
WEAK CONVERGENCE OF CD KERNELS AND

APPLICATIONS
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Abstract. We prove a general result on equality of the weak
limits of the zero counting measure, dνn, of orthogonal polynomials
(defined by a measure dµ) and 1

n
Kn(x, x) dµ(x). By combining this

with Máté–Nevai and Totik upper bounds on nλn(x), we prove
some general results on

∫

I
1
n
Kn(x, x) dµs → 0 for the singular part

of dµ and
∫

I
|ρE(x)− w(x)

n
Kn(x, x)| dx → 0, where ρE is the density

of the equilibrium measure and w(x) the density of dµ.

1. Introduction

We will discuss here orthogonal polynomials on the real line (OPRL)
and unit circle (OPUC) (see [30, 10, 9, 21, 22, 27]). dµ will denote a
measure on ∂D = {z ∈ C | |z| = 1} (positive but not necessarily
normalized), Φn(z, dµ) and ϕn(z, dµ) its monic and normalized orthog-
onal polynomials, and {αn}

∞
n=0 its Verblunsky coefficients determined

by (Φ∗
n(z) ≡ zn Φn(1/z̄))

Φn+1(z) = zΦn(z) − ᾱnΦ
∗
n(z) (1.1)

and

‖Φn‖L2(∂D,dµ) = µ(∂D)1/2
n−1
∏

j=0

(1 − |αj|
2)1/2 (1.2)

dµ will also denote a measure on R of compact support, Pn(x, dµ)
and pn(x, dµ) its monic and normalized orthogonal polynomials.
{an, bn}

∞
n=1 are its Jacobi parameters defined by

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x) (1.3)
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and

‖Pn‖L2(R,dµ) = µ(R)1/2(a1 . . . an) (1.4)

The CD kernel is defined by (some authors sum only to n− 1)

Kn(z, w) =

n
∑

j=0

ϕn(z)ϕn(w) (1.5)

Kn(x, y) =
n

∑

j=0

pj(x)pj(y) (1.6)

The Lebesgue decomposition

dµ(eiθ) = w(θ)
dθ

2π
+ dµs(e

iθ) (1.7)

dµ(x) = w(x) dx+ dµs(x) (1.8)

with dµs Lebesgue singular will enter.
To model the issues that concern us here, we recall two consequences

of the Szegő condition for OPUC, namely,
∫

log(w(θ))
dθ

2π
> −∞ (1.9)

Here are two central results:

Theorem 1.1 (Szegő, 1920 [29]). If the Szegő condition holds, then

lim
n→∞

∫

|ϕn(e
iθ)|2 dµs = 0 (1.10)

Remark. In distinction, if w = 0,
∫

|ϕn(e
iθ)|2 dµs ≡ 1.

Theorem 1.2 (Máté–Nevai–Totik [16]). If the Szegő condition holds,

then for a.e. θ,

w(θ)
1

n+ 1
Kn(e

iθ, eiθ) → 1 (1.11)

They state the result in an equivalent form involving the Christoffel
function

λn(z0) = inf

{
∫

|Qn(e
iθ)|2 dµ(θ)

∣

∣

∣

∣

degQn ≤ n; Qn(z0) = 1

}

(1.12)

The minimizer is

Qn(e
iθ) =

Kn(z0, e
iθ)

Kn(z0, z0)
(1.13)

λn(z0) = Kn(z0, z0)
−1 (1.14)
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and since (1.9) implies w(θ) > 0 for a.e. θ, (1.11) is equivalent to

nλn−1(e
iθ) → w(θ) (1.15)

It is also known under a global w(θ) > 0 condition that there are
similar results that come from what is called Rakhmanov theory (see
[22, Ch. 9] and references therein):

Theorem 1.3. If w(θ) > 0 for a.e. θ, then

(i) (1.10) holds.

(ii)

lim
n→∞

∫

∣

∣w(θ)|ϕn(e
iθ)|2 − 1

∣

∣

dθ

2π
= 0 (1.16)

Remark. (i) is due to Rakhmanov [18, 19]; (ii) is due to Máté, Nevai,
and Totik [15].

Theorems 1.1 and 1.2 are known to hold under a local Szegő condition
together with regularity in the sense of Stahl–Totik [28] (see also [24]
and below).

One of our goals here is to prove the first results of these genres with
neither a local Szegő condition nor a global a.c. condition. While we
focus on the OPRL case, for comparison with the above theorems, here
are our new results for OPUC:

Theorem 1.4. If I is an interval on ∂D so that

(a) w(θ) > 1 a.e. on I
(b) dµ is regular for ∂D, that is,

(ρ1 . . . ρn)
1/n → 1 (1.17)

then

(i)

∫

I

1

n + 1
Kn(e

iθ, eiθ) dµs(θ) → 0 (1.18)

(ii)

∫

I

∣

∣

∣

∣

1 − w(θ)
1

n+ 1
Kn(e

iθ, eiθ)

∣

∣

∣

∣

dθ

2π
→ 0 (1.19)

Remarks. 1. We do not have pointwise convergence (1.11), but do have
“one-half” of it, namely, for eiθ ∈ I,

lim inf w(θ)
1

n + 1
Kn(e

iθ, eiθ) → 1 (1.20)

2. One associates existence of limits of |ϕn|
2 dµ with Rakhmanov

which we only expect when dµ has support on all of ∂D or a single
interval of R. At best, with multiple intervals, one expects almost
periodicity of |ϕn|

2 dµ rather than existence of the limits. For this
reason, the Cesàro averages of Theorem 1.4 are quite natural.
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There is nothing sacred about ∂D—regularity is defined for any set,
and for both OPRL and OPUC, all we need is regularity plus w(θ) > 0
on an interval. We also have interesting new bounds on the density of
zeros when regularity fails—these generalize a theorem of Totik–Ullman
[33].

These new theorems do not involve tweaking the methods used to
prove Theorems 1.1–1.3, but a genuinely new technique (plus one gen-
eral method of Máté–Nevai used in the proof of Theorem 1.2). Our
point here is as much to emphasize this new technique as to prove the
results. The new technique is the following:

Theorem 1.5. Let dµ be a measure on R with bounded support or

a measure on ∂D. For R, let dνn be the normalized zero counting

measure for the OPRL and for ∂D for the zeros of the paraorthogonal

polynomials (POPUC). Let n(j) be a subsequence n(1) < n(2) < . . . .
Then

dνn(j)+1
w

−→ dν∞ ⇐⇒
1

n(j) + 1
Kn(j)(x, x) dµ(x)

w
−→ dν∞ (1.21)

Remarks. 1. We will discuss POPUC and related objects on ∂D in
Section 2.

2. As we will discuss, dνn(j) and dνn(j)+1 have the same limits.

In one sense, this result is more than twenty-five years old! It is
a restatement of the invariance of the density of states under change
of boundary conditions proven in this context first by Avron–Simon
[2]. But this invariance is certainly not usually stated in these terms.
We also note that for OPUC, I noted this result in my book (see [22,
Thm. 8.2]) but did not appreciate its importance.

We note that for OPUC, limits of 1
n+1

Kn(e
iθ, eiθ) dµ(θ) have been

studied by Golinskii–Khrushchev [12] without explicitly noting the con-
nection to CD kernels. Their interesting results are limited to the case
of OPUC and mainly to situations where the support is all of ∂D.

By itself, Theorem 1.4 is interesting (e.g., it could be used to stream-
line the proof of a slightly weaker version of Corollary 2 of Totik [31]),
but it is really powerful when used with the following collection of
results:

Theorem 1.6 (Máté–Nevai [14]). For any measure on ∂D,

lim sup nλn−1(e
iθ) ≤ w(θ) (1.22)

Máté–Nevai–Totik [16] noted that this applies to OPRL on [−1, 1]
using the Szegő mapping, and Totik, in a brilliant paper [31], shows
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how to extend it to any measure of bounded support, E, on R so long
as E contains an interval:

Theorem 1.7 (Totik [31]). Let I ⊂ E ⊂ R where I = (a, b) is an inter-

val and E is compact. Suppose dµ is a measure with support contained

in E so that

dµ(x) = w(x) dx+ dµs(x) (1.23)

Let dρE(x) be the potential theoretic equilibrium measure for E (so it

is known dρE ↾ I = ρE(x) dx for some strictly positive, real analytic

weight ρE). Then for Lebesgue a.e. x ∈ I,

lim sup nλn−1(x) ≤
w(x)

ρE(x)
(1.24)

Remarks. 1. Totik concentrated on the deeper and more subtle fact
that if there is a local Szegő condition on I and µ is regular for E, then
the limit exists and equals w(x)/ρE(x) for a.e. x. But along the way
he proved (1.24).

2. We will actually prove equality in (1.24) (for lim sup) when E =
supp(dµ) and µ is regular.

3. Later (see Section 8), we will prove the analog of Theorem 1.7 for
closed subsets of ∂D.

Some of our results assume regularity of µ so we briefly summarize
the main results from that theory due largely to Stahl–Totik [28] in
their book; see my recent paper [24] for an overview.

A measure µ on R is called regular if E = supp(dµ) is compact and

lim
n→∞

(a1 . . . an)
1/n = C(E) (1.25)

where C(E) is the (logarithmic) capacity of E. For OPUC, (1.25) is
replaced by

lim
n→∞

(ρ1 . . . ρn)
1/n = C(E) (1.26)

Some insight is gained if one knows in both cases, for any µ (supported
on E compact in R or ∂D), the lim sup is bounded above by C(E).
For this paper, regularity is important because of (this is from [28,
Sect. 2.2] or [24, Thm. 2.5]).

Theorem 1.8. If dµ is regular, then with dνn, the density of zeros of

the OPRL or of the POPUC, we have

dνn
w

−→ dρE (1.27)

the equilibrium measure for E. Conversely, if (1.27) holds, either µ is

regular or µ is supported on a set of capacity zero.
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We should mention one criterion for regularity that goes back to
Erdös–Turán [8] for [−1, 1] and Widom [35] for general E:

Theorem 1.9. If E = supp(dµ) and

dµ(x) = f(x) dρE(x) + dµs(x)

where µs is ρE-singular and f(x) > 0 for ρE-a.e. x, then µ is regular.

There is a proof of Van Assche [34] of the general case presented in
[24] that is not difficult. But in the case where Eint (interior in the
sense of R) differs from E by a set of capacity zero (e.g., E = [−1, 1]),
we will find a proof that uses only our Theorem 1.5/1.7 strategy. In
particular, we will have a proof of the Erdös–Turán result that uses
neither potential theory nor polynomial inequalities.

We can now describe the content of this paper. In Section 2, we prove
the main weak convergence result, Theorem 1.5. In Section 3, we prove
the analog of the Erdös–Turán result for ∂D and illustrate how these
ideas are connected to regularity criterion of Stahl–Totik [28]. Section 4
proves Theorem 1.4 for µ regular on ∂D. Sections 5 and 6 then parallel
Sections 3 and 4 but for general compact sets E ⊂ R. Section 7,
motivated by work of Totik–Uhlmann [33], provides a comparison result
about densities of zeros. Section 9 does the analog of Sections 5 and 6
for general E ⊂ ∂D. To do this, we need Totik’s result (1.24) in that
situation. This does not seem to be in the literature, so Section 8 fills
that need.

It is a pleasure to thank Jonathan Breuer, Yoram Last, and especially
Vilmos Totik for useful conversations. I would also like to thank Ehud
de Shalit and Yoram Last for the hospitality of the Einstein Institute of
Mathematics of the Hebrew University during part of the preparation
of this paper.

2. Weak Convergence

Our main goal here is to prove a generalization of Theorem 1.5 (and
so also that theorem). We let µ be a measure of compact support in C

and

N(µ) = sup{|z| | z ∈ supp(dµ)} (2.1)

We let Mz be multiplication by z on L2(C, dµ), so

‖Mz‖ = N(µ) (2.2)

and let Qn be the (n+1)-dimensional orthogonal projection onto poly-
nomials of degree n or less. All estimates here depend on
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Proposition 2.1. Fix ℓ = 1, 2, . . . . Then

QnM
ℓ
zQn − (QnMzQn)

ℓ (2.3)

is an operator of rank at most ℓ and norm at most 2N(µ)ℓ.

Proof. Let X be the operator in (2.3). Clearly, X = 0 on ran(1−Qn) =
ker(Qn). Since Mz maps ran(Qj) to ran(Qj+1), X = 0 on ran(Qn−ℓ).
This shows that X has rank at most ℓ. The norm estimate is immediate
from (2.2). �

Here is the link to Kn and to dνn+1. Let Xj(z, dµ) be the monic OPs
for µ and let xn = Xn/‖Xn‖.

Proposition 2.2. (i) We have for all w ∈ C,

detQn
(w −QnMzQn) = Xn+1(w, dµ) (2.4)

In particular, if dνn+1 is the zero counting measure for Xn+1, then

1

n + 1
Tr((QnMzQn)

ℓ) =

∫

zℓ dνn+1(z) (2.5)

(ii) Let

Kn(z, w) =
n

∑

j=0

xj(z) xj(w) (2.6)

Then

Tr(QnM
ℓ
zQn) =

∫

zℓKn(z, z) dµ(z) (2.7)

Remark. The proof of (i) is due to Davies and Simon [7].

Proof. (i) Let z0 be a zero of Xn+1 of order ℓ. Let ϕ(z) = Xn+1(z)/(z−

z0)
ℓ. Since Qn[Xn+1] = 0, we see, with M

(n)
z = QnMzQn,

(M (n)
z − z0)

ℓϕ = 0 (M (n)
z − z0)

ℓ−1ϕ 6= 0 (2.8)

showing that z0 is a zero of detQn
(w−M

(n)
z ) of order at least ℓ. In this

way, we see Xn+1(w) and the det have the same zeros. Since both are
monic, we obtain (2.4).

In particular, this shows

Tr((M (n)
z )ℓ) =

∑

zeros zj of
multiplicity mj

mjz
ℓ
j = (n+ 1)

∫

zℓ dνn+1(z)

proving (2.5)
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(ii) In L2(C, dµ), {xj}
n
j=0 span ran(Qn) and are an orthonormal basis,

so

Tr(QnM
ℓ
zQn) =

n
∑

j=0

〈xj , z
ℓxj〉

=

∫ n
∑

j=0

zℓ|xj(z)|
2 dµ(z)

proving (2.7). �

Proposition 2.3. Let dηn be the probability measure

dηn(z) =
1

n+ 1
Kn(z, z) dµ(z) (2.9)

Then for ℓ = 0, 1, 2, . . . ,
∣

∣

∣

∣

∫

zℓ dηn(z) −

∫

zℓ dνn+1(z)

∣

∣

∣

∣

≤
2ℓN(µ)ℓ

n+ 1
(2.10)

Suppose there is a compact set, K ⊂ C, containing the supports of

all dνn and the support of dµ so that {zℓ}∞ℓ=0 ∪ {z̄ℓ}∞ℓ=0 are ‖ · ‖∞-

total in the continuous function on K. Then for any subsequence n(j),
dηn(j) → dν∞ if and only if dνn(j)+1 → dν∞.

Proof. (2.10) is immediate from (2.5) and (2.7) if we note that, by
Proposition 2.1,

|Tr(QnM
ℓ
zQn) − Tr((QnMzQn)

ℓ)| ≤ 2N(µ)ℓℓ (2.11)

(2.10) in turn implies that we have the weak convergence result. �

While we were careful to use n(j) and n(j) + 1, we note that since
|xj(z)|

2 dµ is a probability measure, we have

‖ηn − ηn+1‖ ≤
1

n+ 1
+ n

(

1

n
−

1

n+ 1

)

≤
2

n+ 1
(2.12)

so we could just as well have discussed weak limits of ηn(j)+1 and νn(j)+1.
Here is Theorem 1.5 for OPRL:

Theorem 2.4. For OPRL, dηn(j) converges weakly to dν∞ if and only

if dνn(j)+1 converges weakly to dν∞.

Proof. {xj}
∞
j=0 are total in C([α, β]) for any real interval [α, β], so

Proposition 2.3 is applicable. �
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For OPUC, we need a few preliminaries: Define P : C(∂D) → C(D)
(with D = {z | |z| ≤ 1}) by

(Pf)(reiθ) =

∫

1 − r2

1 + r2 − 2r cos(θ − ϕ)
f(eiθ)

dϕ

2π
(2.13)

for r < 1 and (Pf)(eiθ) = f(eiθ) and P∗ : M+,1(D) → M+,1(∂D), the
balayage, by duality. Then the following is well known and elementary:

Proposition 2.5. P∗(dν) is the unique measure, η, on ∂D with
∫

eiℓθ dη(θ) =

∫

zℓ dν(z) (2.14)

for ℓ = 0, 1, 2, . . . .

Widom [35] proved that if µ is supported on a strict subset of ∂D,
then the zero counting measure, dνn, has weak limits supported on ∂D,

P∗(dνn) − dνn
w

−→ 0 (2.15)

Finally, we note the following about paraorthogonal polynomials
(POPUC) defined for β ∈ ∂D by

Pn+1(z, β) = zΦn(z) − β̄Φ∗
n(z) (2.16)

defined in [13] and studied further in [4, 5, 6, 11, 25, 36].

Proposition 2.6. Let βn be an arbitrary sequence ∂D and let dν
(βn)
n+1 be

the zero counting measure for Pn+1(z, βn) (known to live on ∂D; see,

e.g. [25]). Then for any ℓ ≥ 0,
∣

∣

∣

∣

∫

zℓ dνn+1 −

∫

zℓ dν
(βn)
n+1

∣

∣

∣

∣

→ 0 (2.17)

Proof. Let Cn+1,F be the truncated CMV matrix of size n + 1 whose

eigenvalues are the zeros of Φn+1(z) (see [21, Ch. 4]) and let C
(βn)
n+1,F

be the unitary dialation whose eigenvalues are the zeros of Pn+1(z, βn)

(see [6, 25, 23]). Then Cn+1,F − C
(βn)
n+1,F is rank one with norm bounded

by 2, so Cℓn+1,F − [C
(β)
n+1,F ]ℓ is rank at most ℓ with norm 2. Thus

|Tr(Cℓn+1,F − (C
(β)
n+1,F )ℓ)| ≤ 2ℓ (2.18)

and

|LHS of (2.17)| ≤
2ℓ

n+ 1
proving (2.17). �

Theorem 2.7. For OPUC, dηn(j) converges weakly to dν∞ if and only

if each of the following converges weakly to dν∞:
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(i) dν
(βn)
n+1 for any βn.

(ii) P(dνn+1), the balayage of dνn+1.

(iii) dνn+1 if supp(dµ) 6= ∂D.

Proof. Immediate from Proposition 2.3 and the above remark. �

When I mentioned Theorem 2.4 to V. Totik, he found an alternate
proof, using tools more familiar to OP workers, that provides some
insight. With his permission, I include this proof. Let me discuss the
result for convergence of sequences rather than subsequences and then
give some remarks to handle subsequences.

The key to Totik’s proof is Gaussian quadratures which says that if

{x
(n)
j }nj=1 are the zeros of pn(x, dµ), and λn−1(x) = Kn−1(x, x)

−1, then
for any polynomial Rm of degree m ≤ 2n− 1,

∫

Rm(x) dµ(x) =
n

∑

j=1

λn−1(x
(n)
j )Rm(x

(n)
j ) (2.19)

We will also need the Christoffel variation principle

n ≤ q ⇒ λq(x) ≤ λn(x) (2.20)

which is immediate from (1.12).
Suppose we know dνn → dν∞. Fix a polynomial Qm of degree m

with Qm ≥ 0 on cvh(supp(dµ)). Let

Rm+2n(x) =
1

n+ 1
Qm(x)Kn(x, x)

which has degree m+ 2n. Thus, if N = n+m, we have by (2.19) that
∫

Qm(x)

[

1

n+ 1
Kn(x, x)

]

dµ

=

N
∑

j=1

λN−1(x
(N−1)
j )Qm(x

(N−1)
j )

(

1

n+ 1

)

λn(x
(N−1)
j )−1

(2.21)

≤

(

N + 1

n+ 1

)

1

N + 1

N
∑

j=1

Qm(x
(N−1)
j ) (2.22)

by Qm ≥ 0 and (2.21) (so λN−1/λn ≤ 1). As n → ∞, N/n → 1. So,
by hypothesis,

RHS of (2.22) →

∫

Qm(y) dν∞(y) (2.23)



WEAK CONVERGENCE OF CD KERNELS AND APPLICATIONS 11

We conclude by (2.21) that

lim sup

∫

Qm(x) dηn(x) ≤

∫

Qm(y) dν∞(y) (2.24)

If 0 ≤ Qm ≤ 1 on cvh(supp(dµ)), we can apply this also to 1−Qm and
so conclude for such Qm that

lim

∫

Qm dηn(x) =

∫

Qm dν∞

which implies w-lim dηn = dν∞.
The same inequality (2.22) can be used to show that if dηn

w
−→ dη∞,

then

lim inf

∫

Qm(y) dνm(y) ≥

∫

Qm(y) dη∞(y)

and thus, by the same 1 −Q trick, we get dνn → dη∞.
To handle subsequences, we only need to note that, by (2.12), if

dηn(j) → dη∞, then dηn(j)+ℓ → dη∞ for ℓ = 0,±1,±2, . . . . Similarly,
by zero interlacing, if dνn(j) → dν∞, then dνn(j)+ℓ → dν∞ for fixed ℓ.

By using the operator theoretic proof of Gaussian quadrature (see,
e.g., [21, Sect. 1.2]), one sees this proof is closely related to our proof
above.

3. Regularity for ∂D: The Erdös–Turán Theorem

Our goal in this section is to prove:

Theorem 3.1. Let dµ on ∂D have the form (1.7) with w(θ) > 0 for a.e.

θ. Then µ is regular, that is, (1.26) holds with E = ∂D (so C(E) = 1).

Remarks. 1. This is an analog of a theorem for [−1, 1] proven by Erdös
and Turän [8]. Our proof here seems to be new.

2. This is, of course, weaker than Rakhmanov’s theorem (see [22,
Ch. 9] and references therein), but as we will see, this extends easily
to some other situations.

The proof will combine the Máté–Nevai theorem (Theorem 1.6) and
Proposition 2.5. It is worth noting where the Máté–Nevai theorem
comes from. By (1.12), if

Qn(e
iθ) =

1

n + 1

n
∑

j=0

eij(θ−ϕ) (3.1)

then

λn(e
iϕ) ≤

∫

|Qn(e
iθ)|2 dµ(θ) (3.2)
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Recognizing (n+ 1)|Qn|
2 as the Fejér kernel, (1.22) is a standard max-

imal function a.e. convergence result.

Proposition 3.2. For any measure on ∂D for a.e. θ,

lim inf
n→∞

1

n+ 1
Kn(e

iθ, eiθ) ≥ w(θ)−1 (3.3)

On the set where w(θ) > 0,

lim inf
n→∞

1

n+ 1
w(θ)Kn(e

iθ, eiθ) ≥ 1 (3.4)

Remark. If w(θ) = 0, (3.3) is interpreted as saying that the limit is
infinite. In that case, of course, (3.4) does not hold.

Proof. (3.3) is immediate from (1.14) and (1.22). If w 6= 0, ww−1 = 1,
so (3.3) implies (3.4). �

Proof of Theorem 3.1. The hypothesis w > 0 for a.e. θ implies dµ is not
supported on a set of capacity zero. Thus, by Theorem 1.8, regularity
holds if we prove that the density of zeros of POPUC converges to dθ

2π
.

By Proposition 2.5, this follows if we prove that 1
n+1

Kn+1 dµ→ dθ
2π

.

Suppose n(j) → ∞ is a subsequence with 1
n+1

Kn+1(e
iθ, eiθ)w(θ) dθ

2π
→

dν1 and 1
n+1

Kn+1(e
iθ, eiθ)dµs → dν2. Then since 1

n+1
Kn dµ is normal-

ized,
∫

[dν1 + dν2] = 1 (3.5)

On the other hand, by Fatou’s lemma and (3.4) for any continuous
f ≥ 0 and the hypothesis w(θ) > 0 a.e. θ,

∫

f dν1 = lim

∫

f

[

1

n+ 1
w(θ)Kn(e

iθ, eiθ)

]

dθ

2π

≥

∫

lim inf

[

f
1

n + 1
w(θ)Kn(e

iθ, eiθ)

]

dθ

2π

≥

∫

f(θ)
dθ

2π
(3.6)

Thus,

dν1 ≥
dθ

2π
(3.7)

By (3.5), this can only happen if

dν1 =
dθ

2π
dν2 = 0 (3.8)

Compactness of the space of measures proves that 1
n+1

Kn+1 dµ →

dθ/2π. �
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Along the way, we also proved dν2 = 0, that is,

Theorem 3.3. Under the hypotheses of Theorem 3.1,

1

n + 1

∫ n
∑

j=0

|ϕj(e
iθ)|2 dµs(θ) → 0

It would be interesting to see if these methods provide an alternate
proof of the theorem of Stahl–Totik [28] that, if for all η > 0,

lim
n→∞

∣

∣

{

θ | µ({ψ | |eiθ − eiψ| ≤ 1
n
}) ≤ e−nη

}
∣

∣ = 0 (3.9)

then µ is regular. The point is that using powers of the Fejér kernel,
one can get trial functions localized in an interval of size O( 1

n
), and off

a bigger interval of size O( 1
n
), it is exponentially small. (3.9) should

say that the dominant contribution comes from an O( 1
n
) interval. On

the other hand, the translates of these trial functions are spread over
O( 1

n
) intervals, so one gets lower bounds on 1

n
Kn(e

iθ, eiθ) of order µ(eiθ−
c
n
, eiθ+ c

n
)−1 which are then integrated against dµ canceling this inverse

and hopefully leading to (3.7), and so regularity.

4. Localization on ∂D

In this section, we will prove Theorem 1.4. Instead of using the
Máté–Nevai bound to prove regularity, we combine it with regularity
to get information.

Proof of Theorem 1.4. As in the proof of Theorem 3.1, we let dν1, dν2

be weak limits of 1
n
K(eiθ, eiθ)w(θ) dθ

2π
and 1

n
Kn(e

iθ, eiθ)dµs(θ). On I, the
same arguments as above imply

dν1 ↾ I ≥
dθ

2π
↾ I (4.1)

By regularity, globally

dν1 + dν2 =
dθ

2π
(4.2)

Thus, on I,

ν1 ↾ I =
dθ

2π
ν2 ↾ I = 0 (4.3)

The second implies (1.18). The first implies that
∫ b

a

w(θ)
1

n + 1
Kn(e

iθ, eiθ)
dθ

2π
→ (b− a) (4.4)
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Since (3.4) and Fatou imply
∫ b

a

[

w(θ)
1

n+ 1
Kn(e

iθ, eiθ) − 1

]

−

dθ

2π
→ 0 (4.5)

we obtain (1.19). �

Notice that (4.4) and (3.4) imply a pointwise a.e. result (which we
stated as (1.20))

lim inf
n→∞

1

n+ 1
w(θ)Kn(e

iθ, eiθ) = 1 (4.6)

We do not know how to get a pointwise result on lim sup under only
the condition w(θ) > 0 (but without a local Szegő condition).

5. Regularity for E ⊂ R: Widom’s Theorem

In this section and the next, our goal is to extend the results of the
last two sections to situations where ∂D is replaced by fairly general
closed sets in R. The keys will be Theorem 2.4 and Totik’s Theorem 1.7.
We begin with a few remarks on where Theorem 1.7 comes from (see
also Section 8).

Since the hypothesis is that supp(dµ) ⊂ E, not = E, it suffices
to find En ⊃ E so that ρEn

(x) → ρE(x) on I and for which (1.21)
can be proven. By using Ẽn = {x | dist(x,E) ≤ 1

n
}, one first gets

approximation by a finite union of intervals and then, by a theorem
proven by Bogatyrëv [3], Peherstorfer [17], and Totik [32], one finds
Ẽn ⊂ En where the En’s are finite unions of intervals with rational
harmonic measure. For rational harmonic measures, one can use as
trial polynomials Km(x, x0)/Km(x0, x0) where Km is the CD kernel of
a measure in the periodic isospectral torus and Floquet theory. (This
is the method from Simon [26]; Totik [31] instead uses polynomial
mapping.)

Theorem 5.1. Let E ⊂ R be a compact set with ∂E ≡ E \ Eint (Eint

means interior in R) having capacity zero (e.g., a finite version of closed

intervals). Let dµ be a measure with σess(dµ) = E and

dµ = f(x) dρE + dµs (5.1)

where dµs is dρE-singular. Suppose f(x) > 0 for dρE-a.e. x. Then dµ
is regular.

Remarks. 1. In this case, dρE is equivalent to χE dx.

2. For any compact E, this is a result of Widom [35]; see also Van
Assche [34], Stahl–Totik [28], and Simon [24].
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Proof. Essentially identical to Theorem 3.1. By Theorem 1.8 and the
fact that dµ is clearly not supported on sets of capacity zero, it suffices
to prove that dνn → dρE . Pick n(j) → ∞ so 1

n(j)+1
Kn(j)(x, x)f(x) dρE

and 1
n(j)+1

Kn(j)(x, x) dµs separately have limits dν1 and dν2. (1.21) says

that (given that f(x) > 0 for a.e. x)

lim inf
1

n(j) + 1
Kn(j)(x, x)f(x) ≥ 1 (5.2)

By Fatou’s lemma on Eint,

dν1 ≥ dρE (5.3)

Since also
∫

(dν1 + dν2) = 1 and
∫

Eint dρE = 1 (since C(E \ Eint) =
0), we conclude dν1 = dρE , dν2 = 0. By compactness of probability

measures, 1
n(j)+1

Kn(j)(x, x) dµ
w

−→ dρE, implying regularity. �

6. Localization on R

Here is an analog of Theorem 1.4 for any E ⊂ R.

Theorem 6.1. Let I = [a, b] ⊂ E ⊂ R with a < b and E compact.

Let dµ be a measure on R so that σess(dµ) = E and µ is regular for E.

Suppose

dµ = w(x) dx+ dµs (6.1)

with dµs Lebesgue singular. Suppose w(x) > 0 for a.e. x ∈ I. Then

(i) 1
n+1

Kn(x, x) dµs
w

−→ 0

(ii)
∫

I
|ρE(x) − 1

n+1
w(x)Kn(x, x)| dx→ 0

Proof. By w(x) > 0 a.e. on I and (1.17),

lim inf w(x)
1

n+ 1
Kn(x, x) ≥ ρE(x)

for a.e. x ∈ I. From this, one can follow exactly the proofs in Section 4.
�

7. Comparisons of Density of Zeros

In [33], Totik–Ullman proved the following (we take [−a, a] rather
than [a, b] only for notational simplicity):

Theorem 7.1 ([33]). Let dµ be a measure supported on a subset of

[−1, 1] where

dµ = w(x) dx+ dµs (7.1)

with

w(x) > 0 for a.e. x ∈ [−a, a]
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for some a ∈ (0, 1). Let dν∞ be any limit point of the zero counting

measures for dµ. Then on (−a, a), we have that

(2π)−1(1 − x2)−1/2 dx ≤ dν∞(x) ≤ (2π)−1(a2 − x2)−1/2 dx (7.2)

Our goal here is to prove the following, which we will show implies
Theorem 7.1 as a corollary:

Theorem 7.2. Let dµ1, dµ2 be two measures on R of compact support.

Suppose that for some interval I = (α, β),

(i) dµ1 ≤ dµ2 (7.3)

(ii) dµ1 ↾ (α, β) = dµ2 ↾ (α, β) (7.4)

Let n(j) → ∞ and suppose dν
(k)
n(j) → dν

(k)
∞ for k = 1, 2, where dν

(k)
n is

the zero counting measure for dµk. Then on (α, β),

dν(2)
∞ ↾ (α, β) ≤ dν(1)

∞ ↾ (α, β) (7.5)

Proof. By (1.12),
λn(x, dµ1) ≤ λn(x, dµ2) (7.6)

so, by (1.14),

1

n+ 1
K(2)
n (x, x) ≤

1

n + 1
K(1)
n (x, x) (7.7)

for all x. By (7.4) on (α, β),

1

n+ 1
K(2)
n (x, x) dµ2 ≤

1

n + 1
K(1)
n (x, x) dµ1 (7.8)

By Theorem 2.4, this implies (7.5). �

Proof of Theorem 7.1. Let dµ2 = dµ and let dµ1 = χ(−a,a)[dµ] so dµ1 ≤
dµ2 with regularity on [−a, a]. By Theorem 5.1, dµ1 is regular for [a, a],

so dν
(2)
n → (2π)−1(a2 − x2)−1/2 dx, the equilibrium measure for [−a, a].

Thus (7.5) implies the second inequality in (7.2).
On the other hand, let dµ1 = dµ and let dµ2 = [χ(−1,1)−χ(−a,a)] dx+

dµ. Then dµ1 ≤ dµ2 with equality on (−a, a). Moreover, dµ2 is regular
for [−1, 1] by Theorem 5.1 and the hypothesis σ(dµ) ⊂ [−1, 1]. Thus,

dν
(1)
n → (2π)−1(1 − x2)−1/2 dx. Thus (7.5) implies the first inequality

in (7.2). �

Remarks. 1. Theorem 7.1 only requires σess(dµ) ⊂ [−1, 1].

2. The theorems in [33] are weaker than Theorem 7.1 in one respect
and stronger in another. They are weaker in that, because of their de-
pendence on potential theory, they require that one of the comparison
measures be regular. On the other hand, they are stronger in that our
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reliance on weak convergence limits us to open sets like (α, β), while
they can handle more general sets.

3. [24] has an example of a measure, dµ, on [−1, 1] where w(x) > 0 on
[−1, 0] and the zero counting measures include among its limit points
the equilibrium measures for [−1, 0] and for [−1, 1]. This shows in the
[a, b]-form of Theorem 7.1, both inequalities in (7.2) can be saturated!

8. Totik’s Bound for OPUC

As preparation for applying our strategy to subsets of ∂D, we need
to prove an analog of Totik’s bound (1.23) for closed sets on ∂D. Given
a, b ∈ ∂D, we let I = (a, b) be the “interval” of all points “between” a
and b, that is, going counterclockwise from a to b, so −1 ∈ (eiθ, ei(2π−θ))
for 0 < θ < π but −1 /∈ (ei(2π−θ), eiθ). Given E ⊂ ∂D closed, we let
dρE be its equilibrium measure. If I ⊂ E ⊂ ∂D is a nonempty open
interval, then

dρE ↾ I = ρE(θ) dm(θ) (8.1)

where dm = dθ/2π. The main theorem of this section is

Theorem 8.1. Let I ⊂ E ⊂ ∂D where I = (a, b) is an interval and E
is closed. Let dµ be a measure with support in E so that

dµ(θ) = w(θ) dm+ dµs(θ) (8.2)

Then for dm-a.e. θ ∈ I, we have

lim sup nλn−1(e
iθ) ≤

w(θ)

ρE(θ)
(8.3)

Following Totik’s strategy [31, 32] for OPRL, we do this in two steps:

Theorem 8.2. (8.3) holds if supp(dµ) ⊂ Eint and E is a finite union

of intervals whose relative harmonic measures are rational.

Theorem 8.3. For any closed E in ∂D, we can find En with

(i) Each En is a finite union of intervals whose relative harmonic

measures are rational.

(ii)

E ⊂ Eint
n (8.4)

(iii)

C(En \ E) → 0 (8.5)

Remark. If E = I1 ∪· · ·∪ Iℓ, the relative harmonic measures are ρE(Ij)
which sum to 1.
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Proof of Theorem 8.1 given Theorems 8.2 and 8.3. By general princi-
ples, since I is an interval, ρEn

(θ) and ρE(θ) are real analytic with

bounded derivatives. (8.5) implies dρEn

w
−→ dρE and then the bounded

derivative implies ρEn
(θ) → ρE(θ) uniformly on compact subsets of

I. By Theorem 8.2, LHS of (8.3) ≤ w(θ)/ρEn
(θ) for each n. Since

ρEn
(θ) → ρE(θ), we obtain (8.3). �

Our proof of Theorems 8.2 and 8.3 diverges from the Totik strategy in
two ways. He obtains Theorem 8.2 by using polynomial maps. Instead,
following Simon [26], we use Floquet solutions.

Second, Totik shows if E has ℓ gaps, one can find En with rational rel-
ative harmonic measures also with ℓ gaps obeying (8.4) and (8.5). This
is a result with rather different proofs by Bogatyrëv [3], Peherstorfer
[17], and Totik [32]. I believe any of these proofs will extend to OPUC,
but we will settle for a weaker result—our En’s will contain up to 2ℓ
intervals, the first ℓ each containing one of the ℓ intervals of E and
an additional ℓ or fewer exponentially small intervals. This will allow
us to “get away” with following only the easier part of Peherstorfer’s
strategy.

Proof of Theorem 8.2. By Theorem 11.4.5 of [22], E is the essential
spectrum of an isospectral torus of Verblunsky coefficients periodic up
to a phase, that is, for suitable p (chosen so that pρE(Ij) is an integer
for each j),

αn+1 = λαn

Let µE be the measure associated to a point on the isospectral torus.
By Floquet theory (see [22, Sect. 11.2]), for z ∈ Eint, ϕn is a sum of

two functions each periodic up to a phase and, by [22, Sect. 11.12], on
compact subsets, K, of Eint,

sup
z∈K,n

|ϕn(z)| <∞ (8.6)

It follows from the Christoffel–Darboux formula (see [21, Sect. 2.2])
that

sup
z,w∈K

|Kn(z, w)| ≤ C|z − w|−1 (8.7)

The almost periodicity of ϕ implies uniformly on K, 1
n+1

Kn(z, z)
has a finite nonzero limit, and then, by Theorem 2.7, the limit must be
ρE(θ)/wE(θ), that is, uniformly on K,

lim
n→∞

1

n
Kn(e

iθ, eiθ) =
ρE(θ)

wE(θ)
(8.8)
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where wE(θ) is the weight for dρE(θ). Moreover, as proven in Simon
[26], for any A > 0, uniformly on eiθ ∈ K and n|ϕ− θ| < A,

Qn(e
iϕ) ≡

Kn(e
iθ, eiϕ)

Kn(eiθ, eiθ)
=

sin(nρE(θ)(θ − ϕ))

n(θ − ϕ)ρE(θ)
(1 +O(1)) (8.9)

Now use Qn(e
iϕ) as a trial function in (1.12). By (8.7) and (8.8),

by taking A large, the contribution of n|ϕ − θ| > A can be made
arbitrarily small. Maximal function arguments and (8.9) show that the
contribution of the region n|ϕ−θ| < A to nλn−1 is close to w(θ)/ρE(θ).
This proves (8.3) for dµ. �

Given E ⊂ ∂D compact, define

Ẽn = {eiθ ∈ D | dist(eiθ, E) ≤ 1
n
} (8.10)

It is easy to see that C(Ẽn \ E) → 0 and Ẽn is a union of ℓ(n) < ∞
closed intervals. It thus suffices to prove Theorem 8.3 when E is already
a union of finitely many ℓ disjoint closed intervals, and it is that we
are heading towards. (Parenthetically, we note that we could dispense
with this and instead prove the analog of Theorem 8.2 for a finite union
of intervals using Jost solutions for the isospectral torus associated to
such finite gap sets, as in Simon [26].)

Define Pn to be the set of monic polynomials all of whose zeros lie
in ∂D. Since

eiθ/2 + eiϕe−iθ/2 = eiϕ/2[ei(θ−ϕ)/2 + e−i(θ−ϕ)/2]

if P ∈ Pn, there is a phase factor eiη so

z−n/2eiηP (z) is real on ∂D (8.11)

Define the restricted Chebyshev polynomials, T̃n, associated to E ⊂ ∂D

by requiring that T̃n miminize

‖Pn‖E = sup
z∈E

|Pn(z)| (8.12)

over all Pn ∈ Pn. We will show that for n large, 2T̃2n/‖T̃2n‖E are
the rotated discriminants associated to sets En that approximate an E
which is a finite union of intervals. An important input is

Lemma 8.4. Let I = (z0, z1) be an interval in ∂D. For any small ϕ,

let Iϕ = (z0e
iϕ, z1e

−iϕ), so for ϕ > 0, Iϕ is smaller than I. For ϕ < 0,

|(z − z0e
iϕ)(z − z1e

−iϕ)|

decreases on ∂D \ I and increases on I as ϕ decreases in (−ε, 0).

Proof. Take z1 = z̄0 and then use some elementary calculus. �
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Theorem 8.5. Let E be a finite union of disjoint closed intervals on

∂D, E = I1 ∪ · · · ∪ Iℓ and let ∂D \E = G1 ∪ · · · ∪Gℓ has ℓ gaps. Then

(i) Each T̃n has at most one zero in each Gℓ.

(ii) If z
(n)
j is the zero of T̃n in Gj, then on any compact K ⊂ Gj, we

have

lim
n→∞

inf
z∈K

(
∣

∣

∣

∣

T̃n(z)

(z − z
(n)
j )‖Fn‖E

∣

∣

∣

∣

)1/n

> 1 (8.13)

(iii) At any local maximum, z̃, of |T̃n(z)| in some Ij, we have

|T̃n(z̃)| = ‖T̃n‖E (8.14)

Proof. (i) If there are two zeros in some Gj, we can symmetrically move

the zeros apart. Doing that increases T̃n on Gj which is disjoint from

E, but it decreases ‖T̃n‖E , contradicting the minimizing definition.

(ii) The zero counting measure for T̃n converges to the equilibrium
measure on E. For standard Tn’s and E ⊂ R, this result is proven in
[1, 20, 24]. A small change implies this result for T̃n. This, in turn,
says that uniformly on Gj,

∣

∣

∣

∣

T̃n(z)

(z − z
(n)
j )‖T̃n‖E

∣

∣

∣

∣

1/n

→ exp(−ΦρE
(z)) (8.15)

which implies (8.13).

(iii) Since z−n/2T̃n(z) is real up to a phase, the local maxima of

|T̃n(z)| on ∂D alternate with the zeros of T̃n(z). If a local maximum
is smaller than ‖T̃n‖E , we move the nearest zeros, say z0, z1, apart.

That decreases ‖T̃n‖E\(z0,z1) and increases ‖T̃n‖(z0,z1). Since the latter

is assumed smaller than ‖T̃n‖E, it decreases ‖T̃n‖E overall, violating

the minimizing definition. Thus, |T̃n(z)| ≥ ‖T̃n‖E. But since z̃ ∈ E,

|T̃n(z)| ≤ ‖T̃n‖E. �

Now define

∆n(z) =
2eiϕnT̃2n(z)

‖T̃2n‖E
(8.16)

where ϕn is chosen to make ∆n real on ∂D. By (8.14), maxima in
E occur with ∆n(z) = ±2, and by (8.13), maxima in ∂D \ E occur
at points where |∆n(z)| > 2. Thus, up to a phase, ∆n(z) looks like
a discriminant. So, by Theorem 11.4.5 of [22], En ≡ ∆−1

n ([−2, 2]) is
the essential spectrum of a CMV matrix whose Verblunsky coefficients
obey αm+p = λαm for |λ| = 1.
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Proof of Theorem 8.3. En has at most 2ℓ components, ℓ contain-

ing I1, . . . , Iℓ (call them I
(n)
1 , . . . , I

(n)
ℓ ), and ℓ possible components,

J
(n)
1 , . . . , J

(n)
ℓ , one in each gap. Since capacities are bounded by 1

4
times Lebesgue measure, it suffices to show that

ℓ
∑

j=1

|I
(n)
j \ Ij| + |J

(n)
j | → 0

to prove (8.5) and complete the proof. Since, on ∂D,

−ΦρE
(x) ≥ c dist(x,E)1/2 (8.17)

by (8.15), we have |I
(n)
j \ Ij | → 0 and |J

(n)
j | → 0. �

9. Theorems for Subsets of ∂D

Given Theorem 8.1 and our strategies in Sections 3–6, we immedi-
ately have

Theorem 9.1. Let E ⊂ ∂D with ∂E = E\Eint (Eint means interior in

∂D) having capacity zero. Let dµ be a measure on ∂D with σess(dµ) = E
and

dµ = f(x) dρE + dµs (9.1)

where dµs is dρE-singular. Suppose f(x) > 0 for dρE-a.e. x. Then dµ
is regular.

Theorem 9.2. Let I ⊂ E ⊂ ∂D with I a nonempty closed interval and

E closed. Let dµ be a measure on ∂D so σess(dµ) = E and µ is regular

for E. Suppose

dµ = w(θ)
dθ

2π
+ dµs (9.2)

and w(θ) > 0 for a.e. eiθ ∈ I. Then

(i)
1

n + 1
Kn(e

iθ, eiθ) dµs(θ)
w

−→ 0

(ii)

∫

I

∣

∣

∣

∣

ρE(θ) −
1

n+ 1
w(θ)Kn(e

iθ, eiθ)

∣

∣

∣

∣

dθ

2π
→ 0

where dρ(θ) = ρE(θ) dθ
2π

on I.
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[29] G. Szegő, Beiträge zur Theorie der Toeplitzschen Formen, I, II, Math. Z. 6

(1920), 167–202; 9 (1921), 167–190.
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