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Abstract

We refine an abstract result of the authors [JP3] concerning the strictpositivity of en-
tropy production ofL1–asymptotically AbelianC∗-dynamical systems and apply the new
result to a model describing finitely many free Fermi gas reservoirs coupled by local inter-
actions. In particular, assuming that the reservoirs are initially not at equal temperatures or
chemical potentials, we show that there is a dense set of local interactions such that the en-
tropy production of the system is strictly positive for sufficiently small non-zero coupling.
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1 Introduction

For notational purposes we start with a brief review of certain aspects of algebraic nonequi-
librium quantum statistical mechanics. Our terminology isstandard [BR1, BR2] and we shall
assume that the reader is familiar with results described inthe review [JP3] and in the recent
lecture notes [AJPP].

Our starting point is aC∗-dynamical system(O, τ0) with τ t
0 = etδ0. To avoid discussion of

trivial cases, we shall always assume thatτ0 is a not a trivial dynamics, i.e., thatδ0 6= 0. For any
S ⊂ O we denoteSself = {A ∈ S |A = A∗}. ForV ∈ Oself andλ ∈ R setδλV = δ0 + iλ[V, · ]
and denote byτ t

λV = etδλV the perturbedC∗-dynamics. We shall assume a strong form of
ergodicity (L1-asymptotic Abelianness) of(O, τλV ) in the following form:

(A1) There exists a norm dense∗-subalgebraA ⊂ O with the property: For any
V ∈ Aself there existsλV > 0 such that

∫ ∞

−∞

‖[V, τ t
λV (A)]‖ dt < ∞,

holds for all|λ| < λV andA ∈ A.

A well-known consequence of (A1) is that forV ∈ Aself and|λ| < λV the strong limits

γ±
λV = lim

t→±∞
τ−t
λV ◦ τ t

0,

α±
λV = lim

t→±∞
τ−t
0 ◦ τ t

λV ,

exist and are∗-automorphisms ofO. Moreover,(γ±
λV )−1 = α±

λV .
Let ω be a givenτ0-invariant reference state onO. LetV ∈ Aself and|λ| < λV . Then for all

A ∈ O,
lim

t→±∞
ω(τ t

λV (A)) = ω±
λV (A),

whereω±
λV = ω ◦α±

λV . The statesω±
λV areτλV -invariant andω+

λV is sometimes called non-equi-
librium steady state (NESS) of the locally perturbed quantum dynamical system(O, τλV , ω)
[Ru1].

Concerningω, we shall assume the following:

(A2) For allA1, A2, A3 ∈ O,

lim
mini6=j |ti−tj |→∞

ω(τ t1
0 (A1)τ

t2
0 (A2)τ

t3
0 (A3)) = ω(A1)ω(A2)ω(A3).

(A3) There exists aC∗-dynamicsς onO such thatω is a(ς,−1)-KMS state. More-
over,A ⊂ Dom (δς), whereδς is the generator ofς. We shall assume thatς is
non-trivial, i.e., thatδς 6= 0.
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Assumption (A2) and the first part of (A3) imply that the system (O, τ0, ω) has the property of
return to equilibrium: For allω-normal statesη andA ∈ O,

lim
|t|→∞

η(τ t
0(A)) = ω(A),

see [JP]. The second part of (A3) ensures that the entropy production observable

σλV = λδς(V ),

is well defined for allV ∈ Aself . The entropy production of the NESSω+
λV is defined by

Ep(ω+
λV ) = ω+

λV (σλV ).

Denote byEnt( · | · ) the relative entropy of Araki with sign and ordering convention of
[BR2]. The entropy balance equation

Ent(ω ◦ τ t
λV |ω) = −

∫ t

0

ω(τ s
λV (σλV )) ds, (1.1)

holds [JP2]. This relation implies
Ep(ω+

λV ) ≥ 0,

[Ru2, JP2]. From the point of view of non-equilibrium statistical mechanics, the perturbed sys-
tem is thermodynamically non-trivial iff the entropy production of its NESS is strictly positive.

Suppose that the unperturbed system is initially in thermalequilibrium, namely thatω is a
(τ0, β)-KMS state onO for someβ ∈ R ∪ {±∞}. If β ∈ R \ {0}, thenδς = −βδ0, σλV =
δλV (−βλV ) and sinceω+

λV is τλV -invariant,Ep(ω+
λV ) = 0 for all V ∈ Aself and|λ| < λV . The

casesβ = ±∞, 0 are not possible under our assumptions. Ifβ = ±∞, then the first part of
(A3) and Proposition 5.3.19 in [BR2] imply thatτ0 is trivial, i.e., thatδ0 = 0. If β = 0, then the
first part of (A3) implies thatς is trivial, i.e., thatδς = 0.

On physical grounds one expects that ifω is not a thermal equilibrium state, thenEp(ω+
λV )

is strictly positive for a large class of perturbationsλV , and this is the question we shall address
in this note.

The next assumption concerns the rate of convergence ofω(τ t
λV (σλV )) to its limiting value

ω+
λV (σλV ).

(A4) For allV ∈ Aself ,

CV = sup
0<|λ|<λV ,t≥0

∣

∣

∣

∣

1

λ

∫ t

0

(

ω(τ s
λV (σλV )) − ω+

λV (σλV )
)

ds

∣

∣

∣

∣

< ∞.

Theorem 1.1 Suppose that (A1)-(A4) hold and that ω is not a (τ0, β)-KMS state for some
β ∈ R \ {0}. Then there exists a set V ⊂ Aself such that:
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1. V is norm-dense in Aself (and hence in Oself).

2. For all V ∈ V there exists ΛV > 0 such that

Ep(ω+
λV ) > 0,

for 0 < |λ| < ΛV .

The proof of Theorem 1.1 is given in Section 2 and is based on the results and heuristics de-
scribed in [JP3] (see in particular Theorem 4.7 in this reference).

In the rest of this introduction we shall describe an application of Theorem 1.1 to statistical
mechanics of open Fermi systems. We shall consider the same model as in [JOP]. All our
results and proofs will heavily rely on the results of [JOP].

A free Fermi gas is described by theC∗-dynamical system(O, τ0) where:

(i) O = CAR(h) is the CAR algebra over the single particle Hilbert spaceh.

(ii) τ t
0 is the group of Bogoliubov∗-automorphisms generated by the single particle Hamilto-

nianh0,
τ t
0(a

#(f)) = a#(eith0f),

wherea∗(f)/a(f) are the creation/annihilation operators associated tof ∈ h and a#

stands for eithera or a∗.

LetO be theτ0-invariantC∗-subalgebra ofO generated by{a∗(f)a(g) | f, g ∈ h} and1l. Phys-
ical observables are gauge invariant and hence elements ofO.

We make the assumption:

(B1) There exist a dense vector subspaceD ⊂ h andρ ≥ 0 such that the functions

R ∋ t 7→ |t|ρ(f, eith0g),

are inL1(R, dt) for all f, g ∈ D.

This assumption implies thath0 has purely absolutely continuous spectrum.
LetA ⊂ O be the collection of the elements of the form

A =
K
∑

k=1

nk
∏

j=1

a∗(fkj)a(gkj) + c1l, (1.2)

whereK,n1, . . . , nK are finite withn ≡ maxk nk ≥ 2, c ∈ C, and

F(A) ≡ {fkj, gkj | k = 1, . . . , K; j = 1, . . . , nk} ⊂ D.
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To indicate the dependence ofK andn on A we will denote them byKA andnA. It is easy
to see thatA is a ∗-subalgebra ofO containing all the elements of the forma∗(f)a(g) with
f, g ∈ D as well as1l. SinceD is dense inh it follows thatA is a norm dense∗-subalgebra of
O.

To each pairA,B ∈ A we associate the constant

ℓA|B =

∫ ∞

−∞

max
f∈F(A),g∈F(B)

|(f, eith0g)| dt.

ForA ∈ A we writeℓA = ℓA|A and set

MA = KA (max {1, ‖f‖ | f ∈ F(A)})2nA−1 ,

λA = (2nAMAℓA)−1 (2nA − 2)2nA−2

(2nA − 1)2nA−1
.

The following result was proven in [JOP] (see also [Ro, BM1, AM,BM2, FMU]):

Theorem 1.2 Suppose that (B1) holds. Then:

1. For all V ∈ Aself and A ∈ A,

sup
|λ|≤λV

∫ ∞

−∞

‖[V, τ t
λV (A)]‖ dt ≤ 2MA

λV

[

(

1 +
ℓV |A

(2nV − 2)ℓV

)2nA

− 1

]

.

In particular, Assumption (A1) holds.

2. For all V ∈ Aself and A ∈ A the functions

λ 7→ γ±
λV (A) ∈ O, λ 7→ α±

λV (A) ∈ O,

are analytic for |λ| < λV .

Let T be a self-adjoint operator onh satisfying0 ≤ T ≤ 1 and [T, eith0 ] = 0 for all t.
In what followsω is the gauge invariant quasi-free state onO generated byT . The stateω is
τ0-invariant and is a(τ0, β)-KMS state onO for someβ ∈ R \ {0} if and only if

T =
1

1 + eβh0
.

Assumption (B1) implies that for allA1, · · · , An ∈ O,

lim
mini6=j |ti−tj |→∞

ω(τ t1
0 (A1) · · · τ tn

0 (An)) = ω(A1) · · ·ω(An),

and so (A2) holds. Assumption (B1) also implies thatω ↾ O is a (τ0, β)-KMS state onO for
someβ ∈ R \ {0} if and only if

T =
1

1 + eβ(h0−µ)
,

for someµ ∈ R.
Our final assumption is
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(B2) Ker T = Ker (1−T ) = {0} andT 6= 1/2. Moreover, ifhT = log T (1−T )−1,
thenD ⊂ Dom (hT ) andhTD ⊂ D.

If ς is the group of Bogoliubov∗-automorphisms onO generated byhT , thenω is the unique
(ς,−1)-KMS state onO and a(ς,−1)-KMS state onO. SinceT 6= 1/2, ς is non-trivial, and so
(B2) implies (A3). In particular, the entropy production observableσλV is well-defined for all
V ∈ Aself andλ ∈ R, andσλV ∈ Aself .

Theorem 1.3 Suppose that (B1) and (B2) hold for some ρ > 1 and that ω is not a (τ0, β)-KMS
state on O for any β ∈ R \ {0}. Then there exists a set V ⊂ Aself such that:

1. V is norm-dense in Aself (and hence in Oself).

2. For all V ∈ V and 0 < |λ| < λV ,

Ep(ω+
λV ) > 0,

except possibly for a discrete set of λ’s which can accumulate only at {±λV }.

3. For all V ∈ V and W ∈ Aself there exists ǫV W > 0 such that V + ǫW ∈ V for all
|ǫ| < ǫV W .

This theorem can be applied to the open quantum systems studied in [JOP]. Suppose that
for someM ≥ 2,

h =
M
⊕

j=1

hj, h0 =
M
⊕

j=1

hj, T =
M
⊕

j=1

1

1 + eβj(hj−µj)
, (1.3)

wherehj ’s are self-adjoint operators on the Hilbert subspaceshj, βj ∈ R \ {0}, andµj ∈ R.
We denote bypj the orthogonal projections ontohj. The subalgebrasOj = CAR(hj) describe
reservoirsRj which are initially in equilibrium at inverse temperaturesβj and chemical poten-
tials µj. The perturbationλV describes the interaction between the reservoirs (and, possibly,
self-interactions within the reservoirs) and allows for the flow of heat and charges within the
system. Clearly,

hT = −
M
⊕

j=1

βj(hj − µj),

and

σλV = −
M
∑

j=1

βj(Φj − µjJj),
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where

Φj = λ

K
∑

k=1

nk
∑

l=1

(

l−1
∏

i=1

a∗(fki)a(gki)

)

{a∗(ihjpjfkl)a(gkl)

+a∗(fkl)a(ihjpjgkl)}
(

nk
∏

i=l+1

a∗(fki)a(gki)

)

,

Jj = λ

K
∑

k=1

nk
∑

l=1

(

l−1
∏

i=1

a∗(fki)a(gki)

)

{a∗(ipjfkl)a(gkl)

+a∗(fkl)a(ipjgkl)}
(

nk
∏

i=l+1

a∗(fki)a(gki)

)

.

The observableΦj/Jj describe the heat/charge flux out of the reservoirRj. The conservation
laws

M
∑

j=1

ω+
λV (Φj) = 0,

M
∑

j=1

ω+
λV (Jj) = 0,

hold, and the strict positivity of the entropy production implies that the NESSω+
λV carries non-

vanishing fluxes.
A consequence of Theorem 1.3 is:

Corollary 1.4 Suppose that h0 and T have the form (1.3) and that either the βj’s are not all
equal or the βjµj’s are not all equal. Suppose also that (B1) holds for some ρ > 1 and that
pjD ⊂ D and hjpjD ⊂ D for all j. Then all conclusions of Theorem 1.3 hold.

Remark. For specific interactionsV one can computeω+
λV (σλV ) to the first non-trivial order

in λ and hence establish the strict positivity of entropy production by a perturbative calculation
[FMU, JP4, AS]. Theorem 1.3 and Corollary 1.4 complement suchresults by establishing the
strict positivity of the entropy production for a generic perturbationλV .

We finish with some concrete examples to which Corollary 1.4 applies. LetZd
+ = Z+ ×

Z
d−1, whereZ+ = {0, 1, · · · }. If hj = ℓ2(Zdj) or hj = ℓ(Z

dj

+ ) andhj is the usual discrete
Laplacian on these spaces, then one can always findD so that Corollary 1.4 holds. One can
takeD to be the vector space of compactly supported functions ifdj ≥ 5 andhj = ℓ2(Zdj)

or dj ≥ 2 andh = ℓ(Z
dj

+ ). In the continuous case, ifhj = L2(Rdj) or hj = L2(R
dj

+ ) and
hj = −∆ (with Dirichlet boundary condition in the case ofR

dj

+ ), again one can always findD
so that Corollary 1.4 holds. One can takeD to be the vector space ofC∞ compactly supported
functions ifhj = L2(Rdj) anddj ≥ 5 or hj = L2(R

dj

+ ) anddj ≥ 2.

Acknowledgments. The research of V.J. was partly supported by NSERC and part of this work
was done during his visit to CPT-CNRS.
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2 Proof of Theorem 1.1

Throughout the proof we shall freely use the well known properties of the relative entropy
functional discussed in Section II.4 of [OP]. We denote byNω the set of allω-normal states on
O.

Proposition 2.1 Let V ∈ Aself and 0 < |λ| < λV be such that Ep(ω+
λV ) = 0. Then the

following hold:

(i) ω+
λV ∈ Nω.

(ii) ω−
λV = ω+

λV .

Proof. SinceV andλ are fixed, we shall not use the subscriptsλV throughout the proof. Hence
τ = τλV , ω± = ω±

λV , etc.
As a consequence of Assumption (A4) and of the entropy balance equation (1.1) the condi-

tion Ep(ω+) = 0 implies the lower bound

−∞ < −CV |λ| ≤ Ent(ω ◦ τ t |ω) ≤ 0, (2.4)

for t ≥ 0. It follows that the set of states{ω ◦ τ t | t ≥ 0} is weak∗-precompact inNω and the
limiting stateω+ is ω-normal. This proves (i). Relation

Ent(ω ◦ τ t |ω) = Ent(ω |ω ◦ τ−t),

and the weak∗ upper semi-continuity of the relative entropy yields

Ent(ω |ω−) ≥ lim sup
t→+∞

Ent(ω |ω ◦ τ−t) ≥ inf
t≥0

Ent(ω ◦ τ t |ω) > −∞. (2.5)

Thusω is ω−-normal and henceNω ⊂ Nω− (see e.g. Theorem 2.30 in [P]). Since the dynamical
systems systems(O, τ0, ω) and(O, τ, ω−) are isomorphic,(O, τ, ω−) also has the property of
return to equilibrium: For allη ∈ Nω− andA ∈ O,

lim
|t|→+∞

η(τ t(A)) = ω−(A).

Takingη = ω+ we deduce (ii).2

Proposition 2.2 Let V ∈ Aself be such that for some sequence λn → 0, λn 6= 0,

Ep(ω+
λnV ) = 0.

Then
∫ ∞

−∞

ω([V, τ t
0(A)]) dt = 0,

for all A ∈ A.
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Proof. Since for|λ| < λV andA ∈ A

ω(A) = ω±
λV (γ±

λV (A)) = lim
t→±∞

ω±
λV (τ t

0(A)),

we have

ω(A) − ω±
λV (A) = ∓iλ

∫ ∞

0

ω±
λV ([V, τ±t

0 (A)]) dt,

and hence

ω+
λV (A) − ω−

λV (A) = iλ

∫ ∞

−∞

ω
s(t)
λV ([V, τ t

0(A)]) dt,

wheres(t) = sign(t). Takingλ = λn, we deduce from Proposition 2.1 that
∫ ∞

−∞

ω+
λnV ([V, τ t

0(A)]) dt = 0. (2.6)

As in the proof of Proposition 2.1,Ep(ω+
λnV ) = 0 implies

−CV |λn| ≤ Ent(ω ◦ τ t
λnV |ω) ≤ 0

for t ≥ 0 and the weak∗ upper semi-continuity of the relative entropy yields

Ent(ω+
λnV |ω) = O(|λn|).

This estimate and the entropic inequality

‖ω+
λnV − ω‖2 ≤ −2 Ent(ω+

λnV |ω),

yield that
lim

n→∞
‖ω+

λnV − ω‖ = 0. (2.7)

Relations (2.6), (2.7), Assumption (A1) and the dominated convergence theorem imply the
statement.2

Proof of Theorem 1.1 Assume that the statement does not hold. Then there existV0 ∈ Aself

andǫ > 0 such that for allW ∈ Aself satisfying‖V0 − W‖ < ǫ there exists a (W -dependent)
sequenceλn → 0, λn 6= 0, such thatEp(ω+

λnW ) = 0. Proposition 2.2 yields that

∫ ∞

−∞

ω([W, τ t
0(A)]) dt = 0. (2.8)

Let V ∈ Aself be given and let0 < s < ǫ/‖V ‖. TakingW = V0 + sV in (2.8), we derive that
for all A ∈ A

∫ ∞

−∞

ω([V0, τ
t
0(A)]) dt + s

∫ ∞

−∞

ω([V, τ t
0(A)]) dt = 0. (2.9)
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Since the first term in (2.9) is vanishing, we deduce that for all V ∈ Aself andA ∈ A,
∫ ∞

−∞

ω([V, τ t
0(A)]) dt = 0,

and so for allA,B ∈ A,
∫ ∞

−∞

ω([A, τ t
0(B)]) dt = 0. (2.10)

By the well-known result of Bratteli, Kishimoto and Robinson (see [BKR] and Theorem 5.4.20
in [BR2]), (A1), (A2) and (2.10) imply thatω is a(τ0, β)-KMS state for someβ ∈ R ∪ {±∞}.
Our assumptions exclude the casesβ = ±∞, 0, and the result follows.2

3 Proof of Theorem 1.3

Throughout this subsectionρ is the constant in Assumption (B1). In the first two propositions
we assume only thatρ ≥ 0. Set〈t〉 =

√
1 + t2,

ℓV,ρ =

∫ ∞

0

max
f,g∈F(V )

〈t〉ρ|(f, eith0g)| dt,

and

λV,ρ = (2nV MV ℓV,ρ)
−1 (2nV − 2)2nV −2

(2nV − 1)2nV −1
.

Proposition 3.1 Suppose that (B1) holds for some ρ ≥ 0 and let V ∈ Aself . Then for all
0 < Λ < λV,ρ and A ∈ A,

sup
|λ|≤Λ

∫ ∞

0

〈t〉ρ ‖[V, τ t
λV (A)]‖ dt < ∞.

Proof. This proposition is a consequence of the arguments used in the proof of Theorem 1.1 in
[JOP]. We shall use freely the terminology and estimates of the Section 2.1 in [JOP].

Let Tn be the set of all rooted trees with the nodes0 (the root),1, · · · , n. A function T :
{0, . . . , n} → {0, . . . , n} is called a climber of ordern if T (0) = 0 andT (j) < j for all
j ∈ {1, . . . , n}. There is one-one correspondence between climbers and rooted trees. We set
r0 = |T−1({0})| − 1 andrj = |T−1({j})| for j ∈ {1, . . . , n} (rj is the number of childs of the
nodej). To T ∈ Tn we associate the constant

N(T ) =
(2nA)!

(2nA − r0)!

n−1
∏

j=1

(2nV )!

(2nV − rj − 1)!
,



On the strict positivity of entropy production 11

if r0 ≤ 2nA andrj ≤ 2nV − 1, otherwiseN(T ) = 0. Set

Gk(t) ≡ MV

{

maxf∈F(V ),g∈F(A) |(f, eith0g)| for k = 0,

maxf,g∈F(V ) |(f, eith0g)| for k > 0.

In [JOP] the following estimate was established:

‖[V, τ t
λV (A)]‖ ≤ MA

∞
∑

n=1

|λ|n−1
∑

T∈Tn

N(T )

∫

0=sn≤sn−1···≤s0=t

n
∏

j=1

GT (j)(sT (j) − sj) ds1 · · · dsn−1.

Let T ∈ Tn, let k be the smallest integer such thatT k(n) = 0, and letjl = T l(n), l =
0, · · · , k (soj0 = n andjk = 0). Since0 = sn ≤ sj1 ≤ · · · ≤ sjk

= t, we have

t =
k−1
∑

l=0

(sjl+1
− sjl

) ≤
k−1
∑

l=0

〈sjl+1
− sjl

〉 ≤ k
k−1
∏

l=0

〈sjl+1
− sjl

〉,

and so

tρ
k−1
∏

l=0

GT (jl)(sT (jl) − sjl
) ≤ kρ

k−1
∏

l=0

〈sT (jl) − sjl
〉ρ GT (jl)(sT (jl) − sjl

).

Hence, we can estimate
∫ ∞

0

tρ ‖[V, τ t
λV (A)]‖ dt ≤ MA

∞
∑

n=1

nρ |λ|n−1 In,

where

In =
∑

T∈Tn

N(T )

∫

0=sn≤sn−1···≤s0<∞

n
∏

j=1

〈sT (j) − sj〉ρGT (j)(sT (j) − sj) ds0 · · · dsn−1.

Applying the Botvich-Guta-Maassen integral estimate [BGM] in the same way as in Section
2.1 of [JOP] we deduce that

sup
|λ|≤λV,ρ

∞
∑

n=1

|λ|n−1In < ∞,

and the statement follows.2

The next theorem establishes the rate of approach to the NESSand is of independent interest.

Theorem 3.2 Suppose that (B1) holds for some ρ ≥ 0 and let V ∈ Aself . Then for all A ∈ A
and 0 < Λ < λV,ρ,

sup
|λ|≤Λ

|ω(τ t
λV (A)) − ω+

λV (A)| = O(〈t〉−ρ).
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Proof. The identity

τ−u
0 ◦ τu

λV (A) − τ−t
0 ◦ τ t

λV (A) = iλ

∫ u

t

τ−s
0 ([V, τ s

λV (A)]) ds, (3.11)

and theτ0-invariance ofω yield that

ω+
λV (A) − ω(τ t

λV (A)) = iλ

∫ ∞

t

ω([V, τ s
λV (A)]) ds.

Hence,

sup
|λ|≤Λ

|ω(τ t
λV (A)) − ω+

λV (A)| ≤ Λ〈t〉−ρ sup
|λ|≤Λ

∫ ∞

t

〈s〉ρ ‖[V, τ s
λV (A)]| ds,

and the statement follows from Proposition 3.1.2

Proof of Theorem 1.3. Let V be the set of allV ∈ Aself such that for some0 < |λ| < λV ,
Ep(ω+

λV ) > 0. By Part (2) of Theorem 1.2 the functionλ 7→ Ep(ω+
λV ) is analytic for|λ| < λV ,

and so for anyV ∈ V the entropy production can vanish only for a discrete set ofλ’s in
] − λV , λV [.

To prove thatV is dense inAself we shall use Theorem 1.1. As we have already discussed,
(B1)-(B2) imply that (A1)-(A3) hold, and we only need to verifythat (A4) also holds.

For a givenV ∈ Aself , the observable

A =
1

λ
σλV ,

does not depend onλ and belongs toA. Sinceρ > 1, Theorem 3.2 yields that for all0 < Λ <
λV,ρ,

sup
|λ|≤Λ,t≥0

∣

∣

∣

∣

∫ t

0

(ω(τ s
λV (A)) − ω+

λV (A)) ds

∣

∣

∣

∣

< ∞.

Hence, Theorem 1.1 holds andV is norm dense inAself . This proves Parts (1) and (2).
To prove (3), letV,W ∈ Aself . Setn = max(nV , nW ), K = KV +KW ,F = F(V )∪F(W ),

ℓ =

∫ ∞

0

max
f,g∈F

|(f, eith0g)| dt,

and

λV W =
(

2nK (max {1, ‖f‖ | f ∈ F})2n−1 ℓ
)−1 (2n − 1)2n−1

(2n − 2)2n−2
.

The proof of Theorem 1.1 in [JOP] gives that for allA ∈ A,

sup
|λ|≤λV W ,|ǫ|≤1

∫ ∞

0

‖[V, τ t
λ(V +ǫW )(A)]‖ dt < ∞,



On the strict positivity of entropy production 13

and

lim
ǫ→0

sup
|λ|≤λV W

∫ ∞

0

‖[V, τ t
λ(V +ǫW )(A) − τ t

λV (A)]‖ dt = 0.

The estimate

|ω+
λ(V +ǫW )(σλ(V +ǫW ))−ω+

λV (σλV )| ≤ |λǫ| ‖δς(W )‖ + |ω+
λ(V +ǫW )(σλV ) − ω+

λV (σλV )|

≤ |λǫ| ‖δς(W )‖ + |λ|
∫ ∞

0

‖[V, τ t
λ(V +ǫW )(σλV ) − τ t

λV (σλV )]‖ dt,

implies that ifωλV (σλV ) > 0 for some0 < |λ| < λV W , thenω+
λ(V +ǫW )(σλ(V +ǫW )) > 0 for ǫ

small enough. Hence, ifV ∈ V andW ∈ Aself , then forǫ small enough,V + ǫW ∈ V. 2
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[AJPP] Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Topics in non-equilibrium quantum
statistical mechanics. InOpen Quantum Systems III. S. Attal, A. Joye, C.-A. Pillet editors.
Lecture Notes in Mathematics 1882, Springer, New York (2006).

[AS] Aschbacher, W., Spohn, H.: A remark on the strict positivity of entropy production. Lett.
Math. Phys.75, 17 (2006).

[BGM] Botvich, D.D., Guta, M., Maassen, H.: Stability of Bose dynamical systems and branching
theory. Preprint (mp_arc 99-130).

[BM1] Botvich, D.D., Malyshev, V.A.: Unitary equivalence of temperature dynamics for ideal and
locally perturbed Fermi gas. Commun. Math. Phys.91, 301 (1983).

[BM2] Botvich, D.D., Malyshev, V.A.: Asymptotic completeness and all that foran infinite number
of fermions. InMany-Particle Hamiltonians: Spectra and Scattering. Minlos, R. A. editor.
Advances in Soviet Mathematics 5, 39, AMS, Providence (1991).

[BKR] Bratteli, O., Kishimoto, A., Robinson, D.W.: Stability properties and the KMScondition.
Commun. Math. Phys.61, 209 (1978).

[BR1] Bratteli, O., Robinson, D. W.:Operator Algebras and Quantum Statistical Mechanics 1.
Springer-Verlag, Berlin (1987).

[BR2] Bratteli, O., Robinson, D. W.:Operator Algebras and Quantum Statistical Mechanics 2.
Second edition, Springer-Verlag, Berlin (1996).

[FMU] Fröhlich, J., Merkli, M., Ueltschi, D.: Dissipative transport: thermal contacts and tunneling
junctions. Ann. Henri Poincaré4, 897 (2004).



On the strict positivity of entropy production 14
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