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Abstract

An intermediate complexity baroclinic model for the atmospheric jet at middle-latitudes is used

as a stochastic generator of earth-like time series: in the present case the total energy of the system.

Statistical inference of extreme values is applied to yearly maxima sequences of the time series,

in the rigorous setting provided by extreme value theory. In particular, the Generalized Extreme

Value (GEV) family of distributions is used here as a fundamental model for its simplicity and

generality. Several physically realistic values of the parameter TE , descriptive of the forced equator-

to-pole temperature gradient and responsible for setting the average baroclinicity in the atmospheric

model, are examined. Stationary time series of the total energy are generated and the estimates

of the three GEV parameters – location, scale and shape – are inferred by maximum likelihood

methods. Standard statistical diagnostics, such as return level and quantile-quantile plots, are

systematically applied to asses goodness-of-fit. The location and scale GEV parameters are found

to have a piecewise smooth, monotonically increasing dependence on TE . This is in agreement with

the similar dependence on TE observed in the same system when other dynamically and physically

relevant observables are considered. The shape parameter also increases with TE but is always

negative, as a priori required by the boundedness of the total energy of the system. The sensitivity

of the statistical inference process is studied with respect to the selection procedure of the maxima:

the roles of both the length of maxima sequences and of the length of data blocks over which the

maxima are computed are critically analyzed. Issues related to model sensitivity are also explored

by varying the resolution of the system.
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I. INTRODUCTION

The study of climatic extreme events is of paramount importance for society, particularly

in the fields of engineering and environmental and territorial planning. Indeed, temporal

variations in the statistics of extreme events may have more acute and disruptive effects than

changes in the mean climate [24]. In works of economical nature (see e.g. Nordhaus [39]), the

special role played by the extreme events in terms of impacts is included with the hypothesis

that the costs associated with climatic change can be represented as strongly nonlinear func-

tions of the observed variations in surface temperature. This constitutes a clear motivation

for which, when the impacts of climatic change are analyzed, the interest for variations in

the statistics of extreme events plays a strategic role [15, 34].

In the scientific literature, some recent papers in which the existence of trends in the

frequency of extreme (precipitation) events was pushed forward in quantitative terms are

those by Karl et al. [22, 23]. Here the authors stated that the percentage of the U.S.A. with a

much above normal proportion of total annual precipitation from extreme precipitation events

(daily events at or above 2 inches) showed an increase from 9% in 1910-1920 to about 11%

in the ’90s. Despite severe scientific criticism to these papers by many other researchers

in the field, the basic idea that the frequency of extreme events may change together with

average surface temperature was discussed more and more and, eventually, it became one

of the issues of analysis for the Intergovernmental Panel for Climate Change: a specific a

specific report on Changes in extreme weather and climate events was issued in 2002 [16].

Basic questions, when dealing with extremes of complex processes, is: what is the correct way

of measuring extremes? Are we concentrating on local or global fluctuations of the system in

question? How do we measure local extremes? Extremes of wind speeds, of rainfall amounts,

of economical damage? Moreover, the enhancement in the extreme events might be quantified

either in terms of number of events, or in size of the average extreme event, or a combination

thereof. Several other ambiguities make it often difficult to follow literature on the subject.

Overall, two important weaknesses of much work on the subject of extreme meteo-climatic

events and of their trends are:

• the lack of interpretation of the dynamical mechanisms that should cause the hypoth-

esized changes in the frequency of extremes of various nature; often such mechanisms

are just alluded to instead of being explicitely formulated and analyzed;

• the lack of a common and theoretically founded definition of “extremes”.

The deficit in the first point above may negatively affect both deterministic and statistical
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studies of the phenomena in question. One major example on global processes is that, despite

the great attention attracted by the subject, very few researchers have investigated in detail

the basic mechanisms that should associate an increased CO2 concentration to enhanced

extreme weather events. The chain of mechanisms possibly linking CO2 concentration and

weather extremes is too long even for an adequate qualitative discussion here, but we shall

concentrate on the basic sequence: enhanced surface temperature −→ enhanced baroclinic-

ity −→ changes in the upper tail of the probability distribution function of the baroclinic

disturbances. But no robust analysis of this complex dynamical “chain” has been offered so

far.

As for the second point above, the lack of a common rigorous framework for the statis-

tical analysis of extremes (with few exceptions such as e.g. [25, 49, 50]) provides a serious

drawback for the interpretation and comparison of results from different studies. More-

over, this problem is not even justified, since mathematical theories of extreme events are

well-developed [3, 5, 8–11, 29] and the derived methods are quite successful in many applica-

tions [25, 40, 49, 50]. One basic ingredient of the theory relies on Gnedenko’s theorem [11],

which states that, under fairly mild assumptions, the distribution of the block-maxima of a

sample of independent identically distributed variables converges to a family of three distinct

distributions, the so-called Generalized Extreme Value (GEV) distributions. See Appendix A

for a brief description. Notice that one of the earliest applications of this theory in the natural

sciences occurred specifically in a meteorologic-climatic setting [20]. Other statistical models

for extreme events include the r-largest statistics, threshold exceedance models such as the

generalized Pareto distribution, and point processes, see [5].

The reliability of parametric estimates for extreme value models strongly depends on the

asymptotic nature of extreme value theory. In particular, at least the following issues should

be checked or addressed [5]:

1. independence of the selected extreme values;

2. using a sufficiently large number of extremes;

3. using values that are genuinely extreme.

Despite the importance of the third requirement, many studies actually deal with so-called

soft extremes [26], which are maxima of too short data blocks or with too small return periods

for the basic assumptions of the theory to hold. This is often the consequence of the limited

amount of available data: on one hand, one has to restrict to maxima of data blocks, thereby

discarding most available data; on the other hand one would like to have a long sequence of

5



extreme values. The net result is that the assumptions of the extreme value theorems often go

unchecked and are sometimes plainly impossible to check, since the available climatic records

cover at best the last century. Therefore, thinking in terms of annual maxima, in such cases

we only have 100 extremes. The inevitable consequence of adapting the definition of extremes

to the needs of the work is a serious reduction of reliability of the resulting estimates.

The goal of this paper is to infer and critically quality-check the statistical description of

extreme values in the GEV distributions framework on the “earth-like” time series produced

by a dynamical system descriptive of the mid-latitude atmospheric circulation featuring a

chaotic regime. Such system has internally generated noise and can be effectively considered

as a stochastic generator of data. Time series of the system’s total energy E(t) are used,

which is a relevant global physical quantity. We analyze how the GEV distribution inferred

from block maxima of E(t) depends on the value of the most important parameter of the

system, namely the forced equator-to-pole temperature difference TE , which controls the

baroclinicity of the model. The reliability of the GEV fits is studied, by considering both

shorter sequences of extremes and soft extremes. Moreover, issues related to model error and

sensitivity are briefly examined by analyzing the effects of variations in model resolution. The

use of numerically generated data allows us to avoid all the difficulties related to shortness

of the available climatic records, such as missing observations and low-quality data. In

particular, we do not need to worry about the wastage of data caused by the selection of

annual maxima, which is a serious limitation when considering observational data. In such

methodological sense, our approach is similar to that of [48] as far as statistical inference

is concerned. However, an important difference is that the statistics of the time series E(t)

generated by the atmospheric model cannot be directly chosen: there is no explicit formula

relating the probability density function of the adopted observable and the parameter TE .

This problem we analyze elsewhere [35].

The structure of the paper is now outlined. In Sec. II we first describe the set-up of

the numerical experiments performed with the atmospheric model and then the methods of

statistical analysis of extreme values adopted for the total energy time series. The results for

the considered reference case of 1000 yearly maxima are presented in Sec. III. Assessment

of the sensitivity of the inferences is studied in Sec. IV, by varying the length of yearly

maxima sequences, the block length over which maxima are taken, and the model resolution.

The dependence of the GEV parameters with respect to TE is also analyzed in this section.

Sec. V summarizes the results and their relation with the above discussion. The theory and

the methods of Extreme Value distributions, as far as needed in the present work, are briefly
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reviewed in Appendix A. The model of the baroclinic jet used as a stochastic generator is

described in Appendix B, referring to [35] for a thorough discussion.
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II. DATA AND METHODS

A. Total Energy of the Atmospheric Model

We consider a quasi-geostrophic intermediate complexity model [35, 36, 46] (also see Ap-

pendix B), providing a basic representation of the turbulent jet and of the baroclinic conver-

sion and barotropic stabilization processes which characterize the physics of the mid-latitudes

atmospheric circulation. The model is relaxed towards a given equator-to-pole temperature

profile which acts as baroclinic forcing. It features several degrees of freedom in the latitudi-

nal direction and two layers in the vertical - the minimum for baroclinic conversion to take

place [41, 44]. The system’s statistical properties radically change when the parameter TE ,

determining the forced equator-to-pole temperature gradient, is changed. In particular, as TE

increases a transition occurs from a stationary to an earth-like chaotic regime with internally

generated noise. By chaotic, we mean that the system possesses a strange attractor in phase

space [7]. For a detailed description of the model physics and dynamics see [35].

In the present setting, the model is used as a stochastic generator of earth-like time series

for testing the reliability of different statistical approaches [48] and studying the dynamics

of extremes [35]. A uniformly spaced grid of 21 values of the parameter TE is fixed in the

range [10, 50], starting from 10 and increasing with step 2. The baroclinic model is run for

TE fixed at each of these values, producing 21 simulations of length 1000 years (preceded by

an initial transient of five years) where the total energy E(t) is written every 6 hours. The

formula of the total energy is given in Appendix B, equation (B15). We recall that, in the

non-dimensionalization of the system, TE = 1 corresponds to 3.5K, 1 unit of total energy

corresponds to roughly 5 × 1017J , and t = 0.864 is one day, see [35] for details.

For each of the selected values of TE , a chaotic attractor is numerically detected in the

phase space of the model. This is illustrated by the autocorrelations of the time series of the

total energy E(t) (Fig. 1), which decay to zero on a time scale that is comparable with that

of the atmospheric system (roughly 10-15 days [33]). Since all parameters of the model are

kept fixed in each simulation, by discarding the initial transient, the time series of E(t) may

be considered a realization of a stationary stochastic process.

The distribution of the total energy time series is visualized by means of the histograms

and boxplots in Fig. 2, for three values of TE . Notice that, as TE increases,

• the upper tail of the distribution becomes heavier, whereas the lower tail shortens;

• both the average value and the variability of the total energy time series increase.
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The latter point is clearly visualized in Fig. 3, where the time-averaged total energy is dis-

played for each of the 21 stationary time series, together with confidence intervals. Through-

out the paper, confidence intervals are computed as average plus/minus sample standard

deviation multiplied by 1.96.

In concluding this section a theoretical remark is in order here. All examined strange

attractors are implicitly assumed to possess a unique Sinai-Ruelle-Bowen (SRB) ergodic in-

variant measure [7]. This is indeed a rather general and difficult problem in Dynamical

Systems and Physics: on the one hand, existence of a unique SRB measure is necessary to

rigorously associate a stationary stochastic process with the dynamical evolution law. On

the other hand, existence of a unique SRB measure is a very strong regularity assumption

for a dynamical system: in general it is even the question whether invariant measures exist

at all and, if so, whether a finite or infinite number of invariant measures coexist for a given

chaotic system. Moreover, even if an SRB measure exists and is unique, it is in general

non-parametric: there is no explicit formula relating the statistical behavior to the system’s

equation and parameters.

B. Parameter Estimation and Model Assessment in GEV Inference

As discussed in the previous section, the time series we work with are characterized by

fast decay of autocorrelations, which implies weak (short time-range) dependence of the

observations, compare Fig. 1. Inference of threshold exceedance models [5, 8, 29] is in this

case complicated by the choices of suitable threshold values and cluster size for declustering

(see e.g. [5, Chap. 5]), which might be somewhat arbitrary in the applications. On the other

hand, since the dependence is short-range, maxima of the total energy time series, taken

over sufficiently large data blocks, are with good approximation independent. This is why we

have preferred the use of the GEV with respect to threshold models. Moreover, since we can

generate time series of arbitrary length, for simplicity we refrained from using the r-largest

statistics, which is often valid alternative to the GEV, especially when data scarcity is an

issue. In this section, therefore, we recall the methods of GEV inference as far as needed

in the present work. The exposition is largely based on [5]. Also see [3, 5, 8–11, 29] for

methodology and terminology of extreme value theory.

Gnedenko’s theorem [11], or the three types theorem, first presented in a slightly less general

form by Fisher and Tippet [9]) states that, under fairly mild assumptions, the distribution of

the block-maxima of a sample of independent identically distributed variables converges, in
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a suitable limit, to one of three types of extreme value distributions. The three types are in

fact special cases of the GEV distribution (also called von Mises type), having the following

expression:

G(x) = exp

{
−

[
1 + ξ

(
x− µ

σ

)]
−1/ξ

}
(1)

for x in the set {x : 1 + ξ(x − µ)/σ > 0} and G(x) = 0 otherwise, with −∞ < µ < +∞,

σ > 0, and −∞ < ξ < +∞. The quantities (µ, σ, ξ) are called location, scale and shape

parameter, respectively. In such a framework, statistical inference of extreme values amounts

to estimating the GEV distributional parameters (µ, σ, ξ) for a given time series and assessing

the quality of the fit. If ξ > 0 (ξ < 0) the distribution is usually referred to as Fréchet

(Weibull) distribution, if ξ = 0 we have the Gumbel distribution, which can be expressed as

(A5). See Appendix A for further theoretical details and [3, 5, 8, 10, 29] for examples and

discussion.

In practical application of the extreme value theory the parent distribution function of

the data is typically unknown. Therefore, both the type of limiting distribution and the

parameter values must be inferred from the available data and the quality of the resulting

estimates should always be assessed. For GEV inference, a sequence of maxima is constructed

by subdividing the available data {xi} into blocks of equal length and extracting the maximum

from each block. The block length is one of the choices playing the usual, critical role between

bias and variance in the parametric estimates. Too short blocks increase the length of the

maxima sequence but, at the same time, they increase the risk of failure of the limit (A4). If

the blocks are too long, the resulting scarcity of maxima induces an enhanced uncertainty of

the inferred values of the GEV parameters. In many situations a reasonable (and sometimes

compulsory) choice is to consider the annual maxima (see [5]).

Assume that the observations in the time series are equispaced in time and that none

of them is missing (both conditions are often violated in concrete cases, see e.g. [40]). Let

n be the number of observations in a year and denote by Mn,1, . . . ,Mn,m the sequence of

the annual maxima, i.e., the maxima over data blocks of length n. Under the assumption

of independence of the Xn, the variables Mn,1, . . . ,Mn,m are independent as well. In fact,

approximate independence of the Mn,i holds also in the case of weak dependent stationary

sequences, see [5, 29] for definitions and examples.

Among the numerous methods to infer the GEV parameters (graphical or moment-based

techniques, see [3]), we adopt the maximum likelihood estimator for its great adaptability to

changes of models. Denote by θ = (µ, σ, ξ) the parameter vector for the GEV density g(x; θ),

the latter being the derivative of G(x) = G(x; θ) in (1). In the stationary context, the block
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maxima of the observed data are assumed to be realizations of a stationary stochastic process

having density g(x; θ0), where θ
0 is the unknown parameter vector. The maximum likelihood

estimator θ̂
0 of θ

0 is defined as the value that maximizes the likelihood function

L(θ) =
n∏

i=1

g(Mn,i; θ). (2)

In loose words, maximizing L(θ) yields the parameter values for which the probability of

observing the available data is the highest. It is often more advantageous to maximize the

log-likelihood function

l(θ) = log L(θ) =
m∑

i=1

log g(Mn,i; θ) (3)

and, according to (1),we get

l(µ, σ, ξ) =

=






−m log σ −
(
1 + 1

ξ

) ∑m
i=1

{
log

[
1 + ξ

(
Mn,i−µ

σ

)]
−

[
1 + ξ

(
Mn,i−µ

σ

)]
−

1

ξ

}
, if ξ 6= 0,

−m log σ −
∑m

i=1

{(
Mn,i−µ

σ

)
− exp

[
−

(
Mn,i−µ

σ

)]}
, if ξ = 0,

(4)

defined on the points Mn,i that, in the case ξ 6= 0, satisfy the condition 1+ξ
(

Mn,i−µ

σ

)
> 0 for

all i = 1, . . . , m. Indeed, since the logarithm is a monotonic increasing function, the likelihood

function reaches its maximum value at the same point as the log-likelihood function.

Approximate confidence intervals for θ̂
0 are constructed using the fact that each component

of θ̂
0 = (θ̂0

1, θ̂0
2, θ̂0

3) = (µ̂0, σ̂0, ξ̂0) = is asymptotically normal [5]:

θ̂0
i ∽ N(θ0

i , ψ̂i,i) ∀ i = 1, . . . , d, (5)

where ψ̂i,j is a generic element of the inverse of the observed information matrix I0(θ) defined

by

I0(θ) =

(
−
∂2 l(θ)

∂ θi∂ θj

)

i,j

∀ i, j = 1, . . . , d (6)

and evaluated in θ = θ̂
0. From Eq. (5) one obtains the (1 − α)-confidence interval for θ̂0

i:

θ0
i ± zα

2

√
ψ̂i,i (7)

where zα
2

is the (1 − α/2) quantile of the standard normal distribution. All confidence

intervals in this paper are computed by formula (7), except when a more detailed analysis is

presented. For example, in the assessment of inference quality, confidence intervals are also

computed by a standard bootstrap procedure (applied to the sequence of annual maxima) and
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by profile likelihood. The latter technique consists in the following. Consider the parameter

ξ, to fix ideas. The profile likelihood of ξ is obtained by setting µ and σ to their maximum

likelihood estimates, µ̂0 and σ̂0, respectively, in the log-likelihood function l (4). The plot of

l(µ̂0, µ̂0, ξ) as a function of ξ is a section of the likelihood surface of (4) as viewed from the

ξ-axis. Confidence intervals constructed from this graph are often more accurate than those

obtained by observed information matrix, see [5] for examples.

One of the main goals of extreme value theory is estimating the probability of occurrence of

events that are more extreme than those that have been observed thus far. Let zp be the value

that has a probability p to be exceeded every year by the annual maximum: P{Mn,i > zp} = p

with 0 < p < 1. In common terminology zp is called the return level associated with the return

period 1/p. A maximum likelihood estimator for zp is obtained by plugging the estimates

for θ̂
0 = [µ̂, σ̂, ξ̂] into the quantiles of G(x), obtained by inverting Eq. (1). This yields the

estimator

ẑp =





µ̂− bσ
bξ

[
1 − {− log(1 − p)}−

bξ
]

for ξ̂ 6= 0,

µ̂− σ̂ log {− log(1 − p)} for ξ̂ = 0.
(8)

The variance of the return level estimator ẑp is approximated as

V ar(ẑp) ≈ ∇zT
p V ∇zp, (9)

where ∇zT
p =

[
∂ zp

∂ µ
, ∂ zp

∂ σ
, ∂ zp

∂ ξ

]
, V is the variance-covariance matrix:

V (µ, σ, ξ) =




V ar(µ) Cov(µ, σ) Cov(µ, ξ)

Cov(σ, µ) V ar(σ) Cov(σ, ξ)

Cov(ξ, µ) Cov(ξ, σ) V ar(ξ)


 , (10)

and both ∇zp and V are evaluated at the maximum likelihood estimate θ̂
0 = [µ̂, σ̂, ξ̂]. This

allows the construction of confidence intervals for ẑp and is referred to as the delta method.

Again, profile likelihood and a boostrap technique are used for goodness-of-fit assessment of

the return level inferences.

Only for Weibull distributions (ξ < 0) it is possible to have p = 0, corresponding to a

return level with an infinite return period. In this case,

z0 = µ̂−
σ̂

ξ̂
. (11)

All information about the return levels is usually reported in the return level plot, where ẑp

is plotted against log yp, where yp = − log(1 − p) (compare Eq. (8)). The return level plot

is linear for the Gumbel distribution, concave for ξ > 0 (Fréchet) and has the horizontal
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asymptote (11) (Weibull). Notice that the smallest vales of p are usually those of interest,

since they correspond to very rare (particularly extreme) events. In the return level plots,

events with a short return period (large probability p) are compressed near the origin of the

axes, while outliers and rare events (small p) are highlighted. For this reason such plots are

very useful tools for both model analysis and diagnosis.

The above procedures for the estimates of return levels and GEV parameters require as-

sessment with reference to the available data. Useful graphical checks are the probability

plot, the quantile-quantile plot (QQ plot) and the return level plot. The first is the com-

parison between the estimated and the empirical distribution function G̃(x). The latter is a

stepfunction defined by

G̃(M(i)) =
i

m+ 1
, (12)

where M(i) is the order statistics for the sequence Mn,1, . . . ,Mn,m of m block maxima. Notice

that the definition of the empirical d.f. (12) is not unique, see [3].

The QQ-Plot, formed by the points

{(
G̃−1

(
i

m+ 1

)
, m(i)

)
, ∀ i = 1, . . . , m

}
(13)

highlights the behavior of the model tail, which is often the most interesting part. Substantial

departures of the above plots from the diagonal indicate inadequacy of the GEV model or

other systematic errors. Another diagnostic plot is constructed by adding confidence intervals

for ẑp and return levels of the empirical d.f., according to Eq. (13), to the return level plot

(see above). Agreement of the empirical d.f. with the return level curve suggests goodness

of fit and adequacy of the GEV model.

All computations and plots in this paper have been made with the software

R [14], available under the GNU license at www.r-project.org. The library ismev

(www.cran.r-project.org), which is an R-port of the routines written by Stuart Coles

as complement to [5], has been used with minor modifications.

III. GEV INFERENCES FOR 1000 ANNUAL MAXIMA

The annual maxima are extracted from the 6-hourly time series of the energy described

in Sec. II. Each series contains 4 × 365 × 1000 = 1460000 data. We then set n = 1460

in (A1), thereby obtaining sequences of 1000 annual extremes of the total energy. The yearly

maxima are linearly uncorrelated (Fig. 4), suggesting that it is safe and reasonable to assume

independence. Also compare with the autocorrelation decay time in Fig. 1
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On theoretical grounds we can at least deduce one constraint on the distribution of ex-

tremes for the energy time series. Indeed, since the attractor is contained within a bounded

domain of the phase space and since the energy observable E(t) defined in (B15) is a con-

tinuous function of the phase space variables, it turns out that the total energy is bounded

on any orbit lying on (or converging to) the attractor. Therefore, the energy extremes are

necessarily Weibull distributed (ξ is negative). This provides a theoretically founded criterion

for quality assessment of the obtained GEV inferences.

The GEV parameters (µ, σ, ξ) are estimated by the maximum likelihood method (see

Sec. II B) from the sequences of yearly maxima. The fitted values of (µ, σ, ξ), together with

confidence bands (computed by the observed information matrix, formula (7)) are plotted as

functions of TE in Fig. 5. The inferred parameters µ and σ increase monotonically with TE .

Estimates of ξ are in each case negative and the related confidence intervals are markedly

bounded away from zero: observed information matrix, profile likelihood and bootstrap yield

similar estimates. The latter result matches quite well the theoretical expectation discussed

in the previous section. Also notice that the uncertainty in ξ may reach up to 21% of its value,

whereas the parameters µ and σ are quite accurately estimated: the maximal uncertainties

in µ and σ are 0.1% and 2.5% of the corresponding value, respectively.

Information on the tails of the energy distribution is straightforwardly expressed by the

return level plots, where zp = G−1(1− 1/p) is the return level associated to the p-year return

period and G is the GEV distribution (1). In Fig. 6, return levels with return periods of 10,

100 and 1000 years are plotted as functions of TE. Each graph is monotonically increasing

with TE and, for TE fixed, the return levels increase with the return period.

The dependence of the GEV probability density with respect to TE is illustrated in Fig. 7.

The increase of scale and location parameters with TE induces a rightward shift and a spread

of the probability density. In particular, from the geophysical point of view, both the range

and severity of possible extreme values of the total energy increase with TE. In fact, this

behavior sets in for TE right after the creation of the chaotic attractor, see Fig. 7 right.

A. Smoothness of GEV Inferences with Respect to System Parameters

The dependence from TE of the time-averaged total energy and of the inferred GEV

parameters (including the return levels) is rather smooth, see Fig. 3 and Fig. 5. This strongly

suggests the existence of functional relations of the form

µ = αT γ
E and σ = α′T γ′

E . (14)
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Such power laws are fitted to the graphs of µ and σ as follows.

To set ideas, we consider µ and denote by µ̂(T j
E) and σµ̂(T j

E) the maximum likelihood

estimate of µ and the related standard deviation (calculated by the observed information

matrix), respectively, where T j
E is one of the 21 chosen values in the interval [10, 50]. A

bootstrap procedure is performed where iterated realizations of a sequence of 21 independent

Gaussian variables with mean µ̂(T j
E) and standard deviation σµ̂(T j

E) are simulated. For each

realization, a power law fit as in (14) is performed. The sample average and standard deviation

of the so obtained fits, constructed independently for µ and σ, are reported in Tab. I and

Tab. II.

Two distinct ranges of TE are identified, where µ scales by a different exponent, also see

Fig. 8 left. For TE . 18 γµ is ∼ 1.73 while it decreases to ∼ 1.6 for TE & 18. The time-mean

total energy of the system has a rather similar power-law dependence on TE [35]. In the

upper TE-range the exponent of the power law of the extremes is larger than that of the

time-mean total energy (∼ 1.52), which implies that asymptotically the extremes tend to

become relatively more extreme. When considering σ, there is an initial interval of TE where

no power law is obeyed, see Fig. 9 left. For 22 & TE & 15 γσ is ∼ 3.0 while it decreases to

∼ 2.1 for TE & 22. Since γσ > γµ for high values of TE , we have that asymptotically with TE

the spread of the maxima tends to become consistent with respect to their average location,

thus suggesting a larger variability in the maxima. Shorter yearly maxima sequences, of

length 300 and 100, lead to nearly identical estimates for both γµ and γσ and their confidence

intervals, thus implying that this is a rather robust property of the system.

Apart for the total energy, it turns out that analogous power law dependence with respect

to TE is detected in the considered model for several dynamical and physical observables,

such as Lyapunov dimension, maximal Lyapunov exponent and average zonal wind [35]. This

suggests that the whole attractor of the model (more precisely, its SRB measure) has some

scaling laws with respect to TE . The qualitative features described above for TE sufficiently

large, such as the form of (µ, σ) as functions of TE and the fact that ξ seems to approach a

constant negative value, are most probably related to this scaling behavior. An important

question we address elsewhere is whether this is a peculiarity of the baroclinic model used

here or if analogous smoothness properties are common (generic or robust in some sense) for

models of atmospheric dynamics, including General Circulation Models.
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IV. SENSITIVITY OF THE GEV INFERENCES

The length of 1000 for the sequences of yearly maxima turns out to yield good accuracy

for the GEV inferences. The sensitivity of such results has been tested by relaxing the

experimental conditions considered in the previous section. This has been done in several

ways:

• by varying the number of extreme events (length of the sequences of yearly maxima);

• by using soft extremes (maxima are computed over data blocks corresponding to time

spans shorter than one year).

• by varying the resolution of the model.

The best estimates and related uncertainties of the GEV parameters obtained under modified

experimental conditions have been first compared at phase value to what obtained in the

reference case, in order to detect mismatch due to biases and changing precision. Moreover,

the resulting differences in the GEV distributions have been inspected also with by adopting

the standard graphical diagnostics, such as quantile-quantile and return level plots, and by

computing bootstrap confidence intervals and profile likelihood both for the critical parameter

ξ and for the return levels.

A. Sensitivity with Respect to the Extreme Events Sample Size

We describe what is found when reducing the number of yearly maxima used for GEV

inference. The, particularly unfortunate, case occurring for TE = 32 is first analyzed by

means of profile likelihood for the GEV parameter ξ. Sequences of 1000, 300, 100, and 50

yearly maxima of the total energy are used to produce the plots in Fig. 10. The cases 1000,

300, and 100 yield coherent estimates for ξ. For detailed diagnostics, confidence intervals are

computed by the observed information matrix (formula (7)) and compared by those obtained

by profile likelihood and by a standard bootstrap procedure. The three methods yield similar

results in all cases, both for the estimates and for the confidence intervals. However, for

50 maxima the confidence intervals become very wide and a positive value for ξ is inferred,

which is unphysical.

The decay of the inference quality is revealed in a different way by the profile likelihood

plots for the 100-year return levels (Fig. 11). It is, in general, not quite safe to infer, from a se-

ries of n annual extremes, return levels with return periods larger than n years. Extrapolation
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to larger return periods may produce incorrect values and is likely to yield significant uncer-

tainties. For the considered case, the estimates are coherent for 1000, 300, and 100 yearly

maxima. As expected, the confidence intervals (computed by the δ method, see Sec. II B)

become larger as shorter sequences of maxima are used. This also holds for bootstrap and

profile likelihood. However, for 50 maxima the profile likelihood confidence intervals become

very skewed as opposed to bootstrap or δ method. This clearly indicates poor approximation

of normality for the GEV estimators [5], revealing the intrinsic unreliability of the estimates.

Quantile-quantile and return level plots for the above inferences are reported in Fig. 12.

These confirm excellent quality for 1000, 300, and 100 maxima, whereas they reveal that

something must be wrong for 50. In the quantile-quantile plots (top row of Fig. 12), from

left to right there appear increasing departures from the diagonal in the tails, especially the

upper tail, whereas the central part of the distribution does not suffer from sample reduction,

except in the case of 50 maxima. Analogous effects occur in the upper tail of the return level

plots. The main point here is that the most delicate part of an extreme value inference is

the behavior of the tails. Usually, this is also the aspect one is most interested in. Notice

how the black line in the middle of the return level plot for 50 maxima erroneously suggests

unboundedness of the return levels (which is only possible for ξ ≥ 0, see Sec. II B). Therefore,

extrapolations to high levels should be avoided in this case.

We emphasize that the value of TE just examined corresponds to a particularly bad in-

ference for 50 years. An overview, throughout the considered range of TE , of GEV inference

sensitivity to length reduction is summarized in Fig. 13, where the cases of 300, 100, 50 yearly

maxima are plotted against 1000. The quality of the fits, of course, generally decreases when

using shorter series of maxima. Inference of ξ is particularly sensitive to the length of the

series of maxima: the maximal value of the ratios between uncertainty in ξ and value of the

corresponding maximum likelihood estimate of ξ is 600%, 1387%, 45%, and 21%, for 50, 100,

300, and 1000 maxima, respectively. The median of those ratios is 48%, 30%, 19%, 10%,

respectively. Taking only 50 maxima yields two positive estimates of ξ (for TE = 32 and

50), which is an unphysical result, and overall very large uncertainties: for many values of

TE , confidence bands for ξ include part of the positive axis. The bias in the estimates of ξ

induces a significant alteration in those of σ, although the inferred values of µ remain quite

stable. Also notice the big uncertainties in the return levels for the two cases TE = 32 and

50, corresponding to positive estimates of ξ.

If we further consider additional sources of difficulty present in nature (for example the an-

nual seasonal modulation), skepticism with respect to several inferences on extremes proposed
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in meteo-climatic literature seems justified.

B. Sensitivity with Respect to the Extreme Events Selection Procedure: Soft Ex-

tremes

We now turn to the second type of inference sensitivity mentioned above, obtained by

using so-called soft extremes [26] instead of genuine extremes. In the present setting, we

simulate the usage of soft extremes by considering sequences of maxima over data blocks

that correspond to time spans shorter than one year, in particular 0.6, 1.2, and 3 months.

In the first two cases, and especially in the first, we are not even sure that the considered

maxima are effectively uncorrelated, which is the typical situation in real systems. In each

case, the number of considered extremes is kept fixed to 1000, so that the difference is only

determined by block length.

The net result of using shorter time spans is the introduction of a progressively larger bias

in the GEV inferences. The location and shape parameters are systematically underestimated.

For the location parameter µ (leftmost column in Fig. 14) the underestimation increases when

taking maxima over shorter time-spans, but it also increases with TE . Notice that this is quite

different from the effect of reduction of the number of maxima, compare Fig. 13 (leftmost

column). The sample medians of the relative differences between the estimates of µ for 12

months and those for 3, 1.2, and 0.6 months (where the sample is indexed by the values

of TE for which the estimates are computed) are 3.2%, 5.7%, and 7.5% for 3, 1.2, and 0.6

months, respectively. Due to the definition of zp, see (8), the underestimation of the 100-year

return levels is a consequence of that of µ. Also notice that the variations in the return

levels connected to increase in TE are much larger than those induced by usage of either soft

extremes or shorter data sets, also compare with Fig. 13 (rightmost column). Conversely, the

scale parameter σ (second column from left in Fig. 14) is largely overestimated: the sample

median of the relative differences between the estimates of σ are 31%, 59%, and 82% for 3,

1.2, and 0.6 months, respectively. So in our case, taking soft extremes mistakingly suggests

an enhanced variability in the extreme values.

Qualitatively, the response of the GEV estimates to the usage of soft extremes is explained

by the introduction of much more data in the central part and in the lower tail of the

distribution of the selected extreme values. From this fact, the underestimation of µ follows

directly. Moreover, since the range of the extreme events distribution gets wider, a larger

variability is artificially introduced and this is indicated by an overestimated scale parameter
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σ. Lastly, the upper tail of the so obtained distribution of extremes looks more squeezed,

given the wider extension at lower values. This corresponds to a more negative value of ξ,

compare the third column from left in Fig. 14.

C. Sensitivity with Respect to the Model Resolution

In this section we analyze the response of the GEV inferences to variations in the model.

In fact, this question is a further aspect of the smoothness and robustness issues discussed

in Sec. IIIA, which is of great practical importance: we would not like our estimates to

drastically change if the model is slightly altered. Different choices are possible, such as

introducing an orography in the bottom layer or changing the lateral boundary conditions.

In the present setting, however, we confine ourselves to compare simulations of the baroclinic

model computed at different resolutions (i.e., with different spectral discretization order JT ,

see (B11)-(B14)).

In particular, time series of the total energy, of length 1000 years, are computed with the

baroclinic model using four different resolutions: JT = 8, 16, 32, 64 (resolution JT = 32 is

used throughout the rest of this paper). In each case the GEV parameters are estimated

from sequences of 1000 yearly maxima. The results are compared with each other in Fig. 15.

The relative differences of the estimated values of µ between the case JT = 32 and each of

the other three cases (panel (A)) remain rather small: they are less than 1.5% for JT = 16

and 64 and grow up to about 4% for JT = 8. Also the estimates of ξ in general agree quite

well for all the considered resolutions.

More pronounced differences appear in the inferred values of the scale parameter σ: for

TE ≥ 26, the estimates obtained with resolutions JT = 8 and 64 are larger than those for

JT = 16 and 32. The estimates for µ closely reflect the behavior of the time-averaged the

total energy (computed on the same time series from which the yearly maxima are extracted).

Considering, to fix ideas, the range TE ∈ [26, 36], for each fixed TE both the inferred values

of µ and the time-averaged total energy (not shown) decrease as JT increases. Conversely,

there is no simple relation between the sample standard deviation σE of the total energy

time series and the GEV scale parameter σ: for the mentioned values of TE , the sample

standard deviation σE decreases for larger JT (not shown), whereas this is not so for the

scale parameter, see above.

Power law fits of µ and σ as functions of TE are performed for 1000 yearly maxima of the

total energy, where the baroclinic model is run with four different resolutions: JT = 8, 16,
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32, 64. As in Sec. IIIA, the range of TE is divided into two intervals for the fits of µ and into

three for σ (in the latter case, no power law is found in the leftmost interval). Remarkable

accuracy and coherence of the laws for µ is observed. There is more variability in the power

laws for σ, although again a striking coherence is observed for large TE .

Summarizing, we have observed no dramatic model sensitivity for the GEV estimates.

However, it is to be emphasized that a particularly stable observable has been examined

here (the total energy) and only one type of model alteration has been considered, namely a

change in the spectral resolution. We believe, though, our results are quite “generic” for the

class of models considered in this paper.
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V. SUMMARY AND CONCLUSIONS

In this paper we have performed statistical inference of extreme values on time series

obtained by means of a dynamically minimal two-level quasi-geostrophic model of the atmo-

sphere at mid-latitudes. The physical observable used to generate the time series is the total

energy of the system and the statistical model for the extremes is the Generalized Extreme

Value distribution (GEV). Several physically realistic values of the parameter TE , descriptive

of the forced equator-to-pole temperature gradient and responsible for setting the average

baroclinicity in the atmospheric model, are examined. In the standard setting, the maxima

of the total energy are computed over one year long data blocks, and 1000 maxima are used

as basis for the inference.

A result of the present investigation, having potential relevance in atmospheric dynamics,

is the detection of a piecewise smooth dependence of the location and scale GEV parameters

(µ, σ) on the model parameter TE controlling average baroclinicity. Two distinct power-laws,

holding in different intervals of TE , are obtained both for µ and for σ as functions of TE, where

the fit for µ is quite accurate. This regularity is put in relation with the results in [35], where

analogous scaling laws are found for other dynamical indicators, such as Lyapunov exponents

and dimension, and physical observables, such the time-space average of total energy and

zonal wind. The shape parameter ξ also increases with TE but is always negative, as a priori

required by the boundedness of the total energy of the system. We conjecture that also the

dependence of ξ on TE becomes smooth when much longer time series are considered. All

these problems wiil be further explored in connected work.

After the assessment of the goodness-of-fit by means of standard statistical diagnostics,

such as return level and quantile-quantile plots and computation of confidence intervals by

different procedures, we have consistently verified that:

• the selected block length of one year guarantees that the extremes are uncorrelated

and genuinely extreme; guaranteeing this property may result more problematic when

dealing with real observations because of seasonal modulations, etc.;

• the considered length of the series of maxima (1000 data) yields reliable parameter

estimates;

• the GEV inferences are not dramatically affected by structural changes in the atmo-

spheric model adopted in the present work.

The sensitivity of the statistical inference process is first studied with respect to the selection
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procedure of the maxima: we analyze the effects of reducing either the length of maxima

sequences or the length of data blocks over which the maxima are computed.

The first point is checked by repeating the GEV inferences with sequences of maxima

having lengths 300, 100, and 50 years. The estimates are coherent for 1000, 300, and 100

yearly maxima, but the confidence intervals of the best estimates, not surprisingly, widen

up as shorter sequences of maxima are used. Moreover, markedly unreliable estimates are

obtained when only 50 yearly maxima are considered: the estimated long-term return levels

are patently wrong, the uncertainty of the inferred shape parameter ξ is very large, and the

best estimate of ξ is positive (that is, unrealistic) for a few values of TE .

In order to address the second point, we have taken maxima over data blocks corresponding

to shorter time spans, to explore the effects of using soft extremes [26]. Specifically, the

sensitivity of the GEV inferences is analyzed with respect to shortening the length of the data

blocks to 3, 1.2, and 0.6 months. The obtained statistics is “polluted”: a bias is introduced

which is unacceptable for the cases of 1.2 and 0.6 months and still significant (at least for the

GEV parameter σ) for 3 months. Moreover, the parameter ξ tends to be underestimated.

Taking shorter maxima sequences results in even larger uncertainties, very large for the case

of 50 yearly maxima. Physically unrealistic values of ξ may also be obtained.

Lastly, issues related to model sensitivity are also explored by varying the (spectral) reso-

lution of the system. It turns out that the GEV estimates are in general rather robust under

this sort of perturbation. Summarizing, to get a good inference many maxima are required

and they must be genuinely extreme, that is, taken over sufficiently large data blocks. Failing

to fulfill these requirements may result in affecting the GEV inferences much more critically

than adopting a baroclinic model with lower resolutions.

We conclude by highlighting that the parameterization of physical observables with respect

to an external forcing is indeed a rather general and difficult problem in the dynamical analysis

of the physical system. Existence of a unique Sinai-Ruelle-Bowen measure is required to

rigorously associate a stationary stochastic process to the dynamical evolution law. However,

even if an SRB measure exists and is unique, typically there is no explicit expression in terms

of the system’s equations and parameters [7].

In this respect, the simplicity and the universality of the GEV model can be exploited

to characterize chaotic systems by focusing on extreme values of suitable time series, rather

then examining the distribution of all states visited by the system in phase space. Different

model variants (both in boundary conditions and in model structure) and other observables

and will be considered in future research.
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APPENDIX A: CLASSICAL THEORY OF EXTREME VALUE DISTRIBUTIONS

Let X1, . . . , Xn be a sequence of independent and identically distributed random variables

(i.i.d.r.v.) where FX is the common distribution function (d.f.). The classical theory of

Extreme Values deals with the statistical behavior of the random variables

Mn = max{X1, . . . , Xn}, (A1)

which is the maximum of the first n variables (an analogous theory for the minima is de-

veloped similarly, since min{X1, . . . , Xn} = −max{X1, . . . , Xn}). Under the assumptions of

statistical independence and distributional equality of the Xi, we known that

P{Mn ≤ x} = P{X1 ≤ x, . . . , Xn ≤ x} = P{X1 ≤ x} · . . . · P{Xn ≤ x} = F n
X . (A2)

However, in most practical applications this property is useless because, typically FX is

unknown. Moreover, the limit of F n
X is degenerate, since it is concentrated on the point

x+ = sup{x : F (x) < 1}:

lim
n→+∞

= F n
X(x) =





0 x < x+,

1 x ≥ x+.
(A3)

This difficulty is avoided by assuming the existence of two sequences of constants, {σn > 0}

and {µn}, such that M∗

n = Mn−µn

σn
, rather than Mn, has a nondegenerate limit distribution

G(x):

P{M∗

n < x}
w

−→ G(x) (A4)

for each continuity point x of G.

Theorem A.1 (Extremal Types Theorem). If there exist sequences of constant {σn > 0}

and {µn} such that the limit in (A4) exists, then the d.f. G(x) belongs to one of the following

three parametric forms, called Extreme Value Distributions:

Type I (Gumbel): G1(x) = exp

{
− exp

[
−

(
x− µ

σ

)]}
, −∞ < x < +∞ (A5)

Type II (Fréchet): G2(x) =





0 x ≤ µ,

exp
{
−

(
x−µ

σ

)
−ξ

}
x > µ, ξ > 0

(A6)

Type III (Weibull): G3(x) =






exp
{
−

[
−

(
x−µ

σ

)]ξ
}

x < µ, ξ < 0

1 x ≥ µ
(A7)

with scale parameter σ > 0, location parameter µ ∈ R and, for the types II and III, the shape

parameter ξ 6= 0 (for type I it is assumed ξ = 0).
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This result was first proved by Fisher and Tippett [9] and then it was extended by Gne-

denko [11]. The strength of this theorem is the fact that it is a universal property, since it

holds regardless of the parent distribution FX . Notice that:

• Theorem A.1 does not guarantee the convergence in distribution for the variable M∗

n.

In fact it assumes it (compare (A4)). There are distributions for which the convergence

requested in (A4) does not hold, see [29].

• The value of x+ is finite only for the Weibull distribution, whereas the Fréchet and

Gumbel densities decay polynomially and exponentially as x→ +∞, respectively.

• The domain of attraction D(Gi), where Gi is one of (A5)-(A7), is defined as the set

of all d.f. F (x) such that one has convergence to Gi(x) in (A4). Various criteria give

necessary and sufficient conditions to determine what is the domain of attraction of

each of the extremal distributions (A5)-(A7). However, the limit type for a given F (x)

only depends on the upper tail of F (x). See [29].

• The hypotheses of Theorem A.1 can be relaxed to the case of stationary stochastic

processes with weak long-range dependence (at extreme levels) [5, Chap. 5], which is

of particular importance in our case.

The Gumbel, Fréchet and Weibull families are unified into the single GEV family of distribu-

tion functions, given in (1). So in the sequel we denote by G(x) the family in (1). For positive

values of the shape parameter ξ, the Fréchet family is obtained from (1) and, similarly, for

negative values we have Weibull. The Gumbel distribution is the limit for ξ → 0 of G(x):

lim
ξ→0

G(x) = exp

{
− exp

[
−

(
x− µ

σ

)]}
. (A8)

This highlights another strength of the GEV model in concrete applications: the limit type

is inferred from the data by estimating the parameter ξ. This removes the necessity of an

initial and arbitrary choice of the limit type when using models (A5)-(A7).
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APPENDIX B: A MODEL FOR THE MID-LATITUDES ATMOSPHERIC CIR-

CULATION

As mentioned in the introduction, the stochastic generator of the energy time series used

in this paper is a model for the baroclinic jet at mid-latitudes. The system is relaxed towards

a prescribed north-south temperature profile, where the gradient is controlled by a parameter

TE . In fact, the parameter TE controls average baroclinicity of the system and is used to study

the relation with extreme values of the energy time series. Many dynamical properties of the

model depending on TE have been analyzed before the analysis of extreme values presented

in this paper, providing a sort of road map. See [35, 36, 46], to which we also refer for a

detailed derivation of the model and for discussion on the physics involved. In this section,

we confine ourselves to a brief sketch.

Starting point for the construction of the model is the two-level quasi-geostrophic equation:

∂

∂t
∆Hτ −

2

H2
2

∂

∂t
τ + J

(
τ,∆Hφ+ βy +

2

H2
2

φ

)
+ J (φ,∆Hτ) =

2νE

H2
2

∆H (φ− τ) −
2κ

H2
2

∆Hτ +
2νN

H2
2

(τ − τ ⋆) , (B1)

∂

∂t
∆Hφ+ J (φ,∆Hφ+ βy) + J (τ,∆Hτ) = −

2νE

H2
2

∆H (φ− τ) . (B2)

Here τ and φ are the baroclinic and barotropic components, respectively, of the streamfunc-

tion ψ1 and ψ3 at the two levels:

τ =
1

2
(ψ1 − ψ3) , φ =

1

2
(ψ1 + ψ3) , (B3)

∆H is the horizontal Laplacian, 1/H2
2 is the Froude number, β is the gradient of the Coriolis

parameter, νE , κ and νN parameterize the Ekman pumping at the lower surface, the heat

diffusion, and the Newtonian cooling, respectively.

The system is driven for the baroclinic component by the term in (τ − τ ∗) in (B1), which

forces a relaxation to the radiative equilibrium τ ∗ with a characteristic time scale of 1/νN .

We take

τ ⋆ =
R

f0

TE

4
cos

(
πy

Ly

)
, (B4)

so that TE is the forced temperature difference between the low and the high latitude border

of the domain. In this sense, the parameter TE is responsible for average baroclinicity of the

system and is the control parameter we vary to test changes in the extreme value statistics.

The fields φ and τ are expanded in Fourier series in the longitudinal direction x. Moreover,

in order to avoid wave-wave nonlinear interactions, only the terms of order n = 1 and n = 6
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are retained (see [35] for details). This yields

φ (x, y, t) = −

∫ y

0

U (z, t) dz + A exp (iχx) + c.c. (B5)

τ (x, y, t) = −

∫ y

0

m (z, t) dz +B exp (iχx) + c.c.. (B6)

By substitution into (B1)-(B2), one obtains

Ȧyy − χ2Ȧ +

(
iχU +

2νE

H2
2

)
Ayy −

(
iχ3U + iχUyy +

2νE

H2
2

χ2 − iχβ

)
A

+

(
iχm−

2νE

H2
2

)
Byy −

(
iχ3m+ iχmyy −

2νE

H2
2

χ2

)
B = 0,

(B7)

Ḃyy − χ2Ḃ−
2

H2
2

Ḃ +

(
iχU +

2νE

H2
2

+
2κ

H2
2

)
Byy

−

(
iχ3U + iχUyy +

2νE

H2
2

χ2 − iχβ +
2κ

H2
2

χ2 +
2νN

H2
2

+
2

H2
2

iχU

)
B

+

(
iχm−

2νE

H2
2

)
Ayy −

(
iχ3m+ iχmyy −

2νE

H2
2

χ2 −
2

H2
2

iχm

)
A = 0,

(B8)

U̇ +
2νE

H2
2

(U −m) + 2χ Im(AA∗

yy +BB∗

yy) = 0, (B9)

ṁyy −
2

H2
2

ṁ+
2κ

H2
2

myy −
2νE

H2
2

(U −m)yy −
2νN

H2
2

(m−m∗)

+
4

H2
2

χ Im(A∗B)yy + 2χ Im(AB∗

y +BA∗

y)yyy = 0,
(B10)

where the dot indicates time differentiation and A∗ denotes the complex conjugate of A. This

is a set of 6 equations for the real fields A1, A2, B1, B2, U , m, where A1 and A2 are the

real and imaginary parts of A and similarly for B. Rigid walls are taken as boundaries at

y = 0, Ly, so that all fields have vanishing boundary conditions.

A system of ordinary differential equations is obtained from (B7)-(B10) by means of a

pseudospectral (collocation) projection, involving a Fourier half-sine expansion of the fields

of the form

Ai =

JT∑

j=1

Ai
j sin

(
πjy

Ly

)
, i = 1, 2, (B11)

Bi =
JT∑

j=1

Bi
j sin

(
πjy

Ly

)
, i = 1, 2, (B12)

U =
JT∑

j=1

Uj sin

(
πjy

Ly

)
, (B13)

m =

JT∑

j=1

mj sin

(
πjy

Ly

)
. (B14)

The resulting system is the generator of the time series used in this paper for extreme value

analysis. In particular, as observable (that is, as function of the state space yielding the
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time series) we choose the total energy E(t) of the system, obtained by integration in the

(x, y)-domain of the energy density:

e (x, y, t) =
δp

g

[
1

2

(
~∇ψ1

)2

+
1

2

(
~∇ψ3

)2

+
1

2H2
2

(ψ1 − ψ3)
2

]
. (B15)

Here the factor δp/g is the mass per unit surface in each level, the first two terms inside the

brackets describe the kinetic energy and the last term describes the potential energy. We

emphasize that in the expression (B15) the potential energy term is half of what reported

in [41], which contains a trivial algebraic mistake .

It turns out that the order JT = 32 in the expansion (B11)-(B14) is sufficiently high

to have an earth-like chaotic regime characterized by intermediate dimensionality in suitable

ranges of the parameter TE. By chaotic, we mean that the dynamics takes place on a strange

attractor with internally generated noise. By earth-like we mean that the time-dependent

Fourier coefficients in (B11)-(B14), as well as the total energy and mean zonal wind, have

unimodal probability densities. The mentioned chaotic range is TE > T crit
E , where T crit

E = 8.75

approximately. For lower values of TE , the Hadley equilibrium (stationary solution) is stable

and is therefore the unique attractor. Again see [35, 36, 46] for a complete discussion.

Throughout this work, we consider JT = 8 , 16, 32, and 64 and the considered parameter

range is 10 ≤ TE ≤ 50 with integer steps of 2.
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n γ1 T b
E γ2

1000 1.7310 ± 0.0007 18 1.6019 ± 0.0017

300 1.7311 ± 0.0013 18 1.6017 ± 0.0030

100 1.7219 ± 0.0018 17 1.5982 ± 0.0018

TABLE I: Power law fits of the location parameter µ as a function of TE of the form µ ∝ T γ
E ,

performed in two adjacent intervals of TE. The number of used annual extremes is n and T b
E is the

value of TE separating the two intervals. Compare with figure Fig. 8.

n T b1
E γ1 T b2

E γ2

1000 15 3.011 ± 0.076 22 2.140 ± 0.025

300 14 3.236 ± 0.115 22 2.114 ± 0.047

100 14 2.944 ± 0.157 24 2.040 ± 0.093

TABLE II: Same as Tab. I for the scale parameter σ. Here the fits σ = T γ1

e and σ = T γ2

e hold for TE

such that T b1
E ≤ TE ≤ T b2

E and T b2
E ≤ TE ≤ 50, respectively. No power law fit is found for TE < T b1

E .

Compare with Fig. 9.

JT γ1 T b
E γ2

64 1.7346 ± 0.0008 15 1.6027 ± 0.0005

32 1.7310 ± 0.0007 18 1.6019 ± 0.0005

16 1.7027 ± 0.0007 18 1.5982 ± 0.0007

8 1.6794 ± 0.0006 22 1.5977 ± 0.0011

TABLE III: Power law fits of the location parameter µ as a function of TE of the form µ ∝ T γ
E . JT

indicates the spectral resolution (number of Fourier modes) of the baroclinic model and T b
E is the

value of TE dividing the two considered intervals, see text for details.
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JT T b1
E γ1 T b2

E γ2

64 18 2.514 ± 0.046 32 2.067 ± 0.055

32 15 3.011 ± 0.076 22 2.140 ± 0.025

16 15 2.821 ± 0.045 26 2.150 ± 0.033

8 17 2.675 ± 0.065 26 2.149 ± 0.033

TABLE IV: Same as Tab. III for the scale parameter σ ∝ T γ
E . The interval [T b1

E , T b2
E ] is the range

of validity of the the first power-law, having exponent γ1. The point dividing the two considered

intervals is T b2
E . No power law is detected for TE < T b1

E .
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FIG. 1: Autocorrelations of the total energy time series for TE = 10, 30, 50 (left, center, right,

respectively), time-lag in days on the horizontal axis. The full 6-hourly time-series of 1000 years

have been used, see Sec. IIA.
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FIG. 2: Histograms and boxplots of the total energy time series for TE = 10, 30, 50 (left, center,

right, respectively).
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FIG. 3: Time-averaged total energy (vertical axis) as a function of TE (horizontally), for each of the

21 selected values of TE . Confidence bands (average plus or minus a 1.96 times sample standard

deviation) are added. The full 6-hourly time-series of 1000 years have been used, see Sec. II A.
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FIG. 4: Autocorrelations of the sequences of 1000 yearly maxima of the total energy time series for

TE = 10, 30, 50 (from left to right, respectively).
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(leftmost panel) at the selected scale.
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added with errorbars but are hardly visible (at the selected scale).
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range [10, 50]. Right: same as left for 8.75 ≤ TE ≤ 9.75.
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FIG. 8: Power law fits of the inferred values of log(µ) (vertical axis) as a function of log(TE)
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case, there are two intervals of TE , separated by a point T b
E , characterized by a different scaling
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FIG. 10: Profile likelihood plots of ξ for TE = 32. From left to right, 1000, 300, 100, and 50 yearly

maxima have been used, respectively. In the latter case, the estimate of ξ is positive. Confidence

intervals are computed by bootstrap, profile likelihood, and observed information matrix (the three

stacked lines at the bottom part of the plots, from top to bottom, respectively). Notice the increasing

width of the confidence intervals (quite large already for length 100) and the agreement between

confidence intervals computed by the three methods, also for the wrong estimate obtained with 50

maxima.
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FIG. 11: Profile likelihood plots of the 100-year return level for TE = 32 for different lengths of

the sample of yearly maxima: 1000, 300, 100, and 50 yearly maxima have been used from left to

right, respectively. Confidence intervals are computed by bootstrap, profile likelihood, and observed

information matrix (the three stacked lines at the bottom part of the plots, from top to bottom,

respectively). Notice the increasing width of the confidence intervals and increasing skewness of

those obtained by profile likelihood.
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FIG. 12: Diagnostic plots of the GEV inferences for TE = 32. Top and bottom row: quantile-

quantile and return level plots, respectively (see Sec. IIB for definitions). From left to right column:

sequences of yearly maxima of the total energy are used, having lengths 1000, 300, 100, and 50,

respectively. Notice the different scale of the vertical axis in the rightmost return level plot.
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FIG. 13: Top row: maximum likelihood estimates of µ, σ, and ξ (from left to right, respectively)

for 1000 and 300 yearly maxima (green and red respectively), with confidence intervals computed

by the observed information matrix (7). Center, bottom row: same as top, for 100 and 50 yearly

maxima, respectively, instead of 300. In the case of 50 maxima, for TE = 32 and 50 the inferred

values of ξ are positive (thus completely wrong according to the theoretical expectation, see text)

and the uncertainties are very large for σ and ξ.
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FIG. 14: Inferred values of GEV parameters as a function of TE (horizontal axis) in a soft extremes

experiment: from top to bottom row, sequences of 1000 maxima of the total energy time series are

used, where the maxima are determined over data blocks corresponding to 3, 1.2, and 0.6 months.

From left to right column, µ, σ, ξ, and 100-year return levels are plotted. In green the estimates

obtained for the yearly maxima (as in Fig. 5) are displayed for reference. Notice how the magnitude

of the uncertainties shows little dependence on the temporal block length.
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FIG. 15: Left: relative difference (µJT −µ64)/µ64 of the maximum likelihood estimates of the GEV

parameter µ (vertical axis) for resolutions JT = 8, 16, 32 (red, green, and blue, respectively) with

respect to the reference case JT = 64. Middle, right: estimates of σ and ξ, respectively (vertical

axis), for the cases JT = 8, 16, 32, 64 (red, green, blue, magenta, respectively), where sequences of

1000 maxima are used. On the horizontal axis, the value of TE is given for which the simulations

are performed.
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