ + ‖Y ‖ρ . (3.24)
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Let I
−

be a fixed but arbitrary projection operator, defined on all the spaces Aρ , and
having norm one. We also fix 0 < ρ′ < ρ. Let Z be any fixed vector field in A′

ρ with the
property that there exists a positive constant a ≤ 1 such that

I
−

Z = 0 ,
∥∥I

−

[Y,Z]
∥∥

r
≥ a‖Y ‖′r , (3.25)

for all ρ′ ≤ r ≤ ρ, and for all Y ∈ I
−A′

r . Notice that for the choices of Z and I
−

used in
Subsection 2.2 (with κ ∼ σ) and Subsection 3.1, the constant a is roughly equal to σ.

The goal is to show that if X is sufficiently close to Z in A′
ρ , then there exists an

analytic change of coordinates UX : Dρ′ → Dρ , such that U∗
X

X belongs to Aρ and satisfies

I
−U∗

X
X = 0 . (3.26)

We start by determining an approximate solution of this equation, given by the time one
flow Φ1

Y
of a vector field Y = I

−

Y . To first order in Y , the equation (3.26) reduces to

I
−

(X + [Y,X]) = 0 . (3.27)

Proposition 3.7. Let 0 < r < ρ. Let X be a vector field in A′
ρ , satisfying

‖X − Z‖′ρ ≤ 1
4a , ‖I−

X‖ρ ≤ 1
12ar . (3.28)

Then the equation (3.27) has a unique solution Y ∈ I
−Aρ . The vector field Y satisfies

‖Y ‖ρ ≤ 2
a‖I

−

X‖ρ . Furthermore, (Φ1
Y
)∗X belongs to Aρ−r and satisfies

∥∥(Φ1
Y
)∗X − X

∥∥
ρ−r

≤ 6er

ar
‖I−

X‖ρ‖X‖ρ ,

∥∥(Φ1
Y
)∗X − X − [Y,X]

∥∥
ρ−r

≤ 28er

(ar)2
‖I−

X‖2
ρ‖X‖ρ .

(3.29)

Proof. The first condition in (3.28) implies that

‖[Y,X − Z]‖ρ ≤ 2‖Y ‖′ρ‖X − Z‖′ρ ≤ a

2
‖Y ‖′ρ , (3.30)

for every Y ∈ A′
ρ . As a consequence, we have

∥∥I
−

[Y,X]
∥∥

ρ
≥ ‖I−

[Y,Z]
∥∥

ρ
− ‖I−

[Y,X − Z]
∥∥

ρ
≥ a

2
‖Y ‖′ρ , (3.31)

whenever Y belongs to I
−A′

ρ . This shows that the linear operator I
−

X̂ : I
−A′

ρ → I
−Aρ

has a bounded inverse, and in particular, that the equation (3.27) has a unique solution
Y ∈ I

−A′
ρ . The bound (3.31) also shows that this solution satisfies

‖Y ‖ρ ≤ 2

a
‖I−

X‖ρ , ‖DY ‖ρ ≤ 2

a
‖I−

X‖ρ . (3.32)
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The remaining claims now follow from Proposition 3.6, setting ε = 2
ar‖I

−

X‖ρ and s = r.
QED

Our goal is to iterate the map X 7→ (Φ1
Y
)∗X described in Proposition 3.7, by starting

with a vector field X = X0 and setting

Xn+1 = (Φ1
Yn

)∗Xn , I
−

(Xn + [Yn, Xn]) = 0 , (3.33)

for n = 0, 1, . . .. The expectation is that the maps

Un = Φ1
Y0

◦ Φ1
Y1

◦ . . . ◦ Φ1
Yn−1

(3.34)

converge to a solution UX of equation (3.26), as n tends to infinity.
Let now r = ρ − ρ′. Choose R ≥ ‖Z‖ρ + a and ε ≥ 0, subject to the constraints

ε ≤ 2−6ar , ε ≤ 2−9a2e−r(1 + r)−1R−1 . (3.35)

Lemma 3.8. [78] If X is a vector field in A′
ρ such that

‖X − Z‖′ρ ≤ 2−3a , ‖I−

X‖ρ ≤ ε , (3.36)

with ε satisfying (3.35), then Un converges in the affine space I + Aρ′ to a function UX

that takes values in Dρ . The map X 7→ UX is continuous in the region defined by (3.36),
analytic in the interior of this region, and satisfies the bounds

‖UX − I‖ρ′ ≤ 3

a
‖I−

X‖ρ , ‖U∗
X

X − X‖ρ′ ≤ 32R
er

ar
‖I−

X‖ρ . (3.37)

Proof. Let ρ0 = ρ, and for m = 0, 1, . . . define ρm+1 = ρm−2rm , where rm = 2−m−2r. Our
first goal is to prove that (3.33) defines a sequence of vector fields Xm ∈ A′

ρm
, satisfying

‖Xm − Xm−1‖′ρm
≤ 2−m−3a , ‖I−

Xm‖ρm
≤ 8−mε . (3.38)

If we define X−1 = Z and X0 = X, then these bounds hold for m = 0 by (3.36). Assume
now that (3.38) holds for m ≤ n. Then, by summing up the bounds on Xm − Xm−1 for
m ≤ n, we obtain the first inequality in

‖Xn − Z‖′ρn
≤ 1

4
a , ‖I−

Xn‖ρn
≤ 4−n−2arn . (3.39)

The second inequality follows from (3.38), by substituting the first bound in (3.35) on ε.
Thus, Proposition 3.7 guarantees a unique solution to (3.33), and it yields the bounds

‖Xn+1−Xn‖ρn−rn
≤ 6

er

ar
4−n+1Rε , ‖I−

Xn+1‖ρn−rn
≤ 7

er

(ar)2
4−2n+3Rε2 . (3.40)
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Here, we have used also that ‖Xn‖ρn
≤ R, which follows from the first inequality in

(3.39). By using the second condition in (3.35), together with the fact that ‖F‖′ρn−2rn
≤

r−1
n ‖F‖ρn−rn

, we now obtain (3.38) for m = n + 1 from the bounds (3.40).
Next, consider the functions φk = Φ1

Yk
− I. By Proposition 3.5 and Proposition 3.7,

‖φk‖ρk−1
≤ ‖Yk‖ρk

≤ 2

a
‖I−

Xk‖ρk
< rk . (3.41)

This shows that Um,n = Φ1
Ym

◦Φ1
Ym+1

◦ . . . ◦Φ1
Yn−1

defines a function in I +Aρn
that takes

values in Dρm
. Here, and in what follows, it is assumed that 0 ≤ m < n. Setting Uk,k = I,

we have the bound

‖Un − Um‖ρ′ =

∥∥∥∥∥

n−1∑

k=m

φk ◦ Uk+1,n

∥∥∥∥∥
ρ′

≤
n−1∑

k=m

‖φk‖ρk−1
≤

n−1∑

k=m

2

a
8−kε . (3.42)

This shows that n 7→ Un converges in I + Aρ′ to a limit UX that takes values in Dρ , and
that satisfies the first inequality in (3.37) if we set ε = ‖I−

X‖ρ . Clearly, Xn → UXX in
Aρ′ . The second inequality in (3.37) is now obtained by using the first bound in (3.40).
The analyticity of the map X 7→ UX follows from the uniform convergence of Un → UX .
QED

Under the same assumptions as in Lemma 3.8, is is straightforward to prove the
additional bound ∥∥U∗

X
X − X − [Y,X]

∥∥
ρ′ ≤ Ca−3‖I−

X‖2
ρ , (3.43)

where Y is the vector field described in Proposition 3.7. Here, C is a constant that only
depends on ρ, ρ′, and ‖Z‖ρ .

4. A nontrivial RG fixed point
In this section we sketch the construction [76] of a nontrivial fixed point for R and describe
some numerical results which indicate that there exists an analogous fixed point of R12 for
non-twist flows.

4.1. Observations and result

As described in Subsection 1.6, numerical experiments with one-parameter families β 7→
Hβ of Hamiltonians on T2 × R2, whose golden invariant torus breaks up as β is increased
past some critical value β∞ , also display sequences of bifurcations that accumulate at
the critical point. If βn denotes the parameter value where the symmetric Birkhoff orbit
with rotation number un/un+1 becomes unstable, where un is the n-th Fibonacci number,
then the observation is that (βn − βn−1)/(βn+1 − βn) converges to a universal number
δ = 1.6279 . . . . Furthermore, the orbit structure of the critical Hamiltonian Hβ∞ is self-
similar near the golden torus, described by the universal constants (1.18).

The standard explanation involves the existence of a nontrivial fixed point H∗ for
a RG transformation R. In this explanation, δ is the expanding eigenvalue of DR(H∗).
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The other universal constants like µ∗ and λz are related to the re-scaling of H∗ during
renormalization. In particular, µ∗ it the value at H∗ of the scaling µ = µH that appears in
the renormalization step H 7→ H ◦ Tµ .

Wu
0

Ws
∗ H∗

K0

Ws
0

dim 1 codim 1 codim 2

p-translations
∆p ⊥ ω

smooth torus critical torus

Fig. 4. Expected RG picture for the breakup of invariant tori

When trying to find an RG fixed point such as H∗ , it is useful to determine first possi-
ble subclasses of Hamiltonians that are invariant under renormalization. If the phenomena
under investigation is observed for a family β 7→ Hβ in such a class, then the intersection
point Hβ∞ of this family with the stable manifold at H∗ belongs to that class, and thus
the same should be true for the fixed point H∗ . As was observed already in [74], one such
class is the set of all Hamiltonians of the form

H(q, p) = ω · p + h(q, p) , h(q, p) =
∑

(ν,k)∈I

hν,k cos(ν · q)(Ω · p)k , (4.1)

where ω =
[

ϑ−1

1

]
and Ω =

[
1

−ϑ−1

]
are the two eigenvectors of the matrix T =

[
0 1
1 1

]
,

associated with the eigenvalues ϑ (golden mean) and −ϑ−1. Besides being even in q (time
reversibility), these Hamiltonians have the property that the quantity ω · q evolves linearly
in time.

We shall now describe a result [76,77] concerning the existence of the fixed point H∗ .
Here, the resonant part I

+

H of a Hamiltonian H is defined by restricting the sum in (4.1)
to pairs (ν, k) with the property that |ω · ν| ≤ σ|Ω · ν| or |ω · ν| < κk. Recall that the RG
transformation (2.3) involves solving the equation I

−
(
H ◦ UH

)
= 0. The solution that was

described earlier yields UH as the composition Uφ1
◦ Uφ2

◦ . . . of canonical transformation
Uφn

close to the identity, with small nonresonant generating functions φn . Since we are
dealing now with Hamiltonians that are far from integrable, we need to include a canonical
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change of variables, say Uφ0
, that is not close to the identity. The (nonresonant) generating

function φ0 for such a transformation was determined in [76], by solving numerically

H ′
1 ◦ Uφ0

≈ H1 , I
−

H1 = 0 , H ′
1 = η−1µ−1H1 ◦ Tµ , (4.2)

As a result, the remaining factor Uφ1
◦Uφ2

◦ . . . can be expected to be close to the identity.
The RG transformation used in [76,77] can now be written as

R = N ◦ L ◦ S , (4.3)

where
(SH)(q, p) = cHH

(
q, p/cH

)
,

LH = η−1
H

µ−1
0 H ◦ Tµ0

◦ Uφ0
,

N (H) = H ◦ UH .

(4.4)

Here, cH = 2h0,2 , η−1
H

= ϑ, and UH is a canonical transformation, determined by solving
equation (2.14). Notice that the canonical transformation Uφ0

has been combined with
other linear parts into a linear operator L, instead of incorporating it into UH .

In Subsection 5.3 we will define a function space Bρ for function h of the form (4.1),
similar to the spaces considered earlier. (Here, we only consider the case δ = 0.) The
Hamiltonians considered then belong to the affine space Hρ = K0 + Bρ , where K0(q, p) =
ω · p. Function in Hρ that take real values for real arguments will be referred to as real.

Theorem 4.1. [76] There exists an even real resonant Fourier-Taylor polynomial h1 , an
odd real Fourier-Taylor polynomial φ0 , a choice of the parameters σ, κ, ρ, and an open
neighborhood B of K0 + h1 in Hρ , such that the following holds. The transformation
R is well defined, analytic, and compact as a map from B to Hρ . It has a unique fixed
point H∗ in B, which is real analytic and exhibits a nontrivial scaling, in the sense that
0 < µ(H∗) < ϑ−3.

Rigorous bounds on the universal constants can be found in [77].
The strategy for proving Theorem 4.1 will be described below. We note that the

Hamiltonians considered here are not necessarily close to integrable. However, if H ′ = LH,
with H close to the approximate fixed point H1 = K0 +h1 , then H ′ is close to LH1 . And
by construction, LH1 ≈ H1 . Thus, it suffices to consider N near the Hamiltonian H1 ,
which is resonant.

4.2. Strategy of proof

Theorem 4.1 is proved by converting the fixed point problem for R, to a fixed point problem
for a Newton-like map M associated with R,

M(h) = h + R(H1 + Mh) − (H1 + Mh) , (4.5)

where M is an approximate inverse of I−DR(H1). The goal is then to show that M is a
contraction near the approximate fixed point H1 . This is a common strategy in computer–
assisted proofs; see e.g. [80] and references therein. It usually involves explicit bounds on
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a finite dimensional truncation of M, and error bounds for the terms that were truncated.
In the case at hand, however, working with a truncation of the full map M turned out
to be computationally prohibitive. This problem is solved by using the fact that M only
needs to be estimated on a small open set. More specifically, we approximate the most
complex part of M, which is the map N , by a much simpler affine map N1 , and then
estimate the difference between the two.

The map N1 is defined by the equation

N1(H1 + f1) = H1 + I
+
(
f1 + {H1, φ1}

)
, (4.6)

where φ1 is the solution of I
−

(f1 + {H1, φ1}) = 0. Then N1 is an approximation of N , in
the sense that N (H1 + f1)−N1(H1 + f1) vanishes to first order in f1 . It contains all but
the first of the elimination steps described in the last subsection. The map N1 can now be
used to define an approximate RG transformation

R1 = N1 ◦ L ◦ S . (4.7)

Notice that R1 is nonlinear, but only due to the trivial scaling transformation S. Define

S̃(H1, f) = S(H1 + f) − S(H1) − DS(H1)f ,

R̃(H1, f) = DN1(H1)LS̃(H1, f) .
(4.8)

Then the map M can be rewritten as

M(h) =
(
R1(H1) − H1

)
(a)

+
[
I −

(
I − DR1(H1)

)
M

]
h (b)

+R̃(H1,Mh) + (R−R1)(H1 + Mh) . (c)

Denote by B(r) the ball in Bρ of radius r, centered at the origin. One of the goals is to
show that M maps such a ball B(r) into itself, by verifying that

(a) ‖R1(H1) − H1‖ρ = ε ¿ r,
(b) [. . .] has an operator norm K < 1,

(c)
∥∥R̃(H1,Mh) +

(
R−R1

)
(H1 + Mh)

∥∥
ρ
≤ Cr2,

for appropriate constants ε,K,C > 0. In order to estimate the derivative of M, the bound
(c) is extended to B(2r). Then the derivative of the nonlinear part of M is bounded by
Cr on B(r). To be more specific, we estimate

Kn =
∥∥R̃(H1,Mh)

∥∥
ρ
,

K ′
n =

∥∥(R−R1)(H1 + Mh)
∥∥

ρ
, h ∈ B(nr) , n = 1, 2 ,

in addition to ε (< 10−14) and K (< 0.84). Then the existence of a fixed point H∗ in B(r)
follows by verifying that

ε + Kr + K1 + K ′
1 < r , K + (K2 + K ′

2)/r < 1 .

The parameters used are σ ≈ 0.85001, κ ≈ σ/0.4, ρ ≈ (0.85, 0.15), and r ≈ 3∗10−12. More
details can be found in [76].
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4.3. Non-twist flows

Consider Hamiltonians H : T2 × R2 → R of the form

H(q, p) = ω · p + h(q, z) , z = Ω · p , (4.9)

where ω = (ϑ−1, 1) and Ω = (1,−ϑ−1), with ϑ > 0. The slope on T2 of a solution curve
t 7→ (q(t), p(t)) for such a Hamiltonians is given by

dq1

dq2
=

q̇1

q̇2
=

ϑ−1 + ∂zh

1 − ϑ−1∂zh
. (4.10)

Assume that there exists an invariant region for the flow, where this slope is bounded away
from zero or infinity. If H satisfies the “twist condition” ∂2

zh 6= 0 in this region, then the
slope (4.10) is a monotone function of z. Thus, the rotation number % = limt→∞ q1(t)/q2(t),
if it exists, is also a monotone function of z. Most KAM-type theorems assume such a
twist (or non-degeneracy) condition. It certainly holds for Hamiltonians K1+”small”, and
the critical Hamiltonian H∗ most likely satisfies a twist condition near its golden invariant
torus.

At the opposite spectrum are the “shearless” tori, where the rotation number is a local
minimum or maximum. Such tori appear in many physical systems, including models of
the atmosphere, toroidal plasma devices, channel flows, and others [88, 29, 28, 7, 65, 12].
Just like regular KAM tori, a shearless torus with Diophantine rotation number persists
under small perturbations (of an integrable system) [32,54]. In fact, they are surprisingly
stable. At the point where they break up, they separate two totally chaotic looking regions,
while in the twist case, elliptic islands still dominate a non-trivial fraction of phase space.

Apparently, the breakup of such tori is also governed by universality and scaling. In the
case of the golden mean and related rotation numbers, numerical investigations of specific
two-parameter families [30, 31, 3, 4] reveal self-similarity phenomena, with asymptotic
scaling ratios (both in parameter space and phase space) that seem to be independent of
the family considered. The self-similarity transformation involves as 12-step shift in the
sequence of continued fraction approximants for ϑ, as opposed to the ordinary 1-step shift
describing the similarity of periodic orbits in the twist case.

These observations suggests that there exists a “critical” period 12 for an RG trans-
formation like R, in a space of Hamiltonians that permit shearless invariant tori. There is
no proof for the existence of such an orbit; nor are there any accurate numerical results,
not even from experiments on specific families [30, 31, 3, 4], which usually yield very good
values for the universal constants (but only anecdotal evidence for universality). The main
problem is that only a few levels of self-similarity can be examined, since each of them
involves 12 steps in the continued fraction expansion. A further complication is that two
parameters are needed, in order to keep the rotation number of the shearless torus fixed
while the nonlinearity is varied.
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3.14159-3.14159

0.3

-0.6

z

Fig. 5. Orbits for a Hamiltonian with a near-critical shearless golden torus [55]

Fig. 6. A critical shearless golden torus [3]
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The following is a short description of a numerical RG analysis that was carried out
in [55]. We consider not-so-small perturbations of the two Hamiltonians

Kγ(q, p) = ω · p + γ(Ω · p)3 , γ = ±1
2 , (4.11)

which are a period 2 for the RG transformation R. The invariant torus p = 0 for Kγ is
shearless: Its rotation number ϑ−1 is maximal if γ ≤ 0, or minimal if γ ≥ 0, among the
rotation numbers of nearby orbits. As in the twist case, the analysis is restricted to a
subclass of Hamiltonians H with a suitable symmetry. The symmetry chosen in this case
is

−H = JH = H ◦ J , J(q, p) = (−q,−p) . (4.12)

Its usefulness stems from the fact that if −JH = H, then the orbit of the origin for H is
invariant under J . Thus, an invariant torus passing through the origin divides the energy
surface H = H(0, 0) into symmetric halves, and so the torus has to be shearless.

More specifically, consider Hamiltonians

H(q, p) = ω · p + h(q, z) , h(q, z) =
∑

ν,k

hν,keiν·kzk , z = Ω · p , (4.13)

that are odd under J , and real-valued for real arguments. In the numerical implementa-
tion, these Hamiltonians H, and all other functions that appear in the definition of R(H),
are truncated to |ν| ≤ N1 , k ≤ N2 , |ν| + k ≤ N3 , and represented as finite arrays of
Fourier-Taylor coefficients. Implicit Equations like are solved by Newton’s method. Af-
ter eliminating one of the unstable directions of R, we searched for points on the stable
manifold of the expected period H0, H1, . . . , H11 , using a bisection algorithm along lines
through Kγ . One of the first findings was an apparent additional symmetry

{
JαHn : α ∈ A

}
=

{
−Hn , −Hm , J0Hm

}
, m = n + 6 (mod 12) ,

where A = {(1, 0), (0, 1), (1, 1)} and

JαH = H ◦ Jα , Jα(q, p) = (q + πα,−p) . (4.14)

If correct, then H0, H1, . . . , H5 are in fact a period 6 for the transformation N = Jα ◦ R.
Iterating N along the presumed stable manifold of N at the critical period 6, bisecting
again when necessary, and starting all over with different choices for the RG parameters
σ, κ, when things failed to converge (an extremely tedious procedure), an approximate
fixed point for N 6 was found. Our numerical values for the expanding eigenvalues δj of
N , and for the average scaling µ̄, defined by µ̄6 = µ(H0)µ(H1) · · ·µ(H5), are

δ
1/6
1 ≈ 2.661 , δ

1/6
2 ≈ 1.585 , µ̄ ≈ 0.3659 . (4.15)

For comparison, the numerically observed values for δ
1/6
1 and δ

1/6
2 , computed from the data

in [3] are 2.678 and 1.583. This supports the idea that the breakup of shearless golden tori
is governed by a RG period 12, but it is clear that much more work is necessary.
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It is also possible to give some “explanation” why a RG period 6 or 12 should be
expected in connection with shearless invariant tori. The same argument for rotation
numbers in Q[ϑ], with ϑ =

(√
n2 + 4 + n

)
/2, suggests that the corresponding RG trans-

formation should have a period 6 or 12 if n is odd, and a period 4 or 8 if n is even. More
details can be found in [55].

5. Invariant tori
A canonical application of renormalization (for flows) is the construction of invariant tori
or other conjugacies. The basic version discussed here applies to self-similar frequency
vectors and involves a single RG transformation R, a fixed point for R, and its stable
manifold Ws. However, the procedure extends easily Diophantine rotation vectors, once
we generalize the notion of a stable manifold to sequences of RG transformations. In this
section we also discuss critical (non-differentiable) and shearless invariant tori.

5.1. Some ideas and results

Consider the RG transformation for some fixed but arbitrary class of vector fields X,

R(X) = η−1Λ∗
X
X , ΛX = Tµ ◦ UX . (5.1)

We note that, by construction, UcX = UX for nonzero constants c. Assume that X0

lies on the stable manifold of some fixed point X∞ . Then the sequence of vector fields
Xn = Rn(X0) converges to X∞ . Combining the n RG steps connecting Xn to X0 yields

Xn = η−1
1 · · · η−1

n

(
Λn

X∞

)∗ ◦ V∗
n−1 ◦ . . . ◦ V∗

0 X0 , (5.2)

where
Vk = Λk

X∞
◦ ΛXk

◦ Λ−k−1
X∞

. (5.3)

Assuming that ΛX∞
is one-to-one, we have η∞(Λ∗

X∞
)−1X∞ = X∞ on the range of ΛX∞

.
The goal now is to show that

∏
k(ηk/η∞) → c, and Vk → I sufficiently fast, such that

V0 ◦ V1 ◦ . . . ◦ Vn−1 → Γ , (5.4)

in some appropriate topology. If the limit (5.4) exists on a nontrivial part of phase space,
then

Γ∗X0 = cX∞ , (5.5)

In this case, the construction yields a conjugacy to a constant vector field, for every X
on the stable manifold of the fixed point X∞ . This can be applied e.g. to parametrized
families of vector fields β 7→ Xβ , under conditions that guarantee that the family intersects
the stable manifold of R. A procedure of this type for skew flows is described in Subsection
8.3.

For Hamiltonian vector fields on Td ×Rd, the limit (5.4) can be expected to exist only
on Td × {0}. In this case, Γ is an invariant torus for H. Concerning uniqueness, recall
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that invariant tori with given rotation numbers typically come in one-parameter families,
indexed e.g. by the energy. The tori Γ constructed here are characterized by the property
that the integrals

A(γ) =
1

2π

∮

γ

d∑

j=1

pjdqj (5.6)

vanish along each closed curve γ on the torus. Tori with this property will be referred
to as being “centered at p = 0”. This property is invariant under symplectic maps (1.6)
obtained from generating functions (1.7). Thus, since Γ is a limit of such maps, with the
p-domain shrinking to the point zero, Γ is centered at p = 0.

If H does not lie on the stable manifold, but satisfies a suitable nondegeneracy condi-
tion, then the procedure sketched above may still be used to construct an invariant torus
for H. To be more specific, consider the RG transformation R for analytic Hamiltonians,
where

R(H) =
1

ηµ
H ◦ ΛH , (5.7)

with ΛH = Tµ ◦ UH′ and H ′ = H ◦ Tµ . As can be computed explicitly (see Subsection 6.1),
the expanding subspace for DR(K0) at the trivial fixed point K0(q, p) = ω ·p, consist of all
functions hv(q, p) = v · p, with v in the contracting subspace V of the matrix T . Consider
now an analytic Hamiltonian

K(q, p) = ω · p + 1
2p · Mp + f(p) , f(p) = O(|p|3) , (5.8)

where M is a real symmetric d×d matrix, such that the quadratic form p 7→ p ·Mp is non-
degenerate when restricted to the d − 1 dimensional contracting subspace of T ∗. We may
assume that h is small, since this can always be achieved with a scaling K 7→ s−1K(., s.).
Then the family v 7→ K(q, p + v), indexed by V , is transversal to the local stable manifold
Ws of R. Thus, if H is an analytic Hamiltonian close to K, then the family v 7→ H(q, p+v)
intersects Ws at exactly one point, say for v = v∗.

Wu
0

Ws
0

codim d − 1 H

K0 H1H2H3

dim d

if M in non-degenerate

H 7→ H( ., . + v)

all p-translates of H

Fig. 7. A Hamiltonian and its p-translates
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Clearly, if H(., .+ v∗) has an invariant torus with rotation vector cω, then so does H.
One of the issues with an RG based construction of invariant tori is the loss of regu-

larity that occurs in the process. This concerns mostly regularity in the angular variable
q. To simplify the discussion, consider again the RG transformation (5.7) near the trivial
fixed point K0(q, p) = ω · p. Then the equation (5.3) becomes

Vk = T k
µ∞

◦ ΛHk
◦ T −k−1

µ∞
. (5.9)

Notice that T has d−1 contracting directions. Thus, the composition with T −k−1
µ∞

shrinks
the domain of analyticity in the contracting directions of T , down to zero in the limit
k → ∞. However, the non-integrable part of Hn , which determines the size of UHn

− I,
tends to zero even more rapidly. This fact can be used to control some fixed number of
q-derivatives of Vk , and to prove that the torus Γ has that many continuous derivatives.
This result is far from optimal, though. These tori are known to be analytic.

Fortunately, the analyticity of Γ = ΓH for near-integrable Hamiltonians H can be
obtained in a different way. (And this works not only for Hamiltonian flows.) Consider
torus-translations Jv(q, p) = (q + v, p). First, one verifies that for real v,

R ◦ Jv = JT−1v ◦ R , JvH = H ◦ Jv . (5.10)

This is an explicit computation, using that I
±

commutes with Jv , and that Jv is an
isometry on the spaces Fρ . The equation (5.10) shows in particular that the local stable
manifold of R (at K0) is invariant under Jv . Here, one uses the fact that the trivial fixed
point is invariant under translations on Td. Assume now that H belongs to this local
stable manifold. Then the second step is to verify that the construction of Γ = ΓH yields

ΓH◦Jv
= J−1

v ◦ ΓH ◦ Jv , (5.11)

for real translations v. This identity implies that

ΓH(q) = EqΓH = E0

(
ΓH ◦ Jq

)
= JqE0ΓH◦Jq

. (5.12)

where Eq denotes the evaluation functional f 7→ f(q). Now, it suffices to prove that the
map H 7→ ΓH is analytic in an open neighborhood of K0 in Hρ = K0 + Fρ . Then, if H
is sufficiently close to K0 in a space Hρ′ with ρ′1 > ρ1 , then q 7→ H ◦ Jq is an analytic
family in the domain of H 7→ ΓH . Thus the right hand side of equation (5.11) depends
analytically on q, defining an analytic continuation of the left hand side. It should be
mentioned that the analyticity of H 7→ ΓH is a consequence of the explicit construction of
ΓH via uniformly converging limits of analytic maps.

A construction along these lines, of analytic invariant tori with self-similar frequency
vectors, can be found in [74]. In the case d = 2, the procedure was generalized by Kocić
[81] to frequency vectors ω that satisfy a Diophantine condition (with restrictions on the
Diophantine exponent), using a sequence of RG transformation Rn associated with the
continued fraction expansion of the rotation number ω1/ω2. Recent work by Marklov,
Lopes Dias, and Khanin [70] extends this construction to arbitrary Diophantine vectors ω
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in dimensions d ≥ 2, after introducing an appropriate multidimensional continued fraction
expansion. This expansion, and a RG analysis of skew flows [79] that is based on it, will
be described in Sections 7 and 8. It should be noted that for Hamiltonians H(q, p) that
are linear in p, there is no domain loss in the construction of Γ. In this case, Γ is a proper
change of variables that reduces H to a constant multiple of K0 . This can be applied to
vector fields on Td, by considering the associated Hamiltonian H(q, p) = p · X(q). A RG
analysis of flows on T2 with Brjuno rotation numbers was given in [96].

A RG analysis of one-parameter families of Hamiltonians with a pair of (golden)
invariant tori bifurcating from a shearless invariant torus was carried out by Gaidashev in
[54]. A brief description of this work, which involves two different fixed points of R, will
be given in Subsection 5.5.

In all these cases, invariant tori were constructed for vector fields that are close to
constant, i.e., the RG fixed point used is a linear vector field, or in the Hamiltonian case,
one of the integrable Hamiltonians K0 or Kγ discussed earlier. Invariant tori for critical
Hamiltonians near the nontrivial fixed point H∗ are discussed below. This includes a
description of the proof of

Theorem 5.1. [77] In some open neighborhood of H∞ , every Hamiltonian that lies on
the local (strong) stable manifold of R has a non-differentiable golden invariant torus.

Numerical results indicate that R is hyperbolic at H∞ , with a single relevant ex-
panding direction; but this has not yet been proved. As mentioned in Subsection 1.6, the
Hamiltonians on the non-KAM side of the stable manifold are expected to have hyperbolic
orbits with golden mean rotation number. A possible approach for proving a local version
of this conjecture is described in [27].

5.2. Renormalization of invariant tori

As was shown above, no generality is lost by using spaces like Cr for the construction
of the invariant torus Γ. In most of the work that have been mentioned, the differential
version (1.3) of the torus equation

ΓH ◦ Ψt = Φt
H
◦ ΓH , Ψt(q, 0) = (q + tω, 0) , (5.13)

was used. This requires at least r ≥ 1.
Some recent work [77,81,78] follows a different approach, based entirely on semi-

conjugacies, where it is natural to use equation (5.13) directly. So there is no need to
work with differentiable functions. We will now describe the construction given in [77] of
invariant tori for Hamiltonians on the local stable manifold of the nontrivial fixed point
H∗ described in Theorem 4.1. In this case, the argument that was used above to show
that a continuous torus Γ has to be analytic, fails, since the fixed point H∗ is not invariant
under torus-translations Jv . In fact, one of our goals is to show that the Hamiltonians on
the local stable manifold of R at H∗ are “critical”, in the sense that their golden invariant
tori are not differentiable. This argument uses specific properties of the fixed point H∗

and of its scaling map ΛH∗
. The other steps in the construction, which we discuss first,

can also be adapted to the study of near-integrable Hamiltonians [81]. Notice that the RG
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transformation used near H∗ is also of the form (5.7), but with ΛH = Tµ ◦ Uφ0
◦ UH′ and

H ′ = H ◦ Tµ ◦ Uφ0
.

The basic idea is to relate the equation (5.13) to the analogous equation for the

renormalized Hamiltonian H̃ = R(H). For the two flows, we have

ΛH ◦ Φ̃t = Φη−1t ◦ ΛH , (5.14)

with η depending on H (in general). This identity follows from the fact that T ◦ Uφ0
◦ UH

is symplectic, and from an explicit computation, showing that (5.14) holds in the case

where H̃(q, p) is taken to be η−1µ−1H(q, µp). Now consider Hamiltonians of the form
H(q, p) = ω · p + h(q, Ω · p) with Ω · ω = 0. Then the time renormalization is η = ϑ−1,
where ϑ is the eigenvalue of T for the eigenvector ω. Define

MH(f) = ΛH ◦ f ◦ T −1 , (5.15)

for any map f from Td ×{0} to the domain of ΛH . Assume that Γ̃ is an invariant torus for

H̃, taking values in the domain of ΛH , and set Γ = MH

(
Γ̃
)
. Then by using the identity

(5.14), together with the fact that T ◦ Ψt = Ψϑt ◦ T , we obtain

Γ ◦ Ψt = ΛH ◦ Γ̃ ◦ T −1 ◦ Ψt = ΛH ◦ Γ̃ ◦ Ψϑ−1t ◦ T −1

= ΛH ◦ Φ̃ϑ−1t ◦ Γ̃ ◦ T −1 = Φt ◦ ΛH ◦ Γ̃ ◦ T −1 = Φt ◦ Γ .

This shows that Γ is an invariant torus for H.
It also suggest that an invariant torus for a fixed point H of R is a fixed point of

MH . Such a torus Γ satisfies the equation Γ ◦ T = ΛH ◦ Γ, which, together with purely
topological arguments, can be used to prove the following.

Lemma 5.2. [77] Let H be a fixed point of R, and let Γ be an invariant torus for H that
is continuous and homotopic to T . If Γ is a fixed point for MH , then ΛH maps range(Γ)
invertibly onto itself.

Let now H∞ be a fixed point of R with a well defined local (strong) stable manifold
Ws. Examples are the integrable fixed points (2.5) and K0 , and for d = 2, the nontrivial
fixed point H∗ . Given any Hamiltonian H0 ∈ Ws, define Hn = Rn(H0). In order to
simplify notation, we will write Λn and Mn in place of ΛHn

and MHn
, respectively.

Our first goal is to show that MH is a contraction on some appropriate space of maps,
whenever H is sufficiently close to H∞ . If we knew e.g. that each of the Hamiltonians Hn

had a unique invariant torus Γn (centered at p = 0) with frequency vector ω, then these
tori should satisfy

Γn = Mn(Γn+1) = Λn ◦ Γn+1 ◦ T −1 , n = 0, 1, 2, . . . . (5.16)

This argument can in fact be turned around: We will use the contraction property of the
maps Mn to construct, via inverse limit, a sequence of maps Γn satisfying (5.16). Then
we will show that Γn is indeed an invariant torus for Hn .
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5.3. Existence

In what follows, we will restrict our analysis to a special case. Let ω = (ϑ−1, 1) and Ω =
(1,−ϑ−1), with ϑ the golden mean. Let ω′ = cω and Ω′ = cω, such that ω′ ·ω = Ω′ ·Ω = 1.
We consider only Hamiltonians of the form H(q, p) = ω · p + h(q, z), where z = Ω · p. As a
result, only coordinate changes of the form

U = I + u , u(q, p) =
(
uxΩ, uyω′ + uzΩ

′) (5.17)

need to be considered. Just like the flow for H, they are “time preserving” in the sense
that τ = ω′ · q is invariant. Imposing further that h(q, z) be even in q, we can restrict ux

to be odd in q, and uz even. This will be referred to as the “parity preserving” property.
In addition, u(q, p) only needs to depend on q and z, but not on y = ω · p. As a result,
uy enters trivially in any composition of such transformations. Thus, in order to simplify
notation, we will identify u with (ux, uz). For the same reason, u and U will be identified
with functions of the variables (q, z). The same applies to the functions Γ = I + γ that
appear in the construction of invariant tori. In addition, these functions do not depend on
z.

A connection between the transformation R for time preserving Hamiltonian flows
and the RG transformation for commuting maps can be found in [75]. Next, we introduce
some functions spaces. All of the functions that need to be considered here are either even
or odd in q. The coefficients in the cosine (sine) series of an even (odd) function f = f(q)
will be denoted by fν . For functions like γx and γz , we will use the space B0 (if even) or
C0 (if odd) of functions f : D → C with finite norm

‖f‖0 =
∑

ν

|fν |eδ|ω·ν|(1 + |Ω · ν|)r . (5.18)

Here δ, r < 1 are small positive numbers to be chosen later. The space C0 × B0 , equipped
with the norm ‖(fx, fz)‖0 = max{‖fx‖0, 2‖fz‖0}, will be denoted by A0 .

Consider now the transformation MH defined earlier,

MH(Γ) = ΛH ◦ Γ ◦ T −1 . (5.19)

Concerning the composition on the right by T −1, notice that f 7→ f ◦ T−1 is bounded on
F0 , with operator norm close to 1 if r > 0 is small. For the composition of the right by
ΛH , consider first H = K0 . Then ΛH acts on γ by multiplying γx by −ϑ−1, and γz by
−ϑ−2. Both of these numbers are less than 2/3 in modulus. Thus, MH is a contraction
on A0 in this case, if r > 0 is sufficiently small. This clearly remains true for analytic
Hamiltonians near K0 .

The proposition below implies that the same holds for Hamiltonians near the fixed
point H∗ . Given ρ = (ρx, ρz) with positive components, define Dρ to be the complex
neighborhood of D = T2 × {0}, characterized by |Im τ | < δ, |Im x| < ρx and |z| < ρz.
Here, x = Ω′ · q. Let Bρ be the space of analytic functions h : Dρ → C that are even in q
and have finite norm

‖h‖ρ =
∑

ν,k

|hν,k|eδ|ω·ν| cosh(ρxΩ · ν)ρk
z , (5.20)
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where hν,k are the coefficients in the cosine-Taylor expansion of h. The affine space K0+Bρ

will be denoted by Hρ . In what follows, we use the same domain and norm parameters as
in [76], namely ρ ≈ (0.85, 0.15) and r ≈ 10−4. Let ρ′ = (ρx, ρz/2).

Proposition 5.3. [77] If δ > 0 is chosen sufficiently small, then there exists a bounded
open neighborhood V of H∞ in H% , such that the following holds. The map H 7→ ΛH is
analytic on V , and there exists a positive a < 1, an open ball B in A0 , and a concentric
closed ball B0 ⊂ B, such that for every H ∈ V , the transformation MH is well defined on
B, maps B into B0 , and contracts distances by a factor ≤ a. The range of any function
Γ ∈ B is contained in Dρ′ . Furthermore, (H,Γ) 7→ MH(Γ) is analytic on V × B.

The proof in is based on computer–assisted estimates for the scaling map ΛH∗
. After

determining (numerically) an approximate fixed point f for MH∗
, the stated properties

were obtained by estimating the norm of MH∗
(f) − f and of the derivative of MH∗

near
f . Notice that Proposition 5.3 the existence of a fixed point Γ∞ for the map MH∗

.
An analogous proposition for the trivial fixed point K0 follows from our earlier dis-

cussion, together with the fact that R is analytic near K0 .
Now we are ready to construct a sequence of functions {Γn} that satisfy equation

(5.16). Consider either H∞ = K0 or H∞ = H∗ . Let V ⊂ H% and B ⊂ A0 be as in Propo-
sition 5.3, and let F0, F1, . . . be arbitrary maps in B. Given a sequence of Hamiltonians
H0, H1, . . . in V , define

Γn,m =
(
Mn ◦Mn+1 ◦ . . . ◦Mm−1

)
(Fm)

= Λn ◦ Λn+1 ◦ . . . ◦ Λm−1 ◦ Fm ◦ T −m+n , 0 ≤ n < m .
(5.21)

Theorem 5.4. [77] There is a constant C > 0 such that the following holds. Let H0, H1, . . .
be Hamiltonians in V . Then the limits Γn =limm→∞ Γn,m exist in A0 , are time and parity
preserving, do not depend on the choice of the maps Fm , and satisfy the bounds

‖Γn − Γ∞‖0 ≤ C sup
m≥n

‖Hm − H∞‖% , n = 0, 1, . . . . (5.22)

If Hn = Rn(H0) for all n > 0, then (5.16) holds. If in addition, V has been chosen
sufficiently small, and H0 belongs to Ws, then Γn is a golden invariant torus for Hn , for
each n ≥ 0.

The main ingredients in the proof of this theorem are the following.
Proposition 5.3 shows that if n < m < k, then the difference Γn,k − Γn,m is bounded

in norm by dam−n, where d is the diameter of B. Thus, the sequence m 7→ Γn,m converges
in A0 to a limit Γn , and this limit is independent of the choice of the maps Fm . The
estimate (5.22) is obtained by using the analyticity of the map H0 7→ Γ0 .

Assume now Hn = Rn(H0) for all n > 0. Then (5.16) is obtained by taking Fm = Γm

for all m, and using that the maps Mn are continuous. In order to prove that Γn is an
invariant torus for Hn , we can use the identity

Φt
n ◦ Γn,m ◦ Ψ−t = Λn ◦ Λn+1 ◦ . . . ◦ Λm−1 ◦ Φtm−n

m ◦ Γ∞ ◦ Ψ−tm−n ◦ T −m+n

=
(
Mn ◦Mn+1 ◦ . . . ◦Mm−1

)[
Φtm−n

m ◦ Γ∞ ◦ Ψ−tm−n
]
,

(5.23)
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where tk = ϑ−kt, and where Ψk denotes the flow for Hk . Here, we have used that
T ◦ Φs = Φϑs ◦ T , Notice that the map [. . .] in equation (5.23) is time preserving, since
the two flows change τ by opposite amounts. Thus, equation (5.23) is an identity between
maps in A0 .

Consider first the case where Hn = H∞ for all n ≥ 0. Then the two flows in [. . .] tend
to the identity as m → ∞, Thus, [. . .] takes values in Dρ for large m. As m → ∞, both
sides converge in A0 to Γn . But convergence in A0 implies pointwise convergence, and
since Ψt

n and Φt are both continuous and invertible, we conclude that Ψt
n ◦Γn ◦Φ−t = Γn .

This shows that Γn is a golden invariant torus for Hn .
For general H0 ∈ Ws near H∞ ,we can now use that

Φtm−n
m ◦ Γ∞ ◦ Ψ−tm−n = Φtm−n

m ◦ Φ−tm−n
∞ ◦ Γ∞ . (5.24)

Again, the map [. . .] in equation (5.23) takes values in Dρ for large m. So by the same
argument as above, Γn is a golden invariant torus for Hn .

5.4. Critical invariant tori

The invariant torus Γ∞ for a fixed point H∞ of R satisfies the equation

Λ∞ ◦ Γ∞ = Γ∞ ◦ T , (5.25)

This shows e.g. that (0, p∞) = Γ∞(0) is a fixed point of the scaling map Λ∞ . If Γ∞ is
smooth and one-to-one and near this fixed point, then the semi-conjugacy (5.25) suggests
that the eigenvalues of T are also eigenvalues of DΛ∞(0, p∞). This is trivially the case
for the fixed point K0 , whose scaling map is Tµ , with µ = ϑ−3. The eigenvalues of Tµ

are ϑ, −ϑ−1, ϑ−4, and −ϑ−2. These are the trivial values of the scaling constants λτ , λx,
λy, and λz, whose critical values we shall now describe. First, we note that if U is parity
preserving, then the line q = 0 is invariant under U . Thus, the maps ΛH are of the form

ΛH(0, z) =
(
0, H̀(z)

)
, (5.26)

where H̀ is some function of one variable.
The following proposition concern the fixed point H∗ described in Theorem 4.1. Its

proof is computer–assisted.

Proposition 5.5. [77] The (analytic) function `H∗
maps the interval [−%z/2, %z/2] into its

interior, has a globally attracting fixed point z∞ , and the derivative of `H∗
at this fixed

point is λz = −0.326063 . . .. Furthermore, µ(H∗) = µ∞ = 0.230460196 . . ..

One of the conclusions is that ΛH∗
has a fixed point (q, p) = (0, p∞) with Ω ·p∞ = z∞,

and that its derivative at this fixed point has λz as one of its eigenvalues. We note
that the corresponding eigenvector is not (0,Ω), as equation (5.26) might suggest, but
it has a nonzero component in the y-direction that has been suppressed in (5.26). The
remaining three eigenvalues of DΛH∗

(0, p∞) are obtained by using that UH∗
is a time and

parity preserving symplectic map: they are λτ = ϑ, λx = µ∞/λz = −0.706795 . . ., and
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λy = µ∞/λτ = 0.1424322345 . . .. The corresponding eigenvectors are the direction of the
flow at (0, p∞), and the vectors (Ω, 0) and (0, ω), respectively.

Consider now the RG fixed point H∞ = H∗ . The following result implies Theorem 5.1.
It uses the fact that λx is different from the corresponding eigenvalue −ϑ−1 = −0.618033 . . .
of Tµ .

Theorem 5.6. [77] There exists an open neighborhood V of H∗ in H% such that if H0

belongs to Ws ∩ V , then the torus Γ0 defined in Theorem 5.4 is not differentiable.

Proof. By using Lemma 5.2 and the analyticity of ΛH∞
, we can finds sets K ⊂ S and

K ⊂ S′ ⊂ K ′, all subsets of Dρ′ whose interiors contain g = graph(Γ∞), with S, S′

open and K,K ′ compact, such that for H = H∞ , the scaling map ΛH defines an analytic
diffeomorphism from S to an open neighborhood of K ′. Since H 7→ ΛH is analytic, this
extends to all Hamiltonians H in some open neighborhood of H∞ in Hρ .

Now choose V sufficiently small, such that (our previous results apply and) the set⋃
n Range(Γn) is contained in K. This is possible by (5.22), and by the fact that Ws is

the graph of an analytic function. Thus, we have

Γn = Λ−1
n−1 ◦ . . . ◦ Λ−1

1 ◦ Λ−1
0 ◦ Γ0 ◦ T n

1 , (5.27)

for all n ≥ 0, where the inverse scalings are defined in an unambiguous way.
In what follows, we lift Λn and Γn from T2 to R2, restrict to τ = 0, and use the

variables x, z. Since Λn is parity preserving, it can be written in the form

Λn(x, z) =
(
fn(x, z)x, `n(z) + gn(x, z)x2

)
. (5.28)

It suffices to consider points in S′, where we have a bound |z| < b < %z/2. By Proposi-
tion 5.5, there exists a real analytic function ϕ on [−b, b], with non-vanishing derivative,
such that ϕ(`∞(z)) = λzϕ(z).

Consider now the coordinates z̃ = ϕ(z) and x̃ = x/ϕ′(z). Since UH′
∞

is symplectic,
the functions `∞ and f∞ in these new coordinates, when restricted to x̃ = 0, are simply
multiplication by λz and λx , respectively.

The inverse of Λn is also parity preserving, and thus admits a representation analogous
to (5.28). In the coordinates x̃ and z̃, we have

Λ̃−1
n (x̃, z̃) =

(
φn(x̃, z̃)x̃, ψn(x̃, z̃)

)
, (5.29)

with φn, ψn analytic in S̃′. Since all derivatives of Λn are bounded on K̃ ′, uniformly in n,
we have φn(x̃, z̃) → φ∞(x̃, z̃), uniformly on S̃′. Furthermore, φ∞(x̃, z̃) → λ−1

x , as x̃ → 0,
uniformly in z̃. Thus, if V has been chosen sufficiently small, we can find positive real
numbers α and β < 1, such that |φn(x̃, ỹ)| ≤ βϑ for all n ≥ 0, whenever |x̃| < α. Here, we
have used the crucial fact that the eigenvalue λx of DΛ∞ at Γ∞(0) is larger in modulus
than the corresponding eigenvalue −ϑ−1 of T1 .

By equation (5.27), the points Γn(s, 0), expressed in the coordinates x̃ and ỹ, are given
by

Γ̃n(s, 0) =
(
Λ̃−1

n−1 ◦ . . . ◦ Λ̃−1
1 ◦ Λ̃−1

0 ◦ Γ̃0

)
(sn, 0) , sn = (−ϑ−1)ns . (5.30)
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Assume now for contradiction that Γ0 is differentiable at 0. Then there exists a constant
c > 0 such that for any given s ∈ R, the angular (x̃) component of Γ̃0(sn, 0) is bounded in
modulus by c|sn|, for large n. Thus, by using the above-mentioned bound on the functions

φm , we find that the angular component of Γ̃n(s, 0) is bounded in modulus by cβn|s| < α,
if n is sufficiently large.

By using now that Γn → Γ∞ in A0 , and the fact that evaluation is continuous on A0 ,
we conclude that the angular component of Γ∞(s, 0) is zero for all s ∈ R. Thus, since the
curve s 7→ sΩ is dense in T2, the angular component of Γ∞ is identically zero. But this
is impossible, since Γ∞ is continuous and homotopic to I. This shows that Γ0 cannot be
differentiable. QED

Fig. 8. A critical golden invariant torus

5.5. Shearless tori

The construction of invariant tori for Hamiltonians on the stable manifold of an RG fixed
point does not involve any nondegeneracy assumptions. Thus, it applies equally well to
shearless tori.

Consider again the golden mean case, so the vectors ω and Ω are the same as above.
We will call an invariant torus shearless if in some coordinates (where the torus is at p = 0),

q̇ = cω + κ(Ω · p)2Ω + O(|p|3) , ṗ = O(|p|3) . (5.31)

A simple Hamiltonian with such a torus is F∗(0), where

F∗(α)(q, p) = ω · p + αz + γz3 , z = Ω · p . (5.32)

with γ ∈ R nonzero. This torus bifurcates, as the parameter α is varied. More specifically,
we have ṗ = 0 and q̇ = ω + [α + 3γz2]Ω, so the Hamiltonian F∗(α) has an invariant torus
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at z = t (a constant, not time), and the rotation number of this torus is

% =
ϑ−1 + [α + 3γt2]

1 − ϑ−1[α + 3γt2]
. (5.33)

Thus, we can distinguish three cases

α < 0 : F∗(α) has two real golden tori (with shear).
α = 0 : F∗(α) has one real golden torus (shearless).
α > 0 : F∗(α) has no real golden torus (but two complex tori).

This type of behavior is observed and expected to persist under small perturbations of the
family. For near-integrable area-preserving maps, a theorem confirming this observation
was proved in [32], for arbitrary Diophantine rotation numbers, using a KAM type method.
The following theorem focuses on golden invariant tori for near-integrable Hamiltonian
flows.

Theorem 5.7. [54] If F is real, and sufficiently close to F∗ in some space of one-parameter
families of Hamiltonians, then the following holds. Each F (α) in this family has two golden
invariant tori, Γ1

α and Γ2
α , and no other golden invariant tori nearby. There exists a unique

parameter value αF where Γ1
α = Γ2

α , and the function F 7→ αF is real analytic. The tori Γi
α

are real if and only if α ≤ αF . If the Hamiltonians F (α) are time preserving (a technical
assumption to simplify the analysis) then the given torus for α = αF is shearless. The
maps α 7→ Γi

α are continuous, and real analytic away from αF .

This theorem is proved by using renormalization. We will describe some of the ideas
below (with slight modifications, to synchronize the definitions with those used in previous
sections). Presumably, the method can be generalized to Diophantine frequencies, using
sequences of RG transformations as in [95,81].

The analysis involves two RG transformations with different fixed points and normal-
izations. One of these transformations is

R0(H) = H ′ ◦ UH′ , H ′ =
ϑ

µ
H ◦ Tµ , (5.34)

with µ = µ0 a fixed positive real number less than ϑ−1. As usual, the canonical trans-
formation UH′ is determined in such a way that I

−R0(H) = 0. This transformation R0 is
considered in a neighborhood of its fixed point K0(q, p) = ω ·p, and γ 6= 0 is fixed (modulo
sign) such that F∗(0) belongs to this neighborhood. Define

JtH = H ◦ Jt , Jt(q, p) = (q, p + tΩ′) , (5.35)

with Ω′ = cΩ normalized in such a way that Ω′ · Ω = 1. In particular, if H = F∗(α) + h
then

(JtH)(q, p) = ω · p +
[
α + 3γt2

]
z + 3γtz2 + γz3 + (Jth)(q, p) , (5.36)

modulo a constant term that we can ignore. Then we can choose δ > 0 such that the
following holds. Consider first the case h ≡ 0. Then for α > δ, all orbits for H (in the
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domain Dρ considered) have a rotation number strictly larger than ϑ−1. And for α < −δ,
the family t 7→ JtH intersects the stable manifold of R0 at K0 at exactly two points, and
thus H has two golden invariant tori. Furthermore, this intersection is transversal, so the
above generalizes to h 6= 0 sufficiently close to zero. This argument is used in the proof of
Theorem 5.7 to construct the tori Γi

α when α is bounded away from zero.
Consider now the Hamiltonians Kγ(q, p) = ω ·p+γz3 . With the proper normalization

µ = ϑ−2, these two Hamiltonians are a period 2 for the RG transformation R. For
Hamiltonians near Kγ , we choose the RG transformation

R(H) = H ′ ◦ UH′ , H ′ =
ϑ

µ
H ◦ Tµ ◦ Jt , (5.37)

where µ ≈ ϑ−2 and t ≈ 0 are determined in such a way that the coefficients of z2 and z3

in the Fourier-Taylor expansion of R(H) − K−γ are zero. We note that the RG transfor-
mations R0 and R2 are hyperbolic near their trivial fixed points, with a one-dimensional
unstable direction given by the linear function (q, p) 7→ Ω · p.

In the case of R, the unstable manifold at Kγ is in fact given by the family F∗ . Thus,
if F is sufficiently close to F∗ , then F intersects the stable manifold of R at precisely
one point. The corresponding parameter value is denoted by αF . Using the procedure
described in the last section, we can now construct an invariant torus for F (αF ), and if
h = h(q, z), then it can be shown that this torus is shearless. One technical complication
here is the presence of the translation Jt in the definition (5.37) of R. However, after the
first RG step, t = t(H) is of the order of (I − E)H, where E denotes averaging over the
torus T2. And (I−E)H tends to zero very rapidly, so that the translations Jt do not cause
any domain problems.

This leaves the problem of constructing invariant tori for F (α) with α 6= αF close
to αF . This is done by iterating the RG transformation R, until the coefficient of z for
Rn(F (α)) is larger than δ. Then the RG transformation R0 can be used to construct two
golden invariant tori, as described above. This part of the analysis requires good control
over the dependence of R(F (α)) on the parameter α. Thus, it is convenient to introduce
an RG transformation for families α 7→ F (α). In what follows, we identify the parameter
space C with the one-dimensional expanding subspace of DR(K0). Denoting by P the
canonical projection onto this subspace, we define

YF (α) = PR
(
F (α)

)
. (5.38)

In particular, YF∗
(α) = −ϑ2α, which reflects the fact that F∗ is the unstable manifold

of R at K0 , and that the expanding eigenvalue is −ϑ2. The map YF is now used to
re-parametrize the family F after renormalization. More specifically, we set

R(F ) = R ◦ F ◦ Y −1
F

. (5.39)

By construction, F∗ is a fixed point of R, and it is straightforward to check that all
eigenvalues of DR(F∗) are of modulus less than one. Thus, we expect that R

n(F ) → F∗

for large n, This property, which was proved in [1], makes it possible to get the necessary
control over Rn(F (α)) for α 6= αF very close to αF , and for n correspondingly large.
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This procedure, known as the graph transform method, is a common method for
constructing the (un)stable manifold of a map R; see e.g. [64]. We will describe a gener-
alization (to sequences of maps) of this method in Subsection 7.4.

Wu
0

Ws
0 Kγ

F (α)

K0

(Ω · p)2

H0

H1H2

(Ω · p) F∗

t 7→ F (αF ) ◦ Jt

t 7→ F (α) ◦ Jt

Fig. 9. Renormalization of families with shearless invariant tori

6. Scaling

According to the general RG picture, the properties of a hyperbolic RG fixed point H∞

with an m-dimensional unstable manifold describes universal behavior for m-parameter
families β 7→ Hβ . The universal constants are eigenvalues of either the linearized RG
transformation DR(H∞) or the linearized scaling map DΛH∞

(q∞, p∞). The latter describe
self-similarity properties of the orbit structure for Hamiltonians near the critical surface
(the stable manifold of R at H∞). The reason is pretty clear: If G is an orbit for R(H),
with rotation vector w, then ΛH(G) is an orbit for H, with rotation vector parallel to Tw.
This fact was used e.g. in the analysis of invariant tori. Here, we discuss properties that
relate to eigenvalues of the linearized RG transformation, and more specifically, the rate
at which periodic orbits accumulate at an invariant torus.

6.1. Spectrum of the linearized RG transformation

If H is a purely resonant Hamiltonian, so that UH′ is the identity, then DR(H) can be
obtained explicitly, since it suffices for this purpose to eliminate nonresonant modes to
first order in the perturbation. In this case, the derivative of N : H 7→ UH is given by the
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equation

DN (H) = I
+− I

+

Ĥ
(
I
−

ĤI
−
)−1

I
−

, I
−

H = 0 . (6.1)

This simplifies to DN (H) = I
+

, if H(q, p) does not depend on the angle variable q. In
order to simplify things further, consider now R with fixed scaling parameters η = ϑ−1

1

and 0 < µ < ϑd . Here, and in what follows, ϑk denotes the k-th largest eigenvalue (in
modulus) of the matrix T , and ωk denotes the corresponding eigenvector. In particular,
ϑ1 = ϑ and ω1 = ω. The Hamiltonian K0(q, p) = ω ·p is a fixed point of this transformation
R. If we write f(q, p) =

∑
ν fν(p)eiν·q, then

(
DR(K0)f

)
(q, p) =

∑

ν

ϑ1

µ
fν

(
µ(T ∗)−1p

)
exp

(
iν · (Tq)

)
. (6.2)

Assume now that f is an analytic eigenfunction of DR(K0), with eigenvalue λ 6= 0. Then
we obtain

fT nν =
( ϑ1

λµ

)n

fν

(
µn(T ∗)−n.

)
, ν ∈ Z

d , (6.3)

first for n = 1, and then for any n ∈ N by iteration. Consider ν 6= 0. Then Tnν ∼ ϑn for
large n, so by analyticity, the left hand side of (6.3) is bounded in modulus by exp(−cϑn),
for some c > 0. But the right hand side can tend to zero no faster than exponentially,
unless fν = 0. This shows that the eigenvectors of DR(K0) are functions of p only. Finding
these is easy: On the (invariant) subspace of functions f(q, p) = f0(p), the homogeneous
polynomials (q, p) 7→ (ωk · p)m and their products are a basis of eigenvectors. In what
follows, we will always choose

0 < µ <
∣∣ϑ−1

1 ϑ2
d

∣∣ . (6.4)

Then DR(K0) has exactly d eigenvalues of modulus > 1. One of them is λ0 = ϑ/µ,
associated with constant Hamiltonians, and the other d − 1 eigenvalue-eigenvector pairs
are

λk = ϑ1/ϑk , fk(q, p) = ωk · p , k = 2, . . . , d . (6.5)

Since the value of µ has been fixed, DR(K0) also has an eigenvalue 1, with eigenvector
f1(q, p) = ω · p. But we can (and will) reduce this eigenvalue to 0 by choosing a scaling
µ = µ(H) in such a way that the torus average of ω · ∇pH is a fixed positive constant.
Then all eigenvalues of DR(K0) other than the ones listed in (6.5) are of modulus < 1.

It should be noted that the expanding eigenvalues (including λ0) could be mapped to
0 as well, by including a translation (q, p) 7→ (q, p+v) in the definition of R, with v = v(H)
chosen appropriately. In this sense, DR(K0) has no “relevant” expanding eigenvalues. By
contrast, the linearized RG transformation at the critical fixed point H∞ described in
Theorem 4.1 is believed to have an expanding eigenvalue δ = 1.6279 . . . that is not related
to coordinate changes.

6.2. Accumulation of periodic orbits

The expanding eigenvalues of the linearized RG transformation describe asymptotic rela-
tions between different members of the family β 7→ Hβ , as β approaches the value β∞
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where the family intersects the stable manifold Ws of the given RG fixed point H∞ . To
give an example, let P be a collection of properties that can be assigned to closed orbits,
such that if R(H) has an orbit of type P, then the corresponding orbit of H is also of type
P. Given some fixed w ∈ RZd close to ω, consider the set of Hamiltonians in the domain
of R that have a closed orbit of type P with rotation vector parallel to w. Assume that
this set contains a codimension m manifold Σ0 that is transversal to the local unstable
manifold Wu of R.

Now consider the sets Σn = R−n(Σ0). They consist of Hamiltonians that have closed
orbits of type P with rotation vectors parallel to Tnw. By the λ-lemma [113], these
sets are codimension m manifolds that accumulate at Ws at an asymptotic rate given by
the largest eigenvalue δ of DR(H∞). Or more precisely, if β 7→ Hβ is a m-parameter
family that intersects Ws transversally, then for large n, this family intersects Σn at
exactly one point, say Hβn , and (βn+1 − βn)/(βn − βn−1) → δ−1. In particular, if one
of the properties characterizing Σ0 is marginal stability, then we obtain the observed
accumulation of bifurcation points described earlier (where m = 1, after elimination of the
unstable directions related to p-translations). A stronger property that is expected to hold
is the convergence of Rk(Hβn+k) to the intersection point of Σn with Wu. This describes
a joint scaling in parameter space and phase space.

R R

RR

Wu

H̃β0

H̃β1

Hβ0

Hβ1

Hβ2

Σ0

Σ1

Σ2

Σ3

Ws
H∞

β 7→ Hβ

Fig. 10. Expected RG picture explaining universality

Our goal here is to prove that such a picture is correct near the trivial fixed point K0 .
The RG transformation R is as described in Theorem 2.2, and we use the same space Aρ of
analytic Hamiltonians as in Subsection 2.2. In this analysis, we will keep track of constant
terms in Hamiltonians, so the unstable manifold Wu is of dimension d. As a result, the
invariant torus ΓH for a Hamiltonian H on the stable manifold Ws is not only centered
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at zero, but also lies on the surface of zero energy, H ◦ ΓH = 0. The families β 7→ Hβ

considered are generated by a single (isoenergetically nondegenerate) Hamiltonian H via
p-translations,

Hβ = H ◦ Jβ , Jβ(q, p) = (q, p + β) , (6.6)

with β ∈ Rd. Thus, the periodic orbits described above are all orbits of the same Hamil-
tonian H. The rate of accumulation of the parameter values βn describes the rate of
accumulation of periodic orbits at the invariant torus.

In order to ensure that the family β 7→ Hβ intersects the stable manifold Ws transver-
sally, we will assume that H lies near an isoenergetically nondegenerate integrable Hamil-
tonian K of the form (5.8). Still, considering such near-integrable Hamiltonians poses a
problem. If K has a closed orbit γ with rotation vector w, then it has infinitely many of
them: the entire torus p = pw containing γ consists of such orbits. But a Hamiltonian H
close to K has in general only finitely many w-orbits (closed orbits with rotation vector
parallel to w). The q-translates of H are equally close to K, but their w-orbits vary by
an amount of order one. Thus, there is no continuous map near K (or near any integrable
Hamiltonian) that would associate with a Hamiltonian one of its w-orbits. That is, unless
we prevent the (q-translation) symmetry of K from acting on our space of Hamiltonians.

We will do this by restricting the analysis to the subspace Bρ of Hamiltonians H(q, p)
that are even functions of q. Then it is possible to find closed orbits of the form

γ(t) =
(
tw + Q(t/τ) , P0 + P (t/τ)

)
, (6.7)

where Q is an odd and P an even 2π-periodic function with average zero. The rotation
vector w belongs to RZd, and τ = τ(w) is defined as the smallest positive real number t
such that tw belongs to Zd. We will refer to such an orbit as a symmetric w-orbit for H.

To be more precise, we will focus on orbits on the energy surface H = 0. Then we
cannot prescribe the frequencies wj , but only the winding numbers wj/wd .

Define hw(q, p) = w · p and

A(γ) =
1

2π

∮

γ

d∑

j=1

pjdqj . (6.8)

Theorem 6.1. [1] Let R > ρ, and let K ∈ Br be a Hamiltonian of the form (5.8), with
M as described after (5.8). If K sufficiently close to hω , and w ∈ RZd sufficiently close to
ω, then there exists an open neighborhood B of K in BR , and a positive integer N , such
that for every Hamiltonian H ∈ B, and every n ≥ N , some nonzero constant multiple of
H has a symmetric orbit γn with frequency vector wn = (ϑ−1T )nw, lying on the energy
surface H−1(0), and having A(γn) = 0. The sequence of orbit γn satisfy

− 1

n
ln

∣∣γn(0) − Γ(0)
∣∣ = ln |λ2| + O

(
1
n

)
, (6.9)

where Γ is the invariant torus for H, obtained via translation from the torus ΓH′ for the
Hamiltonian H ′ = Hβ∞ .
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The proof of this theorem will be described in the next two subsections. The estimate
(6.9) is obtained from an analogous estimate

− 1

n
ln

∣∣βn − β′
∣∣ = ln |λ2| + O

(
1
n

)
, (6.10)

for the parameter values βn defining the intersection of the family β 7→ Hβ with the
manifolds Σn .

6.3. Choice of the manifold Σ0

We assume that w ∈ Rd is chosen sufficiently close to ω, such that hw belongs to the
domain of R, and such that v · w = 1, where v is the expanding eigenvector of T ∗.

As part of the construction of σ0 , we consider d+1 parameter families of Hamiltonians.
One of the parameters, ξ, is used to determine which multiple of H lies on σ0 , and the
other d parameters, (u,E), can be related to p-translations. Given ξ ∈ C, and u ∈ Cd

satisfying u · v = 0, define x = (ξ − 1)w + ξu. Let H = hw + h. Our goal is to determine
the values of ξ, u, and E, such that the Hamiltonian

F = ξ(H + hu) + E = hw + ξh + hx + E (6.11)

has a symmetric w-orbit γ with the desired properties. Besides the two properties F ◦γ = 0
and A(γ) = 0, that are invariant under renormalization, we also impose that P0 = kv, for
some k ∈ C. Roughly speaking, the conditions F ◦ γ = 0 and A(γ) = 0 determine E and
k, respectively, while P0 = kv determines the parameter u. In what follows, we will treat
x = (ξ − 1)w + ξu as an independent parameter, and treat (ξ, u) as a function of x.

We start by solving the orbit equation γ̇ = (J∇F ) ◦ γ. The q-component of this
equation can be rewritten as

τ−1DQ =
(
∇2(ξh + hx)

)
◦ γ = ξ(∇2h) ◦ γ + x . (6.12)

The torus average (denoted by E) of the right hand side has to vanish, so

x = x̃ , x̃ = −ξE[(∇2h) ◦ γ] . (6.13)

The corresponding equation for remaining zero-average part is

Q = Q̃ , Q̃ = τξD−1(I − E)[(∇2h) ◦ γ] . (6.14)

Similarly, the p-component of the orbit equation can be rewritten as τ−1DP = −ξ(∇1h)◦γ ,
or, since both sides of this equation are odd functions of q, as

P = P̃ , P̃ = τξD−1[(∇1h) ◦ γ] . (6.15)

Next, consider the condition A(γ) = 0. By using equation (6.12), we have

A(γ) =
1

2π

∮

γ

p · dq =
1

2π

∫ 2πτ

0

(kv + P ) · (w + τ−1DQ)dt

= kτ +
1

2πτ

∫ 2πτ

0

P · DQdt = kτ +
ξ

2π

∫ 2πτ

0

P · (∇2h) ◦ γ dt .
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Thus, the condition A(γ) = 0 is equivalent to

k = k̃ , k̃ = − ξ

2πτ

∫ 2πτ

0

P · (∇2h) ◦ γ dt . (6.16)

Finally, consider the condition F ◦ γ = 0. By using that

F ◦ γ =
1

2πτ

∫ 2πτ

0

F ◦ γ dt = E +
ξ

2πτ

∫ 2πτ

0

[hw + h + hu] ◦ γ dt

= E + k +
ξ

2πτ

∫ 2πτ

0

h ◦ γ dt ,

we obtain the following equation:

E = Ẽ , Ẽ =
ξ

2πτ

∫ 2πτ

0

(h − P · ∇2h) ◦ γ dt . (6.17)

The equations (6.13) . . . (6.17) define a fixed point problem for the map ψ that takes

(x,E, k,Q, P ) to (x̃, Ẽ, k̃, Q̃, P̃ ). For the components Q and P , consider the space of
Cd-valued analytic functions on the strip |Imz| < r, equipped with the sup-norm, where
r = ρ/(3τ). And on the space of quintuples q = (x,E, k,Q, P ), consider as norm the
largest component norm. Then it is easy to see that ψ is a contraction near q = 0,
with ψ(q) = O(‖h‖ρ). As a result we find that for each Hamiltonian H in some open
neighborhood B(w) of hw in Bρ , the equation F (q) = q has a unique solution near q = 0.
This solution yields a set of parameters (ξ, u,E), and a w-orbit γ for the corresponding
Hamiltonian F , satisfying

|ξ − 1| , |u| , |E| , |k| , ‖Q‖r , ‖P‖r ≤ C‖H − hw‖ρ , (6.18)

for some constant C > 0. Furthermore, all these quantities depend analytically on H.
Now define

φ(H) = hu + E/ξ , (6.19)

so that ξ(H +φ(H)) = F . Consider this function φ on X ∩B(w), where X is the subspace
of Bρ consisting of functions of the form chw + f , with f having zero Fourier-Taylor
coefficients fν,α whenever ν = 0 and |α| ≤ 1. The range of φ is contained in the d-
dimensional expanding subspace Wu of DR(hω). Clearly, X is transversal to Wu. Thus,
the graph of φ, which we shall denote by Σ(w), is transversal to the unstable manifold Wu

of R at the fixed point hω .

Denote by Σ′(w) the set of Hamiltonians H in the domain of R, with the property
that a constant multiple of H has a symmetric w-orbit γ on the energy surface H = 0,
satisfying A(γ) = 0. By construction, Σ(w) is a subset of Σ′(w).
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6.4. The manifolds Σn and orbits γn

Now consider the sets Σn(w) = R−n(Σ(w)). By the λ-lemma [113], these sets are codi-
mension d manifolds that are transversal to Wu, and that accumulate at Ws as indicated
by equation (6.10). Here, the assumption is that the given family F is transversal to the
stable manifold Ws, and close to the unstable manifold. For our families β 7→ Hβ , the
transversality condition is guaranteed by the assumptions on K, R, and B in Theorem 6.1.
But in order to get sufficiently close to the family F∗ parametrizing the unstable manifold,
we first have to renormalize F : β 7→ Hβ a few times.

An appropriate RG transformation R for families is given by

R(F ) = R ◦ F ◦ Y −1
F

, YF (β) = PR
(
F (β)

)
, (6.20)

as described in Subsection 5.5; see also Subsection 7.4. Here, P denotes the canonical
projection onto the d-dimensional unstable subspace Wu of DR(hω), which we identify
with the parameter space Cd. An explicit computation yields

(
DR(F∗)f

)
(β) = (I − P)DR

(
F∗(β̃)

)
f(β̃) , β̃ = YF∗

(β) . (6.21)

This shows e.g. that, the largest eigenvalue (in modulus) of DR(F∗) is the largest con-
tracting eigenvalue of DR(hω), which is µϑ1ϑ

−2
d . In what follows, we assume that the

scaling µ has been chosen in such a way that
∣∣µϑ1ϑ

−2
d

∣∣ < ε <
∣∣λ−1

2

∣∣ (6.22)

Consider now Fk = R
k(F ), with F (β) = Hβ and H satisfying the assumptions of Theo-

rem 6.1. Since Fk → F∗ as k → ∞, the intersection parameters for Fk satisfy (6.10), if k
is sufficiently large. But then the same holds for F as well.

The transformation R can also be used to obtain the necessary bounds (6.10) on the
parameter values βn . More specifically, since Fn → F∗ , we have

βn = Y −1
F0

◦ . . . ◦ YFn−1
(bn) , Fn(bn) ∈ Σ(w) , (6.23)

for some (unique) parameter value bn , if n is sufficiently large. Notice that YF∗
is simply

the restriction of DR(hω) to the unstable subspace Y . Thus, the largest eigenvalue (in
modulus) of Y −1

F∗
is λ−1

2 , and (6.10) obviously holds for the family F∗ . In order to prove

the same for other families like β 7→ Hβ , one uses that Fn −F∗ and YFn
−YF∗

and bn − b∞
are of the order O(εn), which is small compared to |λ2|−n.

Our next goal is to construct the orbits γn described in Theorem 6.1, and to esti-
mate the values γn(0). Given any Hamiltonian in the domain of Rn, the renormalized

Hamiltonian Hn = Rn(H) is a constant multiple of H ◦ Ṽn(H), where

Ṽn(H) = V0H) ◦ . . . ◦ Vn−1(H) , Vk(H) = T k
µ ◦ UHk

◦ T −k
µ . (6.24)

If H is sufficiently close to the integrable Hamiltonian K, then Hβn
n lies on the manifold

Σ(w), and thus some nonzero constant multiple of Hβn
n has a symmetric w-orbit gn .

Modulo domain questions, this yields a symmetric wn-orbit

Gn = Ṽn(Hβn) ◦ T n
µ ◦ gn ◦ Θ−n , Θ(t) = ϑt , (6.25)
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for a constant multiple of Hβn
. By construction, the size of the domain of the transfor-

mations Ṽn(H) decreases exponentially with n, but at a rate that is independent of µ. By
comparison, the nonlinear part of gn is bounded by a constant times the norm of Hβn

n −hw ,
as was shown in (6.18), and this norm decreases like O(εn). Thus, if µ is chosen sufficiently
small, then the maps in equation (6.25) can be composed as indicated, yielding the desired
orbits Gn .

By using that γn = Jβn
Gn and Γ = Jβ∞

ΓH′ , we have

γn(0) − Γ(0) = (βn − β∞) + [Gn(0) − ΓH′(0)] . (6.26)

Thus, it suffices to show that the term [. . .] is small (in modulus) compared to βn − β∞ .
To this end, write

∣∣Gn(0) − ΓH′(0)
∣∣ ≤

∣∣Ṽn(Hβn)
(
Tn

µ (gn(0))
)
− Ṽn(Hβn)(0)

∣∣

+
∣∣Ṽn(Hβn)(0) − Ṽn(H ′)(0)

∣∣ +
∣∣Ṽn(H ′)(0) − ΓH′(0)

∣∣ .
(6.27)

Since gn(0) = O(εn), as mentioned earlier, the first term on the right hand side of (6.27)
is bounded by c(bε)n, for some constants b, c > 0. The third term admits a similar bound,

since it describes the convergence of Ṽn(H ′) → ΓH′ , for H ′ ∈ Ws, which is governed by
the largest contracting eigenvalue of DR(hω). In order to estimate the second term, we

can use the analyticity of f 7→ Ṽn(f), to obtain a bound of the form
∣∣Ṽn(Hβn

)(0) − Ṽn(H ′)(0)
∣∣ ≤ C|λ2|−n‖H − K‖ρ . (6.28)

The details leading to these estimates can be found in [1]. Putting it all together, we find
that (6.9) holds for large n, provided that µ is chosen sufficiently small and H sufficiently
close to K. It should be noted that the smallness condition on µ only depends on the
matrix T .

7. Sequences of RG transformations
So far, we have considered only “self-similar” rotation vectors ω ∈ Rd that are eigenvectors
of some integer matrix T with determinant ±1. Extending renormalization to more general
rotation vectors involves using sequences {Tn} of such matrices, coming from a continued
fraction expansion for ω; see also references [71,72,83]. At this point (having kept track of
how the bounds on R depend on the matrix T ), the main ingredients in this extension are
a multidimensional continued fraction expansion, with bounds on the matrices Tn, and a
stable manifold theorem that can be applied to sequences of RG transformations. Both
will be discussed in this section.

7.1. Diophantine and Brjuno numbers

In the case d = 2, a self-similar rotation vector is a vectors ω = (u0, v0) whose winding
number α0 = v0/u0 has a continued fraction expansion (for n = 0)

αn = [an; an+1, an+1, . . .] = an +
1

an+1 + 1
an+2+...

(7.1)
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that is periodic. Here, we have assumed that α0 > 0. The positive integers an in the
continued fractions expansion of an irrational α0 > 0 are obtained inductively,

an = bαnc , αn+1 =
1

αn − an
, n = 0, 1, 2, . . . , (7.2)

where α 7→ bαc is the floor (integer part) function on R. Alternatively, the fractional parts
xn = αn − an can be obtained by iterating xn+1 = G(xn), where G is the Gauss map
taking x to the fractional part of x−1. The relation (7.2) between αn and αn+1 can also
be written in the form

[
1

αn+1

]
= αn+1T

−1
n

[
1

αn

]
, Tn =

[
0 1
1 an

]
. (7.3)

Thus, if we start e.g. with ω0 = (1, α0) and define ωn+1 = αn+1T
−1
n ωn for n = 0, 1, . . .,

then ωn = (1, αn).
A renormalization procedures for Hamiltonians on T2×R2, that “zooms in” on orbits

with rotation number α0 , involves a sequence of RG transformations Rn associated with
the sequence of matrices Tn ,

Rn(H) = H ′ ◦ UH′ , H ′(q, p) =
1

ηµ
H(Tnq, µT−1

n p + v) . (7.4)

The translation parameter v = v(H) has been included here (optionally) in order to allow
elimination of the trivial unstable direction associated with p-translations. Instead of
working near a RG fixed point, one has to consider a sequence of Hamiltonians like

Kn(q, p) = ωn · p +
m

2
(Ωn · p)2 , n = 0, 1, 2. . . . (7.5)

with the property that Rn(Kn) = Kn+1 . Define R̃n = Rn−1 ◦ . . . ◦ R0 . One of the
goals is to show that if H0 is close to K0 , then Hn − Kn tends to zero as n → ∞, where
Hn = R̃n(H0). This cannot be expected to work for every irrational rotation number
α0 > 0. A technical reason is the following.

Consider e.g. the effect of the step H 7→ H(Tn., .) onto a resonant mode whose Fourier
index ν satisfies |ωn · ν| ≤ σn‖ν‖. The norm of such a mode changes by a factor (using
ρ = 1)

fn ≈ exp
(
‖T ∗

nν‖ − ‖ν‖
)
, (7.6)

which we would like to be less than one. Now ‖T ∗
nν‖ ≈ ‖Tn‖|ωn · ν|, and in order to get a

negative exponent in (7.6), we need σn‖Tn‖ = τn < 1. This yields ‖T ∗
nν‖ / τn‖ν‖. Given

that ‖T ∗
nν‖ ≥ 1, we have ‖ν‖ ' τ−1

n , and this leads to the bound fn / exp(−1/τn). Next,
recall that the elimination procedure H ′ 7→ H ′ ◦ UH′ requires that I

−

H ′ be bounded in
norm by a constant times σn . Taking this as the size of the domain for Rn , we need

σ0f0f1 · · · fn−1 / σn , n = 1, 2, . . . , (7.7)
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if we wish to have nontrivial Hamiltonians that are infinitely renormalizable. Assume now
that we choose τn to be a small positive constant, independent of n. Then the factors fn

are bounded by some fixed positive constant as well. By using that σn ≈ ‖Tn‖−1 ≈ a−1
n , we

see that (7.7) can be guaranteed if the sequence n 7→ an grows no faster than exponential.
(This can be improved by choosing τn → 0.) This is satisfied if α0 is Diophantine.

A nonzero vector ω ∈ Rd is Diophantine of class β > 0, if there exists a constant
C > 0 such that

|ω · ν| ≥ C‖ν‖1−d−β , ν ∈ Z \ {0} . (7.8)

This set of vectors will be denoted by DC(β). It is well known that DC(β) has full Lebesgue
measure in Rd; see e.g. [10].

A renormalization group analysis of the type described above was carried out in [81].
It is shown that if ω0 is Diophantine, with β <

√
2 − 1, then Hn − Kn → 0 in a space of

analytic Hamiltonians, provided that H0 is sufficiently close to K0 . Furthermore, H0 has
an analytic invariant torus with frequency vector parallel to ω0 .

A larger class of irrational numbers is the set of Brjuno numbers. α0 is called a
Brjuno number if the denominators qn in the rational approximants pn/qn = [a0; a1, . . . an]
of α0 satisfy

∑
q−1
n ln(qn+1) < ∞. These frequencies were used in an RG analysis of

near-constant torus flows [96] and skew flows [97]. For flows on T2 and some other single
frequency problems, it is known that the set of Brjuno numbers is exactly the set of
frequencies for which one can guarantee linearization.

7.2. Multidimensional continued fractions

Here we give a brief description of a multidimensional continued fractions expansion by
Khanin, Lopes Dias, and Marklov [70], which is based on the work in [89,73] on geodesic
flows on homogeneous spaces.

Consider the one-parameter subgroup of G = SL(d, R), generated by the matrices

Et = diag
(
e−t, . . . , e−t, e(d−1)t

)
, t ∈ R , (7.9)

Let F be a fundamental domain for the left action of Γ = SL(d, Z) on G. Then for every
matrix W0 ∈ G, and for every time t ∈ R, there exists a unique matrix P (t) ∈ Γ such that

W (t) = P (t)W0E
t

belongs to F . A useful invariant under the left action of Γ on G is

δ(W ) = inf
06=ν∈Zd

‖ν∗W‖ . (7.10)

Now consider a special choice of W0. Let ω = (w, 1) be a fixed but arbitrary vector
in DC(β), and define W0 to be the matrix obtained from the d × d identity matrix by
replacing its last column vector by ω,

W0 =

[
1 w
0 1

]
. (7.11)
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In what follows, we assume that the fundamental domain F has been chosen in such a way
that it contains W0 . The Diophantine property of ω can be used to prove the following
bound

δ
(
W0E

t
)
≥ c0e

−θt , t ≥ 0 , (7.12)

where θ = β/(d + β). This is one of the main ingredients in the proof of

Theorem 7.1. [70] There exist constants c1 and c2, depending only on the Diophantine
constants β,C, and on the norm of ω, such that for all t > 0,

‖W (t)‖ ≤ c1 exp{(d − 1)θt},
‖W (t)−1‖ ≤ c2 exp{θt},

(7.13)

The information that W = W (t) belongs to F is used as follows. Consider the Iwasawa
decomposition of W = UAK of W , where U is an upper triangular matrix with diagonal
entries 1, A = diag

(
a1, a2, . . . , ad

)
, and K ∈ SO(d). It is possible to associate with the

fundamental domain F a “Siegel set” S containing F and being contained in a finite
number of Γ-translates of F , which can be characterized by some simple conditions on the
matrices U,A,K. More specifically, U belongs to a compact fundamental domain for the
left action of Γ on the group of upper triangular matrices with diagonal entries 1, and
0 < aj ≤ 2 · 3−1/2aj−1 for j > 1.

The crucial step is to prove that |ad| is bounded from above and below by a constant
times δ(W ). Since the norms of W and W−1 are of the order of |a1| = |a2 · · · ad|−1 ≈
|ad|−(d−1) and |ad|−1, respectively, the estimates in Theorem 7.1 now follow from (7.12).

To any “cutting sequence” of times 0 = t0 < t1 < t2 < . . ., we associate the sequences
of matrices Wn = W (tn) and Pn = P (tn). In addition, define ω0 = ω and

Tn = Pn−1P
−1
n , λn = ‖Pnω0‖ , ωn = λ−1

n Pnω0 , (7.14)

for n = 1, 2, . . ..
Let t′n = tn − tn−1. The following is a straightforward consequence of Theorem 7.1.

Corollary 7.2. [70] There are constants c3, . . . , c6 > 0, depending only on the Diophantine
constants β,C, and on the norm of ω, such that for all n > 0,

‖Pn‖ ≤ c4 exp{(d θ + 1 − θ)tn},
‖P−1

n ‖ ≤ c3 exp{(d − 1 + θ)tn},
‖Tn‖ ≤ c5 exp{(d − 1)(1 − θ)t′n + d θ tn},

‖T−1
n ‖ ≤ c6 exp{(1 − θ)t′n + d θ tn}.

(7.15)

An important aspect for renormalization is that the matrices Tn are hyperbolic when-
ever tn → ∞ sufficiently fast, as the following lemma implies.

Lemma 7.3. [70] For all n > 0, and for all unit vectors ξ that are perpendicular to ωn−1 ,

‖T ∗
nξ‖ ≤ c1c2 exp{−(1 − θ)t′n + d θtn−1} . (7.16)
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Proof. By definition,

T ∗
nξ =

(
P−1

n

)∗
P ∗

n−1ξ =
(
W−1

n

)∗
EtnW ∗

0 P ∗
n−1ξ

=
(
W−1

n

)∗
Et′n

[
Etn−1W ∗

0 P ∗
n−1

]
ξ .

(7.17)

If ξ is perpendicular to ωn−1 then P ∗
n−1ξ is perpendicular to ω0, and since the last row of

W ∗
0 is ω0, the last component of [. . .]ξ is zero. Thus, [. . .]ξ is an eigenvector of Et′n with

eigenvalue e−t′n . Since [. . .] = W ∗
n−1, we have

T ∗
nξ = e−t′n

(
W−1

n

)∗
W ∗

n−1ξ . (7.18)

The estimate (7.16) now follows from Theorem 7.1. QED

A typical choice for the cutting sequence is tn = c(1 + α)n, with c, α > 0 chosen in
such a way that the exponential factor in (7.16) is very small; see e.g. Subsection 8.2.

7.3. Composing different RG transformations

With each of the vectors ωn−1 and matrices Tn , we can now associate a RG transformation
Rn for vector fields on Td × R`,

Rn(X) = η−1
n T ∗

n U∗
X

X . (7.19)

Here, ηn is a time re-normalization factor, that can either be fixed (at the cost of in-
troducing irrelevant expanding directions) or determined by a normalization condition on
R(X). For simplicity, we will choose ηn = λ−1

n−1λn , independently of the vector field X.
The trivial RG orbit is given by the constant vector fields Zk = (ωk, 0), which satisfy
Zn = Rn(Zn−1) for all n > 0.

The first task is to show that these RG transformations can be composed properly.
To be more precise, denote by Dn the domain of Rn .

Definition 7.4. Let B0 ⊂ D0 be a fixed open neighborhood of Z0 , and set R̃1 = R1 .
For n = 1, 2, . . ., define Bn to be the set of vector fields X ∈ Bn−1 such that Xn = R̃n

belongs to Dn , and set R̃n+1(X) = Rn+1(Xn). Then we define the stable manifold for
the sequence {Rn} to be the set W =

⋂∞
n=0 Bn .

In the next subsection, we will describe the construction of such a stable manifold,
in a relatively general setting. The hypotheses can be verified for the action of {Rn} on
general vector fields on Td × R`. We only give a rough description/motivation here and
refer to [78] for details. Skew flows will be covered more thoroughly in Section 8.

In order to determine the relative sizes of different quantities, it is convenient to split
Rn into a linear part Ln and a nonlinear part Nn ,

LnX = η−1
n T ∗

µ I
+
n X , Nn(X) = η−1

n T ∗
n (U∗

X
− I

+
n )X . (7.20)
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Denote by E the torus averaging operator. We expect (I − E)Xn to decrease very rapidly
as a function of n. As a result, terms involving Nn or (I−E)Ln should be extremely small

for large n. So the hyperbolicity properties of R̃n should be determined essentially by

ELnLn−1 · · · L1 = λ−1
n T ∗

n T ∗
n−1 · · ·T1E . (7.21)

Furthermore, we expect λ−1
n to be a negligible factor in the discussion of these properties.

Recall that Tn(q, p) = (Tnq, µnSnp), where Sn is either the transposed inverse of Tn (if
` = d, and if the class of Hamiltonian vector fields is to be invariant under renormalization)
or the identity matrix. Other choices are possible as well, but they seem less natural. For
the scaling µn there is no natural choice either, unless we wish to impose a nondegeneracy
condition on X0 and to preserve it under renormalization. In [78] we take µn → 0 at a rate
‖Tn‖−γ , with γ sufficiently large (depending on the Diophantine constants for ω0). As a
result, if X = (X ′, X ′′) with X ′(q, p) = O(|p|) and X ′′(q, p) = O(|p|2), then X is strongly
contracted by the operator (7.21). This can be seen from the fact that

T ∗
n X =

(
T−1

n X ′ ◦ T , µ−1
n S−1

n X ′′ ◦ T
)
. (7.22)

The complementary subspace is spanned by vector fields of the form X(q, p) = (u, v+My),
with u a vector in Rd, v a vector in R`, and M a ` × ` matrix. The canonical projection
onto this “unstable” subspace will be denoted by P .

Although the nonlinearity Nn contributes very little, it determines the domain of the
RG transformation Rn . Assume for simplicity that this domain Dn is a ball of radius
ρn , centered at Zn−1 . Consider the rescaled RG transformations Rn = V−1

n ◦ Rn ◦ Vn−1 ,
where Vk(X) = Zk + ρkX. The following summarizes the expected properties of the RG
transformations Rn , in a way that relates to the assumptions made in the next subsection,
where ϑn replaces “very small” and εn replaces “tiny”.

• Rn ◦ P is linear, and its restriction Ln to the range of P has a small inverse.
• PnRn − RnP = PNn , and Nn(x) is tiny compared to (I − E)x.
• (I−P)Ln = Ln(I−P) is very small, so (I−P)Rn(x) is very small compared to (I−P)x.
• (I − En)Ln = Ln(I − En−1) is tiny, so (I − En)Rn(x) is tiny compared to (I − E)x.

7.4. An invariant manifold theorem

In this subsection, we describe an invariant manifold theorem for sequences of maps of the
type encountered in renormalization. The existence of such a manifold makes the given
sequence of maps for many purposes similar to a single dynamical system. In particular,
the construction of invariant tori with general Diophantine rotation vectors is essentially
the same as the construction described in Section 5 for self-similar rotation vectors; see
also the comments at the end of this subsection.

For every integer n ≥ 0 let Xn be a complex Banach space, and let En, Pn be contin-
uous linear projections on Xn , satisfying PnEn = EnPn = Pn and ‖En‖ = ‖I − En‖ = 1.
For each n > 0, let Rn be a bounded analytic map, from an open neighborhood Dn−1

of the origin in Xn−1 , to Xn , with the following properties: RnPn−1 is linear, and the
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restriction Ln of this linear operator to Pn−1Xn−1 is invertible. Furthermore, there exist
real numbers ϑn ≤ ϑ < 1 and εn ≤ ε = (1 − ϑ)/4, such that for all x ∈ Dn−1 ,

‖(I − En)Rn(x)‖ ≤ εn‖(I − En−1)x‖ ,

‖(I − Pn)Rn(x)‖ ≤ ϑn‖(I − Pn−1)x‖ ,

‖PnRn(x) − LnPn−1x‖ ≤ ε‖(I − En−1)x‖ ,

‖L−1
n ‖ ≤ ϑ .

(7.23)

Consider now the composed maps R̃n = Rn ◦ Rn−1 ◦ . . . ◦ R1 . The domain of R̃1 is

taken to be D̃0 = D0 , and for n = 1, 2, . . . , the domain D̃n of R̃n+1 is defined inductively

as the subset of D̃n−1 that is mapped into Dn by R̃n .
We will assume that the domain Dn−1 of Rn is given by conditions

‖Pn−1x‖ < 1 , ‖(I − Pn−1)x‖ < 1 , ‖(I − En−1)x‖ < δn−1 , (7.24)

where {δk} is a sequence of positive real numbers, such that δk ≥ εkδk−1 for all k > 0.

Theorem 7.5. [78] Let R1, R2, . . . be a sequence of maps with the properties described

above. Then W0 =
⋂∞

n=0 D̃n is the graph of an analytic function W0 : (I−P0)D0 → P0D0 ,
satisfying W0(0) = 0. For every x ∈ W0,

‖R̃n(x)‖ ≤
[
ϑ(n) + ε(n)

]
‖(I − P0)x‖ ,

‖(I − En)R̃n(x)‖ ≤ ε(n)‖(I − E0)x‖ ,
(7.25)

where ϑ(n) = ϑ1ϑ2 · · ·ϑn and ε(n) = ε1ε2 · · · εn . Furthermore, if the third condition in
(7.23) is strengthened to

‖PnRn(x) − LnPn−1x‖ ≤ ϕn‖(I − En−1)x‖2 , (7.26)

with ϕnδn−1 ≤ ε, then DW0(0) = 0, and

‖PnR̃n(x)‖ ≤
[
ϑ(n)

]2‖(I − P0)x‖2 . (7.27)

The proof of this theorem follows the traditional graph transform method: For each
n ≥ 0 we consider a space Fn of analytic families F : bn → Xn, where bn denotes the open
unit ball in PnXn . Then for n > 0 and F ∈ Fn−1 , define

Rn(F ) = Rn ◦ F ◦ Y −1
n,F , Yn,F = Pn(Rn ◦ F ) . (7.28)

By construction, PnRn(F ) = In , where In is the inclusion map of bn into Xn . Furthermore,
Rn(In−1) = In , by the second condition in (7.23).

If F0 is any family in the domain of R1 , define Yn = Yn,Fn−1
and Fn = Rn(Fn−1),

for n = 1, 2, . . .. It can be shown that the orbit {Fn} approaches {In} at a rate ϑ(n) or



Renormalization of Vector Fields 57

faster, for any F0 in the domain of R1 . The re-parametrization maps Yn approach Ln at
the same rate, which allows us to define

zn = zn(F0) = lim
m→∞

(
Y −1

n+1 ◦ Y −1
n+2 ◦ . . . ◦ Y −1

m

)
(0) . (7.29)

Notice that Rn(Fn−1(zn−1)) = Fn(zn) for all n > 0, and in particular, F0(z0) is infinitely
renormalizable. The function W0 described in Theorem 7.5 is now defined by setting
W0(x) = z0(s 7→ x + s) for every x ∈ (I − P0)D0 .

Yn+1

Y −1
n+1

Yn

Y −1
n

bn+1bnbn−1

Fig. 11. The reparametrization maps Yn

More details, and an application of this theorem to the construction of invariant d-tori
for analytic flows on Td ×R` can be found in [78]. Following the construction described in
Subsection 5.2, every vector field X on the local “stable” manifold W at Z0 can be shown to
have a analytic invariant torus with frequency vector ω0 (assumed to be Diophantine). This
translates immediately into a result for m-parameter families, where m is the codimension
of W. If the vector fields are restricted to an invariant subclass, such as the ones described
in subsection 2.4, then the number of required parameter reduces to the number of unstable
directions in this subclass. Notice that a trivial reduction by 1 can always be achieved via
a time scaling X 7→ τX. A further reduction is possible (via translations or scaling in R`)
if the analysis is restricted to vector fields satisfying a nondegeneracy assumption. In the
Hamiltonian case, the number of necessary parameters can be reduced to zero in this way,
as was explained in Subsection 5.1.
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8. Reduction of skew flows
Here we apply the framework developed in Section 7 to a concrete case: the reducibility
problem for near-linear skew flows. In addition, we will describe a way of dealing with
vector fields near (ω,A), with A constant but not necessarily equal to zero. The analysis
of the case SL(2, R) also involves a reduction of the number of unstable directions that is
not of the type mentioned above. The work described in this section is from reference [79].

8.1. A general result

The first result describes a general class of vector fields X = (ω, f .) that are reducible to
the trivial vector field (ω, 0). See Subsections 2.5 and 3.1 for a definition of reducibility,
and for notation.

In what follows, the constants β and C in the Diophantine condition (7.8) are consid-
ered fixed. Define

γ0(β) = (d + β)

[
1 + 2β + 2

√
β
[
1 + β − 1/(d + β)

] ]
− 1 . (8.1)

Theorem 8.1. [79] Given γ ≥ γ2 > γ0(β), there exists an open neighborhood B of the
origin in Fγ , and for each Diophantine unit vector ω satisfying (7.8) a manifold W in B,
such that the following holds. W is the graph of an analytic map W : (I − E)B → EB,
which vanishes together with its derivative at the origin, and which takes values in Aγ

when restricted to Aγ . Every function f on W is reducible to zero. The corresponding
change of coordinates V belongs to Fε and depends analytically on f , where ε = γ−γ2 . If
in addition, f ∈ Aγ , then V belongs to Gε , and if f is the restriction to Td of an analytic
function, then so is V .

Here, a function ψ defined on W is said to be analytic if ψ ◦ W is analytic on the
domain of W .

This theorem can also be applied to vector fields Y = (w, g .), with g is close to
a constant matrix A, but not necessarily small. Assume that A ∈ A admits a spectral
decomposition A = κ · J = κ1J1 + . . . + κ`J` , where the Jj are linearly independent
mutually commuting matrices in A, with the property that t 7→ exp(tJj) has fundamental
period 2π. The vector κ ∈ R` will be referred to as the frequency vector of A.

In order to see how Theorem 8.1 can be applied to g ≈ A, we start with a skew system
Y = (w, g .) on Tm × G, and then take d = m + `. Consider the associated function

f(q) = e−r·Jg(x)er·J − κ · J , q = (x, r) ∈ T
m × T

` . (8.2)

Notice that f ≈ 0. If Y is regarded as a vector field on M by identifying w and x with
(w, 0) and (x, 0), respectively, then the above relation between g and f can be written as

f = Θ?g , Θ(q, y) =
(
q, er·Jy

)
. (8.3)

If ω = (w, κ) is Diophantine of type (7.8) and g belongs to the manifold Θ?W, then the
flow for X = (ω, f .) can be trivialized with a change of coordinates V , as described in
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Theorem 8.1. The same now holds for g. However, the corresponding change of variables
Vg(q) = V (q)e−r·J is not of the desired form, since it still depends on the coordinates rj .
But as we will show later,

Ψt
Y
(x) = Vg(x + tω)−1Vg(x) = V (x + tw)−1etCV (x) , (8.4)

for some matrix C ∈ A with frequency vector κ, provided that V is differentiable. What
remains to be shown, in specific cases, is that the space of functions of the type (8.2) has
a reasonable intersection with the manifold W.

This procedure can be characterized as transforming some (quasi)periodic motion on
G into motion on an extended torus. This makes it possible to treat all frequencies of the
system in a unified way. In the case G = SL(2, R), which will be discussed in Subsection
8.4, it also has the advantage that the analysis of near-constant skew flows Y = (ω, g .)
can be reduced to a purely local analysis near f ≡ 0.

8.2. The stable manifold

With each of the vectors ωn−1 and matrices Tn obtained in Subsection 7.2, we can associate
a RG transformation for skew flows: Nn(f) = η−1

n T ?
n U?

f
f , where ηn = λ−1

n−1λn . Let us
reformulate Theorem 3.3 for each of these RG transformations. The condition (3.4) reads

2σn‖Tn‖ < τn , ‖T ∗
nξ‖ ≤ τn

2
‖ξ‖ , ξ ∈ ω⊥

n−1 , (8.5)

and Theorem 3.3 becomes

Theorem 8.2. Assume that σn and τn satisfy (8.5). Let f = C + h, with C constant and
Eh = 0. If ‖C‖ < σn/6 and ‖h‖ < 2−9σn , then

Nn(f) = η−1
n

[
C + h̃

]
,

∥∥h̃
∥∥ ≤ 3

2τγ
n‖h‖ ,

∣∣Eh̃
∣∣ ≤ 24σ−1

n τγ
n‖h‖2 . (8.6)

Nn is analytic on the region determined by the given bounds on C and h.

The goal now is to compose these RG transformations. The domain Bn of Nn is
defined to be the ball of radius 2−9σn in A, centered at zero. Ignoring the constant
component C of f , the range of Nn is by a factor < 2η−1

n τγ
n smaller than its domain. By

multiplying up these factors, we get the following condition for the composability of the
transformations Nn .

λ−1
n

n∏

j=1

(
4τγ1

j

)
· σ1 ≤ σn+1 . (8.7)

Lemma 8.3. Given γ1 > γ0(β), there exist two sequences n 7→ σn and n 7→ τn of positive
real numbers less than one, both converging to zero, such that the following holds. If ω0 is
a unit vector in Rn satisfying the Diophantine condition (7.8), then there exists a sequence
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n 7→ Pn of unimodular integer matrices, such that with Tn and λn as defined in (7.14), the
conditions (8.5) and (8.7) hold for n = 1, 2, . . ..

It is straightforward to verify these estimates by using the results of [70] described in
Subsection 7.2, with a cutting sequence of the form tn = c(1 + α)n, and with the choice

σn = σ0e
−dt′n , τn = τ0 exp{−[(d − 1)θ + 1]t′n + dθtn} , (8.8)

For the factor λ−1
n in (8.7), it suffices to use the trivial bound λ−1

n ≤ ‖P−1
n ‖.

Consider now the composed RG transformations Ñn = Nn ◦ . . . ◦ N1 , with domains
defined as usual. Let r0 = 2−11σ1 . By Theorem 8.2 and Lemma 8.3, the question whether
the function fn−1 = Ñn−1(f0) belongs to the domain of Nn only depends on its average

Efn−1 . To be more precise, given an open set B ⊂ B1 containing zero, define B̃0 = B and

B̃n = {f ∈ B̃n−1 : ‖Efn−1‖ < rn−1} , rn = λ−1
n 4−nπγ1

n r0 ,

for n = 1, 2, . . .. Then B̃n is contained in the domain of Ñn .

Theorem 8.4. [79] If γ > γ1 then there exists a non-empty open neighborhood B of the

origin in F , such that W =
⋂∞

n=0 B̃n is the graph of an analytic function W : (I − E)B →
EB. Both W and its derivative vanish at the origin.

This is now essentially a corollary of Theorem 7.5, if we set Rn(f) = r−1
n Nn(rn−1f).

The projections used are are simply Pn = En = E, and the parameters are εn = ϑn = τγ−γ1
n

and δn = 2−n.

8.3. Conjugacy to a linear flow

In this subsection we outline a proof for the remaining parts of Theorem 8.1 concerning
the reducibility of vector fields on the manifold W.

Consider f0 ∈ W , and let fn = Ñn(f0). In order to simplify notation, the transfor-
mation Ufn

(defined in Subsection 3.2) and the flow Ψ(ωn,fn) will be denoted by Un and
Ψn , respectively. For m > n ≥ 0, define

Vm,n(q) = Um−1

(
T−1

m−1 · · ·T−1
n+1q

)
· · ·Un+1

(
T−1

n+1q
)
Un(q) . (8.9)

Then the flows for fm and fn are related by the equation

Ψt
n(q) = Vm,n(q + tωn)−1Ψηm...ηn+1t

m

(
T−1

m . . . T−1
n+1q

)
Vm,n(q) . (8.10)

We would like to show that the three terms on the right hand side of this equation each
have limits as m → ∞, with the Ψ term in the middle converging to the identity. This
would yield the desired conjugacy. Due to the matrices T−1

n involved, these limits will
have to be considered in G0 , using that ‖f ◦ T−1

n ‖0 = ‖f‖0 ≤ ‖f‖γ .
The time t map Ψt

X
associated with a vector field X = (ω, f) can be estimated as usual

by applying the contraction mapping principle to the corresponding integral equation, and
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then using the group property. The resulting bound is ‖Ψt
X
− I‖γ ≤ e‖tf‖γ − 1. And for

changes of variables, we can use the bound

‖Uf − I‖γ ≤ exp
(
3σ−1‖(I − E)f‖γ

)
− 1 , (8.11)

which is obtained from the results in Subsection 3.2 and holds for f in the domain of N .
These estimates can now be combined with the bound

σ−1
n+1‖fn‖γ ≤ 2−nπγ−γ1

n σ−1
1 ‖f0‖γ , (8.12)

obtained from Theorem 8.2 and Lemma 8.3, to prove the following

Lemma 8.5. If f0 ∈ W , then the limit Vn = limm→∞ Vm,n exist in G0 and satisfies

‖Vn − I‖0 ≤ 24−nπγ−γ1

n σ−1
1 ‖f0‖γ . (8.13)

Furthermore, the maps f0 7→ Vn are analytic, and

Ψt
n(q) = Vn(q + tωn)−1Vn(q) , t ∈ R . (8.14)

This lemma will now be applied for γ = γ2 , with γ2 > γ1 fixed. If f has some excess
regularity, that is, if f belongs to Aγ with γ > γ2 , then this excess regularity is inherited
by V0 . The mechanism is analogous to the one described in Subsection 5.1. To be more
specific, consider the torus translations (Jpf)(q) = f(q + p). It is straightforward to check
that the manifold W is invariant under Jp , and that the map f0 7→ V0 commutes with Jp .
Denote by H the map that associates to each f in the domain of W via f0 = f + W (f)
the value V0(0). Then

V0(p) = H(Jpf) , p ∈ T
d . (8.15)

Given that H is analytic, this identity links the regularity of V0 to the regularity of p 7→ Jpf
as a family in Fγ2

. More precisely, we have

Lemma 8.6. Let γ ≥ γ2 > γ1 and ε = γ − γ2 . If f0 ∈ W then the function V0 described
in Lemma 8.5 belongs to Gε and has a directional derivative Dω0

V0 in Fε . As elements of
Fε , both V0 and Dω0

V0 depend analytically on f0 . Furthermore, if f0 is the restriction to
Td of an analytic function, then so is V0 .

Lemma 8.5 and Lemma 8.6 imply the statements in Theorem 8.1 concerning the re-
ducibility of functions f ∈ W and the regularity of the corresponding change of coordinates.
The fact that V takes values in G (if G is a proper Lie subgroup of GL(n, C), or a Lie
subgroup of GL(n, R)) whenever f takes values in the corresponding algebra A, follows by
construction; see also the remark at the end of Subsection 3.2.

As was described in Subsection 8.1, Theorem 8.1 can also be applied to vector fields
Y = (w, g .), with g close to a nonzero constant matrix A = κ · J . However, a direct appli-
cation reduces Y as a skew system over Td instead of Tm, which involves extra frequencies.
The following result shows that these frequencies can be factored out.
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Lemma 8.7. Let γ ≥ γ2 + 1 with γ2 > γ1 . Assume that f ∈ Aγ is of the form (8.2) and
belongs to W. Let V = V0 , corresponding to f0 = f . Then the flow for Y = (w, g .) is
given by equation (8.4), for some C ∈ A. The corresponding map f 7→ C is analytic.

Proof. The first equality in (8.4) follows from Lemma 8.5 and the definition (8.3). Let

φt(x) = V (x + tw)Ψt
Y
(x)V (x)−1 = V (x + tw)etAV (x + tω)−1 , (8.16)

for t ∈ R and x ∈ Tm. Notice that φ is the flow for a skew system Z = (w, h .) on Tm ×G,
and since V ∈ G1 by Lemma 8.6, the function h belongs to A0 .

Consider now an arbitrary sequence {tj} such that tjκ → 0 on the torus T`, as j → ∞.
Then exp(tjκ · J) → I. Furthermore, dist(tjω, tjw) → 0 on the torus Td, and since V is of
class C1, we have φt+tj (x) → φt(x) uniformly in x, if t = 0. By the cocycle identity for
the flow φ, the same holds for any t ∈ R, and the convergence is uniform in t. This implies
(see e.g. [53]) that the function t 7→ φt(x) is periodic or quasiperiodic, with frequencies in
F (κ) = {κ1, . . . , κ`}. As a result,

h(x + tw) = φ̇t(x)φt(x)−1 (8.17)

is also periodic or quasiperiodic in t, with frequencies in F (κ). But the frequency module
of t 7→ h(x + tw) is clearly a subset of F (w) = {w1, . . . , wm}, and since F (w) ∩ F (κ) is
empty, h has to be constant. Setting C = h, we obtain φt(x) = etC , and the identity (8.4)
now follows from (8.16). A computation of h(x) from the equations (8.17) and (8.16) yields
C = V AV −1 − (DκV )V −1, evaluated at x. This identity (between matrices, if x is fixed),
together with Lemma 8.6, shows that C depends analytically on f . QED

8.4. The special case G=SL(2,R)

Consider now the group G = SL(2, R) and the corresponding Lie algebra A of traceless
2×2 matrices. In this case, Theorem 8.1 yields a stable manifold of codimension 3. On the
other hand, it is known (at least in the analytic setting) that reducibility is a codimension
1 phenomenon, governed by the so-called fibered rotation number. The goal here is to
describe how this fits in the framework of renormalization.

Consider first the flow for Y = (w, g .) on the product of Td−1 with R2 \ {0},

v̇(t) = g(x0 + tw)v(t) , v(0) = v0 . (8.18)

Denote by α(t) the angle between v(t) and some fixed unit vector u0 , and let α0 = α(0).
Then the lift of this angle to R evolves according to the equation

α̇(t) = −
〈
e−α(t)JJg(x0 + tw)eα(t)Ju0 , u0

〉
, α(0) = α0 , (8.19)

where 〈. , .〉 denotes the standard inner product on R2. Here, and in the remaining part of
this section, J =

[
0 −1
1 0

]
. Assuming that the components of w are rationally independent,

we can define the fibered rotation number of Y ,

%(Y ) = lim
t→∞

α(t)

t
. (8.20)
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This limit exists and is independent of the initial conditions x0 and α0 [66]. If w is fixed,
we will also write %(g) in place of %(Y ).

From the definition of Θ, we see that %(Y ) = κ if and only if %(X) = 0. Thus, we
may restrict our analysis to skew flows with fibered rotation number zero. Theorem 8.1
deals with precisely such flows. However, the functions (8.2) are of a particular type, and
more can be said in this case. Denote by A0

γ the subspace of functions g ∈ Aγ with the

property that g(q) = g(x) for all q = (x, r) in Td−1 × T1.

Theorem 8.8. [79] Given γ ≥ γ2 > γ0(β) and a > 0, the following holds for some
R > 0. Consider a constant skew system (w,A) on Td−1 ×G, for a matrix A ∈ A that has
purely imaginary eigenvalues, say ±κi. Assume that ω = (w, κ) satisfies the Diophantine
condition (7.8), and that ‖A‖ ≤ a|κ|‖ω‖. Then there exists an open neighborhood B0

of the constant function x 7→ A in A0
γ , containing a ball of radius R centered at this

function, such that for any g ∈ B0 , the one-parameter family λ 7→ g + λA contains a
unique member in B0 , say g′, whose associated skew flow has a fibered rotation number
κ. If γ − γ2 = ε ≥ 1, then g′ is reducible to a constant C ∈ A, as described by equation
(8.4), via a change of coordinates V ∈ Gε . Furthermore, the function g′, and (if ε ≥ 1) the
quantities C and V , depend real analytically on g.

This theorem is proved by first performing a change of coordinates g 7→ L−1gL with
L ∈ G, such that L−1AL = κJ , followed by a constant scaling Y 7→ cY of the resulting
skew system, which converts (w, κ) to a unit vector. After that, the task is reduced via
the map Θ to the study of vector fields X = (ω, f .) with f of the type (8.2). Thus, in
view of Theorem 8.1 and Lemma 8.7, it suffices to prove (besides real analyticity) that
the family λ 7→ f + λJ intersects the manifold M in exactly one point, characterized by
%(f + λJ) = 0. A sketch of the proof will be given at the end of the next subsection.

The main difficulty with this approach is that the subspace A1 of functions f ∈ A
of the form (8.2) is not invariant under renormalization. Notice that this subspace can
also be characterized by the identity f(q + (0, r)) = e−rJf(q)erJ . Thus, that the torus-
average of f ∈ A1 is necessarily a constant multiple of J . This may seem to explain the
statement about one-parameter families in Theorem 8.8. However, this property is neither
invariant under renormalization, nor does is guarantee that the flow for X = (ω, f .)
remains bounded.

8.5. Excluding hyperbolicity

The three unstable directions under renormalization correspond to elliptic, parabolic, and
hyperbolic behavior of the flow. The goal is to show that a vector field X = (ω, f .), with
f ∈ A1 close to zero, can only generate an elliptic flow, by excluding e.g. the possibility
that the renormalized functions fn = Ñn(f0) have the following property.

Definition 8.9. Let S1 be the set of unit vectors in R2. We say that a vector field
X = (ω, f .) has the expanding cone property if for every q ∈ Td, there exists an open
cone C(q) in R2 not intersecting its negative, with vertex at zero, and a unit vector u(q)
in this cone, such that the following holds. The map q 7→ S1 ∩C(q) defines two continuous
functions from Td to S1. The function q 7→ u(q) is continuous as well, and homotopic to a
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constant. Furthermore, for every q ∈ Td, the cone Ψt
X
(q)C(q) is contained in C(q + tω) for

all t > 0, and the length of Ψt
X
(q)u(q) tends to infinity as t → ∞.

The usefulness of the expanding cone property stems from the fact that it is invariant
under coordinate changes of the form (3.2) or (2.26), with V continuous and homotopic to
the identity. A simple condition that implies this property is the following.

Proposition 8.10. Assume that f : Td → A is continuous and of the form f = C + h,
with C ∈ A symmetric and ‖h(q)‖ < ‖C‖/4 for all q ∈ Td. Then X = (ω, f .) has the
expanding cone property.

This proposition is proved first for h = 0, where it is trivial, and then a perturbative
argument is used for ‖h(q)‖ < ‖C‖/4.

Lemma 8.11. If f belongs to A1 then X = (ω, f .) cannot have the expanding cone
property.

Proof. Consider first an arbitrary f ∈ A such that X = (ω, f .) has the expanding cone
property. Let q ∈ Td be fixed. Using the notation of Definition 8.9, denote by A(q) the set
of all nonzero v0 ∈ R2 such that v(t) = Ψt

X
(q)v0 belongs to C(q + tw) for some (and thus

each sufficiently large) positive t. This set is clearly open. Notice that if v0 is any nonzero
vector in R2, with the property that v(t) = Ψt

X
(q)v0 tends to infinity as t → ∞, then v0

belongs to either A(q) or −A(q). This follows from the fact that Ψt
X
(q) is area-preserving

(so the angle between v(t) and Ψt
X
(q)u(q) has to approach zero), and that the opening

angles of our cones are bounded away from zero. Thus, given that the two disjoint open
sets ±A(q) cannot cover all of R2 \ {0}, it is not possible that |v(t)| → ∞ as t → ∞, for
every nonzero v0 ∈ R2.

Assume now for contradiction that f belongs to A1. Define zr(x) = erJu(q), with
u as described in Definition 8.9. Then Ψt

Y
(x)zr(x) = e(r+tκ)JΨt

X
(q)u(q) tends to infinity

as t → ∞. But as r increases from 0 to 2π, the vectors zr(x) cover all of S1, since u is
homotopic to a constant function. This implies that Ψt

Y
(x)v0 tends to infinity (in length)

for each nonzero v0 ∈ R2, which was shown above to be impossible. QED

Now we are ready to renormalize and to continue our sketch of the proof of Theo-
rem 8.8. Denote by J the one-dimensional subspace of A, consisting of real multiples of
the matrix J .

The idea is to consider the family F (s) = s + (I − E)f associated with a function
f ∈ A1 close to zero, where s ∈ A, and to show that the parameter value s = z0 , where
this family intersects the stable manifold W, belongs to J. This is proved by contradiction:
If the intersection takes place at a point s outside J, then by renormalizing the family F
as in the proof of the stable manifold theorem (see subsection 7.4), we can find n > 0 and
s0 ∈ J, such that Fn(sn) = Nn(F (s0)) is much closer to its average value sn than this
value is to J. By using that the re-parametrization maps Yn for skew flows are very close to
multiples of the identity, we can in fact choose s0 in such a way that sn is symmetric. Then
Fn(sn) has the expanding cone property. The same is true for F (s0), since this property is
preserved under coordinate changes of the form (3.2) or (2.26). But F (s0) belongs to A1,
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and we get a contradiction with Lemma 8.11. This shows that z0 ∈ J. And Lemma 8.5
implies that %(F (z0)) = 0.

Finally, assume for contradiction that %(F (s0)) = 0 for some s0 ∈ J different from
z0 , By renormalizing F we can achieve ‖sn − zn‖ > 2‖zn‖, which implies (using again
that the maps Yn are close to multiples of the identity) that Fn(sn) is close enough to
an antisymmetric matrix to have a strictly positive determinant. But then Fn(sn) cannot
have a vanishing fibered rotation number, and the same is true for F (s0). This shows that
the family f 7→ f + λJ intersects W at a unique point, characterized by %(f + λJ) = 0.

For details we refer to the proof of Lemma 7.5 in [79].
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[97] J. Lopes Dias, Renormalization and reducibility of Brjuno skew-systems, preprint (2004).
[98] M. Lyubich, Renormalization ideas in conformal dynamics, In: Cambridge Seminar “Current Devel-

opments in Mathematics”, May 1995, International Press, Cambridge MA, 155–184 (1995).
[99] M. Lyubich, Feigenbaum-Coullet-Tresser Universality and Milnor’s Hairiness Conjecture, Annals of

Mathematics 149, 319–420 (1999).
[100] R.S. MacKay, Renormalisation in Area Preserving Maps. Thesis, Princeton (1982). World Scientific,

London (1993).
[101] R.S. MacKay, Renormalisation Approach to Invariant Circles in Area–Preserving Maps, Physica D

7 (1983), 283–300.
[102] R.S. MacKay, Three Topics in Hamiltonian Dynamics. Preprint U. Warwick (1994).

Also in: “Dynamical Systems and Chaos”, Vol.2, Y. Aizawa, S. Saito, K. Shiraiwa (eds), World
Scientific, London (1995).

[103] R.S. MacKay, J.D. Meiss, J. Stark, An Approximate Renormalization for the Break-up of Invariant
Tori with Three Frequencies. Phys. Lett. A 190, 417–424 (1994).

[104] M. Martens, The periodic points of renormalization, Ann. Math. 147, 543–584 (1998).
[105] C. McMullen, Complex Dynamics and Renormalization. Annals of Mathematics Studies 135, Prince-

ton Univ. Press (1994).



Renormalization of Vector Fields 69

[106] C. McMullen, Renormalization and 3-Manifolds which Fiber over the Circle. Annals of Mathematics
Studies 142, Princeton Univ. Press (1996).

[107] A. Mehr, D.F. Escande, Destruction of KAM Tori in Hamiltonian Systems: Link with the Destabi-
lization of nearby Cycles and Calculation of Residues. Physica D 13, 302–338 (1984).

[108] B.D. Mestel, A computer assisted proof of universality for cubic critical maps of the circle with
golden mean rotation number. Ph.D. Thesis, Math. Dept., University of Warwick (1985).

[109] B.D. Mestel, A. Osbaldestin, Feigenbaum theory for unimodal maps with asymmetric critical point:
rigorous results, Commun. Math. Phys. 197, 211–228 (1998).

[110] J. Moser, On Invariant Curves of Area–Preserving Mappings of an Annulus. Nachr. Akad. Wiss.
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