
Analytic smoothing of geometric maps with
applications to KAM theory
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Abstract

We prove that finitely differentiable diffeomorphisms preserving a geometric struc-
ture can be quantitatively approximated by analytic diffeomorphisms preserving the
same geometric structure. More precisely, we show that finitely differentiable dif-
feomorphisms which are either symplectic, volume-preserving, or contact can be ap-
proximated with analytic diffeomorphisms that are, respectively, symplectic, volume-
preserving or contact. We prove that the approximating functions are uniformly
bounded on some complex domains and that the rate of convergence of the approxi-
mation can be estimated in terms of the size of such complex domains and the order
of differentiability of the approximated function. As an application to this result, we
give a proof of the existence, local uniqueness and bootstrap of regularity of KAM
tori for finitely differentiable symplectic maps. The symplectic maps considered here
are not assumed to be written either in action-angle variables or as perturbations of
integrable ones.

Keywords: smoothing, symplectic maps, volume-preserving maps, contact maps, KAM
tori, uniqueness, bootstrap of regularity.

1 Introduction

It is known that finitely differentiable functions can be approximated by C∞ or analytic
ones, in such a way that the quantitative properties of the approximation are related to
the order of differentiability of the approximated function [Kra83, Mos66, Ste70, Zeh75].
In view of applications to KAM theory, it is natural to ask whether it is possible to approx-
imate finitely differentiable diffeomorphisms preserving a symplectic or volume form with
C∞ or analytic diffeomorphisms preserving the same form. Here we show that finitely dif-
ferentiable diffeomorphisms which are either symplectic, volume-preserving, or contact can
be approximated with analytic diffeomorphisms that are, respectively, symplectic, volume-
preserving or contact. We prove that the approximating functions are uniformly bounded
on some complex domains and give quantitative relations between: the rate of conver-
gence, the degree of regularity of the approximated function, and the size of the complex
domains where the approximating functions are uniformly bounded. As an application we
give a proof of the existence, local uniqueness and bootstrap of regularity of KAM tori for
finitely differentiable symplectic diffeomorphism. The novelty of these KAM-results is that
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the symplectic diffeomorphisms considered here are not assumed to be written either in
action-angle variables or as perturbations of integrable ones. Besides the just mentioned
results, in this work we also develop several results which may be of independent interest.
We present a detailed study of the relation between an analytic linear smoothing operator
(c.f. [Zeh75], see also Definition 5) and the nonlinear operators: composition and pull-back.

The case of approximating finitely differentiable symplectic or volume-preserving diffeo-
morphisms on a compact manifold with symplectic, respectively volume-preserving, C∞-
diffeomorphisms has been considered in [Zeh77], where it was proved that: i) symplectic
Ck-diffeomorphisms, with k ≥ 1, can be approximated in the Ck-norms with symplectic
C∞-diffeomorphisms and ii) volume-preserving Ck+α-diffeomorphisms, with k ≥ 1 an inte-
ger and 0 < α < 1, can be approximated by volume-preserving C∞-diffeomorphisms in the
Ck-norms. The method used in the present work differs from that in [Zeh77], because
we avoid the use of generating functions. As it is well known, generating functions may
fail to be globally defined for some maps. One advantage of not using generating functions
is that the result given here can be applied directly to non-twist maps. We are currently
working on such application [GEHdlL].

Even though the proofs of our results involve many technicalities, the main ideas are
rather simple. Let us explain briefly the methodology used in this work. First, we define
an analytic linear smoothing operator St, taking differentiable functions into analytic ones.
The definition of St depends on the domain of definition of the functions we wish to
smooth. We consider three situations: i) the d-dimensional torus Td def

= Rd/Zd; ii) U ⊂ Rd

satisfying certain conditions, specified in Section 2.1, that guarantee the existence of a
bounded linear extension operator [Kra83] (see Definition 9) and the validity of the Mean
Value Theorem; and iii) Tn × U with U ⊂ Rd−n as in ii). Following [Zeh75] we smooth
functions defined on Rd by an operator St defined by the convolution operator with an
analytic kernel (see Section 2.1). By defining St in this way, we obtain a linear operator
which takes periodic functions into periodic functions. Hence, by considering lifts to Rd,
the universal covering of Tn, St can be applied to differentiable functions defined on the
torus Td: this is important in applications to KAM theory. It is known [Kra83, Ste70] that if
U ⊂ Rd has smooth boundary then there exists a bounded linear extension operator taking
differentiable functions defined on U into differentiable functions defined on Rd. Hence, for
functions defined on U ⊂ Rd with smooth boundary, we define an analytic linear smoothing
operator by taking extensions and then applying the operator St described above. It is
easy to check that if U ⊂ Rd−n has smooth boundary then Rn × U ⊂ Rd also has smooth
boundary. Hence functions defined on Tn × U are smoothed by considering the universal
covering Rn × U and using a linear extension operator (see Section 2.1).

Given a finite differentiable diffeomorphism f that preserves a form Ω, it is not nec-
essarily true that St[f ] preserves Ω. More generally, the form St[f ]∗Ω is not necessarily
equal to f ∗Ω. So we use Moser’s deformation method [Mos65] to prove that, for t suffi-
ciently large, there is a diffeomorphism ϕt such that ϕ∗t (St[f ]∗Ω) = f ∗Ω. Hence, given a
finitely differentiable diffeomorphism f which is either symplectic, volume-preserving, or
contact, for t sufficiently large, Tt[f ] = St[f ] ◦ ϕt gives a symplectic, respectively, volume-
preserving, or contact diffeomorphism approximating f . Furthermore, using the calculus
of deformations [dlLMM86], we prove that that if f is exact symplectic, then it is possible
to construct analytic approximating functions Tt[f ] which are also exact. The method
used in the present work produces quantitative properties of the nonlinear operators Tt in
terms of the degree of differentiability of f . More precisely, for t sufficiently large, Tt[f ] is
bounded uniformly, with respect to t, on some complex domains and the rate of conver-
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gence of Tt[f ] to f is given in terms of t and the degree of differentiability of f . Obtaining
such quantitative properties involves estimates on complex domains of the difference be-
tween: i) smoothing a composition of two functions and composing their smoothings, and
ii) smoothing the pulled-back form f ∗α and pulling-back the form α with the smoothed func-
tion St[f ], for a k-form α. Estimating these differences on complex domains requires many
technicalities but, once this is done, proving the quantitative properties of Tt is rather easy
as we show in Section 2.4. An estimate, on complex domains, of the difference between
smoothing a composition of two functions and composing their smoothings was previously
obtained in [GEV].

We emphasize that the geometric form Ω is assumed to be analytic. This is important
because in this case, if f is symplectic, respectively, volume-preserving or contact, we have
that both f ∗Ω and St[f ]∗Ω are analytic so that Moser’s deformation method produces,
for t sufficiently large, an analytic diffeomorphism ϕt such that: ϕ∗t St[f ]∗Ω = f ∗Ω. The
analyticity assumption on Ω is of particular importance in the volume case because the
existence of a diffeomorphism ϕ such that ϕ∗α = β for two arbitrary volume forms depends
on the regularity of the forms and on their domain of definition. The existence of such
diffeomorphism for volume forms has been studied under different hypotheses in [Ban74,
DM90, GS79, Mos65, Zeh77]. Nevertheless, to the best knowledge of the authors the
question proposed in [Zeh77] whether C1-volume forms can be approximated in C1-norm
by C∞-volume forms on d-dimensional manifolds, with d ≥ 3, is still open.

As an application we prove existence, local uniqueness and bootstrap of regularity of
KAM tori for finitely differentiable symplectic diffeomorphisms that are not necessarily written in
either action-angle variables or as a perturbation of an integrable symplectic diffeomorphism. The
existence, formulated in Theorem 5, is a finitely differentiable version of Theorem 1 in [dlLGJV05]
(the latter is reported as Theorem 4 in the present work). Roughly, Theorem 4 establishes the
existence of a maximal dimensional invariant torus K∗ with Diophantine rotation vector ω for
a given analytic exact symplectic map f . The main hypotheses of Theorem 4 are the existence
of an analytic parameterization of an n-dimensional torus K such that i) certain non-degeneracy
conditions are satisfied and ii) K is approximately invariant, in the sense that the sup norm of
the error function f ◦K −K ◦ Rω on a complex set {x ∈ Cn : |Im (x)| < ρ}, for some ρ > 0, is
‘sufficiently small’, where Rω represents the translation by ω. Theorem 4 also gives an estimate
of the distance between the initial, approximately invariant torus K and the invariant torus K∗

in terms of the size of the initial error. Theorem 5 is a finitely differentiable version of Theorem 4:
the analyticity hypotheses for f and K are replaced by ‘sufficiently large’ differentiability of both
f and K and by asking the norm, in suitable spaces of differentiable functions, of f ◦K−K ◦Rω to
be ‘sufficiently small’. In Theorem 6 we prove that finitely differentiable invariant tori for finitely
differentiable symplectic diffeormophisms are locally unique. Theorem 6 is a finitely differentiable
version of Theorem 2 in [dlLGJV05].

We emphasize that in the KAM-results of the present work, as well as in those given in
[dlLGJV05], the symplectic diffeomorphisms are not assumed to be written either in action-
angle variables or as a perturbation of an integrable map. One application of these results is
the validation of numerical computations of invariant tori, because our results give an explicit
condition on the size of the error f ◦ K − K ◦ Rω in analytic (Theorem 4) or differentiable
(Theorem 5) norms that guarantee the existence of a true invariant torus near a numerically
computed approximately invariant torus. For such application, it is important that we do not
assume that the system is close to integrable or written in action-angle variables, because in this
way we do not have to compute local coordinates before the verification of the size of the error.
Having a condition on the size of the error f ◦ K − K ◦ Rω in finitely differentiable norms is
also useful because for some numerical methods it is easier to estimate the finitely differentiable
norms than the analytic ones, for example when using splines. Another application of this result
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is when studying invariant tori restricted to normally hyperbolic manifolds – which are only
finitely differentiable. This analysis occurs in some mechanisms for the study of instability. In
particular, in [DdlLS03, DLS06] it is shown that secondary tori close to resonances play an
important role. The present result is particularly useful for this study since for these tori, the
action-angle coordinates are singular and their construction and their estimates require extra
work and extra assumptions, see [DLS06, 8.5.4]. The present work allows to simplify the proof
of some of the results in [DLS06] and lowers the regularity assumptions of the main result of
[DLS06]. This improvements are crucial in the higher dimensional extensions of the model.

Moser’s smoothing technique [Jac72, Mos66, Zeh75] provides a method to obtain finitely
differentiable versions of Generalized Implicit Function theorems from the corresponding analytic
ones. Briefly, Moser’s method goes as follows: Let F be defined on Banach spaces of analytic
functions and assume that a Generalized Implicit Function Theorem holds in these Banach spaces.
Assume that the functional equation F (f,K) = 0 has an analytic solution (f0,K0), and that there
exists an analytic smoothing operator. Then one finds, using the analytic smoothing operator,
a solution (f,Φ(f)) for f in a small neighbourhood of f0 in a space of finitely differentiable
functions. One important hypothesis of Moser’s technique is the existence of an approximate
right inverse of the linear operator D2F (f,K). The approximate right-invertibility yields a loss
of differentiability: in KAM theory this is related to the so called ‘small denominators’. At this
point it becomes crucial to have quantitative properties of the smoothing in terms of the degree
of differentiability of the smoothed functions. For a more detailed explanation of Moser’s method
see for example [Jac72, Mos66, Sal04, Zeh75].

To prove the existence of finitely differentiable solutions of the equation f ◦ K = K ◦ Rω

we use the following ‘modified’ smoothing technique: Rather than assuming the existence of
an analytic initial solution of the functional equation we just assume the existence of a finitely
differentiable approximate solution and find conditions under which there is an analytic solution
nearby. The analytic Generalized Implicit Function Theorem for the functional f ◦K −K ◦ Rω

is provided by Theorem 4, which only holds for exact symplectic maps. Hence, to apply the
smoothing technique we use the nonlinear operator Tt, described above, to smooth the exact
symplectic map f . Parameterizations of approximately invariant tori are smoothed using the
operator St described at the beginning of this introduction. Then, given a finitely differentiable
approximate solution (f,K) of f ◦ K = K ◦ Rω, the existence of an analytic solution close to
(f,K) is guaranteed by: i) a non-degeneracy condition on K and ii) a ‘smallness’ condition on
the sup norm on complex domains of the difference Tt[f ] ◦ St[K]− St[f ◦K] in terms of the the
size of the initial error f ◦K −K ◦Rω in a finite differentiable norm.

In Section 7.1 of [Van02] a Generalised Implicit Function Theorem in spaces of finitely dif-
ferentiable functions has been proved using the modified smoothing technique in which, rather
than assuming the existence of a solution in analytic spaces, one assumes the existence of an
approximate solution in finitely differentiable spaces of the equation F (f,K) = 0. The condition
used in [Van02] to guarantee the existence of an analytic solution near a given finitely differen-
tiable approximate solution is stated on page 71 of [Van02] and it requires that the norm – in
suitable spaces – of the difference F (St[f ], St[K])− St[F (f,K)] is ‘sufficiently small’. In [Van02]
the verification of this was left open for the composition operator, which is customary used in
KAM theory. Reference [GEV] contains this verification.

As a consequence of the fact that, under certain general conditions, near a finitely differentiable
solution (f,K) of the equation f ◦ K = K ◦ Rω there is an analytic solution, we obtain the
bootstrap of regularity of invariant tori with Diophantine rotation vector for exact symplectic
maps that are either finitely differentiable or analytic. The bootstrap of regularity is stated in
Theorem 7. To prove Theorem 7, first in Theorem 6 we prove a finitely differentiable version
of the local uniqueness of invariant tori for symplectic maps. Theorem 6 and Theorem 7 are
similar to Theorem 4 and Theorem 5 in [SZ89]. However, while the results in [SZ89] are stated
and proved for Hamiltonian vector fields written in the Lagrangian formalism, Theorem 6 and
Theorem 7 in the present work are stated and proved for exact symplectic maps that are not
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necessarily written either in action-angle variables or as perturbation of integrable ones.

This paper is divided into two parts. In Section 2 we show how to approximate finitely differ-
entiable functions that preserve a geometric structure (exact symplectic, volume or contact) with
analytic functions preserving the same geometric structure. In Section 3 we give an application
of the symplectic smoothing result to KAM theory, proving of the existence, local uniqueness and
bootstrap of regularity of Diophantine invariant tori for finitely differentiable symplectic maps.
In Section 3 we also prove the bootstrap of regularity of KAM tori for analytic exact symplectic
maps. That is, we prove that given an analytic exact symplectic map and an invariant torus
with Diophantine frequency vector, if the invariant torus is sufficiently differentiable, then it is
analytic.

2 Smoothing geometric diffeomorphisms

In this section we show that finitely differentiable diffeomorphisms which are either symplectic,
volume-preserving or contact can be approximated by analytic diffeomorphisms having the same
geometric property. We give quantitative properties of the approximation in terms of the degree
of differentiability of the approximated functions.

Since obtaining such geometric approximating functions involves many technicalities, we have
divided the present section as follows. In Section 2.1 we define the norms used and set the
conditions on the domain of definition of the diffeomorphism to be smoothed. In Section 2.2 the
geometric smoothing results are stated. The technical part of the proofs is given in Section 2.3
and the proofs are concluded in Sections 2.4 and 2.5.

2.1 Setting

Informally, the method we use to smooth symplectic, volume-preserving or contact diffeomor-
phism with analytic diffeomorphism having the same geometric property is the following. First,
for t ≥ 1, we define a linear operator St that takes finitely differentiable functions into analytic
ones and such that St[f ] tends to f when t goes to infinity. Then, if f is a finitely differentiable
symplectic, volume-preserving, or contact diffeomorphism we find, for t sufficiently large, a dif-
feomorphism ϕt such that ϕ∗t (St[f ]∗Ω) = f∗Ω. The analytic approximating functions satisfying
the same geometric property of f are then defined by St[f ] ◦ ϕt. In view of the applications we
are interested in symplectic, volume-preserving or contact diffeomorphisms defined on either Td,
U ⊂ Rd or Tn × U , with U ⊂ Rd−n. First, by using the convolution operator with an analytic
kernel, we define St for continuous and bounded functions defined on Rd. It turns out that, if f
is a Zd-periodic (or partially periodic) continuous and bounded function defined on Rd then St[f ]
is also Zd-periodic (respectively, partially periodic). Hence to extend the definition of St to torus
maps we use lifts of torus maps to Rd (the universal covering of Td). To define St on functions
with domain U ⊂ Rd we use a linear bounded extension operator. Then, by taking lifts, the
definition of St is extended to functions defined on the annulus Tn × U , with U ⊂ Rd−n. Before
making these definitions explicit, let us introduce the Banach spaces of functions we work with.

Definition 1. Let Z+ denote the set of positive integers. Given U ⊂ Cd an open set, C0(U)
denotes the space of continuous functions f : U → R, such that

|f |C0(U)
def= sup

x∈U
|f(x)| < ∞ .

For ` ∈ N, C`(U) denotes the space of functions f : U → R with continuous derivatives up to
order ` such that

|f |C`(U)
def= sup

x∈U
|k|≤`

{
|Dkf(x)|

}
< ∞ .
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Let ` = p + α, with p ∈ Z+ and 0 < α < 1. Define the Hölder space C`(U) to be the set of all
functions f : U → R with continuous derivatives up to order p for which

|f |C`(U)
def= |f |Cp + sup

x,y∈U,x6=y
|k|=p

{
|Dkf(x)−Dkf(y)|

|x− y|α

}
< ∞ .

For ρ > 0, and U ⊆ Rd let U + ρ denote the complex strip:

U + ρ = {x + iy ∈ Cd : x ∈ U, |y| < ρ}.

Definition 2. Let ` ≥ 0. Given U ⊆ Rd open, define the Banach space A(U + ρ,C`) to be the
set of all holomorphic functions f : U + ρ → C which are real valued on U (i.e. f(x) = f(x̄) for
all x ∈ U) and such that |f |C`(U+ρ) < ∞.

For a matrix or vector-valued function G with components Gi,j in either C`(U) or in
A(U + ρ,C`) we use the norm, respectively,

|G|C`(U)
def= max

i,j
|Gi,j |C`(U) or |G|C`(U+ρ)

def= max
i,j

|Gi,j |C`(U+ρ) .

The space of all functions g = (g1, . . . , gd) : V ⊆ Cn → U ⊆ Cd such that gi ∈ C`(U), for
i = 1, . . . , d, is denoted by C`(U, V ). Since it will not lead to confusion, A(U + ρ,C`) will also
denote the set of functions g = (g1, . . . , gd) with components in A(U + ρ,C`).

Definition 3. Let U ⊂ Rm. A lift of a continuous map f , defined on the annulus Tn × U , to
Rn × U (the universal cover of Tn × U) is a continuous map f̂ defined on Rn × U such that:

1. f̂(x, y) = f(x mod Zn, y), if f takes values in R.

2. f̂(x, y) mod Z = f(x mod Zn, y) for (x, y) ∈ Rn × U , if f takes values in T.

It is well known that given a continuous map f defined on Tn × U , with U ⊂ Rm, any lift
f̂ : Rn × U has the following form

f̂(x, y) = P x + u(x, y) , (x, y) ∈ Rn × U (1)

where u ∈ C0 (Rn × U, Rs) is Z-periodic in the first n-variables and P is an (n× 1)-matrix with
components in Z. Furthermore, if f takes values in R then P = 0. Moreover, if f has additional
regularity, the corresponding function u has the same regularity. Even though lifts of continuous
annulus maps are not unique, they differ by a constant vector in Z. This, together with the
fact that any map of the form (1) defines an annulus map, enable us to work with lifts of torus
and annulus maps (considering torus maps as particular cases of annulus maps). For notational
reasons we use the same symbol to denote the annulus (torus) map and a lift of it.

Definition 4. For ` ≥ 0, denote by C`(Tn × U, V ), and A(Tn × U + ρ,C`) the set of annulus
maps with lift of the form (1) with u ∈ C`(Rn × U, V ) (respectively in A(Rn × U + ρ,C`)) Z-
periodic in the first n-variables. The corresponding norms are defined as follows:

|f |C`(Td×U)
def= |P |+ |u|C`(Rd×U) and |f |C`(Td×U+ρ)

def= |P |+ |u|C`(Rd×U+ρ) .

In the case of torus maps, denote by C`(Td, V ), and A(Td + ρ,C`) the set of torus maps with lift
of the following form:

f(x) = P x + u(x) , (2)

where P is a matrix with components in Z and u ∈ C`(Rd, V ) (respectively u ∈ A
(
Rd + ρ,C`

)
)

is Zd-periodic. The corresponding norms are defined as follows:

|f |C`(Td)
def= |P |+ |u|C`(Rd) and |f |C`(Td+ρ)

def= |P |+ |u|C`(Rd+ρ) .

Moreover, for r ≥ 0 denote by Diff r(U) the set of C r-diffeomorphisms of U, where U is either
U ⊆ Rd open, Td, or Tn × U .
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For U ⊆ Rd open, denote by Λk(U) the space of real analytic k-forms in U . Let Ω ∈ Λk(U)
have the following form:

Ω(x) =
∑

1≤i1<···<ik≤d

Ωi(x) dxi ,

where i represents the multi-index (i1, . . . , ik) and dxi
def= dxi1 ∧ · · · ∧ dxik . If |Ωi|C`(U) < ∞ for

all 1 ≤ i1 < · · · < ik ≤ d, define

|Ω|C`(U)
def= max

1≤i1<···<ik≤d
|Ωi|C`(U) .

Definition 5. Let U be either U ⊆ Rd open, Td, Tn × U , with U ⊂ Rd−n an open set. We say
that the linear operator St : C`(U) → A(U + t−1, C0) is an analytic smoothing operator if the
following properties hold for any f ∈ C`(U):

1. |St[f ]|C0(U+t−1) ≤ c |f |C`(U) for all t ≥ 1.

2. lim
t→∞

|(St − Id)[f]|C0(U) = 0.

3. |St − Sτ [f ]|C0(U+τ−1) ≤ c |f |C`(U) t−` , for τ ≥ t ≥ 1.

for some constant c depending on ` and U, but independent of t.

Now we define the smoothing operator St we work with. First we define St[f ] for f ∈ C0(Rd).

Definition 6. Let u : Rd → R be C∞, even, identically equal to 1 in a neighbourhood of the origin,
and with support contained in the ball with center in the origin and radius 1. Let û : Rd → R be
the Fourier transform of u and denote by s the holomorphic continuation of û. Define the linear
operator St as

St[f ](z) def= td
∫

Rd

s(t(y − z))f(y)dy , for f ∈ C0(Rd). (3)

Applying obvious modifications, Definition 6 can be extended to functions in C0(Rn, Rd). In
the sequel these latter operators are denoted by the same symbol St. We now summarize some
elementary properties of St that follow from Definition 6.

Remark 7.

1. St transforms functions in C0(Rd) into entire functions on Cd.

2. Using the change of variables ξ = t Re (y − z) = ty − t Re (z), one has for f ∈ C0(Rd)

St[f ](z) =
∫

Rd

s(ξ − it Im (z))f(Re (z) + ξ/t)dξ. (4)

3. St commutes with constant coefficient differential operators.

4. St acts as the identity on polynomials.

5. From (4) one has that St takes (partially) periodic functions into (partially) periodic func-
tions.

6. From (4) we have that St[f ](x) ∈ R for all x ∈ Rd.
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Remark 8. In the applications of Moser’s smoothing method to KAM theory it is of particular
importance to know how to define St for functions defined on the d-dimensional torus Td as well
as functions defined on Tn × Rm. Notice that since St in Definition 6 acts as the identity on
polynomials and it takes partially periodic functions into partially periodic functions, we have
that for any annulus map f , with lift of the form (1) St[f̂ ] is also of the form (1):

St[f̂ ](x, y) = P x + St[u](x, y) .

Hence to extend the definition of St to torus maps as well as to maps defined on Tn × Rm, we
apply St in Definition 6 to any lift of it. This is well-defined because two lifts of the same torus
map (respectively annulus map) differ by a constant vector with components in Z.

Definition 9. Let ` > 0 be not an integer. A bounded linear extension operator is a linear
operator EU : C`(U) → C`(Rd) such that EU (f)|U = f for all f ∈ C`(U) and |EU (f)|C`(Rd) ≤
cU |f |C`(U) .

In order to extend the definition of the linear operator St to functions defined on U ⊂ Rd and
to the annulus Tn ×U , it suffices to have a linear bounded linear extension operator from C`(U)
to C`(Rd). The sufficient condition we adopt here to have such extension operator is that given
in Theorem 14.9 in [Kra83]. It amounts to the regularity of the boundary of U .

Definition 10. Let % : Rd → R be a function with continuous derivatives up to order m, for
some m ∈ N, and assume that grad %(x) 6= 0 for all x ∈ {x : %(x) = 0}. The set U = {x ∈
Rd : %(x) ≤ 0} is called a closed domain with Cm-boundary. An open domain is defined by
{x ∈ Rd : %(x) < 0}.

The following result guarantees the existence of a bounded extension operator for functions
with domain of definition U ⊂ Rd provided that U has smooth boundary. For a proof we refer
the reader to [Kra83, Ste70].

Theorem 1. If 0 < ` < m ∈ N with ` /∈ N, and U ⊂ Rd has Cm-boundary, then there is a linear
extension operator E `

U : C`(U) → C`(Rd) such that∣∣∣E `
U (f)

∣∣∣
C`(Rd)

≤ cU |f |C`(U) . (5)

for some constant cU , depending on U .

Hence, for functions that are defined on a subset of Rd with regular boundary we have the
following

Definition 11. Let 0 < ` < m, with m ∈ N and ` /∈ N. Let U ⊂ Rd be an open domain with
Cm-boundary and E `

U a linear extension operator as in Theorem 1. For f ∈ C`(U) and for any
x ∈ Cd we define

Ŝt[f ](x) def= St[E `
U (f) ](x) , (6)

where St is as in (3).

The following remark is related to Remark 7

Remark 12. Notice that the operator Ŝt, defined in Definition 11 for functions in C`(U), satisfies
the following properties:

1. Ŝt is linear.

2. Ŝt transforms functions in C`(U) into entire functions on Cd.
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Remark 13. Notice that if U ⊂ Rd−n is an open domain with Cm-boundary then U = Rn ×
U ⊂ Rd also is an open domain with Cm-boundary. Moreover, it follows from Remark 8 and
Definition 11 that, if u(x, y) is defined for (x, y) ∈ U = Rn×U and Zn-periodic on the x-variable
and Ŝt is as in Definition 11, then Ŝt[u] is also Zn-periodic on the x-variable. Indeed, since
E `

U(u)(x, y) = u(x, y) for all (x, y) ∈ Rn×U , we have that E `
U(u) is Zn-periodic in the x-variable,

where E `
U is as in Theorem 1. Therefore, any map defined on the annulus Tn × U with U as in

Theorem 1 and lift given by (1), is smoothed by

Ŝt[f ](x, y) = P x + St[E `
U(u)](x, y) ,

where St is as Definition 6 and E `
U is as in Theorem 1.

Since it will not lead to confusion, the operator Ŝt defined in (6) will be denoted (dropping
the hat) as the operator St in (3).

Remark 14. Summarizing, a function f is smoothed, depending on its domain of definition as
follows:

1. If f ∈ C0(Rd), St[f ] is given by (3).

2. If f ∈ C`(U), with U ⊂ Rd an open domain with Cm-boundary, we define

St[f ] = St[E `
U(f)] ,

where E `
U is as in Theorem 1 and St on the right hand side is defined by (3).

3. If f ∈ C0(Td), with lift as in (2), where u ∈ C0(Rd) is Zd-periodic, and P an (d×1)-matrix
with components in Z, then

St[f ](x) def= P x + St[u](x) ,

where St on the right hand side is defined by (3).

4. For U ⊂ Rd−n an open domain with Cm-boundary and f ∈ C` (Tn × U), with lift given
by (1) where u ∈ C`(Rn × U) Z-periodic on the first n-variables, and P an (n× 1)-matrix
with components in Z, we define

St[f ](x, y) def= P x + St[E `
U(u)](x, y) ,

where U = Rn×U , E `
U is as in Theorem 1, and St on the right hand side is defined by (3).

To define an analytic smoothing operator such that it takes finitely diffeomorphisms preserving
either an exact symplectic, volume or contact form into analytic diffeomorphisms preserving the
same structure, we set more conditions on the domain of definition of the maps. We assume the
following.

Definition 15. Given U ⊆ Cn, for x, y ∈ U denote by dU (x, y) the minimum length of arcs
inside U joining x and y. We say that U is compensated if there exists a constant cU such that
dU (x, y) ≤ cU |x− y|, for all x, y ∈ U .

It turns out that on compensated domains it is possible to apply the Mean Value Theorem
to obtain estimates of the C`-norm of the composition of two functions in terms of the C`-norms
of the composed functions (see [dlLO99] and Lemma 29 in the present paper). We finish this
section recalling some geometric definitions.

Definition 16. 1. Given a k-form Ω on a d-dimensional manifold, denote by IΩ the appli-
cation X → iX Ω, sending the vector field X into the inner product iXΩ def= Ω(x) (X(x), ·).
A k-form Ω is non-degenerate if IΩ is an isomorphism.

9



2. A volume element on a d-dimensional manifold is a d-form which is non-degenerate.

3. A symplectic form on a 2n-dimensional manifold is a non-degenerate closed 2-form.

4. A contact form on a (2n + 1)-dimensional manifold is a 1-form Ω, such that Ω ∧ (dΩ)n is
a volume element.

5. A diffeomorphism f of a contact manifold (M,Ω) is a contact diffeomorphism if there exists
a nowhere zero function λ : M → R such that f∗Ω = λ Ω.

6. Let Ω = dα be an exact symplectic form on a symplectic manifold. The diffeomorphism f
is exact symplectic if f∗α− α is an exact 1-form.

2.2 Statement of results

In this section we formulate the results guaranteeing the existence of an analytic smoothing
operator that preserves the prescribed geometric structure. In Theorem 2 the symplectic and
volume cases are considered; the contact case is considered in Theorem 3.

Theorem 2. Let 2 < ` < m, with m ∈ N and ` /∈ N, and let C, β > 0 and 1 < µ < `−1 be given.
Assume that the following hypotheses hold:

H1. U is either: i) Td, ii) a compensated bounded open domain in Rd with Cm-boundary (see
definitions 10 and 15), or iii) Tn×U , with U ⊂ Rd−n a compensated bounded open domain
with Cm-boundary and n < d.

H2. V is Cm-diffeomorphic to U and such that U ⊆ V. Ω = dα is either a real analytic symplectic
form (with d = 2n) or a real analytic volume element on V such that |Ω|C`(V+ρ) < ∞ for
some ρ > 0.

H3. Let IΩ be as in Definition 16 and let I −1
Ω denote the inverse of IΩ. Let k = 2 if Ω is a

symplectic form, and k = d if Ω is a volume form and assume that for any θ ∈ Λk−1(U),
satisfying |θ|C0(U+ρ′) < ∞, with ρ′ ≥ 0, the following holds∣∣I −1

Ω θ
∣∣
C0(U+ρ′)

≤ MΩ |θ|C0(U+ρ′) .

Then, there exists two constants t∗ = t∗(d, `, V, C, µ, β,MΩ , |Ω|C`(U+ρ)), and
κ = κ(d, `, C, β, µ, k, MΩ) and a family of nonlinear operators {Tt}t≥t∗, taking functions belonging
to {f ∈ Diff` (U) : |f |C`(U) ≤ β, f∗Ω = Ω , closure of f(U) ⊆ V} into real analytic functions.
Moreover, if Ut is defined as follows:

Ut
def=


Td , U = Td

{x ∈ U : B̄(x, t−1) ⊂ U } , U ⊂ Rd

Tn × {x ∈ U : B̄(x, t−1) ⊂ U } , U = Tn × U

(7)

where B̄(x, t−1) represents the closed ball with center at x and radius t−1, then the following
properties hold:

T0. Tt[f ] is a diffeomorphism on Ut.

T1. Tt[f ] ∗Ω = f∗Ω.

T2. |Tt[f ] |C1(Ut+C t−1) ≤ κ Mf .

T3. |Tt[f ]− St[f ] |C0(Ut+C t−1) ≤ κ Mf t−µ+1 ,

T4. If 2 < µ < `− 1, then |Tt[f ] |C2(Ut+C t−1) ≤ κ Mf .
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T5. | (Tt − Id)[f] |Cr(Ut)
≤ κ Mf t−(µ−r−1) , for all 0 ≤ r ≤ µ− 1.

T6. | (Tτ − Tt) [f ] |C0(Ut+C t−1) ≤ κ Mf t−µ+1 , for all τ ≥ t ≥ t∗.

T7. If f is exact symplectic so is Tt[f ].

where Mf depends on `, k, |Ω|C`(U+ρ), and β, but it is independent of t.

Remark 17. We remark that, in hypothesis H2 of Theorem 2, if U = Td then V can be chosen to
be also Td. Actually, we asked Ω to be defined on a neighbourhood of U that contains the closure
of f(U), to guarantee that St[f ](U) is contained in the domain of definition of Ω, for t sufficiently
large. And so St[f ]∗Ω is defined on U. If Ω is defined only on U and it cannot be extended to
a neighbourhood of U, then St[f ]∗Ω is defined on St[f ]−1(U). By modifying the definition of Ut

in (7), the proof of Theorem 2 given in Section 2.4 also works in this latter case. However this
just yields a more complicated notation and does not change the proof of Theorem 2. To avoid
this notational complication we assume that Ω is defined on a neighbourhood of U as in H2 in
Theorem 2.

Theorem 3. Let m, `, V, and U be as in Theorem 2. Let Ω be a contact form on V such that
|Ω|C`(V+ρ) , |d Ω|C`(V+ρ) < ∞ , for some ρ > 0. Assume that for any θ ∈ Id Ω(Ker(Ω)), satisfying
|θ|C0(U+ρ′) < ∞, the following holds:∣∣∣∣(Id Ω|Ker(Ω)

)−1
θ

∣∣∣∣
C0(U+ρ′)

≤ MΩ |θ|C0(U+ρ′) .

Then, given N,C, β > 0 and 1 < µ < ` − 1, there exist two constants κ′ = κ′(d, `, C, β, µ, MΩ),
and t∗∗ = t∗∗(d, `, V, C, β, µ,MΩ, |Ω|C`(U+ρ) , |d Ω|C`(U+ρ)), and a family of – nonlinear – operators
{Tt}t≥t∗∗, taking contact diffeomorphisms belonging to the set of diffeomorphisms f ∈ Diff` (U)
such that: i) |f |C`(U) ≤ β and ii) V contains the closure of f(U), into real analytic functions such
that properties T0-T6 in Theorem 2 hold.

2.3 Analytic smoothing

This section contains the technical part of our proof of Theorem 2 and Theorem 3. We begin
by collecting the properties of the operator St defined in Section 2.1 (see Remark 14). First we
prove that St is a linear smoothing operator (see Definition 5) and then, using the fact that St is
a linear smoothing operator, we show that given a k-form Ω, the C0-norm of the k-form given by

St[f ]∗Ω− f∗Ω (8)

goes to zero as t goes to infinity. However, to prove Theorem 2 we need more accurate estimates.
Actually, as we will see in Section 2.4, we need an estimate for the C0-norm of (8) on complex
strips, which is given in Proposition 26. To obtain such an estimate we extend the definition of
St to k-forms and prove several analytic estimates which are given in Section 2.3.1. Estimates of
particular importance are those given in Proposition 28, and in Proposition 34. Proposition 28
contains an estimate of the norm of St[f ]∗Ω − St[f∗Ω] on complex strips of width C t−1 for
arbitrary C ≥ 0. In Proposition 34 we give an estimate of the difference between smoothing a
composition of two functions and composing their smoothings.

To describe the behaviour of St we found very useful to write St[f ] in terms of the Taylor
expansion of f , for f ∈ C`(Rd). This is done in the following:

Lemma 18. For any f ∈ C`(Rd), with ` not an integer, we have

St[f ](z) = Pf,`(Re (z) , i Im (z)) + R̂f,`(z, t), (9)
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where
Pf,`(x, y) def=

∑
|k|1<`

1
k !

Dk f(x) yk ,

and ∣∣∣R̂f,`(z, t)
∣∣∣ ≤ c̃ |f |C`(Rd) t−` et |Im(z)|, (10)

where c̃ = c̃(`, d).

Proof. Following [Sal04, Zeh75], we apply Taylor’s theorem to f :

f(x + y) = Pf,`(x, y) + Rf,`(x; y)

where Rf,` is the remainder. Then, using (4) and since St acts as the identity on polynomials, we
have (9) with

R̂f,`(z, t) def=
∫

s (ξ − i t Im (z)) Rf,`(Re (z) ; ξ/t) d ξ.

We note that from the properties of s in Definition 6, for any r, N > 0 there exists a constant
c = c(r, N) > 0 such that for all k ∈ Nd with |k|1 ≤ r then

|Dks(z)| ≤ c (1 + |Re (z) |)−N e| Im(z)| .

Then, from Taylor’s Theorem we have∣∣∣R̂f,`(z, t)
∣∣∣ ≤ c t−` |f |C`(Rd)

∫
Rd

| s(ξ − i t Im (z))| |ξ| ` dξ

≤ t−` |f |C`(Rd) c e |t Im(z)|
∫

Rd

|ξ| `

(1 + |ξ|)N
dξ

≤ c̃ |f |C`(Rd) t−` e |t Im(z)|,

where we have fixed N > ` + d.

Remark 19. The constants appearing in our estimates depend on certain quantities. In particular
if f ∈ C`(U), with U an open domain with smooth boundary, these constants also depend on U.
In what follows we do not write explicitly this dependence and represent a generic constant by κ.

The following result ensures that St is an analytic linear smoothing operator in the sense
of [Zeh75]. The case in which St is applied to functions in C0(Rd) is proved in [Zeh75].

Proposition 20. Let 1 < ` < m with ` /∈ N, m ∈ N and let U be either Rd or as in H1 in
Theorem 2. Assume that St is as in Remark 14. Then, for any C ≥ 0, there exists a constant
κ = κ(d, `, C) such that for all t ≥ 1 and f ∈ C`(U) the following holds:

1. |(St − Id) [f] |Cr(U) ≤ κ |f |C`(U) t−`+r , 0 ≤ r < `.

2. |St[f ] |C0(U+C t−1) ≤ κ |f |C0(U).

3. |(Sτ − St)[f ] |C0(U+τ−1) ≤ κ |f |C`(U) t−` , for all τ ≥ t.

4. | Im ( St[f ] )|C0(U+C t−1) ≤ κ C t−1 |f |C`(U) .

Proof. We first prove Proposition 20 for functions in C`(U), with U ⊂ Rd a compensated open
domain with Cm-boundary. In this case St is defined by equation (6). The linearity of St

follows from the linearity of the extension operator E `
U in Theorem 1 and from the linearity

of the convolution operator. To prove part 1, first notice that if f ∈ C`(U) and x ∈ U then

12



E `
U(f)(x) = f(x), then using the fact that part 1 holds for functions in C0(Rd) and estimate (5)

we have:

| (St − Id)[f] |Cr(U) =
∣∣∣ (St − Id)[E `

U(f)]
∣∣∣
Cr(U)

≤ κ′
∣∣∣E `

U(f)
∣∣∣
C`(Rd)

t−`+r ≤ κ | f |C`(U) t−`+r .

To prove part 2 we use (4) and Theorem 1 to obtain

|St[f ]|C0(Rd+C t−1) ≤

(
sup

0≤η<C

∫
Rd

|s(ξ − i η)| dξ

) ∣∣∣E `
U (f)

∣∣∣
C0(Rd)

≤ κ |f |C0(U) .

Part 3 is a consequence of Lemma 18 and Theorem 1. To prove part 4 we use the Mean Value
Theorem and the fact that the convolution commutes with the derivative to obtain

| Im ( St[f ] )|C0(Rd+C t−1) ≤ C t−1 |DSt[f ]|C0(Rd+C t−1)

≤ C t−1
∣∣∣DE `

U(f)
∣∣∣
C0(Rd)

≤ C t−1
∣∣∣E `

U(f)
∣∣∣
C`(Rd)

.

To prove Proposition 20 for f ∈ C`(Td) we use a lift of f . Let f ∈ C`(Td) with lift (see
Definition 3) given by P x+u(x), where P is a d×1 matrix with components in Z and u ∈ C`(Rd)
is a Zd-periodic function. Then (see part 3 in Remark 14):

(St − Id) [f ](x) = P x + St[u](x)− (P x + u(x)) = (St − Id) [u] . (11)

Moreover from Definition 4 one has

|St[f ] |C0(Td+Ct−1) ≤ |P |+ |St[u]|C0(Rd+C t−1) ,

(St − Sτ ) [f ] = (St − Sτ ) [u] ,

|Im (St[f ])|C0(Td+Ct−1) ≤ |P | C t−1 + |Im (St[u])|C0(Rd+C t−1) ,

where St on the right hand side is given by (3). Hence properties 1-4 of Proposition 20 follow
from the same properties for u ∈ C`(Rd) and the fact that St[u] is Zd-periodic. The annulus case
U = Tn×U , with U ⊂ Rd−n a bounded compensated open domain with Cm-boundary, is proved
in a similar way.

Remark 21. From (11) we have that in the case that U = Td, a better estimate holds than that
given in part 1 of Proposition 20:

|(St − Id) [f ]|C0(U) ≤ κ |u|C0(Rd) t−` ,

where u is the periodic part of a lift of f . A similar result holds for f ∈ C`(Tn × U), with U a
compensated open domain in Rd−n with Cm-boundary for some ` < m ∈ N.

Remark 22. From the proof of Proposition 20 one notices that, if U ⊂ Rd is an open domain
with Cm-boundary, then the estimates in parts 2, 3, and 4 in Proposition 20 also hold if one
replaces U + C t−1 with Rd + C t−1.

Remark 23. Let U be either Rd or as in H1 in Theorem 2 and let V ⊆ Rp be open, and assume
that f ∈ C`(U, V). Then for any Ω ∈ Λk(V) one has f∗Ω ∈ Λk(U). Notice that since the domain
of definition of Ω ◦ St[f ] is St[f ]−1(V), and since we know an estimate of |St[f ](x)− f(x)| only
when x ∈ U, to estimate the norm of the difference between St[f ]∗Ω(x) and f∗Ω(x) we have to
restrict x to be in St[f ]−1(V) ∩ U ⊆ U. It is not difficult to see that

U =
⋃
t≥1

(
St[f ]−1(V) ∩ U

)
.

Furthermore,
St[f ](U) ⊆ V ⇐⇒ St[f ]−1(V) ∩ U = U.
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We consider functions f : U → V, with U either Rd or as in H1 in Theorem 2, and V either
Rp or H2 in Theorem 2. In Lemma 24 we prove that if moreover V contains the closure of f(U)
then, for t sufficiently large, St[f ]∗Ω ∈ Λk(U).

Lemma 24. Let 1 < ` < m with ` /∈ N and m ∈ N. Let U be either Rd or as in Theorem 2, let V be
either V ⊆ Rp an open subset, or Tp, or Ts×V , with V ⊂ Rp−s an open subset. Let f ∈ C`(U, V),
and assume that V contains the closure of f(U). Then there exists t̄ = t̄(`, d, |f |C`(U) , V) such
that for all t ≥ t̄ the following holds:

1. St[f ](U) ⊆ V.

2. St[f ]
(
U + C t−1

)
⊆ V + (C β κ) t−1 .

Proof. To prove part 1 of Lemma 24 first, notice that from Remark 14 and part 6 of Remark 7,
one has that St[f ](x) is real if x is real. Hence, if V = Rp, or V = Tp, we have St[f ](U) ⊆ V.
Now, assume that V ( Rd is open. Then from part 1 in Proposition 20 we have that for t ≥ 1,
the following holds:

St[f ](U) ⊂
{

y ∈ Rd : sup
x∈U

|y − f(x)| ≤ κ |f |C`(U) t−`

}
. (12)

Hence, if V ( Rd is open and the closure of f(U) is contained in V, one has from (12) that for
t sufficiently large St[f ](U) ⊂ V. By taking coordinate functions, the case V = Ts × V , with
V ⊂ Rp−s an open subset, follows from the previous two cases.

Part 2 of Lemma 24 follows from part 1 of Lemma 24 and part 4 of Proposition 20.

A consequence of Proposition 20 is the following.

Proposition 25. Let 1 < ` /∈ N and let U be either Rd or as in H1 in Theorem 2. Let V be as in
Lemma 24, and let Ω ∈ Λk(V) be such that |Ω|C1(V+ρ) < ∞, for some ρ > 0. Let f ∈ C`(U, V),
and assume that V contains the closure of f(U). Then there exist two positive constants κ =
κ(d, `, k, |Ω|C1(V+ρ)) and ¯̄t = ¯̄t(d, `, ρ, |f |C`(U) , V) such that for all t ≥ ¯̄t the following holds:

1. |St[f ]∗Ω− f∗Ω |C0(U) ≤ κ
(

t−k(`−1) |f |kC`(U) + t−` |f |C`(U)

)
.

2. |St[f ]∗Ω |C0(U+t−1) ≤ κ |f |kC`(U) .

Proof. Assume that Ω has the following form:

Ω(x) =
∑

1≤i1<···<ik≤ p

Ωi(x) dxi .

Since V contains the closure of f(U), we have that part 1 of Lemma 24 implies that, for index
i = (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ p, Ωi ◦ St[f ] is defined on U for all t ≥ t̄, where t̄ is as in
Lemma 24. Hence for t ≥ t̄ the following holds:

(St[f ]∗Ω) (x) =
∑

1≤i1<···<ik≤p

Ωi(St[f ](x)) St[f ]∗ dxi , ∀x ∈ U. (13)

Then part 1 follows from Proposition 20 and the following equality

(St[f ]∗Ω − f∗Ω) (x) =
∑

1≤i1<···<ik≤p

[
Ωi(f(x)) {St[f ]− f}∗ dxi

+ {Ωi ◦ St[f ]− Ωi ◦ f} (x) St[f ]∗ dxi

]
,

for x ∈ U, where we have used the equality { f∗ − g∗ } dxi = { f − g }∗ dxi, which is true because
the k-form dxi does not depend on the base point.
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Let us prove part 2 of Proposition 25. From part 4 of Proposition 20 and Lemma 24 we have
that

St[f ]
(
U + t−1

)
⊆ St[f ] (U) + κ t−1 |f |C`(U) ⊆ V + κ t−1 |f |C`(U) .

Hence, if t ≥ t̄ is sufficiently large so that t−1κ |f |C`(U) < ρ, then for any multi-index i =
(i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ p, the following holds:

|Ωi ◦ St[f ] |C0(U+ t−1) ≤ |Ωi |C0(St[f ](U+ t−1)) ≤ |Ωi |C0(V+ρ) , (14)

Hence, part 2 of Proposition 25 follows from (13) and (14).

To prove Theorem 2 and Theorem 3 we need more accurate estimates than those given in
Proposition 25. Actually (see Section 2.4 and Section 2.5) we need an estimate for

|St[f ]∗Ω − f∗Ω|C0(U+C t−1) ,

with C ≥ 0, in the case that both Ω and f∗Ω are real analytic k-forms. This is given in the
following.

Proposition 26. Let 1 < ` < m, with ` /∈ N and m ∈ N. Let U be either Rd or as in H1 in
Theorem 2 and let V be either Rp, Tp, or Ts × V , V ⊂ Rp−s a compensated open domain with
Cm-boundary, or V ⊂ Rp a compensated open domain with Cm-boundary.

Assume that Ω ∈ Λk(V) and Ω̃ ∈ Λk(U) are two real analytic k-forms such that |Ω|C`(V+ρ) ,∣∣∣ Ω̃∣∣∣
C`(U+ρ)

< ∞, for some ρ > 0. Then, for each C ≥ 0, β > 0, and 0 < µ < ` − 1, there exist

two constants κ = κ(d, p, `, C, β, µ, k) and t̂ = t̂(d, p, `, V, C, β, µ) such that for all f ∈ C`(U, V)
satisfying: i) the closure of f(U) is contained in V, ii) |f |C`(U) ≤ β, and iii) f∗Ω = Ω̃, the
following holds: ∣∣∣St[f ]∗Ω − Ω̃

∣∣∣
C0(U+C t−1)

≤ κ M̂f t−µ , ∀ t ≥ t̂ ,

where M̂f depends on k, |Ω|C`(U+ρ),
∣∣∣Ω̃∣∣∣

C`(U+ρ)
, and β, but is independent of t.

To prove Proposition 26 we extend the definition of the analytic smoothing operator St to
k-forms in the following way. Let U be either Rd or as in H1 in Theorem 2. Let Ω̃ ∈ Λk(U) be of
the form:

Ω̃(x) =
∑

1≤i1<···<ik≤d

Ω̃i(x) dxi ,

with Ω̃i ∈ C`(U) for all 1 ≤ i1 < · · · < ik ≤ d, define the k-form St[Ω̃] ∈ Λk(U) by

St[ Ω̃] def=
∑

1≤i1<···<ik≤d

St[ Ωi] dxi. (15)

Notice that
St[f ]∗Ω − Ω̃ = {St[f ]∗Ω − St[f∗Ω] } + (St − Id ) [ Ω̃ ] , (16)

so to prove Proposition 26 it suffices to estimate the norm of the differences on the right hand
side of (16). An estimate of the norm of the second difference on the right hand side of (16)
follows from the following lemma and (15).

Lemma 27. Let 1 < ` /∈ N and let U be either Rd or as in H1 in Theorem 2. Then, there exists
a constant κ = κ(d, `, C) such that if g ∈ A(U + C t−1, C`) then the following holds:

|(St − Id)[g] |C0(U+C t−1) ≤ κ |g|C`(U+C t−1) t−`. (17)
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Proof. First one proves Lemma 27 in the case that U ⊆ Rd is either Rd or a compensated open do-
main with Cm-boundary. Then the cases g ∈ A(Td + C t−1, C`) and g ∈ A(Tn × U + C t−1, C`),
with U a compensated open domain in Rd−n with Cm-boundary, follow by taking a lift of g and
using that (17) holds for the periodic (respectively partially periodic) part of the lift of g (see
Remarks 8, 13, and 14).

We prove Lemma 27 in the case that U ⊂ Rd is a compensated open domain with Cm-
boundary. The case U = Rd is proved in the same way. From Lemma 18 and Theorem 1 we have
that if z ∈ U + C t−1 then

|St[g](z)− Pg,`(Re (z) , i Im (z))| ≤ eC c̃ cU |g|C`(U) t−` . (18)

Moreover, from the Taylor Theorem we have for all z ∈ U + C t−1

| g(z) − Pg,`(Re (z) , i Im (z)) | ≤ ĉ |g|C`(U+C t−1) | Im (z) |` (19)

for some constant ĉ. Therefore Lemma 27 follows from (18) and (19).

Giving an estimate for the norm of the first difference on the right hand side of (16) is more
intricate. In Section 2.3.1 we give several results from which the following proposition follows
easily (see Section 2.3.2).

Proposition 28. Assume that `,m, U, V and Ω ∈ Λk(V) are as in Proposition 26. Then, for
each each C ≥ 0, β > 0, and 0 < µ < `− 1, there exist two constants κ = κ(d, p, `, C, β, µ, k) and
t̃ = t̃(d, p, `, V, C, β, µ) such that for all f ∈ C`(U, V) satisfying i) and ii) in Proposition 26, and
for all t ≥ t̃, the following holds:

|St [f∗Ω] − St [f ]∗ Ω |C0(U+C t−1) ≤ κ M̃f t−µ ,

where M̃f depends on |Ω|C`(V+ρ), and |f |C`(U), but is independent of t.

2.3.1 Analytic estimates

In this section we give analytic estimates of certain quantities that enable us to estimate the norm
on complex strips of the difference between St[f ]∗Ω and St[f∗Ω]: Since the pull-back involves the
composition and the multiplication of functions, the quantities to be estimated depend on the
norm of the difference between:

i) Smoothing a multiplication of two functions and multiplying their smoothings (Lemma 30),

ii) Smoothing a composition of two functions and composing their smoothings (Proposi-
tion 34).

Let us start by estimating the C`-norms on complex strips of the product and composition of
functions in terms of the C`-norms of the original functions.

Lemma 29. 1. Let U be either Rd or as in Theorem 2. Assume that g1, . . . , gk ∈ Cr(U + ρ),
for some ρ ≥ 0. Then, the following holds:

| g1 g2 |Cr(U+ρ) ≤ κ
(
|g1|Cr(U+ρ) |g2|C0(U+ρ) + |g1|C0(U+ρ) |g2|Cr(U+ρ)

)
(20)

and

| g1 g2 . . . gk|Cr(U+ρ) ≤ κ

k∑
i=1

 |gi|Cr(U+ρ)

∏
j∈{1,...,k }

j 6=i

|gj |C0(U+ρ)

 . (21)

2. Let W ⊂ Cn and Z ⊂ Cp be compensated domains (Definition 15), s, σ ≥ 0, and h ∈
A(Z,Cs). Assume that, f ∈ A(W,Cσ) is such that f(W ) ⊂ Z, then:
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(a) If max(s, σ) < 1, then h ◦ f ∈ A(W,Cs σ) and

|h ◦ f |Cs σ(W ) ≤ |h|Cs(Z) |f |
s
Cσ(W ) + |h|C0(Z) .

(b) If max(s, σ) ≥ 1, then h ◦ f ∈ A(W,C`), with ` = min(s, σ). Moreover

i. If 0 ≤ s < 1 ≤ σ, then

|h ◦ f |C s (W ) ≤ κ |h|Cs(Z) |f |
s
C1(W ) + |h|C0(Z) .

ii. If 0 ≤ σ ≤ 1 ≤ s, then

|h ◦ f |Cσ (W ) ≤ κ |h|C1(Z) |f |Cσ(W ) + |h|C0(Z) .

iii. If ` = min(s, σ) ≥ 1, then

|h ◦ f |C`(W ) ≤ κ |h|C`(Z)

(
1 + |f |`C`(W )

)
.

Proof. To prove estimate (20) use the Leibniz’s rule to write the derivative of the product function
h = g1 g2 in terms of the derivatives of g1 and g2 and use the interpolation estimates [dlLO99,
Zeh75]. Estimate (21) follows from (20). Part 2 follows from Theorem 4.3 in [dlLO99].

In the following lemma we give an estimate for the norm of the difference between smoothing
a multiplication of two functions and multiplying their smoothings.

Lemma 30. Let 1 < ` < m, with m ∈ N and ` /∈ N, and let U be either Rd or as in H1 in
Theorem 2. Then for each C ≥ 0, 0 ≤ µ < ` and r ∈ (0, 1), with 0 < r + µ < `, there exists a
constant κ = κ(d, `, C , µ, r), such that for all t ≥ e1/r satisfying

t−1(C + r log(t)) ≤ 1 , (22)

the following holds:

1. |St[g] |C µ(U+C t−1) ≤ κ |g|C`(U) , for g ∈ C`(U).

2. For g1, g2 ∈ C`(U)

|St[g1]St[g2] |C µ(U+C t−1) ≤ κ
(
|g1|C0(U) |g2|C`(U) + |g1|C`(U) |g2|C0(U)

)
.

3. For g1, g2 ∈ C`(U)

|St[ g1 g2]− St[g1]St[g2] |C0(U+C t−1) ≤ κ
(
|g1|C0(U) |g2|C`(U) + |g1|C`(U) |g2|C0(U)

)
t−µ .

Proof. To prove part 1 of Lemma 30, one first proves that it holds for g ∈ C`(U), when U is either
Rd or an open domain with Cm-boundary. That part 1 of Lemma 30 holds for g ∈ C`(U), when
U is either Td or Tn × U , with U ⊂ Rd−n an open domain with Cm-boundary, follows by taking
a lift of g, applying part 1 of Lemma 30 to the periodic (respectively, partially periodic) part of
the lift of g, and using the norms introduced in Definition 4 (see Remarks 8, 13, and 14).

We only prove part 1 of Lemma 30 in the case that U is an open domain with Cm-boundary.
The case U = Rd is proved in the same way. For t ≥ 1, define ρ(t) = t−1 (C + r log(t)) and let k
be such that 2k ≤ t < 2k+1. Using Lemma 18 and Theorem 1 one proves that if g ∈ C`(U) then
the following estimates hold:

|(S2t − St) [g] |C0(Rd+ρ(2 t)) ≤ κ |g|C`(U) t−`+r ,

|(St − S2k) [g] |C0(Rd+ρ(t)) ≤ κ |g|C`(U) 2−k` tr .

17



Then part 1 of Lemma 30 in the case that U is an open subset of Rd with Cm-boundary, follows
using Cauchy’s estimates and the following inequality:

|St[g]|Cµ(Rd+t−1 C) ≤ |(St − S2k) [g]|Cµ(Rd+t−1 C) +

+
k∑

j=1

|(S2j − S2j−1) [g]|Cµ(Rd+t−1 C) +

+ |S1[g] |Cµ(Rd+t−1 C) .

Part 2 of Lemma 30 follows from estimate (20), and part 1 of Lemma 30. To prove part 3 of
Lemma 30 write

St [g1g2]− St[g1]St[g2] = St [ (Id− St) [g1] g2 ] +
+ St [St[g1] (Id− St) [g2]] +
+ (St − 1) [St[g1]St [g2] ] .

(23)

Part 2 and part 1 of Proposition 20 imply

|St [ (1− St) [g1] g2 ] |C0(U+C t−1) ≤ κ |(1− St) [g1] g2 |C0(U)

≤ κ |g2 |C0(U) | (1− St) [g1]|C0(U)

≤ κ |g2 |C0(U) | g1|C`(U) t−`.

(24)

and

|St [St[g1] (1− St) [g2]] |C0(U+C t−1) ≤ κ |St[g1] (1− St) [g2] |C0(U)

≤ κ |St[g1] |C0(U) |(1− St) [g2] |C0(U)

≤ κ | g1|C0(U) |g2 |C`(U) t−`.

(25)

Moreover, because of part 2 of Lemma 30 we have St[g1]St[g1] ∈ A(Rd + C t−1 , Cµ), then
Lemma 27 and part 2 of Lemma 30 imply

| (St − 1) [St[g1]St[g2]] |C0(U+C t−1) ≤ κ |St[g1]St[g2] |C µ(Rd+C t−1) t−µ

≤ κ
(
|g1|C0(U) |g2|C`(U) + |g1|C`(U) |g2|C0(U)

)
t−µ

(26)

Hence part 3 of Lemma 30 follows from equality (23) and estimates (24), (25), and (26).

We emphasize that the proof of Lemma 30 is based on the linearity of St. As a consequence
of Lemma 30 we have the following.

Lemma 31. Let ` and U be as in Lemma 30. Let k, n be two non-negative integers such that
0 ≤ n + k ≤ d. For each 0 ≤ µ < `, C ≥ 0 and r ∈ (0, 1), with 0 < r + µ < `, there exists a
constant κ = κ(d, `, C, µ, r, k, n), such that for all ϑ ∈ Λn(U) and α ∈ Λk(U) with

|ϑ|C`(U) < ∞ , and |α|C`(U) < ∞ ,

and for all t ≥ e1/r satisfying (22) the following holds:

|St[ϑ] ∧ St[α] − St[ϑ ∧ α ] |C0(U+C t−1) ≤ κ
(
|ϑ|C0(U) |α|C`(U) + |ϑ|C`(U) |α|C0(U)

)
t−µ .

Proof. Let ϑ ∈ Λn(U) and α ∈ Λk(U) be given by

ϑ(x) =
∑

1≤i1<···< in≤d

ϑi(x) dxi , α(x) =
∑

1≤j1<···< jk≤d

αj(x) dxj ,
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with ϑi, αj ∈ C`(U) for all i = (i1, . . . , in), with 1 ≤ i1 < i2 < · · · < in ≤ d, and j = (j1, . . . , jk),
with 1 ≤ j1 < · · · < jk ≤ d. Then, performing some simple computations one obtains

St[ϑ] ∧ St[α]− St[ϑ ∧ α ](x) (ξ1, . . . , ξm+k) =

=
∑

σ∈S(n,k)

∑
1≤i1<···< in≤d
1≤j1<···< jk≤d

ci, j(x) dxi

(
ξσ(1), . . . , ξσ(n)

)
dxj(ξσ(n+1), . . . ξσ(n+k)) ,

where S(n, k) represents the set of all permutations σ of {1, 2, . . . , n+k} such that σ(1) < σ(2) <
· · · < σ(n) and σ(n + 1) < · · · < σ(n + k), and

ci, j(x) def= (St[ϑi ]St[αj]− St[ϑi αj] ) (x) .

Hence the proof is finished applying part 3 of Lemma 30.

The following lemma is the same result as Proposition 28, applied to the components of Λk(V)
with respect to the basis: dxi = dxi1 ∧ · · · ∧ dxik , with 1 ≤ i1 < · · · < ik ≤ p.

Lemma 32. . Let `, U and V be as in Lemma 24. For each natural number 1 ≤ k ≤ p, and all
real numbers 0 ≤ µ < `− 1, C ≥ 0, and r ∈ (0, 1), satisfying: 0 < r + µ < `− 1, there exist two
constants κ = κ(d, `, C, µ, r, k) and t0 = t0(d, `, β, V, r) such that for any f ∈ C`(U, V) satisfying
i) the closure of f(U) is contained in V, ii) |f |C`(U) ≤ β, and any multi-index i = (i1, . . . , ik),
with 1 ≤ i1 < · · · < ik ≤ p, the following holds for all t ≥ t0 satisfying (22)

|St [f∗dxi] − St [f ]∗ dxi |C0(U+C t−1) ≤ κ |f |kC`(U) t−µ .

Proof. Let i = (i1, . . . , ik) be a multi-index with 1 ≤ i1 < · · · < ik ≤ p, and let f ∈ C`(U, V) be
such that the closure of f(U) is contained in V and |f |C`(U) ≤ β. Performing some computations
and using the linearity of St one obtains

St [f∗dxi] − St [f ]∗ dxi =
k−1∑
n=1

αn ∧ ϕn , (27)

where, for n ∈ {1, . . . , k − 1},

ϕn
def=

{
St[f∗dxin+2 ] ∧ · · · ∧ St[f∗dxik ] , n ∈ {1, . . . , k − 2}

1 , n = k − 1
,

and
αn

def= St

[
ϑn ∧ f∗dxin+1

]
− St[ϑn] ∧ St[f∗dxin+1 ] , (28)

where
ϑn

def= f∗ (dxi1 ∧ · · · ∧ dxin) . (29)

Notice that, because of part 2 of Proposition 20, for all n ∈ {1, . . . , k − 2} the following estimate
holds:

|ϕn |C0(U+C t−1) ≤ κ
(
|St[Df ] |C0(U+C t−1)

) k−(n+1)
≤ κ

(
|Df |C0(U)

) k−(n+1)
.

Hence using (27) one has

|St [f∗dxi] − St [f ]∗ dxi |C0(U+C t−1) ≤ |αk−1|C0(U+C t−1) + κ

k−2∑
n=1

|αn |C0(U+C t−1) |Df |k−(n+1)
C0(U)

,

(30)
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where we assumed, without loss of generality, that κ ≥ 1. Moreover, from (21) and (29) we have
for all n ∈ {1, . . . , k − 1}

|ϑn|C`−1(U) ≤ κ n |Df |n−1
C0(U) |Df |C`−1(U) < ∞,

and ∣∣ f∗dxin+1

∣∣
C`−1(U)

≤ κ |Df |C`−1(U) < ∞ ,

for some constant κ. Hence, using (28) and Lemma 31, we have that given 0 ≤ µ < `− 1, C ≥ 0,
and r ∈ (0, 1), with 0 < r < `− 1− µ, there exists a constant κ = κ(d, `, µ, r, C), such that

|αn |C0(U+C t−1) ≤ κ
(
|ϑn |C0(U)

∣∣f∗dxin+1

∣∣
C`−1(U)

+ |ϑn |C`−1(U)

∣∣ f∗dxin+1

∣∣
C0(U)

)
t−µ

≤ κ (n + 1) |Df |nC0(U) |Df |C`−1(U) t−µ
(31)

Hence Lemma 32 follows from (30) and (31).

In order to prove Proposition 28 for an arbitrary k-form we need an estimate for the norm of
the difference between the composition of the smoothing and the smoothing of the composition.
This was considered in [GEV] for functions in C`(Rd). We use the following.

Lemma 33. Let `, m, U and V be as in Proposition 26. Given 0 < µ < ` and C ≥ 0, β > 0 there
exist two constants κ = κ(d, p, `, C, µ , β) and t1 = t1(p, `, V, C , β, µ) such that for each h ∈ C`(V)
and f ∈ C` (U, V), satisfying i) the closure of f(U) is contained in V and ii) |f |C`(U) ≤ β, the
following holds for all t ≥ t1:

|St[h] ◦ St[f ]|Cµ(U+C t−1) ≤ κ |h|C`(V)

(
1 + |f |τC`(U)

)
, (32)

where
τ is any number in (µ, 1) , if 0 < µ < 1 < ` ,
τ = µ , if 1 ≤ µ < ` .

Proof. Let 0 ≤ s, σ < `, fix r1, r2 ∈ (0, 1) in such a way that 0 ≤ s + r1 < `, and 0 ≤ σ + r2 < `
( e.g. r1 = min(1/2, (` − s)/2), r2 = min(1/2, (` − σ)/2)). Let κ be as in Proposition 20 and
assume that t ≥ max

(
e1/r1 , e1/r2

)
is sufficiently large such that

t−1 max (C + r2 log(t) , C κβ + r1 log(t) ) ≤ 1.

Then Lemma 30 implies for h ∈ C`(V) and f ∈ C` (U, V),

|St[f ] |Cσ(U+C t−1) ≤ κ(d, `, C, σ, r2) |f |C`(U) , 0 ≤ σ < `

|St[h]| Cs(V+(C β κ) t−1 ) ≤ κ(p, `, C, s, r1) |h|C`(V) , 0 ≤ s < `,
(33)

Hence for all 0 ≤ s, σ < ` there exists t̃1 = t̃1(p, `, C, β, s, σ) such that, for all t ≥ t̃1,

St[h] ∈ A(V + (C β κ) t−1 , Cs) ,

St[f ] ∈ A(U + C t−1, Cσ).
(34)

Inclusions in (34) and part 2 of Lemma 24 enable us to apply part 2 of Lemma 29 to the
composition St[h] ◦ St[f ] as follows. If 1 ≤ µ < `, estimate (32) follows from estimates (33),
and part 2(b)iii of Lemma 29. Finally, if 0 < µ < 1 < `, write µ = σ s with s ∈ (µ, 1) ⊂ [0, `)
and σ = µ/s ∈ (0 , 1) ⊂ [0, `), then estimate (32) follows from estimates (33), and part 2a of
Lemma 29 with

t1(p, `, C, β, µ) def= t̃1(p, `, C, β, s(µ), σ(µ)) .
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Proposition 34. Let `, m, U and V be as in Proposition 26. Given the real numbers C ≥
0, β > 0, and 0 < µ < `, there exist two positive constants κ = κ(p, d, `, C , µ, β) and t2 =
t2(p, `, V, C, µ, β) such that for every h ∈ C`(V) and f ∈ C` (U, V), satisfying i) the closure of
f(U) is contained in V and ii) |f |C`(U) < β, the following holds for all t ≥ t2:

|St[h] ◦ St[f ]− St[h ◦ f ] |C0(U+C t−1) ≤ κ M1 t−µ , (35)

where and
M1

def= |h|C`(V)

(
1 + |f |τC`(U)

)
+ |h|C`(V) |f |C`(U) .

and
τ is any number in (µ, 1) , if 0 < µ < 1 < ` ,
τ = µ , if 1 ≤ µ < ` .

Proof. That the composition h ◦ f belongs to C`(U) follows from part 2 of Lemma 29 ( the torus
and annulus cases this is obtained by using lifts). To prove estimate (35), first write

St[h] ◦ St[f ]− St[h ◦ f ] = (1− St) [St[h] ◦ St[f ] ] +
+ St [St[h] ◦ St[f ]]− St [St[h] ◦ f ] +
+ St [ St[h] ◦ f − h ◦ f ] .

(36)

Let us estimate the first term on the right hand side of (36). Let C ≥ 0, β > 0, and 0 < µ < ` be
given and let κ and t1 be as in Lemma 33. Then from Lemma 33 and Lemma 27 one obtains for
all t ≥ t1

|(Id− St) [St[h] ◦ St[f ] ] |C0(U+C t−1) ≤ κ |St[h] ◦ St[f ]|Cµ(U+C t−1) t−µ

≤ κ |h|C`(V)

(
1 + |f | τC`(U)

)
t−µ ,

(37)

where τ is as in Lemma 33. Now we consider the third term on the right hand side of (36). Using
again part 2 of Proposition 20 we have

|St [ St[h] ◦ f − h ◦ f ] |C0(U+C t−1) ≤ κ |St[h] ◦ f − h ◦ f |C0(U))

≤ κ | (St − 1) [h] |C0(V))

≤ κ |h|C`(V) t−` ,

(38)

where in the last inequality we have used part 1 of Proposition 20. To estimate the second term
on the right hand side of (36), we first consider the case U ⊂ Rd is a compensated open domain
with Cm-boundary. Notice that from Remark 14 one has

St [St[h] ◦ St[f ] ] − St [St[h] ◦ f ] = St

[
St[h] ◦ St[f ]− E `

U (St[h] ◦ f)
]

(39)

Moreover, if x ∈ U, then
E `

U(St[h] ◦ f)(x) = (St[h] ◦ f)(x) . (40)

Then, from Proposition 20, and equalities (39) and (40) we have

|St [St[h] ◦ St[f ]]− St [St[h] ◦ f ] |C0(U+C t−1) ≤ κ |h|C`(U) |f |C`(U) . (41)

In the same way, one proves that estimate (41) also holds in the case U = Rd. Indeed, if U = Rd

then (compare with (39))

St [St[h] ◦ St[f ]]− St [St[h] ◦ f ] = St [St[h] ◦ St[f ]− St[h] ◦ f ] .

Furthermore, taking lifts, using the norms introduced in Definition 4, and using that (41) holds
when U is either Rd or a compensated open domain in Rd with Cm-boundary, one proves that
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estimate (41) also holds in the following cases: i) U = Td, V = Tp, ii) U = Td and V ⊂ Rp is
a compensated open domain with Cm-boundary, iii) U = Tn × U , with U ⊂ Rd a compensated
open domain with Cm-boundary, and V = Tp, iv) U = Tn×U , with U ⊂ Rd a compensated open
domain with Cm-boundary, and V is a compensated open domain with Cm-boundary. Hence,
estimate (41) holds for U and V as in the hypotheses of Proposition 34.

Proposition 34 follows from equality (36) taking t2 sufficiently large such that estimates (37),
(38), and (41), holds for all t ≥ t2.

2.3.2 Smoothing and pull-back (Proof of Proposition 28)

We now have all the ingredients to prove Proposition 28. Let U, V, and Ω ∈ Λk(V) be as in
Proposition 26. Throughout this section we assume that C ≥ 0, β > 0, and 0 < µ < ` − 1
are given. Fix r ∈ (0, 1) in terms of ` and µ in such a way that 0 < µ + r < ` − 1 ( e.g.
r = min(1/2, (`− 1− µ)/2)) so that the constants depending on r will actually depend on µ and
`. Let f ∈ C`(U, V) be such that the closure of f(U) is contained in V, then Lemma 24 implies
St[f ]∗Ω ∈ Λk(U) for t ≥ t̄. Hence, to have St[f ]∗Ω defined on U we assume from now on that
t ≥ t̄. To prove Proposition 28 we first write

St[f ]∗Ω− St [f∗Ω] = {St[f ]∗Ω− St[f ]∗ (St[Ω]) }+ {St[f ]∗ (St[Ω])− St [f∗Ω] } (42)

Let us estimate the first term in brackets on the right hand side:

(St[f ]∗Ω− St[f ]∗ (St[Ω])) (x) =
∑

1≤ii<···<ik≤d

(1− St) [Ωi] (St[f ](x)) St[f ]∗dxi . (43)

From Lemma 24 we have

St[f ]
(
U + C t−1

)
⊆ V + (C βκ) t−1 ⊆ V + ρ, ∀t ≥ max

(
ρ−1β C κ t̄

)
.

Assume that Ω ∈ A(V + ρ,C`), then for all i = (i1, . . . , ik), with 1 ≤ ii < · · · < ik ≤ p and
t ≥ max

(
ρ−1β C κ , t̄

)
, Lemma 27 implies

|(Id− St) [Ωi] ◦ St[f ]|C0(U+C t−1) ≤ | (Id− St) [Ωi] |C0(V+ρ)

≤
(
κ |Ωi|Cσ(V+ρ )

)
t−σ ,

(44)

for all 0 ≤ σ ≤ `. Hence, part 2 of Proposition 20, estimate (44), and equality (43), yield for all
t ≥ max

(
ρ−1β C κ , t̄

)
,

|St[f ]∗Ω− St[f ]∗ (St[Ω]) |C0(U+C t−1) ≤ κ |Ω|Cµ(V+ρ) |f |
k
C`(U) t−µ , (45)

where κ = κ(p, d, `, C, µ, β, k).

Now write the second term on the right hand side of (42) in the following way:

St[f ]∗ (St[Ω])− St [f∗Ω] =
∑

1≤ii<···<ik≤d

{
(St[Ωi] ◦ St[f ]− St[Ωi ◦ f ]) St[f ]∗dxi +

St[Ωi ◦ f ] ( St[f ]∗dxi − St [f∗dxi] ) +

St[Ωi ◦ f ]St[ f∗dxi]− St[ (Ωi ◦ f) f∗dxi]
}

.

(46)

In what follows we give estimates for the three terms on the right hand side of (46). The first
term is estimated as follows: Let t2 be as in Proposition 34, then Proposition 34 and part 2 of
Proposition 20 yield for all t ≥ t2:

| (St[Ωi] ◦ St[f ]− St[Ωi ◦ f ]) St[f ]∗dxi |C0(Rd+C t−1) ≤

κ |f |kC`(U)

{
|Ωi|C`(U)

(
1 + |f |τC`(U)

)
+ |Ωi|C`(U) |f |C`(U)

}
t−µ ,

(47)
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where κ = κ(p, d, `, C, µ, β, k) and τ is as in Proposition 34.
An estimate for the second term on the right hand side of (46) follows from part 2 of Propo-

sition 20 and Lemma 32:

|St[Ωi ◦ f ] ( St[f ]∗dxi − St (f∗dxi) )|C0(U+C t−1) ≤ κ |Ωi|C0(V) |f |
k
C`(U) t−µ (48)

where t ≥ t0, with t0 as in Lemma 32, and κ = κ(d, `, C, µ, k).
Finally, applying Lemma 31 to the 0-form Ωi ◦ f and the k-form f∗dxi and using Lemma 29,

one has that there exists a constant κ = κ(d, `, C, µ, k) such that, for all t ≥ e1/r satisfying (22),
the following holds:

|St[Ωi ◦ f ] St[ f∗dxi]− St[ (Ωi ◦ f) f∗dxi] |C0(U+C t−1) ≤

≤ κ
(
|Ωi ◦ f |C0(U) |f

∗dxi|C`−1(U) + |Ωi ◦ f |C`−1(U) |f
∗dxi|C0(U)

)
t−µ

≤ κ
{
|Ωi|C0(V) |Df |k−1

C0(U) |f |C`(U) + |Ωi|C`(V)

(
1 + |f |`C`(U)

)
|Df |kC0(U)

}
t−µ ,

(49)

where we have used the inequality |Ωi ◦ f |C`−1(U) ≤ |Ωi ◦ f |C`(U) and part 2(b)iii of Lemma 29.
Define

t̃
def= max

(
C β κ ρ−1, e1/r , t2, t̄

)
,

where κ = κ(d, C) is as in Proposition 20, t̄ is as in Lemma 24, and t2 is as in Proposition 34.
Let t ≥ t̃ satisfy (22), then equality (46) and estimates (47), (48) and (49) imply

|St[f ]∗ (St[Ω])− St [f∗Ω]|C0(U+C t−1) ≤ κ M2 t−µ , (50)

where κ is a constant depending on d, `, k, r, µ, and C, and M2 is defined by

M2
def= |f |kC`(U) |Ω|C`(U)

{
1 + |f |τC`(U) + |f |`C`(U) + |f |C`(U)

}
.

Hence Proposition 28 follows from estimates (45) and (50).

2.4 The symplectic and volume cases (Proof of Theorem 2)

Let ` and U be as in Theorem 2 and let f ∈ Diff`(U). We prove Theorem 2 in several lemmas.
First in Lemma 36 we prove that if Ω is a non-degenerate form, then for sufficiently large t, the
form defined by

Ωε
t

def= Ω + ε (St[f ]∗Ω− Ω) , (51)

is also non-degenerate for all ε ∈ [0, 1]. We also give explicit estimates for the norm of I −1
Ωε

t
θ on

complex strips in terms of the corresponding norm of θ. In Lemma 38 we use the deformation
method [Mos65] to prove that, for t sufficiently large, there exists a diffeomorphism such that
(φε

t )
∗ Ωε

t = Ω. Moreover, in Lemma 38 we also give quantitative properties of φε
t . More precisely,

using Lemma 36 we prove that the diffeomorphism φε
t is real analytic, close to the identity and

with first and second derivatives bounded on the complex strips Ut + C t−1, with Ut defined
in (7). In Lemma 39 we prove that if ϕt

def= φ1
t , then Tt[f ] def= St[f ] ◦ ϕt satisfies properties T1-T6

of Theorem 2. Property T7 is proved in Section 2.4.1.

Remark 35. Notice that if f ∈ Diff`(U) then from part 1 of Proposition 20 we have that, for t
sufficiently large, St[f ] is a diffeomorphism on U.

Lemma 36. Let `, U, V, Ω and IΩ satisfy the hypotheses of Theorem 2. Then, given C ≥ 0
and β > 0 there exists a constant t3 = t3(d, `, V, C, β,MΩ, |Ω|C`(U+ρ)), such that for all t ≥ t3

and for all f ∈ Diff`(U) satisfying i) |f |C`(U) < β, ii) V contains the closure of f(U), and iii)
f∗Ω = Ω, the k-from defined by (51) is non-degenerate for all ε ∈ [0, 1]. Furthermore, for any
real analytic θ ∈ Λk−1(U), satisfying |θ|C0(U+ρ) < ∞, and any t ≥ t3, the application taking (ε, x)
into I −1

Ωε
t

(θ)(x) is continuous on (ε, x) ∈ [ 0, 1] × U + C t−1 and real analytic with respect to x.
Moreover ∣∣∣I −1

Ωε
t

(θ)
∣∣∣
C0(U+C t−1)

≤ 2 MΩ |θ|C0(U+C t−1) , ∀ ε ∈ [0, 1] .
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Proof. This follows from Proposition 26. Indeed, first notice that for all t ≥ 1 and ε ∈ [0, 1] the
following equality holds:

IΩε
t

= IΩ + ε I(St[f ]∗Ω−Ω) =
(
Id + ε I(St[f]∗Ω−Ω) ◦I −1

Ω

)
◦IΩ , (52)

where Id represents the identity map on Λk−1(U). Let κ = κ(d, d, `, C, β, (` − 1)/2, k), t̂ =
t̂(d, d, `, V, C, β, (`−1)/2), and M̂f be as in Proposition 26, then for all t ≥ max(t̂, C) and for any
θ ∈ Λk−1(U), satisfying |θ|C0(U+ρ) < ∞, the following estimate holds:∣∣I(St[f ]∗Ω−Ω)(I

−1
Ω θ)

∣∣
C0(U+C t−1)

≤ κ M̂f t−(`−1)/2 MΩ |θ|C0(U+C t−1) . (53)

Assume that t3 is sufficiently large so that for all t ≥ t3 estimate (53) holds and moreover

t−(`−1)/2 κ M̂f MΩ ≤ 1/2 .

Then for all t ≥ t3, ε ∈ [0, 1], the application
(
Id− ε ISt[f]∗Ω−Ω ◦I −1

Ω

)
is an isomorphism on

Λk−1(U), and moreover the following holds for any θ ∈ Λk−1(U), satisfying |θ|C0(U+ρ) < ∞:∣∣∣(Id− ε ISt[f]∗Ω−Ω ◦I −1
Ω

)−1
θ
∣∣∣
C0(U+C t−1)

≤ 2 |θ|C0(U+C t−1) .

Hence from (52) we have that for all t ≥ t3, and ε ∈ [0, 1], the application IΩε
t

is invertible with
inverse given by

I −1
Ωε

t
= I −1

Ω ◦
(
Id + ε ISt[f]∗Ω−Ω ◦I −1

Ω

)−1
,

from which Lemma 36 follows.

Lemma 37. Let `, U, V, Ω and IΩ satisfy the hypotheses of Theorem 2. Then, given C ≥ 0,
β > 0 and 1 < µ < `− 1, there exist two constants κ = κ(d, `, C, β, µ, k, MΩ) and
t4 = t4(d, `, V, C, β, µ,MΩ, |Ω|C`(U+ρ)), such that for all t ≥ t4 and for all f ∈ Diff`(U) satisfying
i) |f |C`(U) < β, ii) V contains the closure of f(U), and iii) f∗Ω = Ω, there exists a vector field
uε

t satisfying
d iuε

t
( Ωε

t ) = − (St[f ]∗Ω− f∗Ω) , (54)

where d represents the exterior derivative and Ωε
t is defined in (51). Furthermore, the vector field

vector field uε
t is continuous on (ε, x) ∈ [0, 1] × U + 2 C t−1, real analytic with respect to x on

U + 2 C t−1, and it satisfies the following estimates:

|uε
t |C0(U+2 C t−1) ≤ κ M̂f t−µ, ∀ ε ∈ [0, 1] , (55)

where M̂f is as in Proposition 26.

Proof. First notice that since Ω = dα is exact and analytic, then the right hand side of (54) is
also exact and analytic. Then, the Poincaré’s formula implies the existence of an analytic 1-form
γt such that: dγt = St[f ]∗Ω− Ω and

|γt|U+2 C t−1 ≤ κ̂ |St[f ]∗Ω− Ω|U+C t−1 ≤ κ M̂f t−µ ,

where we have used Proposition 26 and the fact that U is bounded. Lemma 37 follows from
Lemma 36 by solving the following equation:

iuε
t
Ωε

t = − γt .

Lemma 38. Let `, U, V, Ω and IΩ satisfy the hypotheses of Theorem 2. Then, given C ≥ 0,
β > 0 and 1 < µ < `− 1, there exist two constants κ = κ(d, `, C, β, µ, k, MΩ) and
t5 = t5(d, `, V, C, β, µ,MΩ, |Ω|C`(U+ρ)), such that for any f ∈ Diff`(U) satisfying i) |f |C`(U) < β,
ii) V contains the closure of f(U), and iii) f∗Ω = Ω, any t ≥ t5, and any ε ∈ [0, 1], there exists
an analytic diffeomorphism φε

t on Ut, with Ut defined in (7), such that the following hold:
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1. (φε
t )
∗ Ωε

t = Ω.

2. φ0
t = id.

3.
∣∣φ1

t − id
∣∣
C0(Ut+C t−1)

≤ κ M̂f t−µ , where id represents the identity map.

4.
∣∣Dφ1

t

∣∣
C0(Ut+C t−1)

≤ exp
(

C−1 κ M̂f t−µ+1
)

.

5.
∣∣D2φ1

t

∣∣
C0(Ut+C t−1)

≤ C−2 κ M̂f t−µ+2 exp
(

3 C−1 κ M̂f t−µ+1
)

Proof. Following the proof of Theorem 2 in [Mos65], we determine φε
t by solving the differential

equation
d

dε
φε

t = uε
t ◦ φε

t , 0 ≤ ε ≤ 1 , (56)

with φ0
t the identity mapping, where the vector field uε

t is as in Lemma 37. Notice that, in the
case U = Td, the properties of uε

t given in Lemma 37 imply the existence of a unique solution φε
t

of (56) for all ε ∈ [0, 1] and all x in the closure of Td + C t−1. To guarantee a solution of (56) for
all ε ∈ [0, 1] in the non-compact cases: i) U ⊂ Rd a compensated bounded open domain with Cm-
boundary, and ii) U = Tn × U with U ⊂ Rd−n a compensated bounded open domain with Cm-
boundary, we solve (56) for initial conditions in the closure of Ut + C t−1, with Ut ⊂ U defined
in (7). Notice that if t4 as in Lemma 37 and t ≥ t4 is sufficiently large so that

κ M̂f t−µ+1 < 1 , (57)

which is possible because 1 < µ < ` − 1, then (55) and (57) imply the existence of a unique
solution φε

t of (56) for all ε ∈ [0, 1] and all x in the closure of Ut + C t−1, with Ut ⊂ U defined
in (7).

Hence, if U and Ut are as in Theorem 2 and t ≥ t4 satisfies (57), then equation (56) has a
unique solution φε

t (x), defined for ε ∈ [0, 1], and x in the closure of Ut + C t−1. Moreover, the
following holds:

∣∣φ1
t − id

∣∣
C0(Ut+C t−1)

= sup
x∈Ut+C t−1

∣∣∣∣∫ 1

0
us

t (φ
s
t (x))ds

∣∣∣∣
≤ sup

s∈[0,1]
|us

t |C0(U+C t−1)

≤ κ M̂f t−µ ,

from which part 3 of Lemma 38 follows.
Part 1 follows from (54), (56) and the E. Cartan’s formula for the Lie derivatives (c.f. [Ste64]):

d

dε
((φε

t )
∗ Ωε

t ) = (φε
t )
∗
{

d
(
iuε

t
Ωε

t

)
+ iuε

t
(dΩε

t ) +
d

dε
Ωε

t

}
= 0

Parts 4 and 5 follow from the Gronwall’s and Cauchy’s estimates, and and (55) as follows:
From (56) we have for t ≥ t4 satisfying (57) and x in the closure of Ut + C t−1

|Dφε
t (x)| ≤ 1 +

∫ ε

0
|Dus

t |C0(U+C t−1) |Dφs
t (x)| ds, ε ∈ [0, 1] ,

then the Gronwall’s and Cauchy’s estimates and (55) imply

|Dφε
t |C0(Ut+C t−1) ≤ exp

(
sup

s∈[0,1]
|Dus

t |C0(U+C t−1)

)
≤ exp

(
C−1 κ M̂f t−µ+1

)
.
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Similarly

∣∣D2φ1
t

∣∣
C0(Ut+C t−1)

≤
∫ 1

0

∣∣D2us
t

∣∣
C0(U+C t−1)

|Dφs
t |

2
C0(Ut+C t−1) ds +

+
∫ 1

0
|Dus

t |C0(U+C t−1)

∣∣D2φs
t

∣∣
C0(Ut+C t−1)

ds

≤ sup
ε∈[0,1]

|uε
t |C2(U+C t−1) exp

(
2 C−1 κ M̂f t−µ+1

)
+ |uε

t |C1(U+C t−1)

∫ 1

0

∣∣D2φs
t

∣∣
C0(Ut+C t−1)

ds

≤ κ C−2 M̂f t−µ+2 exp
(

2 C−1 κ M̂f t−µ+1
)

+ κ C−1 M̂f t−µ+1

∫ 1

0

∣∣D2φs
t

∣∣
C0(Ut+C t−1)

ds

from which part 5 of Lemma 38 follows.

Lemma 39. Assume that the hypotheses of Theorem 2 hold. Let t5 and φ1
t be as in Lemma 38,

define for t ≥ t5
ϕt

def= φ1
t .

Then, given given C ≥ 0, β > 0 and 1 < µ < `−1, there exist two constants κ = κ(d, `, C, β, µ, k,
MΩ) and t∗ = t∗(d, `, V, C, µ, β,MΩ , |Ω|C`(U+ρ)), such that if the elements of the family of – non-
linear – operators {Tt}t≥t∗ are defined for f ∈ Diff`(U) satisfying i) |f |C`(U) < β, ii) V contains
the closure of f(U), and iii) f∗Ω = Ω, by:

Tt[f ](x) def= St[f ](ϕt(x)) , x ∈ Ut ,

where Ut is as in Theorem 2, then Tt[f ] satisfies T0-T1-T2-T4 of Theorem 2 and the following
properties:

T3’. |Tt[f ]− St[f ] |C0(Ut+C t−1) ≤ κ Mf t−µ ,

T5’. | (Tt − Id)[f] |Cr(Ut)
≤ κ Mf t−(µ−r) , for all 0 ≤ r ≤ µ.

T6’. | (Tτ − Tt) [f ] |C0(Ut+C t−1) ≤ κ Mf t−µ , for all τ ≥ t ≥ t∗.

Proof. That Tt[f ] is a diffeomorphism on Ut follows from Remark 35 and Lemma 38. Notice
that property T1 of Theorem 2 follows from part 1 of Lemma 38. Now, assume that t∗ ≥ t5 is
sufficiently large so that for all t ≥ t∗ the following holds:

κ M̂f t−(µ−1) < C log(2) , (58)

which is possible because 1 < µ < `− 1. Then using (58) and parts 3 and 4 of Lemma 38 one has
for all t ≥ t5

|ϕt − id |C0(Ut+C t−1) ≤ κ M̂f t−µ < C t−1 , (59)

and
|Dϕt |C0(Ut+C t−1) ≤ exp(C−1 κ M̂f t−(µ−1)) < 2 . (60)

Notice that if 2 < µ < `− 1 then it is possible to choose t∗ sufficiently large such that (compare
with (58))

κ M̂f t−(µ−2) < min(C2, C log(2)) , ∀ t ≥ t∗ .

Then part 5 of Lemma 38 implies for such t that∣∣D2ϕt

∣∣
C0(Ut+C t−1)

< 23 . (61)

26



A consequence of (60) is that we can control the domain of the composition St[f ]◦ϕt on complex
strips because of the following estimate:

|Im (ϕt)|C0(Ut+C t−1) ≤ C t−1 |Dϕt|C0(Ut+C t−1)

< 2 C t−1 .

From which we have
ϕt

(
Ut + C t−1

)
⊂ U + 2 C t−1 (62)

Now property T2 of Theorem 2 follow easily. First, using (62) and part 2 of Proposition 20 one
has:

|Tt[f ] |C0(Ut+C t−1) = |St[f ] ◦ ϕt|C0(Ut+C t−1)

≤ |St[f ]|C0(U+(2 C t−1))

≤ κ |f |C0(U) .

Now, using (62), part 1 of Lemma 30, and estimate (60) one has:

|DTt[f ] |C0(Ut+C t−1) ≤ |St[f ]|C1(U+2 C t−1) |Dϕt(x)|C0(Ut+C t−1)

≤ κ |f |C`(U) .

To prove T3’ use (62), (59) and part 1 of Lemma 30 to obtain:

| (Tt − St) [f ] |C0(Ut+C t−1) ≤ |St[f ] |C1(U+2 C t−1) |ϕt − id |C0(Ut+C t−1)

≤ κ M̂f |f |C`(U) t−µ .

Furthermore, if 2 < µ < `− 1, then the chain rule, (62), part 1 of Lemma 30, and estimates (60)
and (61) imply∣∣D2 Tt[f ]

∣∣
C0(Ut+C t−1)

≤ 22 |St[f ] |C2(U+2 C t−1) + 23 |St[f ] |C1(U+2 C t−1)

≤ κ |f |C`(U) .

This proves property T4 of Theorem 2.

Finally, properties T5’ and T6’ of Lemma 39 follow from Proposition 20, property T3’ of
Lemma 39, and the following inequalities

| (Tt − 1) [f ] |Cr(Ut)
≤ | (Tt − St) [f ] |Cr(Ut)

+ | (St − 1)[f ] |Cr(U) ,

and for τ ≥ t

| (Tτ − Tt) [f ] |C0(Ut+C τ−1) ≤ | (Tτ − Sτ ) [f ] |C0(Ut+C τ−1) +

+ | (St − Tt) [f ] |C0(Ut+C t−1) +

+ | (Sτ − St) [f ] |C0(U+C τ−1) .

2.4.1 Exactness considerations

In this section we show that in the case that the diffeomorphism f is exact symplectic, then it is
possible to construct analytic approximating functions Tt[f ] which are also exact symplectic, as
claimed in part T7 of Theorem 2. Here use the calculus of deformations, similar constructions
are obtained in [dlLMM86].
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Let U be as in Theorem 2. Of course, exactness is a problem only in the case that U = Tn×U .
In the other cases, Poincaré’s Lemma shows that all symplectic maps are exact. Hence, throughout
this section we assume that U = Tn × U .

Let Tt[f ] be as in Lemma 39, we show that for t sufficiently large, there exists a diffeomorphism
ht such that ht ◦ Tt[f ] is exact and satisfies properties T1-T6 of Theorem 2. Notice that since
Tt[f ]∗Ω = Ω we have that the form (Tt[f ]∗α− α) is closed. Recall that if Ω = dα, then ht ◦ Tt[f ]
is exact if and only if the form (ht ◦ Tt[f ])∗ α− α is exact. Equivalently

[Tt[f ]∗ (h∗t α− α) ] = − [Tt[f ]∗α− α ] , (63)

where [β ] represents the de Rham cohomology class of the closed form β. The existence of a
diffeomorphism ht satisfying (63) is proved in the following lemma where, moreover, we estimate
the distance between ht and the identity.

Lemma 40. Let Ω = dα be an exact symplectic form and 2 < ` /∈ Z. Assume that the hypotheses
of Theorem 2 hold. Let Ut be defined by (7). Then, given C ≥ 0, β > 0 and 1 < µ < `− 1, there
exist two constants κ = κ(d, `, C, β, µ,MΩ) and t∗ = t∗(d, `, V, C, µ, β,MΩ , |Ω|C`(U+ρ)), such that
for any t ≥ t∗ and any f ∈ Diff`(U) satisfying i) |f |C`(U) < β, ii) V contains the closure of f(U),
and iii) f is exact, there exists a diffeomorphism ht satisfying equality (63) and such that the
following holds:

|ht − id |C0(U+ρ) ≤ κ M̂f t−µ+1 , (64)

|ht|C1(U+ρ) ≤ κ (65)

Proof. Let H1(M, R) denote the first de Rham cohomology group of the manifold M . Let V be
as in Theorem 2 and let Ut be as in (7). We note that if U = Tn × U , and if V diffeomorphic to
U, then H1(Ut, R) = Rn and H1(V, R) = Rn. For t sufficiently large, let Tt[f ] be as in Lemma 39.
Consider

Tt[f ]# : H1(V, R) → H1(Ut, R)
[ γ ] → [Tt[f ]∗γ ]

Notice that since Tt[f ] is a diffeomorphism on Ut and since the pull-back commutes with the
exterior derivative one has: a) Tt[f ]# is well defined, b) Tt[f ]# at zero is equal to zero, and c)
Tt[f ]# is differentiable with invertible derivative at zero. If moreover, f is exact we have

| [Tt[f ]∗α− α ] | = | [Tt[f ]∗α− f∗α ] |
≤ κ̂ |(Tt − Id) [f ] |C1(Ut)

≤ κMf t−µ+1 ,

where we have used the fact that Tt[f ] satisfies property T5’ of Lemma 39. Hence a finite
dimensional version of the Implicit Function Theorem implies that, for t sufficiently large, there
exists [ γt ] ∈ H1(V, R) such that

Tt[f ]# ([ γt ]) = − [Tt[f ]∗α− α ] , (66)

and
| [ γt ] | ≤ κ Mf t−µ+1 . (67)

Let γ1, . . . , γn be closed forms, analytic on V + ρ, and such that { [ γj ] }n
j=1 is a basis of H1(V, R).

For t sufficiently large, let ηt = (η1
t , . . . , η

n
t ) ∈ Rn be such that

[ γt ] =
n∑

j=1

ηj
t [ γi ] .

Then estimate (67) implies
| ηt| ≤ κ̃ Mf t−µ+1 . (68)
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Following [Ban78], we construct, for t sufficiently large, a diffeomorphism ht satisfying

[h∗t α− α ] =
n∑

j=1

ηj
t [ γi ] . (69)

The non-degeneracy of Ω implies the existence of a vector field Xt such that

iXt(Ω) =
n∑

j=1

ηj
t γj . (70)

From (68) and (70) we have

|Xt|C0(V+ρ) ≤ κ′ |η| ≤ κ Mf t−µ+1 . (71)

Let hε
t be the flow generated by Xt:

d

dε
hε

t = Xt ◦ hε
t h0

t = id . (72)

The existence of hε
t for all ε ∈ [0, 1] is obtained by assuming that t is sufficiently large and

using (70). Using Proposition I.1.3. in [Ban78] we have

(hε
t )
∗ α− α =

∫ ε

0

d

ds
(hs

t )
∗ α ds = ε

n∑
j=1

ηjγj + dβ ε
t , (73)

with

β ε
t =

∫ ε

0

∫ s

0
(hr

t )
∗ iXt

 n∑
j=1

ηjγj

 dr

 ds +
∫ ε

0
(hs

t )
∗ iXt(α) ds ,

where we have used the Cartan’s formula and the fact that the right hand side of (70) is closed.
From (73) one has that, for all for ε ∈ [0, 1], hε

t preserves the exact symplectic form Ω = dα.
Define ht

def= h1
t , then considering the first cohomology class in (73) we have that ht satisfies (69).

Finally notice that (69) and (66) imply (63)
Estimate (64) follows from (71) and (72). Now taking t sufficiently large, using (71), (72),

and Gronwall’s inequality we obtain, for t sufficiently large, the following estimate:

|Dht|C0(U+ρ) < 2 ,

from which and (64) estimate (65) follows, for t sufficiently large.

It is clear from Lemma 40 that the composition T̃t[f ] def= ht ◦ Tt[f ] is exact symplectic on Ut

The verification of properties T1-T6 of Theorem 2 for the diffeomorphism T̃t[f ] is performed by
using Lemma 40, Lemma 39, and the following estimates

|ht ◦ Tt[f ] |C1(Ut+C t−1) ≤ κ |ht|C1(U+ρ)

(
1 + |Tt[f ]|C1(Ut+C t−1)

)
,

|ht ◦ Tt[f ]− St[f ]|C0(Ut+C t−1) ≤ κ |ht|C1(U+ρ) |Tt[f ]− St[f ]|C0(Ut+C t−1) + κ |ht − id|C0(U+ρ)

|ht ◦ Tt[f ] |C2(Ut+C t−1) ≤ κ |ht|C2(U+ρ)

(
1 + |Tt[f ]|C2(Ut+C t−1)

)
,

|ht ◦ Tt[f ]− f |C0(Ut)
≤ κ |ht − id|C0(U) + κ |Tt[f ]− f |C0(Ut)

.
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2.5 The contact case (Proof of Theorem 3)

Theorem 3 is proved following the same steps of the proof of Theorem 2 given in Section 2.4.
Here we just mention the necessary modifications. Let `, U, V, and Ut be as in Theorem 2. Let
Ω be a contact form on V, f ∈ Diff`(U) a contact diffeomorphism, and let λ be a nowhere zero
function such that f∗Ω = λ Ω . Define for t ≥ 1 and ε ∈ [0, 1]

Ωε
t

def= λ Ω + ε (St[f ]∗Ω− λ Ω) .

Notice that, since the 2-form d Ω is a symplectic form on the fibres of the 2n-dimensional sub-
bundle Ker(Ω) ⊂ T (U), with the obvious modifications, Lemma 36 holds for the isomorphism
Id Ω|Ker(Ω). Roughly speaking, this means that, for t sufficiently large, Id Ωε

t

∣∣
Ker(Ωε

t ))
is also an

isomorphism. Hence, for t sufficiently large and ε ∈ [0, 1], there exists a vector field uε
t satisfying

uε
t = −

(
IdΩε

t

∣∣
Ker(Ωε

t )

)−1
(

∂

∂ε
Ωε

t

)
, uε

t ∈ Ker (Ωε
t ) ,

equivalently,
iuε

t
(d Ωε

t ) = − (St[f ]∗Ω− λ Ω)

iuε
t
(Ωε

t ) = 0 .
(74)

Applying Proposition 26 to the 1-forms Ω and λ Ω we obtain, for t sufficiently large,

|St[f ]∗Ω− λ Ω|C0(U+(2 C t−1)) ≤ κ M̂f t−µ .

Then, following the same steps of the proof of Lemma 36 we obtain that the solution uε
t (x) of (74),

is continuous on (ε, x) ∈ [0, 1] × U + 2 C t−1, real analytic with respect to x ∈ U + 2 C t−1, and
moreover

|uε
t |C0(U+2 C t−1) ≤ 2 MΩ |St[f ]∗Ω− λ Ω|C0(U+2 C t−1)

≤ κ M̂f t−µ .
(75)

Now, for t sufficiently large, let φε
t be the solution of the following differential equation

d

d ε
φε

t = uε
t , φ0

t = id ,

then (74) and the Cartan’s formula for the Lie derivative imply

d

dε
((φε

t )
∗ Ωε

t ) = (φε
t )
∗
[
d
(
iuε

t
Ωε

t

)
+ iuε

t
(dΩε

t ) +
d

dε
Ωε

t

]
= 0.

Hence
(φε

t )
∗ Ωε

t = λ Ω , ∀ ε ∈ [0, 1] .

Moreover, following the proof of Lemma 38 and using (75) one obtains that φ1
t satisfies esti-

mates 3, 4, and 5 of Lemma 38. The proof of Theorem 3 is finished by following the same steps
in the proof of Lemma 39.

3 An application: KAM theory without action-angle

variables for finitely differentiable symplectic maps

Let (U, Ω = dα) be a 2n-dimensional analytic exact symplectic manifold and let f ∈ Diff`(U)
be an exact symplectic map. The study of the existence of n-dimensional invariant tori with
quasi-periodic motion is based on the study of the equation

F (f,K) = 0 , (76)
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where
F (f,K)(θ) def= (f ◦K) (θ)−K(θ + ω) , (77)

K : Tn → U is the function to be determined, and ω ∈ Tn satisfies a Diophantine condition.
In [dlLGJV05] it is proved that if f is a real analytic diffeomorphism and if there exists a real
analytic parameterization of an n-dimensional torus K, satisfying a non-degeneracy condition,
such that (f,K) is an approximate solution of (76) in the sense that |F (f,K) |C0(Tn+ρ) is ‘suffi-
ciently small’, with respect to the non-degeneracy conditions, then there exists a true real analytic
solution of (76), which moreover is close to the approximate solution. In Theorem 4 we give the
rigorous formulation of this result. We emphasize that in Theorem 4 we do not assume the
symplectic map is written either in action-angle variables or as perturbation of an integrable
one. Moreover, the proof of Theorem 4 produces a algorithm to compute invariant tori for exact
symplectic maps.

In this section we show that a finitely differentiable version of Theorem 4 also holds, see
Theorem 5 for the formulation. The proof of Theorem 5 we present here is a slightly modified
Moser’s analytic smoothing method. We remark that, since Theorem 4 holds for exact symplectic
maps, then the symplectic map f is smoothed using the operator Tt of Theorem 2. Moreover,
rather than assuming the existence of an analytic solution of (76) we assume the existence of a
finitely differentiable initial approximate solution of (76) and give conditions guaranteeing the
existence of an analytic solution, which is close to the approximated one in finitely differentiable
norms. This is achieved by using the estimates given in Theorem 2 and Proposition 34.

In this section we also prove the bootstrap of regularity of invariant tori with Diophantine
rotation vector for exact symplectic diffeomorphisms. To obtain the bootstrap of regularity first,
we prove the local uniqueness of finitely differentiable invariant tori for finitely differentiable
symplectic maps. We remark that the uniqueness result stated in Theorem 6 is the finitely
differentiable version of Theorem 2 in [dlLGJV05].

The local uniqueness and the bootstrap of regularity are stated in Theorem 6 and Theorem 7,
respectively. Theorem 6 and Theorem 7 are similar to Theorem 4 and Theorem 5 in [SZ89],
respectively. However, while the latter are stated and proved for Hamiltonian vector fields written
in a Lagrangian formalism, Theorem 6 and Theorem 7 are stated for symplectic maps that are
not neither written in action-angle variables nor perturbation of integrable ones, and proved using
the symplectic formalism rather than the Lagrangian one.

The existence of the operator Tt in Theorem 2, in the exact symplectic case, enables us to
obtain analytic approximate solutions of equation (76) close to a given finitely differentiable one.
This together with the uniqueness argument yield the bootstrap of regularity for solutions of (76).

Let U be either an open subset of R2n or Tn × U , with U ⊂ Rn. In addition to the notation
introduced in Section 2.1 we use the following notation. For each x ∈ U let J(x) : Tx U → Tx U
be linear isomorphism satisfying

Ω(x) (ξ, η) = ξ> · J(x) η , (78)

where · is the Euclidean scalar product on R2n. The average of a mapping K ∈ C0(Tn, U) is
defined by

avg {K}θ
def=
∫

Tn

K(θ) dθ.

Definition 41. Given γ > 0 and σ ≥ n, we define D(γ, σ) as the set of frequency vectors ω ∈ Tn

satisfying the Diophantine condition:

|` · ω −m| ≥ γ |`|−σ
1 ∀` ∈ Zn \ {0}, m ∈ Z,

where |`|1 = |`1|+ · · ·+ |`n|.

Definition 42. Given a symplectic diffeomorphism f ∈ Diff1(U) and ω ∈ D(γ, σ), let N denote
the set of functions in K ∈ C1(Tn, U) satisfying the following conditions:
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N1 There exists an n× n matrix-valued function N(θ) such that

N(θ)
(
DK(θ)> DK(θ)

)
= In,

where In is the n-dimensional identity matrix.

N2 The average of the matrix-valued function

A(θ) def= P (θ + ω)>
[
Df(K(θ))J(K(θ))−1P (θ) − J(K(θ + ω))−1P (θ + ω)

]
, (79)

with J defined in (78) and
P (θ) def= DK(θ) N(θ) ,

is non-singular.

By the Rank Theorem, Condition N1 guarantees that dim K(Tn) = n. For the KAM theo-
rems 4 and 5, the main non-degeneracy condition is N2, which is a twist condition. Note that
N1 only depends on K whereas N2 depends on both K and f .

From now on we assume that Ω = dα is analytic exact symplectic form as in Theorem 2. Let
J be the isomorphism defined by (78), and let J−1 denote its inverse. The following Theorem 4
is the main theorem from [dlLGJV05].

Theorem 4. Let U be either a compensated open domain in R2n or Tn × U , with U ⊂ Rn a
compensated open domain. Let f be an exact symplectic diffeomorphism on U and ω ∈ D(γ, σ),
for some γ > 0 and σ > n. Assume that the following hypotheses hold:

A1. K ∈ N ∩A
(
Tn + ρ,C1

)
(see Definition 42 and Definition 4).

A2. The map f is real analytic and it can be holomorphically extended to B, a complex neighbour-
hood of K (Tn + ρ), such that dist (K (Tn + ρ) , ∂B) > η > 0. Furthermore, |f |C2(B) < ∞.

A3. |J |C1(B) ,
∣∣ J−1

∣∣
C1(B)

, |α|C2(B) < ∞

Then, there exists a constant c > 0 depending on σ, n, |f |C2(B), |α|C2(B), |J |C1(B),
∣∣J−1

∣∣
C1(B)

,

|DK|C0(Tn+ρ), |N |C0(Tn+ρ),
∣∣∣(avg {A}θ)

−1
∣∣∣ (where N and A are as in Definition 42) such that, if

c γ−4 ρ− 4 σ |F (f,K)|C0(Tn+ρ) < min(1 , η),

then there exists K∗ ∈ N ∩A
(
Tn + ρ/2, C1

)
such that F (f,K∗) = 0. Moreover,

|K∗ −K|C0(Tn+ρ/2) ≤ c γ−2 ρ−2σ |F (f,K) |C0(Tn+ρ) , (80)

and
|DK∗ −DK|C0(Tn+ρ/2) ≤ c γ−2 ρ−(2σ+1) |F (f,K) |C0(Tn+ρ) .

The finitely differentiable version of Theorem 4 we present here is the following.

Theorem 5. Let ω ∈ D(γ, σ), for some γ > 0 and σ > n. Let m ∈ N, ` /∈ N be such that
4 σ + 3 < ` < m. Let U be either a compensated open domain in R2n with Cm-boundary, or
Tn × U , with U ⊂ Rn a compensated open domain with Cm-boundary. Let f ∈ Diff`(U) be an
exact symplectic diffeomorphism and let K ∈ C`(Tn, U) be a parameterization of an n-dimensional
torus. Assume that the following hypotheses hold:

S1. |DK|C0(Tn) < β and K(Tn) ⊂ U, with η
def= 2−1 dist (K(Tn), ∂U) > 0.

S2. K ∈ N (see Definition 42).
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S3. Ω = dα is real analytic on U + ρ, and |J |C`(U+ρ) , |α|C`(U+ρ) < ζ , and
∣∣J−1

∣∣
C1(U+ρ)

< MΩ.
for some ρ, ζ > 0.

Then, given 4σ+2 < µ < `−1 there exists two positive constants c and ρ∗ < 1, depending on µ, n,
`, σ, ζ, β, MΩ, |f |C`(U), |K|C`(Tn), |N |C0(Tn), and

∣∣∣(avg {A}θ)
−1
∣∣∣, such that: given 0 < ρ1 ≤ ρ∗,

if µ− 2σ /∈ Z and
c γ−4 ρ

−(4 σ+1)
1 |F (f,K)|C0(Tn) ≤ min(1, κβ, η) , (81)

where κ = κ(n, `, 1) is as in Proposition 20, then there exists a parameterization of an n-dimen-
sional torus, K∗ ∈ Cµ−(2σ+1)(Tn, U) such that F (f,K∗) = 0 and

|K −K∗|C ν(Tn) ≤ c̃ γ−2 ρ
−(2σ+ν)
1

(
ρµ−1
1 + |F (f,K)|C0(Tn)

)
, ∀ 0 ≤ ν < µ− (2σ + 1) ,

where F is as in (77) and c̃ is a constant depending on the same quantities as c.

Remark 43. Let f and K be as in Theorem 5. Notice that since |f |C`(U) and |K|C`(Tn) are
bounded we have that |F (f,K)|C`(Tn) is also bounded. If moreover assumption (81) holds then
there is a constant κ such that

|F (f,K)|`C`(Tn) ≤ κ , and |F (f,K)|C0(Tn) ≤ κ ρ4σ+1
1 .

Thus, by using the interpolation estimates [dlLO99, Zeh75], we have for any 0 ≤ s ≤ `

|F (f,K)|Cs(Tn) ≤ κ |F (f,K)|sC`(Tn) |F (f,K)|1−s/`
C0(Tn)

≤ κ̂ ρ
(4σ+1)(1−s/`)
1 .

Hence assumption (81) implies that all the intermediate norms |F (f,K)|Cs(Tn) with 0 ≤ s < `
are also small. We therefore have that hypothesis (81) is equivalent to assume the Cs-norms of
the function error to be small, for 0 ≤ s < `.

The local uniqueness is stated in the following

Theorem 6. Let ω ∈ D(γ, σ) for some γ > 0 and σ > n. Let ` > 2 σ be such that `, `− 2σ /∈ Z.
Let f ∈ Diff`+2(U) be a symplectic diffeomorphism. Assume that (f,K1) and (f,K2) satisfy (76),
with K1,K2 ∈ C`+1(Tn, U) satisfying N1 and N2 in Definition 42. Then, there exists a constant
κ, depending on n,

∣∣J−1
∣∣
C0(U)

, |f |C`+2(U) |K2|C`+1(Tn), |K1|C`+1(Tn), and |N2|C0, with N2 defined
as in N1 in Definition 42 by replacing K with K2, such that if

κ γ−2 |K1 −K2|C`(Tn) < 1

then K1 ◦Rθ̂ = K2 on Tn, for some constant θ̂ ∈ Rn.

The bootstrap of regularity is stated in the following

Theorem 7. Let ω ∈ D(γ, σ), for some γ > 0 and σ > n and let % > 0. Let 4 σ + 3 < `1 < m,
with m ∈ N and `1 /∈ N. Let U be as in Theorem 5. Let (K, f) be a solution of (76), with
f ∈ Diff`1(U) an exact symplectic diffeomorphism and K ∈ C`1(Tn, U) satisfying N1 and N2 in
Definition 42. Let ` ∈ [ `1,m) be not an integer and assume that f ∈ Diff`(U), and that hypotheses
S1-S3 in Theorem 5 hold (replacing ρ with % in S3). Then, for any 4σ + 2 < µ < `− 1 satisfying
µ− (2 σ + 1) /∈ Z we have that K ∈ Cµ−(2σ+1)(Tn). Moreover if m = ∞ and f ∈ Diff∞(U) then
K ∈ C∞(Tn, U). Furthermore, if f ∈ A(U + %,C`1), then K ∈ A(Tn, C1).
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3.1 Existence (Proof of Theorem 5)

Throughout this section we assume that the hypotheses of Theorem 5 hold. As we already
mentioned, the proof of Theorem 5 given here is based on Moser’s technique of analytic smooth-
ing [Mos66, Zeh75]. What we do is the following:

Step 1: Obtain an analytic approximate solution (f1,K1) of (76), with f1 exact symplectic map
and K1 satisfying properties N1-N2 of Definition 42.

Step 2: Apply Moser’s smoothing technique and Theorem 4 to construct a sequence of analytic
solutions of (76) converging to a finitely differentiable solution (f,K∗). More concretely,
starting with (f1,K1), we assume that we have computed (fm,Km) an analytic solution
of (76) and verify that, if Tt is as in Theorem 2 then, for a suitable tm, (Ttm [f ],Km) is an the
approximate solution of (76) that satisfies the hypotheses of Theorem 4, so that one obtains
a new analytic solution (fm+1,Km+1) of (76), with fm+1 = Ttm [f ]. The convergence of the
method is obtain by using (80) in Theorem 4.

In order perform Step 1 we use pairs of functions of the form (Tt[f ], St[K]), where Tt is as in
Theorem 2, and St is as in Definition 6. Notice that since St takes periodic functions into periodic
functions then St[K] ∈ A

(
Tn + t−1, C1

)
is an analytic parameterization of an n-dimensional torus

that is close to K (see Remark 8).
To prove that St[K] satisfies properties N1-N2 of Definition 42, since condition N2 in Defini-

tion 42 depends on both the parameterization and the map, it is necessary to fix the constants
appearing in Theorem 2 and verify that St[K]

(
Tn + t−1

)
belongs to the domain of Tt[f ]. This is

done in the following

Lemma 44. Let K ∈ C`(Tn, U) satisfy hypothesis S1 of Theorem 5. Let κ be as in Proposition 20,
define r

def= κ β, then
|DSt[K]|C0(Tn+t−1) < r , for all t ≥ 1. (82)

Moreover, if Ut is defined by (7), then there exists t6 ≥ 1, depending on n, `, |K|`, and η such
that for all t > t6, St[K](Tn) ⊂ Ut, and

|St[K]−K |C0(Tn) <
1
2

η. (83)

Furthermore, if 2 < µ < ` − 1 is given, let t∗ = t∗(d, `, V, 2 r, µ, |f |C`(U)),MΩ , ζ), be as in
Theorem 2, then for all t ≥ max(t∗, t6), the components of the symplectic map Tt[f ] belong to
A(Ut + 2 r t−1, C 2) and properties T0-T7 of Theorem 2 hold.

Proof. Part 2 of Proposition 20 implies (82), from which we have

|Im (St[K])|C0(Tn+t−1) ≤ t−1 |DSt[K]|C0(Tn+t−1) ≤ r t−1.

Let t6 > 1 be sufficiently large so that for any t ≥ t6 the following holds:

max
(
κ |K|C`(Tn) t−`, t−1

)
< 2−1 η ,

then part 1 of Proposition 20 implies (83). So we have St[K]
(
Tn + t−1

)
⊂ Ut + r t−1 . Now apply

Theorem 2 to the constants C = 2r, and β = |f |C`(U).

Now we prove that, for t sufficiently large, St[K] satisfies N1-N2 of Definition 42.

Lemma 45. Let r and t6 be as in Lemma 44, and let 2 < µ < ` − 1 be fixed. Assume that
K ∈ C`(Tn, U) satisfies the hypothesis of Theorem 5 and let N and A be as in Definition 42.
Then, there exists t7 ≥ t6, depending on n, `, 2 r, µ, η, MΩ, |K|C`(Td), |N |C0(Td),

∣∣∣avg {A}−1
θ

∣∣∣,
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|f |C`(B) and Mf , with Mf as in Theorem 2, such that St[K] ∈ A
(
Tn + t−1, C1

)
∩ N , for all

t ≥ t7. Moreover, if

Nt(θ)
def=
(
DSt[K](θ)>DSt[K](θ)

)−1

and

At(θ)
def= Pt(θ + ω)>

[
DTt[f ](St[K](θ))J(St[K](θ))−1Pt(θ) − J(St[K](θ + ω))−1Pt(θ + ω)

]
where Pt(θ)

def= St[DK](θ) Nt(θ), then the following hold

|Nt|C0(Tn+t−1) ≤ 2 |N |C0(Tn)

(
1 + κ M̂K,f |N |C0(Tn) t−1

)
, (84)

and ∣∣∣avg {At}−1
θ

∣∣∣ ≤ ∣∣∣avg {A}−1
θ

∣∣∣ (1 + κ M̂K,f

∣∣∣avg {A}−1
θ

∣∣∣ t−µ+2
)

,

where κ is a constant depending on n and ` and M̂K,f depends on |K|C`(Tn), |N |C0(Tn), |f |C`(B)

and Mf .

Proof. Notice that the conditions N1-N2 in Definition 42 deal with invertibility of matrices,
hence Lemma 45 is a consequence of the openness of the invertibility of matrices. In what follows
we obtain explicit estimates for the size of t. Performing some simple computations and using
Proposition 20 one has∣∣∣DSt[K](θ)>DSt[K](θ)−N(θ)−1

∣∣∣
C0(Tn)

≤ κ |K|2C`(Tn) t−`+1 .

Hence if t is sufficiently large such that

κ |K|2C`(Tn) |N |C0(Tn) t−`+1 ≤ 1/2 ,

the Neuman’s series theorem implies that, for all θ ∈ Rd, the matrix DSt[K](θ)>DSt[K](θ) is
invertible and its inverse, denoted by Nt, satisfies

|Nt −N |C0(Tn) ≤ 2 κ |K|2C`(Tn) |N |
2
C0(Tn) t−`+1 ≤ |N |C0(Tn) . (85)

Now, let θ ∈ Rn + t−1, then part 1 of Lemma 30 implies, for t sufficiently large,

|DSt[K](θ)−DSt[K](Re (θ))| ≤
∣∣D2St[K]

∣∣
C0(Tn+t−1)

|Im (θ)| ≤ κ |K|C`(Tn) t−1 ,

κ is a constant depending on n, and `. So one obtains∣∣∣DSt[K]>(θ)DSt[K](θ)−N−1
t (Re(θ))

∣∣∣ ≤ κ |K|2C`(Tn) t−1 .

Then, if t is sufficiently large so that

2 κ |K|2C`(Tn) |N |C0(Tn) t−1 ≤ 1/2

we have from (85)
κ |K|2C`(Tn) |Nt|C0(Tn) t−1 ≤ 1/2 .

Hence, Neuman’s series theorem implies that the matrix DSt[K](θ)>DSt[K](θ) is invertible for
all θ ∈ Rn + t−1 and

|Nt|C0(Tn+t−1) ≤ |Nt|C0(Tn) + 2 |Nt|2C0(Tn) κ |K|2C`(Tn) t−1,

from which and (85) estimate (84) follows.
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It is clear that, for t sufficiently large, At is a perturbation of A defined in (79). In what follows
we give an estimation of the size of |At −A|C0(Tn). Let P (θ) = DK(θ)N(θ), then using (85) and
Proposition 20 we have

|Pt − P |C0(Tn) ≤ κ MK t−`+1 ,

where κ depends on n and `, and MK is a constant depending on |K|C`(Tn) and |N |C0(Tn).
Moreover, performing some simple computations and using Theorem 2, Proposition 20, and the
Cauchy’s estimates we have

|DTt[f ](St[K](θ))−Df(K(θ)) |C0(Tn) ≤ κ t−µ+2 , (86)

where κ is a generic constant independent of t. Finally, using again Proposition 20 we have

|J ◦ St[K]− J ◦K|C0(Tn) ≤ |J |C1(U) κ |K|C`(Tn) t−`+2 , (87)

Performing some computations and using (3.1), (86), and (87) one gets

|At −A|C0(Tn) ≤ κ Mf,K t−µ+2 ,

where κ is a constant depending on n, `, C−1, κ, κ, |J |C1(U), and Mf,K is a constant depending
on |K|C`(Tn), |N |C0(Tn), |f |C`(B) and Mf . Hence the proof of Lemma 45 is finished by applying
Neuman’s series theorem and taking t is sufficiently large so that∣∣∣avg {A}−1

θ

∣∣∣ κ Mf,K t−µ+2 ≤ 1/2 .

From lemmas 44 and 45 we have that, for t sufficiently large, (Tt[f ], St[K]) is a candidate
for an analytic approximate solution of equation (76). In the following lemma we summarize the
results of lemmas 44 and 45 and give an estimate of |F (Tt[f ], St[K]) |C0(Tn+t−1).

Lemma 46. Let t7 be as in Lemma 45, and let 2 < µ < ` − 1. Assume that K ∈ C`(Tn),
f ∈ Diff`(U) and that hypothesis of Theorem 5 hold. Then there exists t8 ≥ t7, depending on n, `,
β, µ, ζ, MΩ, η, |K|C`(Td),

∣∣∣avg {A}−1
θ

∣∣∣, |N |C0(Tn), |f |C`(U), and Mf , with Mf as in Theorem 2,
such that for all t ≥ t8 the following hold

1. St[K] ∈ A
(
Tn + t−1, C1

)
, and |DSt[K]|C0(Tn+t−1) ≤ r, r = r(n, β) as in Lemma 44.

2. St[K](Tn) ⊂ Ut, with |St[K]−K|C0(Tn) < η/2 .

3. Tt[f ] ∈ A(Ut + 2 r t−1, C2) with |Tt[f ]|C2(Ut+(2 r t−1)) ≤ κ Mf .

4. St[K] ∈ N and if Nt and At are as in Lemma 45, then

|Nt|C0(Tn+t−1) ≤ 3 |N |C0 ,
∣∣∣avg {At}−1

θ

∣∣∣ ≤ 3
2

∣∣∣avg {A}−1
θ

∣∣∣ .

5. There is a constant κ, depending on n, `, C , µ, MΩ, and |Df |C0(U) such that

|F (Tt[f ], St[K])|C0(Tn+t−1) ≤ κ M̂K,f t−µ+1 + κ |F (f,K)|C0(Tn) ,

where
M̂K,f = max

(
Mf , |f |C`(U)

(
1 + |K|µ

C`(Tn)
+ |K|C`(Tn)

))
,

with Mf as in Theorem 2.
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Proof. Parts 1, 2 and 3 are stated in Lemma 44. Part 4 is consequence of Lemma 45. Part 5 is a
consequence of property T3 in Theorem 2, Proposition 34, and part 2 in Proposition 20. Indeed,
let t2 be as in Proposition 34, and let t∗ and {Tt}t≥t∗ be as in Lemma 44. Then part 5 follows by
taking t8 = max(t2, t∗, t7) and using the following equality

F (Tt[f ], St[K]) = {(Tt[f ]− St[f ]) ◦ St[K]}+ {St[f ] ◦ St[K]− St[f ◦K]}+ St[F (f,K)] .

Now we give the sufficient conditions to have an iterative scheme to construct a sequence of
analytic solutions (fj ,K

∗
j ) of equation (76)

Lemma 47. Let r = r(n, β) be as in Lemma 44. Let 2 < µ < ` − 1 be given and assume that
for fixed m ≥ 1 there is a τm ≥ 1 such that (fm,Km) = (Tτm [f ], Sτm [K]), satisfies the following
conditions:

A1(m) Km ∈ A
(
Tn + ρm, C1

)
, and |DKm|C0(Tn+ρm) ≤ rm, with ρm

def= τ−1
m and rm = r

m−1∑
j=0

2−j.

A2(m) Km(Tn) ⊂ Uτm, with |Km −K|C0(Tn) < ηm where ηm
def= η

m∑
j=1

2−j

A3(m) fm ∈ A
(

Uτm + (2 rm ρm), C 2
)

with | fm |C 2(Uτm+2 rm ρm) ≤ κ Mf .

A4(m) If Nm and Am are defined as in Lemma 45, by replacing St[K] with Km, then

|Nm|C0(Tn+ρm
) ≤ 2 |N |C0(Tn)

m∏
j=1

(
1 + 2−j

)
,

∣∣∣avg {Am}−1
θ

∣∣∣ ≤ ∣∣∣avg {A}−1
θ

∣∣∣ m∏
j=1

(
1 + 2−j

)
,

where N and A are as in Definition 42.

Then there exists two constants λ̃ and λ, depending on σ, n, η, MΩ, |f |C`(U), |K|C`(Tn), |N |C0(Tn),∣∣∣(avg {A}θ)
−1
∣∣∣, such that, if

γ−4 λ̃ ρ− (4σ+1)
m |F (fm,Km)|C0(Tn+ρm) < min(1 , r, η), (88)

then there exists a parameterization Km+1 ∈ A
(
Tn + ρm+1, C

1
)
∩ N , with ρm+1 = ρm/2, such

that F (fm,Km+1) = 0,

|Km+1 −Km|C0(Tn+ρm+1) ≤ γ−2 λ̃ ρ−2 σ
m |F (fm,Km)|C0(Tn+ρm) . (89)

and
|DKm+1 −DKm|C0(Tn+ρm+1) ≤ λ̃ γ−2 ρ−(2 σ+1)

m |F (fm,Km)|C0(Tn+ρm) . (90)

Furthermore, if fm+1
def= T2 τm [f ] and

2m+1λ
(
ρµ−1

m + γ−2 ρ−(2σ+1)
m |F (fm,Km)|C0(Tn+ρm)

)
< min(1, r, η), (91)

then (fm+1,Km+1) satisfies properties A1(m+1)-A4(m+1) and the following estimate holds:

|F (fm+1,Km+1)|C0(Tn+ρm+1) ≤ κ Mf ρµ−1
m , (92)

where κ and Mf are as in Theorem 2.
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Proof. Properties A1(m)-A4(m) and Theorem 4 imply the existence of a constant λm depending
on σ, n, γ−4, ζ, MΩ, |fm|C2(Uτm+(2 rm ρm) ), |DKm|C0(Tn+ρm), |Nm|C0(Tn+ρm),∣∣∣(avg {Am}θ)

−1
∣∣∣ such that, if

γ−4 λm ρ− (4σ+1)
m |F (fm,Km)|C0(Tn+ρm) < min(1 , rm), (93)

then there is a parameterization Km+1 ∈ A
(
ρm/2, C1

)
∩ N such that F (fm,Km+1) = 0,

|Km+1 −Km|C0(Tn+ρm+1) ≤ λm γ−2 ρ−2 σ
m |F (fm,Km)|C0(Tn+ρm) ,

and
|DKm+1 −DKm|C0(Tn+ρm+1) ≤ λm γ−2 ρ−(2 σ+1)

m |F (fm,Km)|C0(Tn+ρm) ,

It turns out that λm depends in a polynomial way of the following quantities (see Remark 15
in [dlLGJV05]):

|fm|C2(Uτm+(2 rm ρm)) , |DKm|C0(Tn+ρm) , |Nm|C0(Tn+ρm) ,
∣∣∣(avg {Am}θ)

−1
∣∣∣ . (94)

Let λ̃ be the constant obtained by replacing in the definition of λ̃m the quantities in (94), respec-
tively, by

κ Mf , 2 r, 2 e |N |C0(Tn) , e
∣∣∣(avg {A}θ)

−1
∣∣∣ .

Assume that
λ̃ γ−4 ρ− (4σ+1)

m |F (fm,Km)|C0(Tn+ρm) < min(1 , r, η),

then using the estimates in A2(m) and A3(m) and r < rm < 2 r, we have that (93) holds. In
particular estimates (89) and (90) hold. Now we prove properties A(m + 1). First from (90) we
have that if

2m λ̃ γ−2 ρ−(2 σ+1)
m |F (fm,Km)|C0(Tn+ρm) < r ,

then

|DKm+1|C0(Tn+ρm+1) ≤ rm + λ̃ γ−2 ρ−2 σ+1
m |F (fm,Km)|C0(Tn+ρm) ≤ rm + 2−m r .

Hence A1(m+1) holds. Property A2(m+1) follows from (89) by assuming the following estimate

2m+1 γ−2 λ̃ ρ−2σ
m |F (fm,Km)|C0(Tn+ρm) < η .

Notice that A1(m+1) and A2(m+1) imply

Km+1 (Tn + ρm+1) ⊂ Uτm+1 + 2 r ρm ,

so the composition fm+1 ◦Km+1 is well defined on Tn + ρm+1. Property A3(m+1) follows from
Theorem 2. Now we prove A4(m+1). Using |DKm| ≤ rm < 2 r and (90) we have∣∣∣DKm+1(θ)>DKm+1(θ)−N−1

n

∣∣∣
C0(Tn+ρm+1)

≤ 2 (2 r + 1) λ̃ γ−2 ρ−(2 σ+1)
m |F (fm,Km)|C0(Tn+ρm) ,

then if λ̂
def= λ̃ 23 e (2 r + 1) |N |C0(Tn) and

2m+1 γ−2 λ̂ ρ−(2 σ+1)
m |F (fm,Km)|C0(Tn+ρm) ≤ 1 , (95)

then we have that Nm+1 exist and

|Nm+1 −Nm|C0(Tn+ρm+1) ≤ |Nm|C0(Tn+ρm) λ̂ γ−2 ρ−(2 σ+1)
m |F (fm.Km)|C0(Tn+ρm) , (96)
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where we have used |Nm|C0(Tn+ρm) < 2 e |N |C0(Tn), which follows from A4(m). Then using (95)
we have

|Nm+1|C0(Tn+ρm+1) ≤ |Nm|C0(Tn+ρm) + |Nm+1 −Nm|C0(Tn+ρm+1)

≤ |Nm|C0(Tn+ρm)

(
1 + 2−(m+1)

)
.

From which the first estimate in A4(m+1) holds, let us now prove the second one. Define

Pm+1
def= DKm+1 Nm+1,

then estimates (90) and (96) imply

|Pm+1 − Pm|C0(Tn+ρm+1) ≤ λ̂′ γ−2 ρ−2(σ+1)
m |F (fm,Km)| , (97)

and ∣∣J(Km+1)−1 − J(Km)−1
∣∣
C0(Tn+ρm+1)

≤ λ̂′ γ−2 ρ−2σ
m |F (fm,Km)| , (98)

where λ̂′ depends on r, |N |C0(Tn),
∣∣J−1

∣∣
C1(U)

, λ̃ and λ̂. Moreover, using property T6 of Theorem 2
we have

|fm+1 − fm|C0(U+2 r ρm+1) ≤ κ Mf ρµ−1
m . (99)

From estimates (89) and (99) and property T4 of Theorem 2 we have

|Dfm+1(Km+1(θ))−Dfm(Km(θ))|C0(Tn) ≤
˜̂
λ
(
ρµ−2

m + γ−2 ρ−(2σ+1)
m |F (fm,Km)|C0(Tn+ρm)

)
(100)

where we have used the Cauchy’s estimates and

˜̂
λ

def= max
(
2 κ Mf , κ | f |C0(U) (2 r )−1 λ̃

)
.

Performing some computations and using (97), (98), and (100) we have that there exists a constant
λ̄, depending on σ, n, γ−4, η, MΩ, µ, |f |C`(U), β, |N |C0(Tn),

∣∣∣avg {A}−1
θ

∣∣∣, and Mf , such that

|Am+1 −Am |C0(Tn) ≤ λ̄
(
ρµ−2

m + γ−2 ρ−(2σ+1)
m |F (fm,Km)|C0(Tn+ρm)

)
.

From which we have that if λ
def= λ̄

∣∣∣avg {A}−1
θ

∣∣∣ e and

2m+1 λ
(
ρµ−2

m + γ−2 ρ−(2σ+1)
m |F (fm,Km)|C0(Tn+ρm)

)
≤ 1 ,

then, since
∣∣∣avg {Am}−1

θ

∣∣∣ ≤ ∣∣∣avg {A}−1
θ

∣∣∣ e (which follows from A4(m)), we have that avg {Am+1}θ

is invertible and ∣∣∣avg {Am+1}−1
θ

∣∣∣ ≤ avg {Am+1}θ

(
1 + 2−(m+1)

)
,

this proves A4(m+1). Finally using the equality F (fm,Km+1) = 0 and (99) we have

|F (fm+1,Km+1) |C0(Tn+ρm+1) = | fm+1 ◦Km+1 − fm ◦Km+1 |C0(Tn+ρm+1) ≤ κ Mf ρµ−1
m .

Summarizing, from Lemma 46 we have that for t sufficiently large, (Tt[f ], St[K]) is an analytic
approximate invariant solution of equation (76), and Lemma 47 provides the iterative scheme to
construct a sequence of analytic solutions (fj ,Kj+1) of of equation (76). Hence we have all the
ingredients to apply the Moser’s smoothing technique to prove Theorem 5.
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Lemma 48. Assume that the hypothesis of Theorem 5 hold. Let 4σ + 2 < µ < `− 1, with ` /∈ N,
then there exist two positive constants c and ρ∗ < 1, depending µ, n, `, σ, ζ, β, Mω, |f |C`(U),

|K|C`(Tn), |N |C0(Tn), and
∣∣∣(avg {A}θ)

−1
∣∣∣, such that: such that: given 0 < ρ1 ≤ ρ∗, if

c γ−4 ρ
−(4 σ+1)
1 |F (f,K)|C0(Tn) ≤ min(1, r, η) , (101)

then there exist two sequences of functions {fm}m≥1 ⊂ A(U + 2 r ρm, C2), and {Km}m≥1 ⊂
A(Tn + ρm, C1), with ρm

def= 2−(m−1)ρ1, satisfying properties A(m) of Lemma 47, and such that
fm = Tτm [f ], with τm = ρ−1

m , and for m ≥ 2

|Km+1 −Km|C0(Tn+ρm+1) ≤ c̃ γ−2 ρµ−(2 σ+1)
m , (102)

where c̃ is a constant depending on the same variables as c. Furthermore if µ − (2σ + 1) /∈ N,
then the sequence {Km}m≥1 converges to a function K∗ ∈ Cµ− (2σ+1)(Tn, U) such that

F (f,K∗) = 0,

and
|K −K∗|C ν(Tn) ≤ M γ−2 ρ

−(2σ+ν)
1

(
ρµ−1
1 + |F (f,K)|C0(Tn)

)
,

for all 0 ≤ ν < µ− (2 σ + 1), where M is a constant depending on the same variables as c.

Proof. Let λ, λ̃ be as in Lemma 47, let Mf and κ be as in Theorem 2, and let κ and M̂K,f be as
in part 5 of Lemma 46, define

c
def= 2µ κ max(4 λ, λ̃) max(1, M̂K,f , κ Mf ) . (103)

Let t8 be as in Lemma 46 and let 0 < ρ∗ < 1 be sufficiently small such that ρ∗ ≤ t−1
8 and such

that following inequality holds:

c γ−4 (ρ∗)µ−(4σ+2) < min(1, r, η) . (104)

Let 0 < ρ1 < ρ∗ and define τ1
def= ρ−1

1 and f1
def= Tτ1 [f ], and K1

def= Sτ1 [K], then, because of Lemma 46,
(f1,K1) satisfies properties A1(1)-A4(1) of Lemma 47. Moreover if (101) holds, then part 5 of
Lemma 46, equation (103), and estimate (104) imply conditions (88) and (91) in Lemma 47
for m = 1. Therefore, if f2 = T2 τ1 [f ], Lemma 47 implies the existence of K2 ∈ A

(
ρ2, C

1
)
,

with ρ2 = ρ1/2, such that (f2,K2) satisfies properties A1(m+1)-A4(m+1) and estimate (92) in
Lemma 47 for m = 1. Moreover, estimate (89) and part 5 of Lemma 46 imply

|K2 −K1|C0(Tn+ρ2) < c γ−2 ρ−2σ
1

(
ρµ−1
1 + |F (f,K)|C0(Tn)

)
.

Now assume that, for m ≥ 2 we have (fm,Km) satisfying properties A1(m)-A4(m) and esti-
mate (92) in Lemma 47 for (m − 1). Performing some simple computations and using the defi-
nition of c in (103), and estimates (101), (104) one obtains that estimates (88) and (91) hold for
m. Hence Lemma 47 can be iterated to obtain an analytic invariant torus Km for fm. Moreover,
using estimates (89) and (92) one obtains (102).

The convergence of the sequence {Km}m≥1 follows from the Inverse Approximation Lemma
(see, for example, Lemma 2.2 in [Zeh75] or Lemma 6.14 in [BHS96]). Indeed, define um

def= Km−K1,
then the following properties hold:

1. um ∈ A
(
ρm, C1

)
, for all m ≥ 1 and u1 = 0.

2. sup
m≥2

ρ
−µ+(2σ+1)
m |um+1 − um|C0(Tn+ρm+1) ≤ c̃.
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3. If 0 ≤ ν < µ− (2σ + 1), then

|um|Cν(Tn) ≤
m−1∑
j=1

ρ ν
j+1 |Kj+1 −Kj |C0(Tn+ρj+1)

≤ c γ−2 2 ν ρ
−(ν+2 σ)
1

(
ρµ−1
1 + |F (f,K)|C0(Tn)

)
+ ĉ γ−2 ρ

µ−(2 σ+1)−ν
1 ,

where ĉ
def= c̃ 2µ−2σ

∞∑
j=2

2−( µ−(2σ+1)−α ) .

The Inverse Approximation Lemma implies the existence of a function u∗ ∈ Cµ−(2σ+1)(Tn, U)
such that

lim
m→∞

|u∗ − um|Cν(Tn) = 0 ,

for any ν < µ− (2 σ + 1). The proof of Lemma 48 is finished by defining K∗ def= u∗ + u1.

3.2 Local uniqueness (Proof of Theorem 6)

Throughout this section we assume that the hypotheses of Theorem 6 hold. The proof of The-
orem 6 we give here is rather standard, as it is proved in [Zeh75] it suffices to show that the
operator D2F (f,K), with F defined in (77), has a approximate left inverse for each f fixed.
In our context the existence of the approximate left inverse amounts to the uniqueness of the
solutions of the following linear equation

D2F (f,K)∆ = Df(K(θ))∆−∆ ◦Rω = g(θ) . (105)

The uniqueness of equation (105) depends on the arithmetic properties of ω because the so called
small divisors are involved. The following result is well known in KAM theory, for completeness
we state it here, for a proof see [Rüs75, Rüs76a, Rüs76b].

Lemma 49. Let ω ∈ D(γ, σ), for some γ > 0 and σ > n and let r > σ be not an integer. Let
h ∈ Cr(Tn) be such that avg {h}θ = 0, and assume that r − σ /∈ Z, then the linear difference
equation

u− u ◦Rω = h

has a unique zero average solution u ∈ Cr−σ(Tn). Moreover, the following holds:

|u|Cr−σ(Tn) ≤ κ γ−1 |h|Cσ(Tn) ,

where κ is a constant depending on n, σ, and r.

Now we prove the uniqueness of the solution of (105).

Lemma 50. Let ω ∈ D(γ, σ) for some γ > 0 and σ > n. Let ` > 2 σ be such that `, `−2σ /∈ Z. Let
f ∈ Diff`+1(U) be symplectic. Assume that (f,K) is a solution of (76), with K ∈ N ∩C`+1(Tn, U)
(see Definition 42). Then, for any g ∈ C`(Tn, U) satisfying

avg
{

DK(θ)>J(K(θ) )g(θ − ω)
}

θ
= 0 , (106)

the linear equation (105) has a unique solution ∆ ∈ C`−2σ(Tn), satisfying

avg {T (θ)∆(θ) }θ = 0 ,

where
T (θ) def= N(θ)>DK(θ)>

{
In − J(K)(θ))−1DK(θ)N(θ)DK(θ)>J(K(θ))

}
, (107)
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with N defined as in N1 in Definition 42. Furthermore, the following estimate holds:

|∆|C`−2σ(Tn) ≤ κ γ−2 |g|C`(Tn) ,

where κ is a constant depending on n, σ, `, |N |C`(Tn), |K|C`+1(Tn), and
∣∣∣avg {A}−1

θ

∣∣∣, with A

defined by (79).

Proof. Let M(θ) be the 2n× 2n-matrix valued function which first n-columns are the columns of
DK(θ) and the last n-columns are the columns of J(K(θ))−1DK(θ)N(θ):

M(θ) =
(

DK(θ) | J(K(θ))−1DK(θ)N(θ)
)

.

It is clear that the components of M belong to C`(Tn). In Section 4.2 of [dlLGJV05] it is proved
that if K is a parameterization of an invariant torus for the symplectic map f , then:

1. M is invertible with inverse given by

M(θ)−1 =
(

T (θ)
DK(θ)>J(K(θ))

)
.

2. If ∆ = M ξ, then in the variable ξ the linear equation (105) becomes

ξ1 − ξ1 ◦Rω = T (θ + ω) g(θ)−A(θ)ξ2

ξ2 − ξ2 ◦Rω = DK(θ + ω)>J(K(θ + ω)) g(θ) .
(108)

Notice that, by Lemma 49 and the assumption (106), there exists a unique zero average function
ξ̃2 satisfying

ξ̃2 − ξ̃2 ◦Rω = DK(θ + ω)>J(K(θ + ω)) g(θ) .

The proof of Lemma 50 is finished by using Lemma 49 to find a unique solution of the triangular
system (108) satisfying:

avg {ξ1}θ = 0

avg {ξ2}θ = avg {A}−1
θ avg

{
T (θ + ω) g(θ)−A(θ) ξ̃2(θ)

}
θ

.

Lemma 51. Let ω ∈ D(γ, σ), for some γ > 0 and σ > n. Let f ∈ Diff`+1(U) be symplectic.
Assume that (f,K1) and (f,K2) satisfy (76), with K1,K2 ∈ N ∩C`+1(Tn, U) (see Definition 42).
Then, there exists a constant κ, depending on n, `,

∣∣J−1
∣∣
C0(U)

, |K1|C2(Tn), |K2|C1(Tn) |N2|C0,
with N2 defined as in N1 in Definition 42 by replacing K with K2, such that if

κ |K1 −K2|C1(Tn) < 1 , (109)

then there exists θ0 ∈ Rn such that

avg {T2(θ) (K1 ◦Rθ0 −K2)}θ = 0 , (110)

where T2 is defined by replacing K with K2 in (107). Moreover, the following estimate holds:

|K1 ◦Rθ0 −K2|C`(Tn) ≤ κ̃ |K1 −K2|1−α
C0(Tn) + κ̃ |K1 −K2|C`(Tn) , (111)

where 0 ≤ α < 1 is such that ` − α ∈ N and κ̃ is a constant depending on the same variables as
κ and on |K1|C`+1(Tn)
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Proof. Lemma 51 is consequence of the Implicit Function Theorem. Indeed, let Mn×n(R) repre-
sent the space of n× n matrices with components in R. Define

Φ : Rn × C1(Tn) → Mn×n(R)

(x,K) −→ avg {T2 (K ◦Rx −K2) }θ ,

where T2 is defined by (107) by replacing K with K2. Notice that

Φ(0,K2) = 0
D1Φ(x,K) ∆x = avg {T2(θ) DK(θ + x) }θ ∆x .

Moreover, since K2(Tn) is Lagrangian [dlLGJV05], from the definition of T2 one easily verifies
that T2(θ) DK2(θ) = In, this implies

D1Φ(x,K) |(x,K)=(0,K2) = In .

Hence the Implicit Function Theorem guarantees the existence of a constant κ as in Lemma 51
such that if (109) holds, then there is a θ0 ∈ Rn satisfying (110) and such that

| θ0 | ≤ κ |Φ(0,K1) | ≤ κ |T2|C0(Tn) |K1 −K2|C0(Tn) . (112)

It is not difficult to prove the following estimate (see [dlLO99])

|K1 ◦Rθ0 −K1|C`(Tn) ≤ κ̃ |K1|C`+1(Tn) | θ0 |1−α , (113)

where 0 < α < 1 is such that `−α ∈ N. Finally, estimate (111) follows from (112) and (113).

The proof of Theorem 6 is concluded using Lemma 50, Lemma 51 and Taylor’s Theorem as
follows. Assume that |K1 −K2|C`(Tn) is sufficiently small such that Lemma 51 holds, let θ0 be as
in Lemma 51. Define

∆(θ) def= K1 ◦Rθ0 −K2 .

Using that (f,K1 ◦Rθ0) and (f,K2) satisfy (76) and Lemma 51 we have

D2F (f,K2) ∆ = R(K1 ◦Rθ0 ,K2) ,

avg {T2(θ) ∆(θ)}θ = 0 ,

where F is as in (77), T2 is as in Lemma 51, and

R(K1 ◦Rθ0 ,K2)(θ) = f ◦K1 ◦Rθ0 − f ◦K2(θ)−Df(K2(θ))∆(θ) .

Then, from the Taylor’s theorem and Lemma 50 we have the following estimate:

|∆|C`−2σ ≤ κ̂ γ−2 |R|C`(Tn)

≤ κ γ−2 |∆|C`(Tn) |∆|C`−2σ(Tn) ,

from which and (111) we have that if |K1 −K2|C`(Tn) is sufficiently small such that

κ γ−2 |∆|C`(Tn) < 1 ,

then ∆ = 0.
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3.3 Bootstrap of regularity (Proof of Theorem 7)

Theorem 7 is a consequence of Theorem 4, Theorem 6, and the fact that, near to a finitely
differentiable approximate solution (f,K) of (76) it is possible to obtain an analytic approximate
solution of the same equation by means of the operators St and Tt of Theorem 2. More precisely,
using Theorem 2 and Theorem 4 we prove that, under certain conditions, if (f,K) belongs to
either Diff`(U)× C`1(Tn, U) or A(U + %,C`1)× C`1(Tn, U), with ` and `1 as in Theorem 7, then
there exists a finitely differentiable parameterization of an n-dimensional torus K∗ such that: a)
(f,K) is a solution of (76), b) K∗ is close to K in certain norms, and c) K∗ has the wished
regularity. Then Theorem 7 follows from the local uniqueness result Theorem 6.

Lemma 52. Let γ, σ, ω, m, `1, and U be as in Theorem 7. Let (K, f) be a solution of (76)
with f ∈ Diff`(U) an exact symplectic diffeomorphism, and K ∈ C`1(Tn, U). Let ` ∈ [ `1,m) and
let f ∈ C`(U). Assume that hypothesis S1, S2, S3 (replacing ρ with % in S3) in Theorem 5 hold.
Then, for any 4 σ + 2 < µ < ` − 1, satisfying µ − (2σ + 1) /∈ N, there is positive constant c,
depending on µ, `, `1, σ, ζ, MΩ, |f |C`(U), |K|C`1 (Tn), |N |C0(Tn), and

∣∣∣(avg {A}θ)
−1
∣∣∣, such that

for any 0 < ρ < 1 satisfying
c γ−4 ρµ−(4σ+2) < min(1, β, η), (114)

there exists K∗ ∈ Cµ−2σ(Tn, U) satisfying N1 and N2 in Definition 42 and such that (f,K∗) is a
solution of (76). Moreover, for any 0 ≤ ν < µ− (2σ + 1) the following estimate holds:

|K∗ −K|Cν(Tn) ≤ κ γ−2 ρµ−(2σ+1+ν) .

for some positive constant κ.

Proof. The proof of Lemma 52 follows the same steps as the proof of Theorem 5 the only thing one
has to be careful is that f ∈ C`(U) and K ∈ C`1(Tn, U) (and not in C`(Tn, U)), hence we replace
` with `1 in the estimates of the norms involving the term St[K]. Moreover, the assumption
F (f,K) = 0, with F as in (77), simplifies many estimates.

Lemma 53. Let γ, σ, ω, m, `1, and U be as in Theorem 7. Let (K, f) be a solution of (76)
with f ∈ A(U + %,C`1), an exact symplectic diffeomorphism, and K ∈ C`1(Tn, U). Assume that
hypothesis S1, S2, S3 in Theorem 5 hold. Then, for any 4 σ < µ < `1−1, there is positive constant
c, depending on n, µ, `1, σ, ζ, %, β, MΩ, |f |C`1 (U+%), |K|C`1 (Tn), |N |C0(Tn), and

∣∣∣(avg {A}θ)
−1
∣∣∣,

such that for any 0 < ρ < 1 satisfying

c γ−4 ρµ−4σ < min(1, %, η) , (115)

there exists K∗ ∈ A(Tn + ρ/2, C1) satisfying N1 and N2 in Definition 42 and such that (f,K∗)
is a solution of (76). Moreover, for any 0 ≤ ν < µ− 2 σ, the following estimate holds:

|K∗ −K|Cν(Tn) ≤ κ
(
γ−2 ρµ−(2σ+ν) + ρ`1−ν

)
, (116)

for some positive constant κ.

Proof. We prove Lemma 53 applying again the smoothing technique. Since f is already analytic
we only smooth the parameterization K ∈ C`1(Tn, U) by using the smoothing operator St, defined
in Section 2.1. Let κ = κ(n, `1, 1) be as in Proposition 20, and assume that t is sufficiently large
so that

κ β t−`1 |K|C`1 (Tn) < min (%/2 , η/2) , (117)

then Proposition 20 implies St[K](Tn + t−1) ⊂ U + % , so that the composition f ◦ St[K] is well
defined on Tn + t−1. Now, write

f ◦ St[K]− St[K] ◦Rω = St[f ] ◦ St[K]− St[f ◦K] ,
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where we have used that (f,K) satisfies equation (76). Then, using Proposition 34 and Lemma 27
one has that for any 4σ < µ < `1, there exists a constant c̃, depending on n, `1, β, µ, |f |C`1 (U+%),
and |K|C`1 (Tn) such that

|f ◦ St[K]− St[K] ◦Rω|C0(Tn+t−1) ≤ c̃ t−µ .

Hence for t satisfying (117) (f, St[K]) is an approximate solution of equation (76), with error
bounded in (115). Moreover, it can be proved, as we did in Lemma 45, that for t sufficiently
large, St[K] satisfies N1 and N2 in Definition 42 and the estimates given in part 4 of Lemma 46.
Hence, applying Theorem 4 to the analytic approximate solution (f, St[K]) one has that there is
a positive constant c, depending on σ, n, β, µ, |f |C2(U+%), ζ, Mω, |K|C`1 (Tn , |N |C0(Tn+t−1), and∣∣∣(avg {A}θ)

−1
∣∣∣ such that, if ρ = t−1, with t is sufficiently large so that (115) and (117), then there

exists K∗ ∈ A(Tn + ρ/2, C1) satisfying such that

|K∗ −K|C0(Tn) ≤ ĉ
(
γ−2 ρµ−2σ + ρ`1

)
,

Estimate (116) follows from the Cauchy’s estimates.

Now Theorem 7 follows easily from the local uniqueness formulated in Theorem 6, Lemma 52,
and Lemma 53. Indeed, in the case that f ∈ Diff`(U) with ` ∈ [`1,m) − Z, let K∗ be as in
Lemma 52. Fix ν ∈ ( 2σ, µ− (2σ +2))∩ (2σ, `1−1) such that ν, ν−2σ /∈ Z, then f ∈ Diffν+2, and
K, K∗ ∈ Cν+1(Tn, U)∩N . Assume that in (114) ρ is sufficiently small such that Theorem 6 holds,
then K = K∗ ◦Tθ∗ , for some θ∗ ∈ Rn and hence K ∈ C`−2σ(Tn, U). The case f ∈ A(U + %,C`) is
proved similarly using Lemma 53 instead of Lemma 52 and fixing ν ∈ (2σ, µ− 2σ − 1) such that
ν, ν − 2σ /∈ Z and applying Lemma 53 and Theorem 6.
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