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Abstract

We consider convex combinations of finite-valued almost periodic
sequences (mainly substitution sequences) and put them as poten-
tials of one-dimensional tight-binding models. We prove that these
sequences are almost periodic. We call such combinations hybrid qua-
sicrystals and these studies are related to the minimality, under the
shift on both coordinates, of the product space of the respective (min-
imal) hulls. We observe a rich variety of behaviors on the quantum
dynamical transport ranging from localization to transport.

1 Introduction

The study of transport in one-dimensional aperiodic lattices may be modeled
by the nearest-neighbors tight-binding Hamiltonian (Schrödinger operator)
in l2(Z)

(Hψ)n = ψn+1 + ψn−1 + λVnψn,(1)

with λ > 0 and potentials V = (Vn)n∈Z generated by aperiodic sequences.
In many circumstances the potentials are real-valued functions of sequences
on a finite set A, called alphabet; these are models of one-dimensional qua-
sicrystals [2].

Quantum interferences may lead to localization of the solutions of the
corresponding Schrödinger equation

i
∂

∂t
ψ(t) = Hψ(t),

∗CRdO thanks the partial support by CNPq.
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as in case of (random) Bernoulli potentials [12], but also to ballistic motion,
mainly related to periodic potentials.

Among the characterizations of localization and transport we single out
the second moment of the position operator

m2(T ) :=
∞∑

n=−∞
|n − n0|2|ψn(T )|2,(2)

usually with initial condition concentrated on a single site n0. For a large
class of potentials the moment m2(T ) ≤ CT 2 (at least for T > 1) and if
m2(T ) ≈ CT 2 holds we have the definition of ballistic motion. Localization
will be characterized by a bounded function m2(T ) ≤ C, ∀T ; lack of lo-
calization is usually referred to as delocalization or transport. Half the way
between these extremes are the anomalous transport, that is,

m2(T ) ≈ CT β with 0 < β < 2,

which are usually accompanied by singular continuous spectrum of the oper-
ator H. Important examples of such anomalous behavior are the above cited
models of quasicrystals, among which the most prominent are the (primi-
tive) substitution sequences [2, 18], for instance, Fibonacci, Thue-Morse
and Period Doubling sequences. The Schrödinger operators whose poten-
tials are generated by these sequences have singular continuous spectrum of
zero Lebesgue measure (see [8] and references therein).

A widespread spectral point of view makes the association of singular
continuous spectrum with anomalous transport, absolutely continuous to
ballistic motion and point spectrum of the Schrödinger operator with local-
ization, even though there are known exceptions, namely of operators with
purely point spectra showing transport. Even rank one perturbation (a very
localized one) can exchange point and singular continuous spectra [20], and
the latter surely implies transport (any continuous spectrum does, as a con-
sequence of RAGE theorem). What about unlocalized perturbations, i.e.,
those spread over the whole lattice? Certainly this becomes a too huge class
of problems to be reasonably dealt with.

However, there is a special type of such perturbations we think it is worth
considering and may be of some (experimental) relevance in the near future.
A particular model of quasicrystal, as a substitution sequence, is an almost
periodic sequence that grows up from a seed (i.e., an initial condition) and
a specific “growing rule.” If one has control of the growing technique, one
could grow a quasicrystal in one direction following one such rule, and in a
perpendicular direction following another rule. This hybridization creates a
potential which is a linear (convex) combinations of the original ones. This
type of long range perturbations of the potentials can also be considered
from the theoretical point of view, the sequence spaces are two-dimensional
and have been considered before [21].
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The potentials we shall consider are constructed as follows. Given two
parent potentials v = (vn)n∈Z, u = (un)n∈Z and 0 ≤ κ ≤ 1, the hybrid
potential is

Iκ(v, u) := κv + (1 − κ)u = (κvn + (1 − κ)un)n∈Z .

Experience with random potentials indicates that if one of them is random
then this characteristic will prevail with respect to localization. If both
potentials are periodic, then the resulting one will also be periodic with
period given by their least common multiple. So, in these extreme cases
again, localization and ballistic motion, respectively, are persistent. Note
that the number of values a hybrid potential assumes is in general larger than
the number of values of each of its components; e.g., if both v, u take values
in {0, 1}, then Iκ(v, u) will generally assume all values in {0,κ, (1 − κ), 1}.

This work is an initial study on this proposal, and we will limit ourselves
to almost periodic potentials taking a finite number of values (notably, sub-
stitution sequences). We present theoretical results on minimality, and data
for the moment m2(T ) from numerical time evolution simulations.

Section 2 review briefly some aspects of finitely valued sequences. In
Section 3 we address the question about minimality of the product of min-
imal sets, giving a sufficient condition for it. In Section 4 we report some
outcomes of numerical simulations of the moment m2(T ) for the hybrid po-
tentials, closing in the final section with our concluding remarks.

2 Summary on Sequences and Substitutions

We denote by A∗ (resp. AZ) the sets of finite (resp. bi-infinite) words with
letters in the finite set A (called alphabet), which can be considered a subset
of the real numbers. The metric on AZ is

d(a, b) =

{
0, if ∀n ∈ Z, an = bn
1
2n , where n = min{|j| : aj &= bj}

.

A dynamics on this set is the (left) shift (σ(v))n = vn+1. Recall that a
sequence v ∈ AZ is almost periodic iff its hull (the bar indicates the closure
of the set)

Ω(v) := {σj(v) : j ∈ Z}

is minimal, that is, the hull of any sequence in Ω(v) coincides with Ω(v).
The set O(v) = {σj(v) : j ∈ Z} is the orbit of v. By Tychonov theorem AZ

is compact and so is every hull as above.
The minimality is an important property of the hull of (primitive) sub-

stitution sequences (see ahead), as well as the existence of a unique ergodic
measure, and up to now rigorous and numerical studies have revealed just
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one dynamical behavior in each minimal component (usually rigorous re-
sults are restricted to generic or full measure sets). So, as a first step in
the study of such new class of systems, in this work we address the problem
of minimality of the hull of hybrid sequences in case their respective parent
potentials are almost periodic. Setting a product metric, the dynamics with
respect to which one considers minimality, is on the product space of the
hulls of the two parent potentials, and is generated by the (natural) product
shift

σ(u, v)n = (un+1, vn+1).(3)

We use the same notation for the shift in two and one-dimensional sequences.
In order to investigate the minimality of the product spaces it turns out to
be important hybridizing not only of v and u, but also of elements of their
one-dimensional orbits; namely, to consider Iκ(v,σj(u)), for each j ∈ Z.

A finite word w is indexed a0a1 · · · a|w|−1, ai ∈ A, where |w| denotes the
length of w. Given a set of infinite words X, the language of X, L(X), is
the set of finite words occurring in some w ∈ X.

Let us describe some substitution rules which generate sequences of in-
terest for this work; details can be found in [2, 18]. Given a finite alphabet
A a substitution is a map ξ : A → A∗. Its iterations are defined by con-
catenation, that is, ξ(abc) := ξ(a)ξ(b)ξ(c), ξn+1(a) := ξ(ξn(a)), n ≥ 1. A
substitution is primitive if there exists k ∈ N so that for every a ∈ A the word
ξk(a) contains all letters of A. All substitutions in this work are primitive
(see [16] for some nonprimitive substitutions as potentials of Schrödinger
operators).

A fixed point of a substitution is a sequence u ∈ AN such that ξ(u) = u.
In order to exist, it must be the case that u0 is the first letter of ξ(u0). It
is known that if ξ is primitive, there is some l such that ξl has a fixed point
[18], so it is no loss to assume ξ has a fixed point.

Fibonacci (Fcc), Period Doubling (PD) and Thue-Morse (TM) sub-
stitution sequences are constructed with an alphabet of two letters {a, b}
through the rules

a )→ ab, b )→ a (Fcc), a )→ ab, b )→ ba (TM),

a )→ ab, b )→ aa (PD).

Beginning with a (the seed) and applying successively the substitution rules
(the growing rules), aperiodic sequences are obtained; e.g., the Thue-Morse
sequence is given by

abbabaabbaababba · · ·
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The paper folding (PF) sequence can be obtained with an alphabet of
four letters {1, 2, 3, 4}, the substitution

1 )→ 12, 2 )→ 32, 3 )→ 14, 4 )→ 34,

(the seed is 1) and then applying the literal map 1, 2 )→ a and 3, 4 )→ b.
We then use these substitution sequences to define our potentials V ; we

take Vn = −1 if the n-th letter of the sequence is a and Vn = 1 in case
it is b. There are standard ways of extending such substitution potentials
for negative values of n [5, 14]. We do not have to deal with this issue
in numerical simulations because we take a large finite sample of N sites,
using the initial wavefunction concentrated on position N/2, i.e., ψn(t =
0) = δN/2,n, n ≥ 0. This is the procedure we use to construct almost
periodic substitution potentials V .

It is known that the spectrum of the operator (1) with finite-valued ape-
riodic and almost periodic potentials has no absolutely continuous compo-
nent (primitive substitutions are included) [14, 15]; although from a rigorous
point of view the lack/presence of eigenvalues in cases of primitive substitu-
tion sequences is an open question, as already remarked, no strong evidence
of the presence of eigenvalues and localization was found yet.

Given a substitution ξ over a finite alphabet A, denote by Mξ its sub-
stitution matrix, i.e., Mξ = aw,w′ , where aw,w′ is the number of occurrences
of the letter w′ in ξ(w). ξ is a Pisot substitution if the dominant eigenvalue
of Mξ has modulus greater than one, while all the other eigenvalues have
absolute values strictly less than one. For example, the matrix substitution
for TM and Fcc substitution are

MTM =
(

1 1
1 1

)
and MFcc =

(
1 1
1 0

)
,

whose dominant eigenvalues are 2 and (1 +
√

5)/2, respectively. The dom-
inant eigenvalue of the PD substitution is 2, but it is not Pisot, since the
other eigenvalue is −1. PF is not Pisot either.

3 Minimality of Hybrid Hulls

Let v and u denote almost periodic sequences and Ω(v), Ω(u) be their re-
spective hulls. In the product space Ω(v) × Ω(u) we have the shift defined
by σ(x, y) = (σ(x),σ(y)). This dynamics does not imply that the product
space is minimal if the parent hulls Ω(v) and Ω(u) are minimal. The orbit
of a point (x, y) is O(x, y) = {σn(x, y) : n ∈ Z}. For each κ, there is a cor-
respondence between elements of this product space and hybrid sequences
Iκ(vl, ul), vl ∈ Ω(v), ul ∈ Ω(u). The potential is a real-valued function on
one such sequence. It is of interest to know whether the potential is almost-
periodic. We present in this section some results concerning minimality on
the product space of minimal subsets of AZ.
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Given ε > 0, the subset of integer numbers

{n ∈ Z : d(σn(x), x) < ε}

is called the set of ε-periods of x ∈ X ⊂ AZ. When X is minimal, the above
set is syndetic, i.e., there is an integer m such that any interval [n, n+m] ⊂ Z
intersects it. Recall that x is almost periodic iff that set is syndetic for all
ε > 0; in this case of finite-valued sequences this is equivalent to the fact
that every finite word in x appears with bounded gaps.

There is an alternative view of periods in terms of words, or equivalently
the cylinder sets generated by them. If a ∈ AZ, let Ra(w) denote the set of
integers n such that

anan+1 · · · an+|w|−1 = w.

Thus Ra(w) is the set of integers n for which w is a prefix of σna. It can be
ordered

Ra(w) = {αi, i ∈ Z : αi < αi+1}

for some arbitrary choice of α0. The minimality of X is equivalent to the
fact that for each finite word w that occurs in X there is an integer m(w) so
that αk+1 − αk < m(w), ∀k (i.e., w occurs with bounded gaps). Similarly,
for b ∈ Y ⊂ AZ, Y minimal, let Rb(u) = {βj , j ∈ Z : βj < βj+1} (the
notation should be clear).

In the product space X×Y we seek a description of the possible minimal
sets under the shift and metric

D((a, b), (c, d)) := dX(a, c) + dY (b, d), a, c ∈ X, b, d ∈ Y.

The existence of these minimal sets is a consequence of X × Y compactness
and Zorn’s Lemma.

Picture X × Y as the orbit closure of the union of (a,σn(b)), n ∈ Z.
If we represent the sequence a along a horizontal lattice (·, 0) ⊂ Z2 and
σr(b) along vertical lattices, each attached to the corresponding horizontal
position (r, 0), the orbit (a,σrb) is the left translation of the horizontal
line (·, 0). Analogously the orbit of (σk(a), b) may be followed by pulling
horizontally the line at (·, k).

We begin to address the question about minimality of O(a, b) by asking
if, as one sits at different positions along the horizontal axis, one sees the
same pair of finite words u, w upwards and to the right respectively, infinitely
often. While this certainly happens at each βn and αn alternatively upwards
and to the right, one is interested in these words appearing at the same time
and with bounded gaps.

Proposition 1. If X ⊂ AZ and Y ⊂ BZ are minimal sets, then X × Y
decomposes into finitely many minimal sets.

6



Proof. Suppose on the contrary that we had infinitely many invariant sets
Mi. Choose a point in each Mi and an open set Ui containing it but with no
intersection with Mj , j > i. Complete this cover with Vi = Mi \ Ui (recall
that Ui is also closed since we are dealing with product of cylinders). From
the cover of Ui and Vi’s we cannot extract a finite subcover, but X × Y is
compact.

Theorem 1.17 in [11] yields a point whose orbit closure is a minimal set.
We can show that this holds for every point in X × Y , whenever X and Y
are minimal sets.

Proposition 2. Suppose X, Y ⊂ AZ are minimal. Given a point z ∈ X×Y ,
its orbit closure O(z) is minimal.

Proof. Pick a point (a,σjb) from a minimal set M ⊂ X × Y . Then, for any
ε > 0, there exists a sequence (np)p∈N, np ↗ ∞, |np+1 − np| bounded such
that

D((a,σj(b)),σnp(a,σj(b))) < ε.

Now pick a point (σka,σlb) ∈ X × Y . For any np > h = max{|l − j|, |k|}

D(σk(a,σl−k(b)),σnp+k(a,σl−k(b))) =
dX(σka,σnp+ka) + dY (σlb,σnp+lb)
≤ 2kdX(a,σnpa) + 2|l−j|dY (σjb,σnp+jb) < 2h+1ε

and this can be made arbitrarily small. Since any z ∈ X ×Y belongs to the
closure of the orbit of some (σka,σlb), the proposition is proved.

This proves the assertion in the abstract

Corollary 1. If X, Y ⊂ AZ are minimal sets, then a sequence z ∈ X×Y is
almost periodic, as well as any sequence obtained from it by some real-valued
function defined on X × Y .

In what follows, unless stated on the contrary, we assume that X and
Y are minimal sets. Now the question is to characterize when the product
X × Y is minimal.

Proposition 3. Suppose there exists a sequence nk ↗ ∞ so that σnka → a∗

and {σnk+lb : nk}, for some l fixed, is dense in Y . Then X ×Y is minimal.

Proof. Our hypothesis asserts that (a∗, Y ) is contained in the orbit closure
O(a,σl(b)). Due to Proposition 2, it is enough to show that there is a dense
orbit in X × Y . Given (x, y) ∈ X × Y and ε > 0

D((σna,σn+lb), (x, y))
≤ D((σna,σn+l(b)), (σj(a∗), y)) + D((σj(a∗), y), (x, y)) .
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Since X is minimal, the second term may be made less than ε/3, and this
fixes j. Now

D((σna,σn+l(b)), (σj(a∗), y)) = d(σn(a),σj(a∗)) + d(σn+l(b), y).

We note that along the subsequence n = nk +j the first term is less than ε/3
for every nk sufficiently large. The set of points σnk+lb, nk > N , is dense in
Y , N a fixed arbitrary integer. Therefore, if z = σ−jy, there exists nk so that
d(σnk+lb, z) < ε′. Choosing ε′ small enough yields d(σnk+(j+l)b, y) < ε/3,
for some nk > N .

Therefore, if X × Y is not minimal, then for every convergent sequence
σnk(a) → a∗ one has that σnk+l(b) is not dense, for any l.

We know that the dynamics of a map on the torus Td: T (θ) = θ +
α (mod 1) is ergodic when α is rationally independent. By coding this
dynamics with a partition along each circle, we get a symbolic sequence
which is semi-conjugate to the original dynamics [1]. This is an example of
a product of two sequences spaces which is minimal. We say that (w, u) is
a prefix of (a, b) if w is a prefix of a and u is a prefix of b. It is easy to
characterize lack of minimality in terms of the language of X × Y . Indeed,
if L(a, b) denote the set of words of (a, b) ∈ X×Y , we have L(a, b) ⊂ L(a)×
L(b). Hence, if X × Y is not minimal, for each invariant set M ⊂ X × Y ,
there are words r ∈ L(a) and s ∈ L(b) such that (r, s) does not occur in M .

Remark 1. If a is an almost periodic sequence, note that L(a) = L(Ω(a)).

By hull of a substitution we understand the hull of any of its fixed points.
For primitive substitution sequences we get a simple criterion for minimality
of the product of their hulls. Recall that this case is our choice of proto-
types of hybrid quasicrystals. The argument comes from the proof of a
result Hansel in [13] related to Cobham’s Theorem (see also [7, 10]). Recall
that two positive numbers θ and ϑ are multiplicatively independent if the
equation θl = ϑk holds only for l = k = 0.

Theorem 1. Let ξ and ζ be two primitive substitutions on the (finite) al-
phabets A and B, respectively, and denote by X and Y their respective hulls
under the shift. If Mξ and Mζ have multiplicatively independent dominant
eigenvalues, then X × Y is minimal.

Proof. Let a = ξ(a) = (aj)j∈Z and b = ζ(b) = (bj)j∈Z be fixed points of
the corresponding substitutions and M = O(a, b). If X × Y is not minimal,
then M &= X × Y and there is a finite word (r, s) in X × Y that does not
occur in M . Thus, for any r0, r1, s0, s1, |r0| = |s0|, (r0rr1, s0ss1) does not
occur in the orbit of (a, b) either.

Since the substitutions are primitive, there is a k so that for all n ≥ k
the words ξn(w), w ∈ A, contain r, and ζn(u), u ∈ B, contain s. We choose
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r0 and r1 so that ξn(w) = r0rr1 above. Then s0 and s1 are chosen so that
ζn(u) contains s0ss1. We conclude that for any pair (w, u) ∈ A×B there is
some n0 (which may be taken big) so that

(ξn0(w), ζn0(u)) is not a prefix of σk(a,σ−lb) for every k and some l.(4)

Let θ and ϑ be the dominant eigenvalues of Mξ and Mζ respectively.
Consider the subsets of N

E(X) = {|ξ(a0a1 · · · am)|, m > 0},
E(Y ) = {|ζ(b0b1 · · · bm)|, m > 0}.

E(X) contains some of the positions where the words ξj(w), ∀j,∀w ∈ A,
occur in a. By Lemma 2 in [13], for large enough m, these positions are the
integer numbers closest to aθpj + b for some integer p > 0, and real a > 0, b.
The same holds for E(Y ), in that it contains integers closest to a′ϑqj +b′, for
some integer q > 0, and real a′ > 0, b′. But θp and ϑq are multiplicatively
independent, so the set of ratios

aθpj + b

a′ϑqj + b′

is dense in R+. Therefore, it must be the case that the intersections E(X)∩
E(Y ) and E(X) ∩ {E(Y ) − l}, for any l, are not empty. This contradicts
(4).

Remark 2. In the case of Pisot substitutions, the proof is simpler in that
the E(X) will contain integer numbers close to θpj, while E(Y ) contains
integers close to ϑqj, for integer j > 0. If θ and ϑ are multiplicatively
independent, the same argument follows.

Corollary 2. If ΩTM, ΩFcc and ΩPD are the hulls of the indicated substitu-
tion sequences, then the products ΩTM×ΩFcc and ΩPD×ΩFcc are minimal.

One can investigate whether some product spaces generated by constant
length substitutions are not minimal in a case by case analysis. For instance
if ξ denotes the Thue-Morse substitution and η is the period-doubling sub-
stitution, then contained in the above described X×Y , one has the following
subset Ω. Let B denote the four letter alphabet: {(a, a), (a, b), (b, a), (b, b)}.
On B we define the substitution

ζ(x, y) := (ξ(x), η(y)).

Explicitly, ζ(a, a) = (ab, ab) = (a, a)(b, b), ζ(a, b) = (ab, aa) = (a, a)(b, a),
ζ(b, a) = (ba, ab) = (b, a)(a, b) and ζ(b, b) = (ba, aa) = (b, a)(a, a). This sub-
stitution ζ can be shown to be primitive with two fixed points. The fixed
points belong to the same hull, since the languages of the fixed points of a
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primitive substitution coincide. In a four letter alphabet, Berstel has con-
sidered a substitution isomorphic to ζ when constructing square-free words
[3]. Let u = abbabaab · · · be one fixed point of the Thue-Morse substitution
and w = abaaabab · · · be the aperiodic fixed point of the period-doubling
substitution. We can see that Ω is an invariant minimal subset strictly con-
tained in X × Y by noticing that, while (abba, baaa) is a prefix of (u,σw),
it does not occur in any point of the orbit σj(u, w).

Similarly, we have analyzed the substitutions defined in an eight letter
alphabet by the product of period doubling and Rudin-Shapiro, and the
product of period doubling and paper-folding. These substitutions are semi-
primitive, in the sense of [5], see also [17] where semi-primitiveness is shown
for Rudin-Shapiro substitution. There is a sub-alphabet, with six letters,
in which they are primitive. These substitutions also have two fixed points.
The same argument on the location of the letter b in the period doubling
substitution leads to more than one invariant set in X × Y .

4 Numerics of the Moment

In this section we report some numerical simulations of the moment m2(T )
as a function of time T for some hybrid quasicrystals. Basis sets were usually
of size 214, and the time evolution was done by integrating the Schrödinger
equation using a sympletic integrator, as described in [6]. The emphasis will
be on hybrid substitution quasicrystals. It is expected that different minimal
sets present different behavior of m2(T ) and, with respect to numerics, this
is the working setting accepted here.

In these numerical experiments we have mostly fixed κ = 1/2, but ex-
ceptions are explicitly mentioned. We also set λ = 1 (preliminary results
indicate that the qualitative behavior is independent of λ &= 0). The guide
to the simulations was based on two properties used in Theorem 1, that is,
the multiplicatively independent dominant eigenvalues of their substitution
matrices.

First consider the hybridizing of TM and Fcc. The results are summa-
rized in Figure 1. Different elements of the product of the hulls are obtained
by keeping one sequence fixed and shifting the other before the combination.
Although both sequences individually generate transport (for TM see the
dashed line in Figure 2), when combined we have got only one behavior, in
accordance with Theorem 1 and Corollary 2, since the hybrid hull is minimal
in this case. This gives an example of numerical dynamical localization in
an almost periodic sequence. As a complement to such simulations we have
also considered κ = 0.2 and 0.8, and localization was always found; again
the minimality seems to be the important property.

Another possibility we have investigated is when the two involved substi-
tutions have multiplicative dependent dominant eigenvalues. The extreme
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Figure 1: The moment as function of time (log− log scale) for the com-
bination of TM and Fcc substitution sequences. The sequence Fcc was
kept fixed, while TM was shifted by 0, 1, · · · , 5 in order to explore different
elements of the product of their hulls.

case is for equal eigenvalues and we have selected this situation by hybridiz-
ing a substitution with shifts of itself. Figure 2 presents the results of these
simulations for TM sequence; transport was found in all cases, although
with different exponents β, indicating the presence of more than one min-
imal component in the product of the hulls; so there are different hybrid
quasicrystals in this case. In Figure 2 the dashed line is for the original TM
sequence. We have noted three distinct behaviors, with the dashed line as a
border between them: for some shift values the moment follows the dashed
line (β ≈ βTM = 1.8), others present a range of 0 < β < βTM values, while
others with near ballistic behavior (i.e., β > 1.9); that is, if β > βTM then
it is near the maximum possible value. We add that for the combination of
Fcc with itself similar results were obtained (not shown), that is, transport
prevails and different exponent values of β were found; however, without a
case near the ballistic motion.

The same procedure was applied to the PD substitution. If no shift is
applied to the sequences, then the original sequence is obtained and it cannot
be considered a hybrid quasicrystal, although it is embedded in the product
space. Except for this case, where βPD ≈ 1.78, all other simulations clearly
indicate a motion near the ballistic one (no figure is shown). It appears that
the self-product of period-doubling substitution contains only two minimal
components. We have also combined almost periodic substitution sequences
with periodic ones (with periods up to 32), and quite distinct behaviors were
found. A periodic sequence is also almost periodic and its hull has finitely
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Figure 2: The moment as function of time (log− log scale) for the combina-
tion of TM with itself shifted. The dashed line is for the original TM (no
shift at all).

many elements (as many as its period). We have hybridized PD, TM, PF
and Fcc with periodic sequences and, depending on the choice of the period,
for some cases we have found transport, with different values of β, but in
some other periods we got localization. Figure 3 shows some instances of
PF combined with periodic sequences. Such long range perturbations have
shown a rich range of possibilities.

5 Conclusions

In this work we considered hybrid quasicrystals, defined by the convex com-
bination two parent finitely valued almost periodic sequences, as new models
of one-dimensional quasicrystals. Hybridization of substitution sequences
was given special attention.

We investigated in some generality the minimality of product spaces
X × Y , when both X and Y are minimal, and Section 3 presented a suf-
ficient condition for primitive substitutions, which is the multiplicative in-
dependence of the eigenvalues of their substitution matrices. Minimality is
well known when the metric on the sequence space is given by the sup-norm
[19], but requires extra work in the setting of finitely valued sequences.

Some hybrid potentials were inserted into Schrödinger equation and the
time evolution of concentrated initial conditions numerically investigated;
the interest was in localization and transport in such structures. In order
to classify our numerical results we have adopted the pragmatic position
that elements in the same minimal set should generate similar time evolu-
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Figure 3: The moment as function of time (log− log scale) for the combina-
tion of PF with periodic sequences. The periods were 4 (dashed), 16 (line),
7 and 10 (localization).

tions. This was confirmed in cases our analytical results proved minimality
for the product of minimal hulls, and suggested the presence of more than
one minimal component in other cases. The figures presented in Section 4
illustrate these behaviors. The hybridization with periodic sequences was
also numerically considered.

The numerical results suggest a rigorous investigation of localization in
some hybrid quasicrystals. This could be accomplished by proving that the
Lyapounov exponent γ in these sequences is uniformly positive, that is, the
existence of c > 0 such that γ > c > 0.

To our knowledge, this result would be relevant since minimal sequences
generated by primitive substitutions have been shown to have zero Lya-
pounov exponent by the following reasoning. Recall that L(Ω) denotes the
language of the minimal subshift Ω, and let [v] be the cylinder set defined
by the word v:

[v] ≡ {ω ∈ Ω : ω1 · · ·ω|v| = v}

Let ν be a σ-invariant probability on (Ω,σ) and n ∈ N and Ln(Ω) the set of
words of length n occurring in Ω. Define

ην(n) = min{ν([w]) : w ∈ Ln(Ω)}

Boshernitzan’s condition, first considered in subshifts related to interval
exchange transformations [4], may be written as

lim sup
n→∞

nην(n) > 0 .
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It is proven that the family of ergodic operators (Hω)ω∈Ω, when Ω is a min-
imal subshift satisfying Boshernitzan’s condition, have zero Lyapounov ex-
ponent everywhere in their spectrum, which is a Cantor set of zero Lebesgue
measure [9].

We can see that Boshernitzan’s condition does not hold in hybrid qua-
sicrystals. For an almost periodic hybrid sequence z ∈ Ω, the complexity
pz(n), which counts the number of words of length n in z, is at least of the
order of n2, because the complexity of each component in a hybrid sequence
is at least of order n. On the other hand, the measure of any cylinder must
be inversely proportional to the complexity, because

pz(n) min
v∈Ln(Ω)

ν([v]) <
∑

v∈Ln(Ω)

ν([v]) = 1 .

for any probability ν.
This leaves one important theoretical question, to pursue the possibility

of Anderson localization in minimal hybrid quasicrystals.
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[18] M. Queffélec, Substitution Dynamical Systems – Spectral Analysis, Lect.
N. Math. 1294, Springer-Verlag, Berlin (1987).

[19] K. Petersen, Ergodic Theory , Cambridge Univ. Press, Cambridge
(1983).

[20] B. Simon and T. Wolf, Singular Continuous Spectrum under rank one
Perturbations and Localization for Random Hamiltonians, Commun.
Pure Appl. Math. 39: 75–90 (1986).

[21] L. Vuillon, Combinatoire des motifs d’une suite sturmienne bidimen-
sionnelle, Theor. Comp. Sc. 209: 261–285 (1998).

16


