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Abstract: In this paper we are discussing the stability problem of the stan-
dard obstacle problem. We show that the solution of the obstacle problem is
stable under the boundary conditions. One can show this result for general
obstacle problem.

1 Introduction

Let Ω ⊂ Rn be a bounded domain and let Wm,p(Ω) be a usual Sobolev space.
When p = 2 we’ll write Hm(Ω) instead of Wm,2(Ω). The set of functions
which have compact support in Ω we’ll denote C0(Ω) and the closer of C∞

0 (Ω)
by the norm of Hm(Ω) we’ll denote Hm

0 (Ω).
Suppose g, ϕ are functions from H1(Ω) and define

K = {u ∈ H1(Ω) | u− g ∈ H1
0 (Ω), u ≥ ϕ a.e. in Ω}.

We always will assume that g ≥ ϕ, so the set K is not empty.
One can easily show that

the set K is closed and convex (1)

(see for example [1], [2]).
Define

G(u) =
∫

Ω
| Du |2 dx− 2 ·

∫
Ω

fudx

We conceder the following problem: for given f ∈ L2(Ω), g, ϕ ∈ H1(Ω) find

u ∈ K such that G(u) = min
v∈K

G(v) (2)

It is easy to see that this problem is equivalent to the following problem:

find u ∈ K such that
∫

Ω
Du ·D(v − u)dx ≥

∫
Ω

f · (v − u), ∀ v ∈ K (3)

The problem (2) or (3) is called obstacle problem (standard obstacle problem,
obstacle problem for the Laplace operator), the function ϕ is called obstacle.
Define

a(u, v) =
∫

Ω
Du ·Dvdx
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u, v ∈ H1(Ω).
Since there exists an α > 0 such that∫

Ω
| Du |2≥ α ·

∫
Ω
| u |2, ∀ u ∈ H1

0 (Ω)

(Poincaré’s inequality) (see [2]), we can write

a(u, u) ≥ β· ‖ u ‖2
H1(Ω), ∀ u ∈ H1

0 (Ω) (4)

β > 0 is a constant. This means that the bilinear form a(u, v) is coercive on
H1

0 (Ω).
It is well known that the Sobolev space H1(Ω) is a Hilbert space with the
scalar product

(f, g)H1 =
∫

Ω
f · g + Df ·Dgdx

The dual space of H1
0 (Ω) we’ll denote by H−1(Ω).

Elements of H−1(Ω) may be characterized as the derivatives of functions
fı ∈ L2(Ω) in the distributional sense, namely, for f ∈ H−1(Ω) there exists
f0, f1, . . . fn ∈ L2(Ω) such that

〈f, h〉 =
∫

Ω
{f0 −

n∑
ı=1

fıhxı}dx, h ∈ H1
0 (Ω),

〈·, ·〉 is the pairing between H−1(Ω) and H1
0 (Ω) (see [2], [3]).

If f = f0, the problem (3) could be rewritten with the help of this terminol-
ogy in the following way: find u ∈ K such that

a(u, v − u) ≥ (f, v − u), ∀ v ∈ K,

where (·, ·) is the scalar product in L2(Ω).

In general we will reformulate the problem (3) in the following way: for
given f ∈ H−1(Ω) find u ∈ K such that

a(u, v − u) ≥ 〈f, v − u〉, ∀ v ∈ K (5)

Proposition 1. | a(u, v) |≤‖ u ‖H1 · ‖ v ‖H1 .

Proof. First let assume that ‖ u ‖H1=‖ v ‖H1= 1.

In this case
| a(u, v) |=|

∫
Du ·Dv |≤

∫
| Du ·Dv |≤

≤ 1
2
·
∫

(| u |2 + | Du |2 + | v |2 + | Dv |2) =
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=
1
2
· (‖ u ‖H1 + ‖ v ‖H1) = 1 =‖ u ‖H1(Ω) · ‖ v ‖H1(Ω) .

In general case use the previous fact with functions u0 = u
‖u‖H1

, v0 = v
‖v‖H1

�
Since a(u, v) satisfies (4) and proposition 1 is right, we know that in this case:

Theorem 2. There exists a unique solution to problem (5). And also

‖ u1 − u2 ‖H1≤
1
β
· ‖ f1 − f2 ‖H−1 ,

where uı is solution corresponding to fı.
For proof of this theorem see [1] or [2].

2 Some important facts

Let X be a reflexive Banach space with dual X∗. Let 〈·, ·〉 denote a pairing
between X∗ and X.

Definition 3. A mapping A : D(A) → X∗ (D(A) ⊂ X is the domain
where A is defined)is called monotone, if

〈Au−Av, u− v〉 ≥ 0, ∀ u, v ∈ D(A)

If D(A) is convex, a mapping A is called semicontinuous, if for all u, v ∈ D(A)
the mapping

[0, 1] 3 t → 〈A(tu + (1− t)v), u− v〉

is continuous.

Lemma 4 (Minty). Let K be a closed convex subset of X, and let a
mapping A : K → X∗ is monotone and continuous. Then u satisfies

u ∈ K : 〈Au, v − u〉 ≥ 0 for all v ∈ K

if and only if it satisfies

u ∈ K : 〈Av, v − u〉 ≥ 0 for all v ∈ K.

For proof of this lemma see [1] or [2].

Theorem 5 (Mazur). A convex, closed subset of X is weakly closed.

(see [2], [4]).
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3 Stability of the solution

Suppose ϕ, gn ∈ H1(Ω) (n = 1, 2, . . .) and define

Kn = {u ∈ H1(Ω) | u− gn ∈ H1
0 (Ω), u ≥ ϕ a.e. in Ω}.

We always will assume that gn ≥ ϕ, so the set Kn is not empty for every n.
The sets Kn are closed and convex.

Theorem 6 (Stability). Suppose f ∈ H−1(Ω). The solution of the ob-
stacle problem is stabile in the following sense:
let un be the solution to problem

un ∈ Kn, a(un, v − un) ≥ 〈f, v − un〉, ∀ v ∈ Kn

and let u be the solution to problem

u ∈ K, a(u, v − u) ≥ 〈f, v − u〉, ∀ v ∈ K.

If gn → g in H1(Ω), then un → u weakly in H1(Ω).

Proof. If vn ∈ Kn, then using (4) and proposition 1, we have:

β· ‖ un − vn ‖2
H1≤ a(un − vn, un − vn) = a(un, un − vn)− a(vn, un − vn) ≤

≤ 〈f, un − vn〉+ ‖ vn ‖H1 · ‖ un − vn ‖H1≤

≤ (‖ vn ‖H1 + ‖ f ‖H−1)· ‖ un − vn ‖H1 .

So
‖ un − vn ‖H1≤

1
β
· (‖ vn ‖H1 + ‖ f ‖H−1).

‖ un ‖H1≤‖ un − vn ‖H1 + ‖ vn ‖H1 . Therefore, if vn → v ∈ K in H1(Ω), we
obtain that ‖ un ‖H1≤ C. Hence un has a weakly convergent subsequence
(see [3], [4]). If we show, that from un → w (weakly) follows that w is the
unique solution to problem (5), then the proof of the theorem will be com-
plete.
Since the mapping u → a(v, u) is continuous, we have

a(v, un) → a(v, w). (6)

According to Minty’s lemma

a(vn, vn − un) ≥ 〈f, vn − un〉, ∀ vn ∈ Kn.

Choose v ∈ K and vn ∈ Kn such that ‖ vn − v ‖H1→ 0 (for example take
vn = v + gn − g). Then

| a(v, v − un)− a(vn, vn − un) |=| a(v − vn, v − un) + a(vn, v − vn) |≤
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≤‖ v− vn ‖H1 · ‖ v−un ‖H1 + ‖ vn ‖H1 · ‖ v− vn ‖H1≤ C ‖ v− vn ‖H1→ 0.

So
a(v, v − un) ≥ 〈f, vn − un〉+ εn, εn → 0.

Since
〈f, vn − un〉 → 〈f, v − w〉,

from (6) we get
a(v, v − w) ≥ 〈f, v − w〉.

Now, if we show that w ∈ K, we can insist that w is the unique solution to
problem (5), and the proof will be complete.
Since gn → g in H1(Ω), then gn → g weakly in H1(Ω) (see, for example,
[3], [4]). So

un − gn → w − g, weakly in H1(Ω)

But un − gn ∈ H1
0 (Ω) and H1

0 (Ω) is a closed convex subset of H1(Ω). So,
according to Mazur’s theorem, w − g ∈ H1

0 (Ω).
Therefore w ∈ K.�
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