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Abstract

We investigate Gibbs measures relative to Brownian motion in the case when
the interaction energy is given by a double stochastic integral. In the case when
the double stochastic integral is originating from the Pauli-Fierz model in nonrel-
ativistic quantum electrodynamics, we prove the existence of its infinite volume
limit.

1 Preliminaries

1.1 Gibbs measures relative to Brownian motions

Gibbs measures relative to Brownian motion appeared in [22], where they have been
introduced to study a particle system linearly coupled to a scalar quantum field. A
systematic study of such measures has been started from [6], where by making use of
this measure the spectrum of the so-called Nelson model is investigated. Since then
there has been growing activity and interest in the study of various types of these
measures [4, 5, 12, 13, 21].

One way to understand Gibbs measures relative to Brownian motion is to view
them as the limit of a one-dimensional chain of unbounded interacting spins, with the
distance between the spins going to zero. As a simple example, which will be instructive
in what follows, let us take Rd for the spin space, and fix a (finite or infinite) a priori
measure ν0 on Rd as well as smooth, bounded functions V : Rd → R and W : R×Rd → R.
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2 Double stochastic integrals

On the lattice εZ ∩ [−T, T ] with spacing ε and n = 2T/ε sites, we define the measure
νW through

νW(dx−n . . . dxn) =
1

ZνW

∏
|i|≤n

ν0(dxi)e
−ε
∑
i V(xi)− 1

ε

∑
i(xi+1−xi)2+ε2

∑
i,j W(j−i,xj−xi). (1.1)

Here ZνW normalizes νW to a probability measure, and for finite ε, νW is just a chain
of interacting spins. However, the scaling becomes very important when ε→ 0. Then,
formally each spin configuration (xi)|i|≤n ∈ εZ ∩ [−T, T ] becomes a function x(·) on
[−T, T ], and the particular scaling of the quadratic term above gives rise to the term

limε→0 ε
∑

i (xi+1 − xi)2/ε2 =
∫ T
−T (dx(s)/ds)2ds. It is this term that prevents the mea-

sure νW from being concentrated on more and more rough functions when ε → 0,
ensuring continuity of x(t) in the limit. Indeed, when ν0 is chosen as the Lebesgue
measure on Rd, it is not difficult to show that part of the normalization along with the
quadratic term give converge to Wiener measure W , so that in the limit, ε → 0, we
obtain

νW
T (dB) =

1

ZνW
T

e−
∫ T
−T V(Bs) ds−

∫ T
−T ds

∫ T
−T dtW(Bt−Bs,t−s) dW . (1.2)

Here (Bt)t≥0 is now a Brownian motion, hence we call (1.2) Gibbs measures relative
to Brownian motion. Indeed, the measure appearing in [22] is of the above type, and
most of the subsequent works cited above have been concerned with measures of the
form (1.2).

In this paper we study another type of Gibbs measures, arising from a very similar
discrete spin system. Namely, let us now define

νWM (dx−n . . . dxn)

=
1

ZνWM

∏
|i|≤n

ν0(dxi) exp

(
−ε
∑
i

V(xi)−
1

ε

∑
i

(xi+1 − xi)2

+
∑
i,j

(xi+1 − xi) ·WM(j − i, xj − xi)(xj+1 − xj)

)
. (1.3)

Now WM is a d×d matrix, but otherwise the expression looks very similar to (1.1). The
crucial point is, however, that now the scaling of the term involving WM is different.
The ε2 which ensured convergence to a double Riemann integral is gone by sandwiching
ε2WM between (xi+1 − xi)/ε and (xj+1 − xj)/ε, and replaced by the increments of the
spins themselves. Since these increments will eventually converge to Brownian motion
increments, as discussed above, they are of order

√
ε, so the scaling is indeed different.

So after taking the limit ε→ 0, we informally obtain

νWM
T (dB) =

1

Z
ν

WM
T

e−
∫ T
−T V(Bs) ds−

∫ T
−T

∫ T
−T dBs·WM (Bt−Bs,t−s) dBtdW . (1.4)

As a consequence, taking the limit ε→ 0 yields a double stochastic integral in place of
the double Riemann integral (1.2).
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1.2 Definition of double stochastic integrals

From now on we assume that d = 3 and specify the pair potential WM = W =
W (X, t) = (Wµν(X, t))1≤µ,ν≤3 given by

Wµν(X, t) :=

∫
|ϕ̂(k)|2

2ω(k)
e−ω(k)|t|eik·Xδ⊥µν(k)d3k, (1.5)

where δ⊥(k) = (δ⊥µν(k))1≤µ,ν≤3 is given by

δ⊥µν(k) := δµν −
kµkν
|k|2

. (1.6)

Measures of the type (1.4) with pair potential (1.5) appear in the study of the so-called
non-relativistic quantum electrodynamics, and have been introduced on a formal level
in [10, 14, 24]. However we notice that there are some difficulties in the expression (1.4):
For t > s, the integrand is not adapted to the natural filtration FT = σ(Br; r ≤ T ),
so as a stochastic integral or any of its obvious transformations the double stochastic
integral such as (1.4) does not make sense. So the right-hand side of (1.4) is just an
informal symbol.

In [16, Definition 4.1] and [18, (4.2)], however, the firm mathematical definition of
(1.4) has been given through a Gaussian random process associated with an Euclidean
quantum field. We outline it below. A Gaussian random process AE(f) labeled by
f ∈ ⊕3L2(R3+1) on some probability space (QE,ΣE, µE) is introduced, which has mean
zero and covariance EµE [A(f)A(g)] = q(f, g) given by

q(f, g) :=
1

2

∫
f̂(k, k0) · δ⊥(k)ĝ(k, k0)d3kdk0 (1.7)

for f, g ∈ ⊕3L2(R3+1), where ˆ denotes the Fourier transformation. Let

Kt = ⊕3
µ=1

∫ t

0

jsϕ(· −Bs)dB
µ
s (1.8)

be the ⊕3L2(R3+1)-valued stochastic integral defined in the similar way as standard
stochastic integrals, where js : L2(R3)→ L2(R3+1) denotes the isometry satisfying

(jsf, jtg)L2(R3+1) = (f̂ , e−|t−s|ωĝ)L2(R3). (1.9)

See Subsection 3.1 for the details.

Definition 1.1 Let W be the pair potential defined in (1.5). The dounble stochastic
integral is defined by∫ t

0

∫ t

0

dBs ·W (Bt −Bs, t− s)dBt := q(Kt, Kt). (1.10)

We would like to express (1.10) as an iterated stochastic integral in this paper.
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1.3 Main results

Let us define the Wiener measure W on X := C(R; R3), cf. also [23, p. 39, Remark 1.].
Let H0 = −(1/2)∆. Suppose that f1, ..., fn−1 ∈ L∞(R3) with compact support. Then
there exists a measure W on X such that

(f0, e
−(t1−t0)H0f1 · · · fn−1e

−(tn−tn−1)H0fn)L2(R3)

=

∫
X

f0(Bt0)f1(Bt1) · · · fn(Btn)dW . (1.11)

A path with respect to this measure is denoted by Bt(w) = w(t) for w ∈ X. Note
that Wiener measure is not a probability measure, indeed it has infinite mass. If P x,t0

W

denotes the measure of standard Brownian motion starting from x ∈ R3 at time t0,
then ∫

X

f0(Bt0) · · · fn(Btn)dW =

∫
R3

dx

∫
C([t0,∞);R3)

f0(Bt0) · · · fn(Btn)dP x,t0
W .

Let ψ ∈ L2(R3) be a nonnegative function and we fix it throughout this paper. In the
case of (1.2), the existence of the weak limit of the measure on X,

dνW
T :=

1

ZνW
T

ψ(B−T )ψ(BT )e−
∫ T
−T ds

∫ T
−T dtW(Bt−Bs,t−s)e−

∫ T
−T V(Bs)dsdW ,

as T →∞ has been investigated for various kinds of V and W, and the limiting measure,
νW
∞, proved to be useful to study the ground state ϕg of some particle system linearly

coupled to a scalar quantum field. Namely for a suitable operator O, we can express the
expectation (ϕg,Oϕg) as

∫
X
fOdν

W
∞ with some integrand fO. So, beyond the existence

of a measure of the form (1.4), one is interested in the limit as T →∞, at least along
a subsequence. In other words, one would like to prove the tightness of the family of
measures (1.4). This is by no means an easy task, given that there are very few good
general estimates on single stochastic integrals, let alone double integrals.

The purpose of our present paper is to point out that there is at least one special
case where there is a comparatively easy way to construct both the finite volume Gibbs
measure and the infinite volume limit, namely the case when WM = W = (Wµν)1≤µ,ν≤3

is given in (1.5). Fortunately, this special case is the one that motivated the whole
theory of Gibbs measures with double stochastic integrals. The main results in this
paper are
(1) we give an iterated stochastic integral expression of (1.10);
(2) we show the tightness of the family of measures

1

ZT
ψ(BT )ψ(B−T )e−

∫ T
−T V (Bs)ds−α2

∫ T
−T

∫ T
−T dBs·W (Bt−Bs,t−s)dBtdW

for a general class of V including the Coulomb potential V (x) = −1/|x|, and arbitrary
values of coupling constant α ∈ R.
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There has been recent progress both of the above topics: M. Gubinelli and J.
Lőrinczi [13] employ the concepts of stochastic currents rough paths in order to define
(1.4) rigorously for finite volume, and use a cluster expansion in order to construct the
infinite volume limit. While these are impressive results, the techniques used are rather
advanced, and the use of cluster expansion comes with strong assumptions on single
site potentials V and coupling constants. The advantage of our methods is that we
can avoid some restrictions needed in [13]; in particular we need not restrict to single
site potentials that grow faster than quadratically at infinity, and we need no small
coupling constant in front of the double stochastic integral. In particular our results
include the Coulomb potential which is the most reasonable single site potential. On
the other hand, of course the range of potentials W that is treated in [13] is much
greater than ours.

The paper is organized as follows: In Section 2 we will construct the finite vol-
ume Gibbs measure as the marginal of a measure with single stochastic integral on
a larger state space. This construction is well known [25], but has not been carried
out rigorously so far. In Section 3, we rely on the detailed results available about the
Pauli-Fierz model [20, 11] in order to show that our family of Gibbs measures is tight,
giving the existence of an infinite volume measure. While we expect that the general
method of enlarging the state space should allow us to define and prove infinite volume
limits for many more models than just Pauli-Fierz, this is not all straightforward. We
will comment on this issue at the end of Section 3.

2 Iterated expression of finite volume measures

In this section we will specify the measure µT that we are working with, and identify
it as the marginal of another measure νT on a larger state space. Let us start by
introducing an infinite dimensional Ornstein-Uhlenbeck process which will serve as the
reference measure for the auxiliary degrees of freedom. Put

ω(k) =
√
|k|2 +m2 (2.1)

for m ≥ 0, and let Xs(f) be the Gaussian random process on a probability space
(Q,Σ,G) labeled by measurable function f = (f1, f2, f3) with mean zero and covariance
given by

EG[Xs(f)Xt(g)] =

∫
d3k

1

2ω(k)
e−ω(k)|t−s|f̂(k) · δ⊥(k)ĝ(k). (2.2)

Here f̂ denotes the Fourier transform of f and we assume that f̂µ/
√
ω, ĝν/

√
ω ∈ L2(R3),

µ, ν = 1, 2, 3.

Remark 2.1 Let Ys(f) be the Gaussian random process on (QE,ΣE, µE) defined by

Ys(f) := AE(js(f̂/
√
ω)∨). (2.3)

Then Ys(f) is mean zero and its covariance is

EµE [Ys(f)Yt(f)] = EG[Xs(f)Xt(g)]. (2.4)
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Hence Ys(f) and Xs(f) are isomorphic as Gaussian random processes.

We will now couple G to the Wiener measureW . For this we use a coupling function
ϕ with the assumption below:

Assumption (A):

(1) ϕ̂(k) = ϕ̂(−k) = ϕ̂(k) and
√
ωϕ̂, ϕ̂/ω ∈ L2(R3).

(2) ϕ̂ is rotation invariant, i.e., ϕ̂(Rk) = ϕ̂(k) for all R ∈ O(3).

Let us now define the quantity

J[0,T ](X) :=

∫ T

0

Xs(ϕ(· −Bs)) · dBs.

The proper definition of J[0,T ] reads

J[0,T ](X) := lim
n→∞

n∑
j=1

X(j−1)T/n(ϕ(· −B(j−1)T/n)(BjT/n −B(j−1)T/n)), (2.5)

where the right hand side strongly converges in L2(X × Q;G ⊗ P x,0
W ). This is proved

by showing that the right-hand side of (2.5) is Cauchy by making use of (2.2). In the
same way, we can define

JT (X) :=

∫ T

−T
Xs(ϕ(· −Bs)) · dBs.

The coupling between the Gaussian process and Brownian motion is given by the
measure ν on X ×Q with

dνT =
1

ZT
exp

(
iα

∫ T

−T
Xs(ϕ(· −Bs)) · dBs

)
ψ(B−T )ψ(BT )dW ⊗ dG, (2.6)

where ψ ∈ L2(R3) is an arbitrary nonnegative function, ZT the normalizing constant,
and α is a coupling constant. In order to guarantee that the density in (2.6) is integrable
with respect toW , we chose the boundary function ψ to be of rapid decrease at infinity.

We are now in the position to define our finite volume Gibbs measure. We will
introduce an on-site potential V which we take Kato-decomposable [7], i.e. we require
that the negative part V− is in the Kato class while the positive part V+ is the locally
Kato class [23]. This ensures e.g. that

sup
x

EPx,0W

[
exp

(
−
∫ t

0

V (Bs) ds

)]
<∞. (2.7)
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Definition 2.2 Let V : R3 → R be Kato-decomposable and α ∈ R a coupling constant.
Then the measure µVT on X is defined through

dµVT :=
1

ZT
e−

∫ T
−T V (Bs) dsEG[dνT ]

=
1

ZT
ψ(B−T )ψ(BT )e−

∫ T
−T V (Bs) dsEG

[
exp

(
iα

∫ T

−T
Xs(ϕ(· −Bs)) · dBs

)]
dW .

(2.8)

We want to show that the measure µVT we just defined is a Gibbs measure with
double stochastic integral as given in Section 1. The key to doing this is the fact that
we will be actually able to calculate the Gaussian integral

∫
Q

exp(iJT (X))dG(X), and

thus are left with an expression involving Brownian motion paths only. In doing so,
we will set α = 1 for a simpler notation.

Let us give the heuristic presentation first. By the standard formula we have

EG[eiJT ] = exp

(
−1

2
EG[J2

T ]

)
(2.9)

and formally, by Remark 2.1, we have

EG[J2
T ] =

1

2

∫ T

−T

∫ T

−T
dBs ·W (Bt −Bs, t− s)dBt, (2.10)

where W is given in (1.5). As it stands, there are problems with the right-hand side of
formal expression (2.10), mainly because the integrand is not adapted. The resolution
is to use symmetry of W and break up the integral into two parts, one where s < t and
one where s > t, which are then proper iterated Itô integrals. This leaves the diagonal
part, which gives a non-vanishing contribution by the unbounded variation of Bt.

We define the iterated stochastic integral ST by

ST :=

∫
d3k
|ϕ̂(k)|2

2ω(k)

∫ T

−T
eik·BsdBs ·

∫ s

−T
e−ω(k)(s−r)e−ik·Brδ⊥(k)dBr +

+
t

3

∫
d3k
|ϕ̂(k)|2

2ω(k)
(2.11)

ST is the well-defined expression that will replace (2.8). The above line of reasoning and
(2.11) are not new [25], except that (2.11) is usually not written out but instead just
referred to as the double stochastic integral with the diagonal removed. Nevertheless,
(2.11) can be considered as known. However, the derivation above is mathematically
not rigorous, since the ill-defined expression (2.10) appears along the way. To avoid
this, one has to derive (2.11) directly from EG[eiJT ]. This is what we do in the next
theorem.

Theorem 2.3 For almost every w ∈ X, we have

EG[eiJT ] = e−ST . (2.12)
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Proof: Let us replace the time interval [−T, T ] with [0, T ] for notational convenience.
We employ (2.5) and use dominated convergence to get

EG[eiJT ] = lim
n→∞

EG

[
exp

(
i

n∑
j=1

X∆j
(ϕ(· −B∆j

)) · δBj

)]

= lim
n→∞

exp

−1

2
EG

[
n∑
j=1

X∆j
(ϕ(· −B∆j

)) · δBj

]2
 ,

where we set δBj = BjT/n −B(j−1)T/n and ∆j = (j − 1)T/n, j = 1, ..., N . Now

EG

[
n∑
j=1

X∆j
(ϕ(· −B∆j

)) · δBj

]2

=

∫
d3k
|ϕ̂(k)|2

2ω(k)

n∑
j=1

n∑
l=1

e−|∆j−∆l|ω(k)eik(B∆l
−B∆l

)δBj · δ⊥(k)δBl

= 2
n∑
j=1

∫
d3k
|ϕ̂(k)|2

2ω(k)

j−1∑
l=1

e−|∆j−∆l|ω(k)eik(B∆j
−B∆l

)δBj · δ⊥(k)δBl (2.13)

+
n∑
j=1

δBj ·
(∫

d3k
|ϕ̂(k)|2

2ω(k)
δ⊥(k)

)
δBj. (2.14)

For the diagonal term in the last line above we note that∫
|ϕ̂(k)|2

2ω(k)
δ⊥µν(k)d3k = δµν

2

3

∫
|ϕ̂(k)|2

2ω(k)
d3k

by the rotation invariance of ϕ̂. Now as n → ∞,
∑n

j=1 |δBj|2 → T , for almost every
w ∈ X. Thus for almost every w ∈ X, we find

lim
n→∞

n∑
j=1

δBj ·
(∫

d3k
|ϕ̂(k)|2

2ω(k)
δ⊥(k)

)
δBj =

2T

3

∫
d3k
|ϕ̂(k)|2

2ω(k)
.

For the off-diagonal term, we start by noting that by the definition of the Itô integral
for locally bounded functions f, g : R× R3 → R, we can see that

EP 0,0
W

[∫ t

0

ds

∣∣∣∣f(s, Bs)

∫ s

0

g(r, Br)dBr

∣∣∣∣2
]
<∞.

Hence the stochastic integral of ρ(s) = f(s, Bs)
∫ s

0
g(r, Br)dBr exists and it holds that

lim
n→∞

n∑
j=1

(
f(∆j, B∆j

)

∫ ∆j

0

g(r, Br)dBr

)
δBj =

∫ T

0

(
f(s, Bs)

∫ s

0

g(r, Br) dBr

)
dBs

(2.15)
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strongly in L2(P 0,0
W ). By the independence of Brownian increments and the fact that

EP 0,0
W

[δBj]
2 = 1/n, EP 0,0

W
[δBj] = 0, we can estimate the L2(X;P 0,0

W )-difference of (2.15)

and the off-diagonal term:

EP 0,0
W

[
n∑
j=1

f(∆j, B∆j
)

(∫ ∆j

0

g(r, Br) dBr −
j∑
l=1

g(∆l, B∆l
)δBl

)
δBj

]2

=

=
1

n
EP 0,0

W

 n∑
j=1

f(∆j, B∆j
)2

(∫ ∆j

0

g(r, Br) dBr −
j∑
l=1

g(∆l, B∆l
)δBl

)2


≤ ‖f‖2
∞

1

n

n∑
j=1

EP 0,0
W

[∫ ∆j

0

g(r, Br) dBr −
j∑
l=1

g(∆l, B∆l
)δBl

]2

. (2.16)

Then the right-hand side above converges to zero as n → ∞ and (2.13) converges to

2

∫ t

0

dBs ·
(
f(s, Bs)

∫ s

0

g(r, Br) dBr

)
strongly in L2(X;P 0,0

W ). By putting f(t, x) =

eik·xe−ω(k)t and g(t, x) = e−ik·xeω(k)t, the proof is finished. qed

Remark 2.4 It is interesting that we know that |e−ST | = |EG[eiJ ]| ≤ 1 almost surely.
This is not obvious from the iterated integral representation e−ST .

Let us summarize:

Proposition 2.5 Let µVT be the measure on X from Definition 2.2. Then

dµVT =
1

ZT
ψ(B−T )ψ(BT )e−α

2ŜT e−
∫ T
−T V (Bs) ds dW ,

where ŜT is defined by ST with the diagonal part removed:

ŜT :=

∫
d3k
|ϕ̂(k)|2

2ω(k)

∫ T

−T
eik·BsdBs ·

∫ s

−T
e−ω(k)(s−r)e−ik·Brδ⊥(k)dBr.

Or

ŜT :=

∫ T

−T
Z(s, w) · dBs,

where

Z(s, w) =

∫ s

−T
dBr

(∫
|ϕ̂(k)|2

2ω(k)
δ⊥(k)e−(s−r)ω(k)e−ik·(Br−Bs)d3k

)
.

Remark 2.6 In Proposition 2.5, the diagonal term
t

3

∫
d3k
|ϕ̂(k)|2

2ω(k)
is absorbed in the

normalization constant, since it does not depend on the Brownian path B. Moreover
from Remark 2.4 it follows that

| exp
(
−ŜT

)
| ≤ exp

(
t

3

∫
d3k
|ϕ̂(k)|2

2ω(k)

)
.
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3 The infinite volume limit

3.1 Tightness and the Pauli-Fierz model

The idea of the proof of the infinite volume limit we are about to give is not straight-
forward. We will show that it follows from showing that the bottom of the spectrum
of a self-adjoint operator is eigenvalue. Actually, in the case of pair potential W under
consideration, associated self-adjoint operator is realized as the Pauli-Fierz Hamilto-
nian H in the non-relativistic quantum electrodynamics. Fortunately it is established
that H has the unique ground state for not only confining external potential V , e.g.,
V (x) = |x|2, but also the Coulomb V (x) = −1/|x|, which is the most important case.

Let us begin with defining the Pauli-Fierz Hamiltonian with form factor ϕ̂ as a self-
adjoint operator on some Hilbert space H and we will review the functional integral
representation of the C0 semigroup e−tH .

Let F :=
⊕∞

n=0[
⊗n

s L
2(R3 × {1, 2})] be the Boson Fock space. The state space of

one electron minimally coupled with the photon (bose) field is given by

H := L2(R3)⊗F .

We denote the formal kernels of the annihilation operator and the creation operator
on F by a(k, j) and a∗(k, j), respectively, which satisfy the canonical commutation
relations:

[a(k, j), a∗(k′, j′)] = δ(k − k′)δjj′ , [a(k, j), a(k′, j′)] = 0 = [a∗(k, j), a∗(k′, j′)]. (3.1)

The free Hamiltonian in F is defined by

Hf :=
∑
j=1,2

∫
ω(k)a∗(k, j)a(k, j)d3k.

Here dispersion relation ω is given by (2.1). Let us fix a function ϕ̂ satisfying Assump-
tion (A) The quantized radiation field A = (A1, A2, A3) with form factor ϕ̂ is defined

by Aµ :=
∫ ⊕

R3 Aµ(x)d3x, where we used the isomorphism H ∼=
∫ ⊕

R3 L
2(R3) dx and

Aµ(x) :=
1√
2

∑
j=1,2

∫
eµ(k, j)

(
e−ikx

ϕ̂(k)√
ω(k)

a∗(k, j) + eikx
ϕ̂(−k)√
ω(k)

a(k, j)

)
d3k.

The vectors e(k, j), j = 1, 2, are the polarization vectors. They satisfy e(k, i) ·e(k, j) =
δij and k · e(k, j) = 0. Note that∑

j=1,2

eµ(k, j)eν(k, j) = δ⊥µν(k). (3.2)

(3.2) is of course independent of the choice of polarization vectors and k · e(k, j) = 0
yields that

3∑
µ=1

∇xµAµ(x) = 0. (3.3)
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The Pauli-Fierz Hamiltonian H(0) is defined by

H(0) :=
1

2
(−i∇⊗ 1− αA)2 + 1⊗Hf , (3.4)

where α ∈ R denotes coupling constant. It is established in [17, 19] that H(0) is self-
adjoint on D(−∆) ∩ D(Hf) and bounded from below. Moreover H(0) is essentially
self-adjoint on any core of −(1/2)∆⊗ 1 + 1⊗Hf . We now introduce a class of external
potentials V : R3 → R that we can add to H0.

Definition 3.1 V ∈ K if and only if V = V+ − V− such that V± ≥ 0, V+ ∈ L1
loc(R3)

and V− relatively form bounded with respect to −(1/2)∆ with bound strictly smaller
than one.

Let V ∈ K. Then we define H as

H := H(0) +̇ V+ ⊗ 1 −̇ V− ⊗ 1, (3.5)

where ±̇ denotes the quadratic form sum. To see the weak convergence of µVT , we
introduce the assumption below.

Assumption (GS): There exists a ground state ϕg of H.

Example 3.2 Let

V (x) = − C

|x|
+ U(x), (3.6)

where C ≥ 0 is a constant, and U = U+ − U− ∈ Lloc(R3) such that U± ≥ 0,
infx∈R3 U(x) > −∞, U− is compactly supported, and −(1/2)∆ + U has a ground
state φ > 0 with ground state energy −e0 < 0 such that |φ(x)| ≤ γe−|x|/γ with some
constant γ > 0. Then the ground state of H exists for arbitrary values of α. See [1,
p.8] and [2, 11]. Typical examples are

VCoulomb(x) = − C

|x|
,

Vconfining(x) = |x|2n, n = 1, 2, ...

To construct the functional integral representation of e−tH we introduce some proba-
bilistic notation which was already mentioned in Section 1. Let

{
AE(f)

}
f∈⊕3L2(R3+1)

,

denote the Gaussian random process labeled by f ∈ ⊕3L2(R3+1) on some probabil-
ity space (QE,ΣE, µE) with mean zero and covariance given by EµE [AE(f)AE(g)] =
q(f, g), where q(·, ·) is defined in (1.7). We define the isometry js : L2(R3)→ L2(R3+1)

by ĵsf(k, k0) := (e−ik0t/
√
π)
√
ω(k)/(ω(k)2 + |k0|2)f̂(k) which satisfies (1.9). The cru-

cial identity linking the Pauli-Fierz model to Gibbs measures is
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Proposition 3.3
(1) For arbitrary f ∈ L2(R3) with f ≥ 0 but f 6≡ 0, it follows that

(ϕg, f ⊗ Ω)H > 0 (3.7)

(2) Let f1, ..., fn−1 ∈ L∞(R3). For −T = t0 ≤ t1 ≤ · · · ≤ tn = T , the Euclidean n-point
green function is expressed as(

ψ ⊗ Ω, e−(t1−t0)H(f1 ⊗ 1) · · · (fn−1 ⊗ 1)e−(tn−tn−1)Hψ ⊗ Ω
)
H

(ψ ⊗ Ω, e−2THψ ⊗ Ω)H
= EµVT

[
n−1∏
j=1

fj(Btj)

]

Proof: See [18] for (1). In [15, 20] it is established that

(ψ ⊗ Ω, e−(t1−t0)H(f1 ⊗ 1) · · · (fn−1 ⊗ 1)e−(tn−tn−1)Hψ ⊗ 1)H

= EW

[
ψ(B−T )ψ(BT )

(
n−1∏
j=1

fj(Btj)

)
e−

∫ T
−T V (Bs)dsEµE

[
e−iα

∫ T
−T A

E
s ·dBs

]]
,

where

AEs,µ := AE
(
⊕3
ν=1 δνµjsλ(· −Bs)

)
, µ = 1, 2, 3,

and λ = (ϕ̂/
√
ω)∨. Since ZT = (ψ ⊗ Ω, e−2THψ ⊗ Ω)H and e−α

2ST = EG[eiαJT ] =

EµT

[
e−iα

∫ T
−T A

E
s ·dBs

]
, the lemma follows. qed

Remark 3.4 Formally, (2) of Proposition 3.3 can be deduced from using the Feynman-
Kac-Itô formula [9, 14, 15, 20, 23, 25] but note that integrand AEs depends on time s

explicitly; although this formula would give the Stratonovitch integral
∫ T
S
AEs ◦ dBs =∫ T

S
AEs ·dBs− 1

2

∫ T
S
∇·AEs ds instead of the Itô integral

∫ T
S
AEs ·dBs above, the Coulomb

gauge (3.3) allows us to use the Itô integral instead, since ∇x · AE(λ(· − x)) = 0.

By (3.7), we know that the the ground state, ϕg, of H is unique if it exists and, in
particular, (ϕg, f ⊗ Ω)H 6= 0 holds, then we can define the sequence converging to the
normalized ground state ϕg by

ϕtg := ‖e−tH(f ⊗ Ω)‖−1
H e
−tH(f ⊗ Ω).

Actually, by virtue of (3.7), we see that

ϕg = s− lim
t→∞

ϕtg. (3.8)

One immediate and useful corollary of (3.8) and Proposition 3.3 is as follows.
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Corollary 3.5 Let ρ, ρ1, ρ2 ∈ L∞(R3). Then for t > s,

lim
T→∞

EµVT
[ρ(B0)] = (ϕg, (ρ⊗ 1)ϕg)H,

lim
T→∞

EµVT
[ρ1(Bs)ρ2(Bt)] = (ϕg, (ρ1 ⊗ 1)e−(t−s)H(ρ2 ⊗ 1)ϕg)He

(t−s)E(H),

where E(H) = inf σ(H) denotes the ground stare energy of H.

In order to prove the main theorem, we show a more general formula than (2) of
Proposition 3.3. Let

A(f̂) =
1√
2

3∑
µ=1

∑
j=1,2

∫
eµ(k, j)

(
f̂µ(k)a∗(k, j) + f̂µ(−k)a(k, j)

)
dk.

Define the isometry Jt : F → L2(QE) by the second quantization of js, namely Jt :

A(f̂1) · · ·A(f̂n): Ω =:AE(jtf) · · · AE(jtfn): and JtΩ = 1, where :ξ : denotes the Wick
product of ξ.

Proposition 3.6 Let F,G ∈ H and f1, ..., fn−1 ∈ L∞(R3). For S = t0 ≤ t1 ≤ · · · ≤
tn = T ,

(F, e−(t1−t0)H(f1 ⊗ 1) · · · (fn−1 ⊗ 1)e−(tn−tn−1)HG)H

= EW

[(
n−1∏
j=1

fj(Btj)

)
e−

∫ T
S V (Bs)dsEµE

[
JSF (BS)e−iα

∫ T
S AEs ·dBsJTG(BT )

]]
.

Proof: See [15, 20]. qed

We are now ready to state and prove the main theorem of this paper.

Theorem 3.7 Suppose that Assumption (GS) and (2.7). Then there exists a subse-
quence T ′ such that the weak limit of µVT ′ as T ′ →∞ exists.

Proof: By the Prohorov theorem, it is enough to show two facts:
(1) lim

Λ→∞
sup
T
µVT (|B0|2 > Λ) = 0,

(2) for arbitrary ε > 0, lim
δ↓0

sup
T
µVT

 max
|t−s|<δ
−T≤s,t≤T

|Bt −Bs| > ε

 = 0.

Using Corollary 3.5 we have

µVT (|B0|2 > Λ) = (ϕTg , (χ{|x|2>Λ} ⊗ 1)ϕTg )H,

where χD denotes the characteristic function on D. Using the fact that ϕTg → ϕg

strongly as T → ∞ and ‖χ{|x|2>Λ}ϕg‖H → 0 as Λ → ∞, we get (1). For (2), assume
that |t− s| is sufficiently small. It is enough to show that

EµVT
[|Bt −Bs|2n] ≤ |t− s|nD (3.9)
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with some constant D independent of T . To apply Propositions 3.5 and 3.6, we have
to truncate the process Bµ

t as

(Bµ
t )a(w) :=


−a, Bµ

t (w) ≤ −a,
Bµ
t (w), |Bµ

t (w)| < a,
a, Bµ

t (w) ≥ a.

and define the truncated multiplication operator hµa , µ = 1, 2, 3, by

hµaf(x) =


−af(x), xµ ≤ −a,
xµf(x), |xµ| < a,
af(x), xµ ≥ a.

Note that
|ha(x)− ha(y)| ≤ |x− y| x, y ∈ R3, (3.10)

for all a ≥ 0. Since hµa is bounded, we can see that

EµVT

[
|(Bt)a − (Bs)a|2n

]
=

3∑
ν=1

2n∑
k=0

[
2n
k

]
(−1)kEµVT

[
(Bν

s )ka(B
ν
t )2n−k
a

]
=

3∑
ν=1

2n∑
k=0

[
2n
k

]
(−1)k

(
(hνa ⊗ 1)k e−sHϕTg , e

−(t−s)H (hνa ⊗ 1)2n−k e+tHϕTg

)
H

=
3∑

ν=1

2n∑
k=0

[
2n
k

]
(−1)kEW

[ (
hνa(B0)

)k (
hνa(Bt−s)

)2n−k
e−

∫ t−s
0 V (Bs)ds

× EµE

[
J0e−sHϕTg (B0)e−iα

∫ T
−T A

E
s ·dBsJt−se

+tHϕTg (Bt−s)
]]

= EW
[
|ha(B0)− ha(Bt−s)|2ne−

∫ t−s
0 V (Bs)ds

× EµE

[
J0e−sHϕTg (B0)e−iα

∫ T
−T A

E
s ·dBsJt−se

+tHϕTg (Bt−s)
]]

≤ EW
[
|B0 −Bt−s|4n‖e+tHϕTg (Bt−s)‖2

H

]1/2

×EW
[
e−2

∫ t−s
0 V (Bs)ds‖e−sHϕTg (B0)‖2

H

]1/2

≤ CV ‖e+tHϕTg ‖H‖e−sHϕTg ‖HEP 0,0
W

[
|B0 −Bt−s|4n

]1/2

≤ |t− s|n
√
C4nCV ‖e+tHϕTg ‖H‖e−sHϕTg ‖H

where we e+tHϕTg is well defined for t < T , and we used Corollary 3.5 in the second
equality, Proposition 3.6 in the third equality, (3.10) in the fifth inequality, CV :=

supx∈R3 EPxW
[e−2

∫ t−s
0 V (Br)dr] <∞ and C4n is the constant such that

EP 0,0
W

[|Bs −Bt|4n] = C4n|t− s|2n.
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Since ‖e−sHϕTg ‖ → e−sE(H)‖ϕg‖ and ‖e+tHϕTg ‖ → etE(H)‖ϕg‖ as T → ∞, we have

D := supT
√
C4nCV ‖ϕTg ‖2

He
(t−s)E(H) <∞. Then we have

EµVT
[|(Bt)a − (Bs)a|2n] ≤ D|t− s|n

uniformly in a. Since the left-hand side above monotonously increasing as a ↑ ∞, the
monotone convergence theorem yields (3.9). Thus (2) follows. qed

Definition 3.8 Let V ∈ K and suppose Assumption (GS). Then the weak limit of the
measure νVT ′ on X is denoted by νV∞.

Using the functional integration of e−tH , it can be show the Carmona type estimate
[8], namely ϕg is spatially localized as follows: if V (x) = |x|2n, then ‖ϕg(x)‖F ≤
C1e

−C2|x|n+1
, and if V (x) = −1/|x|, then ‖ϕg(x)‖ ≤ C3e

−C4|x| for some constants Cj.
We have a corollary.

Corollary 3.9 Assume that ‖ϕg(x)‖F ≤ Ce−c|x|
γ

for some positive constants C, c and
γ. Then ∫

X

ec|B0|γνV∞(dw) <∞. (3.11)

Proof: Let ρm(x) =

{
ec|x|

γ
, ec|x|

γ ≤ m,
m, ec|x|

γ
> m.

Then (ϕg, (ρm ⊗ 1)ϕg)H =
∫
X
ρm(B0)µV∞

follows. By the limiting arguments as m→∞, we have (3.11). qed

3.2 Concluding remarks

In this paper we have given one example where we can both make sense of the double
stochastic integral and obtain the infinite volume Gibbs measure by coupling Brownian
motion to an auxiliary Gaussian measure. The drawback of this particular example is
that the Gaussian space is infinite dimensional, and the associated Hamiltonian along
with the existence of its ground state is non-trivial, and so we have to rely on a lot of
technology. It is conceivable that the same method should work in a much easier case,
namely when the auxiliary Gaussian process is just the stationary one-dimensional (or
n-dimensional) Ornstein-Uhlenbeck process. However, when trying this approach one
notices that on the way we used a lot of special features of the Pauli-Fierz model and its
associated functional integral: for example the translation invariance of the coupling
ensures that the term arising from the diagonal does not depend on Bt, which is a
feature that cannot be reproduced in finite volume. So while we believe that a theory
of double stochastic integrals originating from the variance of a Gaussian process could
be developed, it is not altogether straightforward and we leave it as a future project.
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namics, mp-arc 06-78, preprint 2006.
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