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Abstract. We consider C∞-diffeomorphisms on a Banach space with a fixed

point 0. Suppose that these diffeomorphisms have C∞ non-contracting and

non-expanding invariant manifolds, and formally conjugate along their inter-
section (the center). We prove that they admit local C∞ conjugation. In

particular, subject to non-resonance condition, there exists a local C∞ lin-

earization of the diffeomorphisms. It also follows that a family of germs with a
hyperbolic linear part admits a C∞ linearization, which has C∞ dependence

on the parameter of the linearizing family. The results are proved under the
assumption that the Banach space allows a special extension of the maps. We

discuss corresponding properties of Banach spaces. The proofs of this paper

are based on the technique, developed in the works of G. Belitskii ([B1], [B2]).

1. Introduction

Approximations by normal forms and especially linear approximation are conve-
nient simplifications of a physical system. Most of the physical systems are assumed
to be analytic. The study of analytic conjugation was initiated by Poincaré and
extended in numerous works. But it was shown in the work of Bruno ([Br]) that
the class of systems, which admits analytic reduction to the Poincaré-Dulac normal
form is small even in Rn. For that reason we study this problem in the class of C∞

transformations.
This question was studied in numerous works (for example, in [S], [Ch], [B]). The

first step in the proofs of these results in Rn is the condition of formal solvability in
C∞. The latter generates an algebraic expression, called resonance condition. For
a generic diffeomorphism, the non-resonance assumption is a necessary condition
for removing non-linear terms.

Although, resonance is an obstacle for a smooth conjugation in dimensions higher
than two, for diffeomorphisms on Rn, whose hyperbolic linear part, consists of only
contraction (or only expansion) assumption of resonance can be removed (see [H]
or [B4] for a more general result). The situation is qualitatively different in Banach
spaces. It was shown in the work of [RS-M] that the non-resonance assumption in
Banach space is essential even for contractions. They construct an example of a
contraction diffeomorphism in infinite dimensions that is not C1 linearizable.

In this paper we study the question of smooth conjugation of diffeomorphisms
with linear part Λ. The diffeomorphisms are defined on a Banach space B. We

The author thanks G. R. Belitskii for many inspiring and valuable discussions during the

preparation of this paper.

1



2 VICTORIA RAYSKIN

assume that they have invariant smooth non-contracting and non-expanding man-
ifolds WU,0 and WS,0, such that their intersection WU,0 ∩WS,0 = W0 is the central
manifold. If Λ is hyperbolic, then WU,0 ∩WS,0 = {0}.

It is also interesting to consider the situation, when WU,0 ∩ WS,0 is a set of
parameters of the family of diffeomorphisms with hyperbolic linear part. In this
case, B = B1 ×B2 and

F (x, t) =
{

Λx+ f(x, t),
t

for x ∈ B1 and t ∈ B2.
If we restrict our attention to the question of smooth dependence of linearizing
homeomorphisms on the parameter, we do not need to make a non-resonance as-
sumption for some class of such diffeomorphisms. It was shown in [R] that for a
family of diffeomorphisms with hyperbolic linear part and with non-linearities of
the second order, there exists a family of linearizing homeomorphisms which have
C1 dependence on the parameter. Unfortunately, the methods, developed in the
paper can only be used for diffeomorphisms with resonances. Also, we only proved
C1 differentiability. The proof for higher regularity would be very routine.

In this paper we show that, subject to formal conjugation along the central man-
ifold, diffeomorphisms admit a C∞ local conjugation. As a consequence, we deduce
that subject to the non-resonance condition, there exists a C∞ local linearization
of the family.

One of the technical difficulties is the question of C∞ extension of a local map to
the whole space B. It is connected to the question of existence of ”hat” functions,
i.e., τ(y) ∈ C∞ with bounded support. (One can also see the assumption about
”hat” function in the proof of C1 conjugation for contracting diffeomorphisms on
Banach spaces in the paper of RS-M1.) If τ(y) is such a function, then the extension
of f , call it f̃ can be defined as f̃(y) = f (τ(y) · y). In this expression τ(y) ·y defines
a map K(y) : B → B (K(y) = τ(y) · y) with the following properties:

1. K(y) = y for ||y|| < 1
2. K ∈ C∞ and ||K(j)(y)|| ≤ cj , j = 0, 1, ...

Therefore, we can see that for existence of extension f̃ it is enough to have map K,
defined on the Banach space.
It turns out that there exist Banach spaces (for example, C([0, 1])) without ”hat”
functions, but with K maps. Moreover, the question of extension of a map remains
open. It is not known whether there are Banach spaces without K maps.

The methods, used in this paper, were developed in the two works of G. Belitskii:
[B1], [B2]. The technique of the first article allows us to consider the problem in
Banach spaces, where we use a special metric, induced by a countable collection
of norms. The special metric (with ”inner” contraction) permits us to use the
Banach Contraction Principle on the bounded set of smooth maps. The idea to
use the Banach Contraction Principle for the study of diffeomorphisms with non-
hyperbolic linear part comes from the second paper, [B2], where the families of
germs are studied.

2. The main theorem

Lets consider a linear operator Λ on a Banach space B. It divides B into con-
tracting, central and expanding subspaces L−, L0 and L+ (see, for example [N]).
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Denote by L−,0 and L+,0 the linear subspaces of B such that |σ(Λ|L−,0)| ≤ 1
and |σ(Λ|L+,0)| ≥ 1. (Here, σ(Λ|L±,0) is the spectrum of the restriction of the
operator Λ on L±,0.) Assume that there exist invariant non-contracting and non-
expanding manifolds WU,0 and WS,0 of F which are C∞ graphs over L+,0 and L−,0
correspondingly. Denote by W0 the intersection of WU,0 and WS,0.

Since WU,0 and WS,0 are C∞ graphs over L+,0 and L−,0, we can smoothly
straightenWU,0 andWS,0. I. e., we shell assume thatWU,0 = L+,0 andWS,0 = L−,0.
Also, lets write B = B1 ×B2, where B1 = L− ⊕ L+ and B2 = L0.

Lets assume that there exist K+, K0 and K−, defined on L+, L0 and L− cor-
respondingly, with the properties 1-2, discussed above. Then, it is clear that the
map K : B → B can be defined as K = (K+,K0,K−). But it is unknown, whether
the existence of K on B implies the existence of K±, K0 on the subspaces. Thus,
assuming that there exist maps K±, K0 we can prove the following theorem.

Theorem 1. Assume that there exist C∞ invariant non-expanding and non-contracting
manifolds, and there exist maps K± and K0 on L± ⊂ B1 and on L0 ⊂ B2. Let

F (y) = Λy + f(y)

and
G(y) = Λy + g(y)

be two C∞(B) diffeomorphisms. Assume that f(y) = o
(
||y||

)
, g(y) = o

(
||y||

)
and

f(y)− g(y) = o
(
(dist(y, L0))n

)
for all n ∈ N, as dist(y, L0) → 0.

Then, there exists a C∞(B) diffeomorphism H(y) = y + h(y), with h(y) =
o
(
||y||

)
, as ||y|| → 0 and h(y) = o

(
(dist(y, L0))n

)
for all n ∈ N, as dist(y, L0) → 0,

such that for small values of ||y||
(1) H ◦ F = G ◦H.

Proof. We are interested in the local properties of the maps F and G. Thus, we
can modify the maps F and G with the help of K, so that the new maps coincide
with the original maps in a small δ neighborhood of the origin. From now on we
shell assume that

(2) F (y) = Λy + f(δ ·K(y/δ))

and

(3) G(y) = Λy + g(δ ·K(y/δ))

The first derivatives of the non-linear parts of these maps are close to 0 and all
other derivatives are bounded. Thus, we obtained the desired extensions of these
maps to B.

It is enough to prove the existence of a C∞ solution h for the equation

(4) (Id+h) ◦ (Λ + f) = (Λ + g) ◦ (Id+h).

Consider closed subspaces of C∞ maps:

EL+,0 = {φ ∈ C∞(B) : φ(k)
y∈L+,0

= 0, k ∈ N}

and
EL−,0 = {φ ∈ C∞(B) : φ(k)

y∈L−,0
= 0, k ∈ N}

We shell say that φ is flat on L−,0 (or L+,0), if φ ∈ EL−,0 (or φ ∈ EL+,0).
The equation (4) can be reduced to

(5) h (Λy + f(y))− Λh(y)− (g (y + h(y))− g(y)) = g(y)− f(y)
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The right side of this equation (call it γ) is flat on L0. By Lemma 10, γ can be
written as a sum of two maps, γ+ and γ−, flat on L−,0 and L+,0 correspondingly.
We shell search for a solution h of equation 5 as a sum of two solutions, h+ ∈ EL+,0

and h− ∈ EL−,0 , where h+ satisfies

(6)

h+(y) = Λh+

(
(Λy + f(y))−1

)
+ g

((
Λy + f(y))−1 + h+

(
(Λy + f(y)

)−1))
− g((Λy + f(y))−1) + γ+

(
(Λy + f(y))−1

)
.

The second addend, h− shell satisfy the equation

h−(y) = Λ−1h−
(
Λy + f(y)

)
+ Λ−1g(y + h−(y) + h+(y))

− Λ−1g(y + h+(y))− Λ−1γ−(y),

or, if we put g̃(y) = Λ−1g
(
y + h+(y)

)
,

(7)
h−(y) = Λ−1h−

(
Λy + f(y)

)
+ g̃(y + h−(y))

− g̃(y)− Λ−1γ−(y).

The existence of solutions to these equations follows from Lemma 6 �

It is known that one can define a ”hat” function on a Hilbert space. It can be
done in the following way: τ(y) := τ̃(||y||2), where τ̃(t) is a ”hat” function in R.
Moreover, there exist maps K±, K0, which can be defined as K± := (y± · τ(y±)),
K0 := (y0 · τ(y0)) and there exists a map K := (K+,K−,K0). Then, the following
corollary follows immediately from Theorem 1.

Corollary 2. Assume that B is a Hilbert space. Let

F (y) = Λy + f(y)

and
G(y) = Λy + g(y)

be two C∞(B) diffeomorphisms. Assume that there exist C∞ non-expanding and
non-contracting invariant manifolds. Also, assume that f(y) = o(||y||), g(y) =
o(||y||) and f(y)− g(y) = o

(
(dist(y, L0))n

)
for all n ∈ N, as dist(y, L0) → 0.

Then, there exists a C∞(B) diffeomorphism H(y) = y+h(y) with h(y) = o(||y||),
h(y) = o

(
(dist(y, L0))n

)
for all n ∈ N, as dist(y, L0) → 0, such that for small values

of ||y||

(8) H ◦ F = G ◦H.

Remark 3. Note, that there exists K on C([0, 1]). It can be defined as K(x)(t) =
τ(x(t)) · x(t). But it is unclear whether there exist K±, K0 on the subspaces.

Remark 4. In fact, our proofs require the existence of only two K maps: one
K map, defined on the entire space B (for an extension of a diffeomorphism) and
another K map, defined on one of the subspaces L+ or L− (for positive and negative
splitting of some map, flat on L0). If a diffeomorphism does not have either a
contracting or an expanding part, then, we do not need to split the flat map into
the positive and negative parts.
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Remark 5. LetB = C([0, 1]). Consider purely non-contracting (or non-expanding)
diffeomorphisms on B. Then, if the two diffeomorphisms formally conjugate, they
smoothly conjugate in the class C∞(B).
The same conclusion is true if at least one of the above mentioned subspaces is
finite.

3. Solvability in flat maps

The following lemma is presented for the ”non-positive” subspaces L−,0, EL−,0 ,
etc. Proof for the ”non-negative” subspaces is similar.

Lemma 6. Consider the equation, defined on a Banach space B,

(9)
φ(y) = Aφ

(
Λy + f(y)

)
+ g

(
Λy + f(y) + φ(

(
Λy + f(y)

)
)
)
− g

(
Λy + f(y)

)
+ ρ(y)

with a linear operator A, invertible linear operator Λ, a map f ∈ C∞(B), f(y) =
o(||y||), as ||y|| → 0 and a map ρ, which is flat on the linear non-expanding invariant
manifold L−,0 ⊂ B of Λ. Then, there exists flat on L−,0 solution φ ∈ C∞(B).

Proof. We shell search for a fixed point of the operator T , defined by the right hand
side of the equation 9:

(10)
Tφ = Aφ

(
Λy + f(y)

)
+ g

(
Λy + f(y) + φ(

(
Λy + f(y)

)
)
)
− g

(
Λy + f(y)

)
+ ρ(y)

Consider space EL−,0 of smooth maps, flat on the manifold L−,0. To simplify
our notations, we shell call it E

Define a norm

Nk,p(φ) := max
0≤j≤k

sup
{
||φ(j)(y)||
||ξ||p

, φ ∈ E , ξ ∈ L−, y ∈ B
}
.

Proposition 7. There exist a real number q < 1 and sequences of bk,p ∈ R+ and
pk ∈ N, such that for all p, k ∈ N, p > pk and φ, ψ ∈ E

1. N0,p(Tφ) ≤ qN0,p(φ) +N0,p(ρ),
Nk,p(Tφ) ≤ qNk,p(φ) + bk,pNk−1,p(φ) +Nk,p(ρ) for k = 1, 2, ... and

2. N0,p(Tφ − Tψ) ≤ qN0,p(φ− ψ),
Nk,p(Tφ − Tψ) ≤ qNk,p(φ− ψ) + bk,pNk−1,p(φ− ψ) for k = 1, 2, ....

Proof. First, we shell do the estimates for the part 2. The proof will require induc-
tive arguments on the index k. It is easy to see that for k = 0

N0,p(Tφ − Tψ) ≤ ||A||N0,p

(
φ
(
Λy + f(y)

)
− ψ

(
Λy + f(y)

))
+

∫ 1

0

g′σ(s)ds ·N0,p

(
φ
(
Λy + f(y)

)
− ψ

(
Λy + f(y)

))
.

Here σ : [0, 1] → B denotes a path, connecting the points

σ(0) =
(
Λy + f(y) + φ(

(
Λy + f(y)

)
and

σ(1) =
(
Λy + f(y) + ψ(

(
Λy + f(y)

)
)
)
.
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Then,

N0,p(Tφ) ≤
(
||A||+ sup

y
||g′(y)||

)
· N0,p

(
φ(Λy + f(y))− ψ(Λy + f(y))

)
.

Let us recall that choosing sufficiently small δ in the K function, we can make
supy ||g′(y)|| less than an arbitrary ∆. (See formula 3.) Then,

N0,p(Tφ − Tψ) ≤
(
||A||+ ∆

)
· N0,p

(
φ(y)− ψ(y)

)
·
(

sup
y, ξ

||
(
Λy + f(y)

)
|L−

||
||ξ||

)p
.

Since the spectrum of Λ|L− is less than 1, and with sufficiently small δ in the
K function we can make ||f(y)|| as small as we want (see formula 2), there exists
α < 1 such that

sup
y, ξ

||
(
Λy + f(y)

)
|L−

||
||ξ||

< α < 1.

Then, there exists p0, such that for all p > p0

(
||A||+ ∆

)
·
(

sup
y, ξ

||
(
Λy + f(y)

)
|L−

||
||ξ||

)p
< q << 1.

Thus,

N0,p(Tφ − Tψ) ≤ qN0,p(φ− ψ).

The estimates for k = 1 are more complex.

N1,p(Tφ − Tψ) ≤
(
||A|| ·N1,p

(
φ(y)− ψ(y)

)
· ||

(
Λy + f(y)

)′||
+ sup

y
||g′||N1,p

(
φ(y)− ψ(y)

)
+ sup

y
||g′′||N0,p

(
φ(y)− ψ(y)

))
·
(

sup
y, ξ

||
(
Λy + f(y)

)
|L−

||
||ξ||

)p
≤

(
||A|| · ||

(
Λy + f(y)

)′||+ ε
)
N1,p

(
φ(y)− ψ(y)

)
·
(

sup
y, ξ

||
(
Λy + f(y)

)
|L−

||
||ξ||

)p
+ b1,pN0,p

(
φ(y)− ψ(y)

)
.

Here the term b1,pN0,p

(
φ(y)− ψ(y)

)
(with some positive constant b1,p) appears in

the estimate, as a result of differentiation of the product of
∫ 1

0
g′ds · F (y). There

exists p1, such that for all p > p1(
||A|| ·

∣∣(Λy + f(y)
)′∣∣ + ε

)
·
(

sup
y, ξ

||
(
Λy + f(y)

)
|L−

||
||ξ||

)p
< q < 1.

Then, it follows that

N1,p(Tφ − Tψ) < qN1,p(φ− ψ) + b1,pN0,p(φ− ψ).
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Suppose that the estimates are correct for i = 1, ..., k − 1. Then, for i = k

Nk,p(Tφ − Tψ) ≤
((
||A||+ ||g′||

)
·Nk,p

(
φ(y)− ψ(y)

)
· ||

(
Λy + f(y)

)′||k
+ bk,pNk−1,p

(
φ(y)− ψ(y)

))
·
(

sup
y, ξ

||
(
Λy + f(y)

)
|L−

||
||ξ||

)p
.

Here the term bk,pNk−1,p

(
φ(y)−ψ(y)

)
(with some positive constant bk,p) is related

to taking the kth derivative of the composition (φ − ψ) ◦ F , and estimating all
addends with (φ− ψ)′,...,(φ− ψ)(k−1), plus the sum of the derivatives:

k−1∑
j=0

k!
j!(k − j)!

||g(j+1)|| · sup
x, ξ

||(φ− ψ)(k−j)(y)||
||ξ||p

.

There exists pk, such that for all p > pk

(
||A||+ ||g′||

)
·
∣∣(Λy + f(y)

)′∣∣k · ( sup
y, ξ

||
(
Λy + f(y)

)
|L−

||
||ξ||

)p
< q < 1.

Thus,

Nk,p(Tφ − Tψ) < qNk,p(φ− ψ) + bk,pNk−1,p(φ− ψ).

Thus, we proved part 2.
Part 1 follows easily from part 2. Indeed,

N0,p(Tφ) = N0,p(Tφ − T0 + ρ) ≤ N0,p(Tφ − T0) +N0,p(ρ)

< qN0,p(φ) +N0,p(ρ).

and for k = 1, 2, ...

Nk,p(Tφ) = Nk,p(Tφ − T0 + ρ) ≤ Nk,p(Tφ − T0) +Nk,p(ρ)

< qNk,p(φ) + bk,pNk−1,p(φ) +Nk,p(ρ).

�

Using the above estimates, we introduce a new set of norms ||.||k,p, defined with
the help of Nk,p, such that the operator T is a contraction in ||.||k,p.
Let ||.||k,p be defined on E according to the following rule:

||φ||0,p := N0,p(φ)

||φ||1,p := N1,p(φ) +A1
1,pN0,p(φ)

...

||φ||k,p := Nk,p(φ) +A1
k,pNk−1,p(φ) +A2

k,pNk−2,p(φ) + ...+Akk,pN0,p(φ).

Choosing appropriate constants Ajk,p, one can show that the operator T is a con-
traction in each norm ||.||k,p.

Proposition 8. Let q be as in Proposition 7. Fix ε > 0 such that q + ε < 1. Let
the constants Ajk,p (j = 1, ..., k) in the definition of the norms ||.||k,p satisfy the



8 VICTORIA RAYSKIN

following inequalities:

(11)

A1
k,p >

bk,p
ε

A2
k,p >

A1
k,pbk−1,p

ε
...

Akk,p >
Ak−1
k,p b1,p

ε

Then, for each pair of φ, ψ ∈ E and for each norm ||.||k,p (p > pk), the operator T
admits the following estimates:

1′. ||Tφ||k,p < (q + ε)||φ||k,p + ||ρ||k,p and
2′. ||Tφ − Tψ||k,p < (q + ε)||φ− ψ||k,p.

Proof. We begin with the second part of the proposition. In this proof we shell also
use induction on the k-index.

||Tφ − Tψ||0,p = N0,p

(
Tφ − Tψ

)
< qN0,p

(
φ− ψ

)
= q||φ− ψ||0,p.

Thus, it is a contraction in ||.||0,p.

||Tφ − Tψ||1,p = N1,p

(
Tφ − Tψ

)
+A1

1,pN0,p

(
Tφ − Tψ

)
< qN1,p

(
φ− ψ

)
+ b1,pN0,p

(
φ− ψ

)
+A1

1,pqN0,p

(
φ− ψ

)
= qN1,p

(
φ− ψ

)
+ (A1

1,pq + b1,p)N0,p

(
φ− ψ

)
< (q + ε)N1,p

(
φ− ψ

)
+A1

1,p(q + ε)N0,p

(
φ− ψ

)
,

if A1
1,p >

b1,p

ε . Finally, note that

(q + ε)N1,p

(
φ− ψ

)
+A1

1,p(q + ε)N0,p

(
φ− ψ

)
= (q + ε)||φ− ψ||1,p.

Thus, in this norm, the operator T is a contraction as well.
Assume that the assertion of the Proposition is correct for all i = 1, ..., k − 1. We
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shell prove it for i = k, i.e., we shell estimate ||Tφ − Tψ||k,p.
||Tφ − Tψ||k,p = Nk,p

(
Tφ − Tψ

)
+A1

k,pNk−1,p

(
Tφ − Tψ

)
+A2

k,pNk−2,p

(
Tφ− Tψ

)
+ ...+Akk,pN0,p

(
Tφ− Tψ

)
< qNk,p

(
φ− ψ

)
+ bk,pNk−1,p

(
φ− ψ

)
+A1

k,p[qNk−1,p

(
φ− ψ

)
+ bk−1,pNk−2,p

(
φ− ψ

)
]

+A2
k,p[qNk−2,p

(
φ− ψ

)
+ bk−2,pNk−3,p

(
φ− ψ

)
]

...

+Ak−1
k,p [qN1,p

(
φ− ψ

)
+ b1,pN0,p

(
φ− ψ

)
]

+Akk,p qN0,p

(
φ− ψ

)
= qNk,p

(
φ− ψ

)
+ (A1

k,pq + bk,p)Nk−1,p

(
φ− ψ

)
+ (A2

k,pq +A1
k,pbk−1,p)Nk−2,p

(
φ− ψ

)
...

+ (Ak−1
k,p q +Ak−2

k,p b2,p)N1,p

(
φ− ψ

)
+ (Akk,pq +Ak−1

k,p b1,p)N0,p

(
φ− ψ

)
From inequalities 11 it immediately follows that

(A1
k,pq + bk,p) < (q + ε)A1

k,p

and
Ak−jk,p q +Ak−j−1

k,p bj+1,p < (q + ε)Ak−jk,p

for j = 0, ..., k − 2. Then,

||Tφ − Tψ||k,p < qNk,p
(
φ− ψ

)
+A1

k,p(q + ε)Nk−1,p

(
φ− ψ

)
+A2

k,p(q + ε)Nk−2,p

(
φ− ψ

)
...

+Ak−1
k,p (q + ε)N1,p

(
φ− ψ

)
+Akk,p(q + ε)N0,p

(
φ− ψ

)
,

< (q + ε)[Nk,p +A1
k,pNk−1,p + ...+Akk,pN0,p]

= (q + ε)||φ− ψ||k,p
Thus the first part of the theorem is proved. The second part follows immediately
from the first part. Indeed,

||Tφ||k,p = ||Tφ − (T0 − ρ)||k,p ≤ ||Tφ − T0||k,p + ||ρ||k,p ≤ (q + ε)||φ||k,p + ||ρ||k,p.
�

Now, we shell define a closed disk, such that it is invariant under the action of
T . Choose a sequence of real positive numbers ck,p, and define the closed disc D in
the space E as

D = {φ ∈ E : ||φ||k,p ≤ ck,p}.
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Assume that for some small ε > 0, the constants ck,p are such that

ck,p ≥
||ρ||k,p

1− q − ε
.

Corollary 9.
T (D) ⊂ D.

Proof. The proof is an immediate consequence of the estimate 1
′
in Proposition 8.

�

Thus, we have proved that in the countable collection of norms ||.||k,p, the op-
erator T is a contraction that maps the closed disc D into itself. Using these in-
equalities, we can now construct a metric on E with the properties, similar to those,
discussed for the norms ||.||k,p. Then, we can use Banach Contraction Principle to
show the existence of a fixed point of the operator T in the disc D.

Let us define the metric on D. Fix a positive R ∈ R. Let εk,p < 1 be a sequence
of positive real numbers, such that ck,pεk,p < R (here ck,p are the constants that
define the disc D). Then,

ρ(φ, ψ) :=
∑

k,p>pk

1
2kp

· εk,p||φ− ψ||k,p
1 + εk,p||φ− ψ||k,p

, φ, ψ ∈ D.

Obviously, D is a complete metric space.
Consider a function κ(t) = t

1+t , defined for positive values of t. This is an increasing
function, it is less than 1 for bounded values of t. Put

t := εk,p||φ− ψ||k,p < R.

Since T is a contraction in ||.||k,p, and κ(t) is an increasing function,

ρ(Tφ, Tψ) <
∑

k,p>pk

1
2kp

· (q + ε)εk,p||φ− ψ||k,p
1 + (q + ε)εk,p||φ− ψ||k,p

.

Also for bounded values of t there exists 0 < r < 1 such that

κ((q + ε)t) < rκ(t).

In other words,

(q + ε)εk,p||φ− ψ||k,p
1 + (q + ε)εk,p||φ− ψ||k,p

< r
εk,p||φ− ψ||k,p

1 + εk,p||φ− ψ||k,p
.

We proved that T : D → D acts as a contraction operator on D:

ρ(Tφ, Tψ) < rρ(φ, ψ)

The Banach Contraction Principle implies the existence of a fixed point in D. This
fixed point is the solution of the equation 10. �

In the proof of Theorem 1 we used the fact that any map, which is flat on
the central manifold can be represented as a sum of two maps, flat on the linear
subspaces. In the next lemma we discuss how to split γ into the sum of γ+ and γ−.

Lemma 10. Let γ(y) ∈ C∞(B) be flat on L0. Let L− and L+ be contracting and
expanding subspaces of B. Suppose that there exists a C∞ K map on one of the
subspaces. Then, there exist maps γ+ and γ−, such that γ = γ− + γ+, and γ+ is
flat on L−,0 and γ− is flat on L+,0.
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Proof. Lets write y = (ξ, η, t) ∈ B with ξ ∈ L+, η ∈ L− and t ∈ L0. For definite-
ness, lets assume that there exists C∞ K map on L−,0. Then, we can explicitly
construct γ+ map.

Let δj 6= 0 be so small that the following series converges in C∞ topology.

γ+ :=
∞∑
j=0

∂jγ

∂ηj
(ξ, 0, t)

(
K(δ−1

j η), ...,K(δ−1
j η)

)
·
δjj
j!

Define γ− as
γ− = γ − γ+

Then, it is easy to check that γ+ is flat on L+,0 and γ− is flat on L−,0. Indeed,

∂pγ+

∂ξp
(0, η, t) =

∞∑
j=0

∂jγ

∂ηj
(0, 0, t)

(
K(δ−1

j η), ...,K(δ−1
j η)

)
·
δjj
j!

= 0
(
K(δ−1

j η), ...,K(δ−1
j η)

)
·
δjj
j!

= 0.

Also,

∂qγ−
∂ηq

(ξ, 0, t) =
∂qγ

∂ηq
(ξ, 0, t)−

∞∑
j=0

∂q

∂ηq

(∂jγ
∂ηj

(ξ, 0, t)
(
K(δ−1

j η), ...,K(δ−1
j η)

))
·
δjj
j!

Recall that K(j)(0) = 0 for j 6= 1 and K ′(0) = 1. Then,

∂qγ−
∂ηq

(ξ, 0, t) =
∂qγ

∂ηq
(ξ, 0, t)− ∂qγ

∂ηq
(ξ, 0, t) · 1 · δ−kk · δkk = 0

�

4. Linearization

In this section we shell prove that a linearization is a C∞ map on a Banach
space, if non-resonance condition is satisfied.

Now we shell formally define the resonance for diffeomorphisms on Banach
spaces. Let Λ1 be a hyperbolic linear operator on a Banach space B1. Consider
the following linear operator Lk, defined on the space of homogeneous polynomial
maps of degree k.

Lk : P (k)[B1] → P (k)[B1],

Lkφ(x) := Λ1φ(x)− φ(Λ1x).

Definition 11. Suppose that for all k ∈ N, k > 1, Lk is invertible on P (k)[B1].
Then, we say that the operator Λ1 has no resonances.

In particular, when B1 is a n-dimensional space, the non-resonance condition is
equivalent to the following statement:
For any λj ∈ σ(Λ1) and for any combination of p1, ..., pn ∈ N, p1 + ...+ pn > 1

λj − λp11 ...λ
pn
n 6= 0.

Now we present C∞ linearization theorem on Banach spaces for a family of
diffeomorphisms with a hyperbolic fixed point. The proof of this theorem easily
follows from Theorem 1.
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Theorem 12. Let

F (y) = Λy + f(y) = Ft(x) =
{

Λ1x+ ft(x)
t

be a C∞(B1 × B2) family of diffeomorphism on the product of Banach spaces B1

and B2. Assume that Λ1 is hyperbolic and ft(y) = ot(||y||). Also, assume that there
exist K± maps on the corresponding subspaces L±, and Λ1 has no resonances.

Then, there exists a family of C∞(B1 ×B2) diffeomorphisms

H(y) = y + h(y) = Ht(x) =
{
x+ ht(x)
t

with ht(x) = ot(x), as ||x|| → 0, such that for small values of ||x|| and ||t||

(12) Ht ◦ Ft = LHt.

Proof. Let H(y) = y + h(y). Then, the equation 12 can be simplified:

(13) f(y) + h(Λy + f(y)) = Λh(y)

In order to get a flat residue, let us formally differentiate both sides of the hyperbolic
part of this equation

(14)
[
ft(x) + ht(Λ1x+ ft(x))

](k)
x=0

= Λ1h
(k)
t (x)x=0

and solve it for h(k)
t (0). The solution h(k)

t (0) exists, if Λ1 has no resonances.
Now, with the help of the Borel lemma, we can construct a map h̃t(x) on the

whole space with the same derivatives at 0. Since there exist K map on B, the
Borel lemma is valid on the space B. The proof of the Borel lemma for Banach
spaces can be found in [B3] (these ideas were also used in [B1]). Lets write ht(x)
as the sum of h̃t(x) and a flat map φt(x). Then the equation 13 can be written as

Λ1φt(x)− φt(Λ1x+ ft(x)) = ft(x) + h̃t(Λx+ ft(x))− Λ1h̃t(x).

The right hand side of this equation is flat at 0. Then, by Lemma 6 we can solve
it for φt. �

Let us say a few words about applications of the linearization theorems. How
strict is the non-resonance condition? Obviously there are many examples of non-
resonant maps, if the space B has finite dimension. Here we shell construct a
non-resonant discrete spectrum in infinite dimensions. Consider integers {pj}mj=1

and {sj}mj=1, which are all relatively prime. Let rj = pj

sj
. Define the spectrum of Λ

as
σ(Λ) = {λt = rjte

iφt , jt ∈ {1, ...,m}, φt ∈ T},
and

Λ = diag(λt).

In this example, we may have infinitely many distinct eigenvalues, but their absolute
values form a finite set of positive rational numbers rj . Since the product of any
combination of rj ’s cannot be equal to one of the rj , the linear operator Λ has no
resonances.

We can also construct a continuous non-resonant spectrum. Suppose the unit
circle does not separate the spectrum, and 0 < a < |σ(Λ1)| < b <∞. If a > 1, i.e.,
Λ is an expansion, then it is enough to assume that a2 > b. Otherwise, if b < 1, so
that Λ is a contraction, it is enough to assume that b2 < a.
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Similar, one can construct an example with a contracting (expanding) discrete
non-resonant spectrum.
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